
NOT FAA POLICY OR GUIDANCE
LIMITED RELEASE DOCUMENT

24 SEPTEMBER 2013

 NOT FAA POLICY OR GUIDANCE
LIMITED RELEASE DOCUMENT

24 SEPTEMBER 2013

DOT/FAA/TC-xx/xx

Federal Aviation Administration
William J. Hughes Technical Center
Aviation Research Division
Atlantic City International Airport
New Jersey 08405

Qualification of Tools for Airborne
Electronic Hardware

DISCLAIMER
This draft document is being made available as a “Limited
Release” document by the FAA Software and Digital
Systems (SDS) Program and does not constitute FAA
policy or guidance. This document is being distributed by
permission by the Contracting Officer’s Representative
(COR). The research information in this document
represents only the viewpoint of its subject matter expert
authors.

The FAA is concerned that its research is not released to
the public before full editorial review is completed.
However, a Limited Release distribution does allow
exchange of research knowledge in a way that will benefit
the parties receiving the documentation and, at the same
time, not damage perceptions about the quality of FAA
research.

NOTICE

This document is disseminated under the sponsorship of the U.S.
Department of Transportation in the interest of information exchange.
The United States Government assumes no liability for the contents or
use thereof. The United States Government does not endorse products
or manufacturers. Trade or manufacturer's names appear herein solely
because they are considered essential to the objective of this report. The
findings and conclusions in this report are those of the author(s) and do
not necessarily represent the views of the funding agency. This document
does not constitute FAA policy. Consult the FAA sponsoring organization
listed on the Technical Documentation page as to its use.

 Technical Report Documentation Page
1. Report No.

DOT/FAA/TC-xx/xx

2. Government Accession No. 3. Recipient's Catalog No.

4. Title and Subtitle

QUALIFICATION OF TOOLS FOR AIRBORNE ELECTRONIC HARDWARE

5. Report Date

May 2012
 6. Performing Organization Code

7. Author(s)

Brian Butka1, Andrew J. Kornecki1, and Janusz Zalewski2

8. Performing Organization Report No.

9. Performing Organization Name and Address

1 Embry Riddle Aeronautical University 2 Florida Gulf Coast University

10. Work Unit No. (TRAIS)

 600 S. Clyde Morris Blvd. 10501 FGCU Blvd S
 Daytona Beach, FL 32114 Fort Myers, Florida 33965

11. Contract or Grant No.

12. Sponsoring Agency Name and Address

U.S. Department of Transportation
Federal Aviation Administration
William J. Hughes Technical Center
Aviation Research Division
Advanced Aircraft Systems & Avionics

13. Type of Report and Period Covered

Final Report

Atlantic City International Airport, NJ 08405 14. Sponsoring Agency Code
 AIR-120

15. Supplementary Notes

The Federal Aviation Administration Aviation Research Division COTRs were Charles Kilgore and Emmanuel Papadopoulos.
16. Abstract

The objective of this research was to study the use and qualification of tools used in developing airborne electronic hardware
(AEH) for aircraft. The AEH are custom, microcoded components or devices used as part of the airborne system. The primary
technologies include Programmable Logic Devices, Field Programmable Gate Arrays, Application-Specific Integrated Circuits,
and similar circuits used as components of programmable electronic hardware.

The avionics standard RTCA DO-254 provides design assurance guidance on project conception, planning, design,
implementation, testing, and supporting processes in the hardware design life cycle. In particular, details on the processes that
must be followed in respective tools’ assessment and qualification are discussed. This study seeks to identify and address
potential safety issues in qualifying both hardware design tools and hardware verification tools.

The study was conducted in several steps, including literature search, industry survey, identification of primary safety,
performance, and certification concerns, developing a plan for validating these concerns, conducting experiments with the tools,
evaluating the experiments, and producing the final report. The results of this study were aimed at the determination of the major
issues related to using tools that support AEH design and verification and recommendations for addressing these issues in the
assessment and qualification process.

17. Key Words

Programmable Logic, Tools, Qualification, Airborne
electronic hardware

18. Distribution Statement

This document is available to the U.S. public through the
National Technical Information Service (NTIS), Springfield,
Virginia 22161. This document is also available from the
Federal Aviation Administration William J. Hughes Technical
Center at actlibrary.tc.faa.gov.

19. Security Classif. (of this report)
 Unclassified

20. Security Classif. (of this page)
 Unclassified

21. No. of Pages
 183

22. Price

Form DOT F 1700.7 (8-72) Reproduction of completed page authorized

iii

TABLE OF CONTENTS

Page

EXECUTIVE SUMMARY x

1. INTRODUCTION 1

1.1 Objectives 2
1.2 Problem Statement 2
1.3 Research Method 3
1.4 Audience 3
1.5 Results 4
1.6 Document Structure 4

2. BACKGROUND 5

2.1 Software and Hardware Relationship 6
2.2 Programmable Logic History 7
2.3 A Typical Airborne Electronic Hardware Development Flow 8
2.4 The Airborne Electronic Hardware Design 10
2.5 Verification of Airborne Electronic Hardware 13
2.6 Simple vs Complex Electronic Hardware 14
2.7 Airborne Electronic Hardware Tool Categories 14
2.8 The Airborne Electronic Hardware Tools in DO-254 Framework 16

2.8.1 The DO-254 Design Assurance Guidance 17
2.8.2 The DO-254 Tool Guidance 18

2.9 What is a Tool? 19
2.10 When is Tool Qualification Required? 20
2.11 Tools Disclaimers 21

3. ALTERNATIVES TO TOOL ASSESSMENT AND QUALIFICATION 22

3.1 Independent Assessment of the Tool’s Outputs 23

3.1.1 What Does Independent Assessment Mean? 24
3.1.2 Independent Processes at all Phases of the Design 24
3.1.3 What Happens if the Independent Assessment Results do not Agree? 25
3.1.4 Independent Assessment is a Process, not an Event 25

3.2 Service History 26

3.2.1 Service History Case Studies 26
3.2.2 Service History Guidance for Hardware 27

iv

3.2.3 Service History for Design Tools 28
3.2.4 Service History Versus the Latest Technology 28
3.2.5 Tool Service History is not Sufficient 28
3.2.6 Testing Maturity Model 29

4. DESIGN ASSURANCE 29

4.1 Constrained Random Verification 29
4.2 Observability 30
4.3 Derived Requirements 31

5. SURVEY OF TOOL USERS 32

5.1 Aviation Community Survey 32

5.1.1 Survey Population 32
5.1.2 Multiple Choice Answers 33
5.1.3 Narrative Answers 35

5.2 Semiconductor Industry Viewpoint 35

6. LITERATURE OVERVIEW 37

7. CASE STUDIES 39

8. SAFETY ISSUES 41

8.1 Hardware Design Error Characterization 41
8.2 The FPGA’s Environment 44
8.3 Timing Issues 44

8.3.1 Synchronous Design 45
8.3.2 Synchronous Design—Multiple Clock Domains 45
8.3.3 Asynchronous Designs 46

8.4 Wide Data Busses and Data Pattern Dependent Errors 46
8.5 Combinational Feedback/Quasi-Digital Circuits 47
8.6 Synthesis Issues—What did the Tool Really Build? 48

8.6.1 Getting Less Than Expected 48
8.6.2 Getting More Than Expected 49

v

8.7 Hardware That is Nonfunctional in Normal Operation 49

8.7.1 Synthesizer Optimizations 49
8.7.2 Gate-Level Verification 50
8.7.3 Adding Test Circuitry 50

8.8 Radiation Effects and FPGA Architectures 50
8.9 Radiation—DO-254 and DO-160 51
8.10 What Circuit is Being Generated? 51
8.11 Unused Inputs and Outputs 52
8.12 Other Considerations 52
8.13 Power up/Reset Issues 53
8.14 What can be Done to Prevent Problems? 53
8.15 Design Issues Summary 53

9. FINDINGS AND RECOMMENDATIONS 55

10. REFERENCES 57

11. GLOSSARY OF TERMS 63

APPENDICES

A—Survey Questionnaire
B—Survey Results
C—Test Procedure
D—Annotated Bibliography
E—Hardware Case Study Experiments
F—Evaluation Report for Hardware Design Tools

vi

LIST OF FIGURES

Figure Page

1 The AEH Stakeholders 4
2 Hardware and Software Boundary 8
3 A Typical AEH Design and Verification Flow 9
4 Generic Design Flow for the PLD Tool 12
5 The DO-254 Tool Assessment and Qualification Process 21
6 Survey Population—Type of Organization 33
7 Role of Respondents in DO-254 Projects 34
8 Factors Affecting System Safety 40
9 Macroevaluation Model of the Tool Evaluation Process 40
10 Functional Flaws Requiring Design Re-Spins 42
11 Communication Barriers That can Prevent Clear Design Specifications 43
12 Ring Oscillator 47
13 A TRM With Three Multipliers 48
14 Flip-Flop Replication 49
15 An SEU in an FPGA Using a CMOS Process 50

vii

LIST OF TABLES

Table Page

1 Tool Feature Comparison 16
2 The SEU Mean Time to Error for a Large FPGA in Geosynchronous Orbit 51

viii

LIST OF ACRONYMS

AC Advisory Circular
AEH Airborne electronic hardware
ASC A Stream Compiler
ASIC Application-specific integrated circuit
BNC Bayonet Neill-Concelman connector
CAST Certification Authorities Software Team
CDC Clock domain crossing
CMOS Complementry metal-oxide-semiconductors
COTS Commercial off-the-shelf
CPLD Complex programmable logic device
CPU Central processing unit
CVS Concurrent Version System
DAL Design assurance level
DC Direct current
Def Stan Defence Standard (UK)
DER Designated Engineering Representative
DSP Digital signal processing
DUT Device under test
EDA Electronic design automation
FAA Federal Aviation Administration
FFPA Functional failure path analysis
FPGA Field-programmable gate array
FSM Finite state machine
FVI Formal verification interface
GAL Generic array logic
GCLK Global clock resource
GND Ground
GUI Graphical user interface
HDL Hardware description language
IC Integrated circuit
ILA Internal Logic Analyzer
I/O Input/Output
IP Intellectual property
JAA Joint Aviation Authority
LED Light-emitting diode
MBD Model-based design/development
NASA National Aeronautics and Space Administration
NI National Instruments
PAL Programmable array logic
PBD Platform-based design
PCB Printed circuit board (also circuit board assemblies)
PCI Peripheral component interconnect
PLA Programmable logic array

ix

PLB Programmable logic block
PLD Programmable logic device
RF Radio frequency
RTL Register transfer language
SCADE Safety-Critical Application Development Environment
SEFI Single-event functional interrupt
SEU Single-event upset
SLD System level design
SMA Subminiature Version A
SoC System-on-chip
SPLD Simple programmable logic device
SRAM Static random access memory
SRPT Synchronous Receptive Process Theory
SSN Simultaneous switching noise
TRM Triple-redundant module
TTL Transistor/transistor logic
UAV Unmanned aerial vehicle
UCF User Constraint File
V&V Validation and verification
VHDL Very high-speed integrated circuit HDL
VI Virtual instrument

x

EXECUTIVE SUMMARY

The objective of this research was to identify potential safety issues in the assessment and
qualification of tools used in developing airborne electronic hardware (AEH) for aircraft. AEH
consists of custom, microcoded components or devices that are used as part of the airborne
system. The primary technologies include programmable logic devices (PLD), application-
specific integrated circuits, and similar circuits used as components of programmable electronic
hardware. While the study’s focus was on the most popular subset of the PLD technology,
known as field-programmable gate arrays, results will be applicable to custom, microcoded
devices.

An avionics standard, RTCA DO-254 (referred to as DO-254), provides design assurance
guidance for project conception, planning, design, implementation, testing, and supporting
processes in the hardware design life cycle. In particular, details on the processes that must be
followed for respective tools’ assessment and qualification are discussed. This study seeks to
identify and address potential safety issues in qualifying processes.

The research surveyed the literature, conducted a survey, and implemented hardware test cases to
address concerns related to:

• When should tool qualification occur, and what are the alternatives to tool qualification?

• Approaches used to qualify tools used in the design and verification of AEH for airborne

applications.

• The use of a tool’s service experience or service history as related to qualification.

This research supported policy and guidance development for aviation systems in a rapidly
evolving field of technology that exhibits a proliferation of software tools. However, this report
should not be considered as Federal Aviation Administration policy or guidance—it is research-
focused and will be considered as input for future policy and guidance, as appropriate.

This study included a literature search; an industry survey; identification of primary safety,
performance, and certification concerns; developing a plan for validating these concerns;
conducting experiments with the tools; evaluating the experiments; and producing the final
report. The results of this study are aimed at determining major issues related to the use of tools
supporting AEH design and verification and providing recommendations for addressing these
issues in the assessment and qualification process.

Even if the design and verification tools can prove that a design is functionally correct under all
conditions that were considered, design errors in the hardware can still occur due to conditions
beyond the scope of the design tools. The best way to avoid these errors is to have an
experienced design and verification staff with knowledge of the tool limitations. This will allow
the team to identify potential problems while still in the design phase and allow error mitigation

xi

techniques to be incorporated. In addition, an experienced staff will understand the operation of
the system under normal operating conditions as well as error conditions.

1

1. INTRODUCTION.

Modern aviation systems, both airborne (e.g., avionics and engine control) and ground (e.g.,
radar and air traffic control consoles), exemplify safety and mission-critical, dependable systems.
These systems continue to become more complex, and they often operate in uncertain
environments. Both hardware and software for such systems are developed using a variety of
tools that must address the final product reliability, fault tolerance, and deterministic timing
guarantees. Appropriate tools must be selected to meet the needs of a specific project. The
quality of the tool and the assurance provided by the tool are critical components of the final
target system certification.

This report, produced under a contract sponsored by the Federal Aviation Administration (FAA),
describes research focusing on the use and qualification of the tools used to design and verify
airborne electronic hardware (AEH) devices. Typical AEH components are programmable logic
devices (PLD), application-specific integrated circuits (ASIC), and similar circuits used as
components of programmable electronic hardware. The difference between a PLD and an ASIC
is PLDs are purchased as standard electronic parts and then altered (or programmed) to perform a
specific function, while ASICs are developed to implement a specific function. The process of
PLD programming is accomplished either by using an external dedicated device programmer or
on the circuit board via in-system programming. Manufacturing an ASIC component requires an
expensive design and fabrication process that does not allow the device to be reprogrammed.
Once manufactured, an ASIC cannot be reprogrammed and, therefore, is not a PLD.

The primary, and most popular, PLD component types are field-programmable gate arrays
(FPGA). There are three types of FPGAs, determined by the underlying technology:

• Fast, but volatile, FPGA based on static random access memory (SRAM) using advanced
complementary metal-oxide-semiconductors (CMOS)

• Reprogrammable, but slower, FPGA using flash memory

• Non-reprogrammable, nonvolatile, anti-fuse FPGA with good resistance to single-event
upset (SEU)

The scope of the research was limited to tools supporting the development of AEH, focusing on
applications for developing FPGA that have been used, or have a potential to be used, in airborne
applications. The principal document (DO-254 [1]), the three Certification Authorities Software
Team (CAST) papers (CAST-27 [2], CAST-28 [3], and CAST-30 [4]) that are designed to clarify
DO-254, and Advisory Circular (AC) 20-152 [5] do not specifically define what a tool is.
However, paraphrasing the DO-178B [6] terminology, this research defines a tool as “a computer
program or a hardware device used to help develop, test, analyze, produce or modify hardware
component, subsystem, system or its documentation.” The tools that will be focused on are
software products widely used for the design and verification of hardware components.
Hardware design and test tools, such as hardware emulators, are available for only very limited
environments, such as a single processor operating in a single architecture. Although this

2

research focused on computer programs used as design and verification tools, the conclusions
apply equally to computer programs and hardware devices used as tools.

The DO-254 [1] glossary defines tool subcategories:

“Design Tools - Tools whose output is part of hardware design and thus can
introduce errors. For example, an ASIC router or a tool that creates a board or
chip layout based on a schematic or other detailed requirement.”

and

“Verification Tool - Tools used to ensure performance against predetermined
standards or requirements. These tools do not introduce errors, but may fail to
detect them. For example, an analog or digital circuit simulator or an automated
test that measures actual circuit performance.”

Software tools used for hardware design (creation/programming, synthesis) and hardware
verification (checking, simulation, testing) are typically very complex computer programs
operating as part of a comprehensive tool suite. Some tools are generic, supporting multiple
hardware platforms. Often, the tool is associated with a specific hardware vendor and supports
design and verification of that vendor’s family of electronic components. In all cases, the tools
supporting hardware design and verification are off-the-shelf products with a handful of
established vendors competing for their share of the electronic market. It should be noted that
the aviation industry represents only a small fraction of the market, which includes military,
aerospace, medical, communication, gaming, and consumer electronics.

1.1 OBJECTIVES.

The main objective of this study was to provide the FAA with input on what criteria should be
used to determine when and if AEH tool qualification should occur. This research will attempt
to identify contradictions and possible shortcomings in the language of the current DO-254
guidelines. Safety issues related to the use of the tools will also be identified and discussed.
This objective will be achieved using literature and industry surveys, identification of primary
certification, performance, and safety concerns, conducting experiments to address the identified
concerns using a representative suite of tools, and evaluating the experimental results to create a
foundation for addressing tool qualification concerns. Related objectives are to present and
evaluate the state of the art in hardware design and verification tools and to establish a base for
qualification guidelines for such tools.

1.2 PROBLEM STATEMENT.

Considering the current status of AEH guidance, the question to be asked is “Why would one
need to qualify programmable logic tools?” The ultimate goal of developing safety-critical
systems is to provide evidence that, in addition to the functionality and quality of service
requirements, the specific safety requirements have been met.

3

There are a variety of commercially available software tools suitable for use on AEH projects.
Selecting the appropriate tool to use may be confusing due to varying functionality, the variety of
platforms they serve, and the choice of different hardware description languages. The major
commercial tools were created without considering the required DO-254 process, which makes it
difficult to assure the correctness of a design produced by these tools.

It should be noted that tool qualification is only one component of the overall DO-254 design
assurance process. Different qualification requirements are placed on tools used to design and
verify systems at different design assurance levels (DAL). However, regardless of the DAL, DO-
254 does not require tool qualification if the tool outputs are independently assessed.

DO-254 allows tools to be used on level D AEH without independent assessment of the outputs,
and without a relevant service history. For level A, B, or C design tools and level A or B
verification tools, DO-254 allows the use of a tool’s relevant service history as an alternative to
independent assessment of the tool outputs. This research has investigated the validity of this
alternative to independent assessment.

1.3 RESEARCH METHOD.

The research performed for this report consists of three components. First, the literature was
surveyed and an annotated bibliography was produced (appendix D). Second, a tool survey was
conducted to determine how the design tools are used and to determine what problems are seen
in practice. Finally, hardware test cases were designed and implemented on multiple hardware
platforms to investigate the possibility of hardware errors occurring when design tool operation is
correct.

1.4 AUDIENCE.

The report is primarily intended for use by certification authorities in the development of policy
and guidance. The Designated Engineering Representatives (DER) and Aircraft Certification
Office engineers directly involved in the certification process are also part of the target audience.
The research outcome will likely also be of interest to program and procurement managers; to
project leaders; to system, hardware, and software engineers; and to all others directly involved
in DO-254-compliant AEH projects. This report attempts to identify contradictions and possible
shortcomings in the language of the current guidelines. It also highlights related industry
approaches toward the use of software tools for PLD. Figure 1 identifies the stakeholders
involved in the presented investigation. It must be noted that several industry representatives
shared their valuable comments and opinions with the research team through e-mails, phone
interviews, and personal contacts; their names cannot be listed for reasons of confidentiality.

4

Figure 1. The AEH Stakeholders

1.5 RESULTS.

The authors have identified the following results which will be discussed in detail within the
report body:

• DO254 encourages the use of independent assessment and service history as an

alternative to tool qualification.

• Independent assessment should not be viewed as a single event but a process consisting

of a series of overlapping independent assessments.

• Tool service history is a poor indicator of a tool’s ability to produce a correct design.

• Tool qualification should be limited to the exceptionally rare case where independent

assessment of the tool output is impractical or infeasible.

• Constrained random verification increases the number of errors detected by the test cases.

• Assertions can be used to increase the observability of the errors that any test case

generates.

1.6 DOCUMENT STRUCTURE.

This report consists of 11 main sections.

• Section 1 provides introductory material, including the purpose and scope, objective,

problem statement, audience, and research approach.

Complex Electronic Hardware
Certification Stakeholders

FAA
ISO
IEEE
RTCA

Universities
Research
Institutes

Chip
Manufacturers

Tool
Developers

DO - 254 Compliant
Projects Applicants

Certifying
Authorities
& DER

Industry

Board
Manufacturers

FAA: Federal Aviation
Administration

ISO: International
Organization for
Standardization

IEEE: Institute of
Electrical and
Electronics Engineers

RTCA: Radio Technical
Commission for
Aeronautics

DER: Designated
Engineering
Representative

5

• Section 2 describes the AEH tool categories, and the role of DO-254 in relation to AEH
tools.

• Section 3 describes alternatives to tool qualification, focusing on independent assessment

of the tool’s outputs.

• Section 4 examines the concept of design assurance as viewed by DO-254 and methods to

improve design assurance.

• Section 5 presents the results of the tool use survey.

• Section 6 is a brief review of the literature compiled in the course of research.

• Section 7 presents the hardware and tool use experiments that were performed.

• Section 8 identifies a number of issues that could impact the safety of a design that has

been shown to be logically correct.

• Section 9 presents the conclusions of the research.

• Section 10 provides references.

• Section 11 provides a glossary of terms as they are used within this document.

Seven appendices accompany the body of the report.

• Appendix A includes the survey questionnaire.
• Appendix B provides details of the survey results.
• Appendix C elaborates on the experimental procedures.
• Appendix D includes the annotated bibliography elaborating on the material in section 6.
• Appendix E provides the experimental results for the hardware test cases.
• Appendix F provides the results of the tool use experiments.

2. BACKGROUND.

Modern aircraft not only use increasing numbers of microcomputers and microprocessors, but
also dedicated hardware, to process the growing amounts of data needed to control and monitor
the status of the flight and related systems. Rapid progress of digital technology in the last 25
years can be demonstrated using an example from Airbus industries: the number of digital units
has increased from 70 to 300, the number of transistors from 105 to 108, and the number of gates
per chip from 10,000 to 600,000 [7].

The recent proliferation of custom, microcoded components changed both the market and how
the industry operates. These complex, programmable electronic components not only are
programmed using conventional programming languages, but also are developed by writing code

6

in a hardware description language (HDL) used to create logic designs. The two distinctive
categories used as components of programmable electronic hardware include PLD and ASIC.
Often, the circuit includes dedicated processors, intellectual property (IP) that is made into the
final product silicon. Most of these devices can be configured to implement a particular design
by downloading a sequence of bits. In that sense, a circuit implemented on a PLD is technically
software. In this report, the authors focused on software tools for hardware development in
avionics and aerospace systems and methods to assure design correctness.

Software tools are used to simulate the logic, synthesize the circuit, and create the placement and
routing for electronic elements and their connections in preparation for the final implementation,
i.e., programming the logic devices (conventionally called “burning into the logic”). Obviously,
the creation of complex digital circuits is currently not considered a software activity and is
performed by hardware specialists. However, hardware and system description languages, such
as very high-speed integrated circuits HDL (VHDL), Verilog, and System C, are basically
computer languages with their own syntax and semantics. The development of hardware relies
significantly on the quality of tools that translate software artifacts from one form into another.
Integrated programming environments allow the user to write the programs, debug the programs
via simulation, convert the programs into hardware via the synthesis and place and route tools,
and then debug the operational hardware. To assure the consistency of the resulting system, it is
prudent that the development activity, including both software and hardware components, be
done in a unified manner.

The future of software engineering for dependable, safety-critical systems is tied to the close
relationship between what used to be considered separate categories: software and hardware.
Due to their background and experience, software application designers focus on the
development of programs to run on microprocessors and are often unaware of the possibility of
implementing the system in hardware using a PLD, or the most popular technology, an FPGA.
An FPGA is a prefabricated integrated circuit that can be configured to implement a particular
design by downloading a sequence of bits. In that sense, a circuit implemented on an FPGA is
technically software. However, circuit designers are still considered to be hardware specialists
and algorithms ported to circuits are still known as hardware algorithms. Vahid [8] noted that
treating algorithms implemented in circuits as “hardware” poses problems in computing system
development because the hardware implementation tends to be more concurrent than its software
implementation. In addition, differences in the physical hardware implementation of an
algorithm, such as using a multiport memory to support concurrency rather than using parallel
dedicated memories, can dramatically affect the performance and dependability of the algorithm.

2.1 SOFTWARE AND HARDWARE RELATIONSHIP.

Using any combination of software and hardware in the creation of dependable, safety-critical
systems requires meeting government regulations. For airborne systems installed on civilian
aircraft, one needs to gain approval of the software aspects of certification through DO-178B [6],
which defines the processes and artifacts to meet the approval objectives. DO-254 [1] provides a
means for approval of electronic hardware components. In particular, the latter document
provides design assurance guidance on project conception, planning, design, implementation,

7

testing, and supporting processes in the hardware design life cycle. Each of these documents
addresses the issue of qualification of the tools used for creation of an airborne system in a
slightly different way. It is, therefore, conceivable that a system of a specific level of safety
assurance (defined by the categories from A to D, from the most to the least critical) will receive
different scrutiny, depending on whether or not it is implemented in software or in hardware.

2.2 PROGRAMMABLE LOGIC HISTORY.

In the past, board-level digital designs consisted of large numbers of components containing a
few basic gates and memory elements. Today, virtually every digital design consists of high-
density integrated circuit (IC) devices. This applies to processors and memory, as well as to
logic circuits, such as counters, registers, decoders, and state machine controllers. In high-volume
systems, such circuits are implemented as high-density gate arrays. For prototyping or low-
volume scenarios, a field-programmable approach where the software component is programmed
by the end user has been more acceptable. A wide range and variety of chips makes it a daunting
task for a digital system designer to research the different types of chips and to understand what
they can best be used for, to choose a particular manufacturer’s product, to learn the intricacies of
vendor-specific software, and to then design the hardware.

In the last decade, PLDs, sometimes referred to as field-programmable devices, became an
alternative to microprocessors in embedded systems. A PLD is an electronic component that,
unlike a logic gate, has an undefined function at the time of fabrication and must be configured
(programmed) by the end user to realize different digital designs. In the past, programmable
read-only memory chips could be used to create arbitrary combinational logic functions.
However, their low speed, inefficient use of space, high power consumption, and inefficiency
negate the use of read-only memory in applications of a more serious nature. The introduction of
simple PLD (SPLD) in the form of programmable logic arrays (PLA) in the late 70s was
followed by programmable array logic (PAL), generic array logic (GAL), and subsequent
miniaturization with the introduction of complex PLD (CPLD) that could replace an entire circuit
board with several SPLDs and hundreds of thousands logic gates. A CPLD combines a logic
device and a memory device consisting of one or more programmable sum-of-products logic
arrays feeding a small number of clocked registers. Most CPLD are electrically programmable,
erasable, and nonvolatile. CPLD are less flexible than an FPGA, but have the advantage of more
predictable timing and a higher logic-to-interconnect ratio.

Invention of gate array technology with a grid of logic gates that could be field-programmable
gave birth to the FPGA; currently, the most popular component for the creation of complex
digital designs. An FPGA is a semiconductor device containing programmable logic blocks and
programmable interconnects. The blocks can be programmed to act as basic logic gates or more
complex combinational functions (decoders, adders, etc.). Typically, the FPGA logic blocks
include memory elements, from simple flip-flops to registers, and more complete blocks of
memory. FPGA architectures are dominated by interconnect, making them flexible in terms of
the range of practical designs. However, they are also far more complex, which makes assuring
design correctness far more difficult.

8

Fully custom-made ASIC can be very expensive and time consuming to produce; however, they
provide the benefits of increased density, reduced area, and high performance. A popular
technique is cell-based ASIC design, which incorporates well-defined and simple functional
blocks. These blocks speed up the synthesis process, as well as reduce the development time.
Recently, structured ASIC includes predefined standard layers (e.g., with power, clock, testing
utilities), leaving only part of a silicon mask to be custom designed. A category called system-
on-chip (SoC) has a large number of functions integrated within a single device. Figure 2
presents the relationship between the technologies, demonstrating the thin boundary between
hardware and software. Because the boundaries are fluid, the figure illustrates just one way of
many for visualizing the problem.

Programmed
Easily changed
Can “do anything”
Cannot be exhaustively
tested

BIOS/bootstrap
Operating
system
Applications

Software

Software residing in
non-volatile storage

Firmware

Off-the-shelf
components
Exhaustively Tested by
Vendor

ICs
Microprocessor
A/D, D/A
Sensors

Electronic Hardware

Special purpose computer
(process control)
Uses Ladder Logic, other
languages for programming

Programmable Logic
Controllers

System On Chip
(SOC)
Reconfigurable
Computing

Designed with HDL
Compiled/Programmed
May be reprogrammable
in the field
Cannot be exhaustively
tested

FPGA
CPLD
PAL
ASIC

Programmable Logic Devices

From: SAIC/NASA Glenn PLD presentation, Kalynnda.Berens@grc.nasa.gov, 2003

Figure 2. Hardware and Software Boundary

To increase the complexity, complex programmable devices often include a microprocessor core
with a fixed function and/or a dedicated functionality containing a specified IP core. Such an IP
core, referred to as a soft core, is described by its logic function and expressed in an HDL for
easy integration with other functionality. Effective modern PLD can be configured to provide
multiple embedded microprocessors within a logic fabric.

2.3 A TYPICAL AIRBORNE ELECTRONIC HARDWARE DEVELOPMENT FLOW.

A typical hardware design flow is shown in figure 3. The design team receives the hardware
requirements and then designs a system meeting those requirements. The designers will use
simulators to debug the design, and also to verify that the design meets all the logical and timing
requirements. Any errors in the design that can be detected through simulation, such as logical
and timing errors, will be identified and corrected. Hardware designed using this process meets
the hardware requirements as interpreted by the designers.

9

Design Team Produces Design

Design Team Simulates the Design

Verification Team Generates Verification Suite

Logical Requirements
Met?

Run the Verification Suite on the Design

Logical Requirements
Met?

Errors in the Verification Suite

Errors in the Design

Synthesize the Design in Hardware

Timing Requirements Met

All Requirements Met

System Validation

All Requirements Met Design Complete

No Yes No No

Yes

Yes

Yes

Yes

No

No No

No

Requirements Finalized

Figure 3. A Typical AEH Design and Verification Flow

The verification team begins development of the verification suite in parallel with the designers
using the same set of requirements. The goal of the verification suite is to provide an
independent assessment of the correctness of the design. In general, the verification suite is
limited to verifying the logical correctness of the design because verification tools have limited
abilities to address timing-related errors. After the verification suite is run on the design, there
are three possible causes for any errors that are identified.

10

1. The design is in error. The design will be corrected and the verification suite will be run
on the design again.

2. The verification suite is in error. The verification suite will be corrected and the
verification suite will be run on the design again.

3. Neither the design nor the verification suite is in error but they expect different results.

This is usually the result of incomplete or vague hardware requirements. In this case, the
hardware requirements must be corrected. The design and/or the verification suite are
adjusted to reflect the new requirements and the verification suite will be run on the
design again.

Running the design through the verification process allows problems in the hardware
requirements to be identified. Because flawed requirements can produce an incorrect design, it is
desirable to detect problems with the hardware requirements as soon as possible. In many design
flows, the verification suite is run against the design every night.

Once the design passes the verification suite, the design is then synthesized and implemented in
hardware. The timing performance of the hardware is verified against any timing requirements
and is also compared to timings predicted by the simulation. Hardware problems, such as power
integrity, signal integrity, and noise problems, are extremely difficult to simulate, so it is
common for hardware performance to differ from simulated performance. Variations from the
predicted timing may result in the hardware producing logical errors. It is desirable to evaluate
the hardware timing using as robust a test suite as possible. Some designers will use hardware-
in-the-loop techniques to run the full verification suite on the actual hardware.

Unlike logical requirements, timing requirements are rarely a pass/fail decision. A timing
requirement specifies minimum and maximum propagation delays, but not all timings within the
specification range may be equal. Although all the allowed timings may produce correctly
functioning hardware, some timings may result in robust hardware while others may produce
hardware with minimal timing margins. An experienced designer is needed to determine the
optimal timing.

Finally, after the design meets all timing and logical requirements, system validation is
performed to assure that all system-level requirements are met when the design is used as part of
a full system.

2.4 THE AIRBORNE ELECTRONIC HARDWARE DESIGN.

The previous section discussed the AEH development process. This section will focus on the
design side of the development process. Logical design entry may be accomplished in three
ways: (1) creating a schematic diagram with a graphical computer-aided design tool, (2) using a
text-based system to describe a design in an HDL, or (3) a combination of the graphical and
textual methods. The initial logic entry, however it is performed, is usually not optimized.
Because the initial design entry might not be optimized, dedicated algorithms are used to

11

optimize the circuits. Once the circuits are optimized, additional algorithms are used to analyze
the resulting logic equations for the purpose of synthesizing the circuit to fit the design into the
PLD. Simulation is used to verify correct operation of the circuit, often requiring the user to
modify the initial design entry to correct errors. When a design can be successfully simulated to
verify the correctness of its simulated behavior, it can be loaded into a programming unit and
used to configure the PLD. It is critical to note that after the original design entry step and any
required design entry corrections performed manually by the designer, all steps are performed
automatically by software tools.

The more complex programmable hardware components become, the more complex and
sophisticated the tools supporting development and verification of the design must be. For
complex devices that can accommodate large designs, a mixture of design entry methods for
different modules of a complete circuit can be used. For example, some module designs might
be described using a low-level circuit description language like ABEL, others might be described
graphically using a symbolic schematic capture tool, while others might be described using a full-
featured HDL such as VHDL or Verilog. These languages operate using variables and hardware
signals in addition to sequential constructs, including a variety of concurrency constructs that
specify parallel implementation reflecting the nature of digital circuits. The software necessary
for performing these tasks is supplied by either the hardware manufacturer or a dedicated third-
party tool vendor.

For FPGAs, additional tools are required to support the increased complexity of the IC. The
device-fitting step includes mapping from basic logic gates into the FPGA logic blocks,
placement to select specific FPGA blocks to use, and a router to allocate the wire segments to
interconnect the logic blocks. With this added complexity, the tool might require a fairly long
period of time (often more than several hours) to complete the design.

Software tools for embedded system development, including that of AEH, are used for two
different reasons: creation of the system hardware and development of software that runs on the
processors included in the system.

The presented research focuses on the former, i.e., creation of system hardware. The tools used
for hardware design may be applied to a variety of functions, including circuit synthesis, logic
circuit and hardware simulation, timing analysis, and physical synthesis. Another aspect of the
hardware creation activity is verification. Logic design verification addresses most types of
design debugging at every point in the design flow, from static timing analysis to support for
equivalency checking and formal verification. Functional verification addresses the syntax and
functionality at the design level using HDL analysis, simulation, and test bench generation.
Timing verification uses the static timing and delay calculations.

Software tools are critical for the implementation of AEH circuits and devices. To design any
modern device, one must use a suite of sophisticated tools including (at a minimum) simulation,
synthesis, and place-and-route. Such tools are typically made available by an entity external to
the developer. Simulation is supported by accessible and cost-effective tools; however, place-
and-route tools are tightly connected to the specific hardware silicon architecture and vendor. In

12

the middle of this hardware development cycle is logic synthesis. The front-end of the logic
synthesis problem is very complex and not specific to any silicon architecture, while the back-
end stages of synthesis are architecture-specific. A sophisticated technology for parsing,
elaborating, and inferring conceptual logic design from code written in a hardware description
language—such as VHDL, Verilog, or SystemC—facilitates both the creation of the desired
digital logic circuit design and the eventual mapping into an architecture-specific physical layout.

PLD manufacturers provide automated tools that facilitate this design flow. For creating the
hardware circuitry, these tools allow the user to build a system utilizing predesigned building
blocks for processors, memory controllers, dedicated processing circuits (such as for digital
signal processing (DSP)), and communication modules (such as for universal asynchronous
receivers/transmitters). The software allows easy instantiation of these subcircuits and can
automatically interconnect them on an FPGA chip. A generic design flow is shown in figure 4.

Design Entry

Synthesis

Place &
Route

Programming
Configuration

Time
Simulation

Time Analysis

Power
AnalysisOther

Verification

Behavioral
Simulation

Functional
Simulation

Figure 4. Generic Design Flow for the PLD Tool

Normally, it takes years of real customer designs and exercising a tool to find the peculiarities
and deficiencies in the tool algorithms and then tuning the algorithms to achieve a technology
that consistently delivers high-quality results over a wide range of AEH architectures and
applications. Commercial synthesis tools, available from third-party vendors, achieve far better
results. This directly impacts the competitive performance and utilization of the hardware
supplier’s silicon. Therefore, hardware suppliers have been forced into a situation where they
must partner with software tool vendors to remain competitive. Some FPGA vendors offer
proprietary synthesis tools as part of their low-cost (or free) tool suites, while continuing to
partner with commercial tool companies for higher-end solutions, or offer customized versions of
commercial tools as part of their tool suite.

13

2.5 VERIFICATION OF AIRBORNE ELECTRONIC HARDWARE.

Verification of a hardware design can find errors at a variety of levels. Errors can be identified in
the hardware requirements, translation of the design into register transfer language (RTL), or
implementation of the RTL in hardware. The first two cases involve errors made by the designer
and are outside of the scope of this work, which focuses on tool qualification. Verification of the
hardware implementation can be achieved using formal verification methods to prove correctness
and by using simulation to verify that the hardware operates as intended. It is important to
understand that formal verification only proves that the design is correct, assuming the conditions
and constraints used during for the formal verification. Formal verification is not equivalent to
exhaustively testing a device.

Simulation requires the generation of appropriate test vectors and is an accepted traditional
method for functional verification during the design creation phase. Verification of the hardware
using simulation may consist of both directed test vectors and randomly generated vectors. This
method is entirely adequate to verify that the design specified in RTL performs the intended
function within the limits of simulation. However, verification of million-gate designs would
require that transitions on every gate be tracked, resulting in a runtime of weeks for substantial
million-gate designs.

Since an RTL design can be implemented in a variety of ways at the gate level, the number of test
vectors grows exponentially during verification. Any unintended effect of synthesis or timing
optimization can insert a design error affecting a part of the circuit, and thus manifest itself with
a few combinations of values on the inputs. To guarantee detection of such an error with gate-
level simulation, every possible combination of inputs must be applied, resulting in an infeasible
size of test vector being required to ensure 100% error coverage. One suggested solution to this
problem has been the utilization of formal methods [8]. The approach used is based on rigorous
verification of RTL as an input artifact, while showing that the transition to the gate level is
consistent, is correct, and does not change the semantic properties of the original input artifact.

One such approach to assuring the transition to the gate level is correct is to use an equivalence
checker. An equivalence checker uses static verification techniques to prove that the two
consecutive representations of digital design are an exact functional match (e.g., RTL-to-gate
comparison after synthesis and gate-to-gate comparison after place-and-route). Gate-level
simulation for modern million-gate designs is infeasible. A formal checker, an example of Other
Verification (figure 4), uses a formal verification interface file (FVI) generated by synthesis as a
basis for comparison with gate-level netlists generated as a result of the first synthesis and
subsequent place-and-route processes. FVI is a readable text file, including setup information
with file names, paths, constraints, and name matching. If the equivalency of these
representations is assured, strong evidence exists that the final design is consistent with the
original design intent.

Equivalence checking provides a method of assuring the correctness of the transitions from RTL
description to the physical implementation, by confirming that transformations throughout the

14

design flow comply with the original functionality. Equivalence checking cannot replace timing
analysis. Static timing analysis tools still must be used to confirm gate-level timing.

Despite the obvious advantages of the formal equivalence checking approach, there are
limitations. Some types of multipliers do not solve completely and memory blocks must be
black-boxed to avoid lengthy processing times.

2.6 SIMPLE VS COMPLEX ELECTRONIC HARDWARE.

DO-254 mainly concerns itself with the design assurance of AEH. DO-254 distinguishes
between a simple and complex hardware as follows:

“A simple hardware item is defined as:
An item with a comprehensive combination of deterministic tests and analyses
appropriate to the design assurance level that ensures correct functional
performance under all foreseeable operating conditions, with no anomalous
behavior.” [1]

A complex item of hardware is one that is not simple. Since the complexity may be a function of
interconnectedness, a collection of simple items may itself be complex. For complex items, the
proposed method for design assurance should be agreed to by the certification authority early in
the lifecycle. AC 20-152 [5] identifies DO-254 [1] as one acceptable means for gaining design
assurance approval for complex, custom, microcoded components.

2.7 AIRBORNE ELECTRONIC HARDWARE TOOL CATEGORIES.

The leading PLD hardware vendors are Altera®, Xilinx®, Actel®, and Lattice®. Some vendors
offer internally developed synthesis tool, while others partner with synthesis tool vendors such as
Synopsys, Altium, Cadence, Mentor Graphics, or Synplicity.

Contemporary logic design includes a variety of technologies:

• Design Entry: Performs HDL, schematic entry, and integration of IP cores.

• Linting: Enforces coding style.

• Synthesis: Translation of the HDL design definition into the logical primitives available

on the hardware platform.

• Place-and-route: Locating and routing the hardware primitives to meet timing

constraints.

• Verification: Design verification ranging from simulation to static timing analysis to

equivalency checking via formal verification.

15

An initial review of the AEH tools market identifies a wide variety of products used in different
configurations with functionality covering the entire hardware design and verification spectrum.
To better understand the state of the industry, several tools were identified during the course of
the research. Table 1 shows a comparison of key features for 21 popular tools, categorized by
function. The design functions match the five basic functionalities (design, entry, linting,
synthesis, and place-and-route), but the verification function has been separated into several
categories. Simulation tools used for both digital and analog/mixed signal simulations fall under
both the design and verification categories. Verification has been divided into three categories:
assertion based, test bench automation, and coverage-based tools. Assertion-based tests use
assertions—checks that are coded into the HDL and are checked continuously during all
simulations. Test bench automation assists in automatically generating test benches that meet a
given coverage criteria. Coverage-based tests determine the number of lines of HDL code that
have been exercised in a test; each line of HDL should be exercised at least once to achieve full
statement coverage. To meet DAL A safety requirements, coverage methods must be extended
to determine the coverage on the gate-level netlist produced by the synthesis, estimating the
number of gates that were exercised by the test.

Almost all tools supporting FPGA design also support other types of programmable devices and
occasionally ASIC. However, there are selected high-end tools that are ASIC-specific.
Manufacturing an ASIC, due to need for creation of permanent mask, is an extremely expensive
proposition and is undertaken only if (1) there is a high-demand market for the device, so it can
be sold by the millions (e.g., dedicated circuitry to mobile phones) and (2) the design is
verifiable. To reduce or eliminate potential defects, the tools used for creation and verification of
ASIC are very expensive and top of the line. The low-demand market, in contrast, calls for the
use of technology that can easily be reprogrammed; therefore, tools supporting that market are
less expensive and developers can afford an occasional miss in a non-safety-critical environment.
However, these tools need to be carefully examined if they are to be used for a safety-critical
application.

As shown in table 1, the top six tools contain all the technologies listed above, and any one of
these tools can provide a full design and verification suite. Experimentation with the tools
indicated that the differences between the tools vary significantly at the user interface level, but
all the tools have similar design entry and synthesis capabilities. More significant than the
variations in the tool suites is variation in the underlying hardware. This research chose to focus
on the two largest hardware vendors Xilinx and Altera.

Xilinx’s ISE and Altera’s Maxplus tool suites were installed in the contractor laboratory, and the
personnel familiarized themselves with their operation. These tools were chosen to support the
experimental portion of this work. More advanced tools from Mentor Graphics (HDL Designer,
Questa, and O-In Formal Verification) were too specialized to fit into the flow of this research,
but they may warrant further study in the future.

16

Table 1. Tool Feature Comparison

DesignCreationLintingPlace andRouteSynthesisDigitalSimulationMixed SignalSimulationAssertionBasedTest BenchAutomationCoverageBasedMaxplus IIQuartus IIISP LEVERISE FoundationPlatform StudioEDKActel DesignerHDL DesignerAllegro Design EntryHDLDAlintLedaNC-Verilog/NC-VHDLActive HDLModelSimVCS/SciroccoTausimAdvance MSSynplifyQuestaRivieraIncisive0-In FormalVerificationDesignVerification

2.8 THE AIRBORNE ELECTRONIC HARDWARE TOOLS IN DO-254 FRAMEWORK.

Until recently, it was conceivable to verify avionics hardware using only systems-level testing,
due to its simplicity. Since DO-178B required extensive effort for software assurance, while no
assurance process was required for hardware, a large portion of system functionality migrated
from software to hardware implementations to avoid certification effort. In recent years, the
introduction of high-performance, programmable logic has allowed the functions of thousands of
individual hardware devices to be integrated into a single hardware element. This increase in
both density and complexity has allowed what used to be entire systems to be implemented in a

17

single hardware device. Hardware devices can now be applied to complex problems that
previously required software solutions. It is commonly accepted that hardware and software are
closely linked and that high assurance of both is required for system reliability. The DO-254
design assurance standard is the hardware community’s equivalent to DO-178B for software
development assurance.

2.8.1 The DO-254 Design Assurance Guidance.

Two documents provide guidance for the development of dependable systems; SAE ARP 4754
[9] is the source of development guidance for highly integrated aircraft systems, while SAE ARP
4761 [10] identifies safety assessment methods to be used in the hardware design assurance
process. Applying these documents allows system engineers to determine system criticality, and
thus identify the DAL as allocated to hardware. Since DALs are based on classification of the
worst system failure conditions, they are similar to ARP 4754 [9] “Development Assurance
Levels” and DO-178B [6] “Software Levels.”

DO-254 [1] was released in 2000, addressing design assurance for AEH. The guidance is
applicable to a wide range of hardware devices, ranging from integrated technology hybrid and
multichip components; to custom, programmable, microcoded components; to circuit board
assemblies; to entire line replaceable units. This guidance also addresses the issue of commercial
off-the-shelf (COTS) components. The document’s appendices provide guidance for data to be
submitted, including independence and control data category based on the assigned assurance
level, description of the functional failure path analysis (FFPA) method applicable to hardware
with DALs A and B, and discussion of additional assurance techniques, such as formal methods,
to support and verify analysis results. The FFPA can be accomplished on four levels—system,
hardware, circuit, and component—and is used to determine which paths to analyze with
increased rigor.

Because it is easily automated, elemental analysis is one of the most popular techniques to assess
coverage. Elemental analysis depends on the hardware element type and complexity, and the
functional operations of the element. This analysis may show either that all the low-level
primitive blocks, such as counters, registers, multiplexers, adders, op amps, and filters, have been
adequately tested, or that all groups of interconnected primitives have been adequately tested and
achieve the verification coverage criteria. The analysis criteria of the test procedures should be
based on an assessment of element operation and its integration with other elements to perform
the next higher hierarchical-level hardware function. Applications of formal methods are most
effective during structured portions of the design, such as during requirements capture and high-
level design, where they are effective at identifying incomplete specifications. Formal methods
may be applied to verify system functionality, or they may be used to confirm that a design does
not exhibit certain undesirable properties, rather than to prove that it has full functionality.
Although the same number of objectives is applicable to items of DALs A and B, level A may
require additional design assurance techniques to provide complete mitigation of potential
failures and anomalous behaviors.

18

One acceptable method for AEH approval is compliance with AC 20-152 [5], which refers the
hardware developers to guidance of DO-254 [1]. AC 20-152 [5], which was released in 2005,
applies to manufacturers and installers of products or appliances incorporating complex, custom,
microcoded components, as discussed in this report, with hardware DALs from A to D.
AC 20-152 provides a method for obtaining FAA approval by demonstrating that the equipment
design is appropriate for its intended function. Additionally, AC 20-152 helps satisfy
airworthiness requirements when these types of electronic components are implemented. It is
applicable for technical standard order, type certificate, as well as parts manufacturer approval.
The AC is limited to complex, custom, microcoded devices of DALs A, B, C, and D. However,
an applicant does not need to show artifacts to the FAA for level D.

Due to the increasing complexity of modern digital systems, automated tools are widely used.
Assessment of a tool resulting in basic tool qualification allows developers to substantiate claims
regarding the tool’s correctness. For qualification of a tool on DALs A and B, the qualification
process is more rigorous.

2.8.2 The DO-254 Tool Guidance.

It is widely recognized that in safety-critical applications, with millions of gates on a chip, the
role of hardware design tools and hardware verification tools becomes increasingly critical. The
process of developing AEH is described in DO-254, as is the tool qualification process. Section
11.4 of this standard [1] distinguishes between design tools and verification tools:

“When design tools are used to generate the hardware item or the hardware
design, an error in the tool could introduce an error in the hardware item.”

“When verification tools are used to verify the hardware item, an error in the tool
may cause the tool to fail to detect an error in the hardware item or hardware
design.”

Therefore, it is essential that tools be evaluated before their use, because they are critical to
overall system safety. It is specifically stated in DO-254 [1] that “Prior to the use of a tool, a tool
assessment should be performed.” Furthermore, it states:

“The purpose of tool assessment and qualification is to ensure that the tool is
capable of performing the particular design or verification activity to an
acceptable level of confidence for which the tool will be used.”

Finally, DO-254 identifies a process for “Design and Verification Tool Assessment and
Qualification” [1], which is itemized as ten steps (see Figure 11-1 of reference 1):

1. Identify the Tool. This includes the name, source, version, and the host

environment.

19

2. Identify the Process the Tool Supports. This concerns the distinction between the
design and verification processes, as well as the outputs the tool produces in the
hardware design life cycle.

3. Is the Tool Output Independently Assessed? If the tool output is independently

assessed, then no further assessment is necessary and the process is completed
(Step 10 below); otherwise the assessment proceeds to Step 4.

4. Is the Tool Output a Level A, B or C Design Tool, or a Level A or B Verification

Tool? If not, no further assessment is necessary and the process is completed
(Step 10 below); otherwise the assessment proceeds to Step 5.

5. Does the Tool Have Relevant History? If so, no further assessment is necessary

and the process is completed (Step 10 below); otherwise the assessment proceeds
to Step 6.

6. Establish Baseline and Problem Reporting for Tool Qualification.

7. Basic Tool Qualification. This step seeks confirmation, using either analysis or

testing, that the tool produces correct outputs for its intended application.

8. Type of Tool and Level? If the tool is a Level C design tool or a Level A or B

verification tool, then the process is considered completed; otherwise (Level A or
B design tool), the assessment proceeds to Step 9.

9. Design Tool Qualification. This step proceeds according to strategies described in

appendix B of DO-254, DO-178B for software development tools, or other means
acceptable to the certification authority. It is essential to note that “Independence
of this activity from the tool development,” is called for.

10. Complete. This step relies on documenting (1) the tool assessment, (2)

justification for the assessment decisions, and if applicable, (3) tool qualification
data, as necessary to support the tool assignment and qualification. Section 11.4.2
of DO-254 specifies further, what tool assessment and qualification data should
include.

The above process still leaves room for interpretation and is the source of numerous
disagreements on whether tool qualification is required.

2.9 WHAT IS A TOOL?

DO-254 [1] provides guidance for design assurance of AEH defining design assurance, life cycle,
processes (planning, design, validation and verification, configuration management, assurance,

20

certification liaison), and life cycle data. However, there is no clear definition of a tool in
DO-254 [1] or associated CAST papers; paraphrasing DO-178B [6] a tool is:

“A computer program or a hardware device used to help develop, test, analyze,
produce or modify hardware component, subsystem, system or its
documentation.”

For this purpose, a tool reduces, eliminates, or automates the objectives of the design or
verification process. This very broad definition of a tool requires that the tool assessment and
qualification process detailed above must be considered for design and for testing aids that may
not be recognized as tools.

For example, consider a company working on a DAL A project that writes a simulator-based test
bench that produces a pass/fail output. The following are observations about this test bench:

• The test bench automates the verification process and is therefore a tool.

• A verification tool for a DAL A must use the Design and Verification Tool Assessment
and Qualification procedure.

• No relevant service history would exist.

• Unless the test bench outputs are independently assessed, the tool will need to go through
basic qualification.

2.10 WHEN IS TOOL QUALIFICATION REQUIRED?

The tool assessment and qualification process flow chart is shown in figure 5. Tool qualification
is required only if all three of the following conditions exist:

1. There is no independent assessment of the tool’s outputs.

2. The tool is used for levels A, B, and C for design or levels A and B for

verification.

3. No relevant service history exists.

DO-254 offers the following guidance on independent assessment of the tool’s outputs:

“Independent assessment of a design tool’s output that is generated in whole or in
part by the tool may be established by the verification activities performed on the
item, such as component, netlist or assembly. In this case, the integrity of the end
item does not depend upon the correctness of the design tool output alone.”

21

1. Identify the tool 2. Identify the process
the tool supports

6. Establish
qualification
baseline and

problem reporting

7. Basic tool
qualification

9. Design tool
qualification

yes

yes

no

no

no

10. Complete
the process

DO-254/ED-80
Tools

Assessment and
Qualification

Process

3. Independent
assessment?

4. Tool is design A/B/C
or verification A/B?

5. Relevant tool
history?

8. Tool is design tool
A/B?

no

yes

yes

Figure 5. The DO-254 Tool Assessment and Qualification Process [1]

The design process documented in figure 5 shows four distinct decision elements (highlighted in
the figure). Each one of these decision elements offers the opportunity for an independent
assessment of the correctness of the design. The correctness of the design will be evaluated
numerous ways. The verification suite will assure that the design outputs meet all the logical
requirements. Simulations allow the designers to view and analyze the design, using not just the
output signals, but every signal in the design. Analysis and debugging of the hardware will allow
the designers to verify that the hardware performs as predicted by the design tools. In the typical
AEH design, following the verification process shown in figure 3, the process of multiple
overlapping independent assessments allows the assertion that (quoting DO-254) “the integrity of
the end item does not depend on the design tool output alone.” [1]

In section 4.2, it will be shown that qualification of a FPGA design tool is not sufficient to
guarantee correct operation of the hardware, since proving that the design implementation is
logically correct does not guarantee correct operation of the hardware. Correct operation of the
hardware is heavily dependent on the system environment in which the hardware is operating.
Multiple layers of verification will prove more fruitful than attempting to qualify a tool as correct
over all voltage, temperature, timing, and environmental conditions.

2.11 TOOLS DISCLAIMERS.

DO-254 indicates that tool qualification is a challenging task, perhaps more difficult than the
hardware design itself. The tool vendors understand the difficulty in guaranteeing correct
operation over all possible operating conditions. The excerpts presented below are from a

22

manufacturer’s product description. Despite great progress and improved trustworthiness of new
products, there is no certainty that the product is perfect. This leads to the limited warranty’s
legal disclaimers, such as:

• Example logic synthesizer:

“<vendor>warrants that the program portion of the SOFTWARE will perform
substantially in accordance with the accompanying documentation for a period of
90 days from the date of receipt.

IN NO EVENT SHALL <vendor> OR ITS LICENSORS OR THEIR AGENTS
BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL OR
INCIDENTAL DAMAGES WHATSOEVER (INCLUDING, WITHOUT
LIMITATION, DAMAGES FOR LOSS OF BUSINESS PROFITS, BUSINESS
INTERRUPTIONS, LOSS OF BUSINESS INFORMATION, OR OTHER
PECUNIARY LOSS) ARISING OUT OF THE USE OF OR INABILITY TO
USE THE SOFTWARE, EVEN IF <vendor> AND/OR ITS LICENSORS HAVE
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES”

• Example simulator:

“<vendor> warrants that during the warranty period Software, when properly
installed, will substantially conform to the functional specifications set forth in the
applicable user manual.
<vendor> does not warrant that Software will meet your requirements or that
operation of Software will be uninterrupted or error free.
<vendor>AND ITS LICENSORS SPECIFICALLY DISCLAIM ALL IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE AND NON-INFRINGEMENT OF INTELLECTUAL
PROPERTY.”

The simulator vendor does not guarantee that the software will meet the designer’s requirements,
or that the operation of the software will be error free. The tool qualification process attempts to
provide an assurance that the tool will operate correctly over the operating conditions of interest
to the project. Assuring correct operation of the tool requires knowledge of the internal operation
of the software. This information is rarely available to the tool user. The tool manufacturers
have the necessary information but, because the information often contains trade secrets, they are
often unwilling to provide the information required for tool qualification to outsiders.

3. ALTERNATIVES TO TOOL ASSESSMENT AND QUALIFICATION.

The purpose of tool assessment and qualification is to ensure that the tool is capable of
performing the particular design or verification activity to an acceptable level of confidence for
which the tool will be used. In sections 4.2 and 8.1, this research will demonstrate that, even if a

23

design tool’s outputs are known to be correct, it is still possible that the implemented hardware
will fail to function correctly.

Section 11.4.1 of DO-254 [1] has a comment about level A and B design tools, implying that
qualifying a design tool instead of assessing the tool’s output, or establishing relevant history,
may be more difficult than the hardware design itself.

“Using such a design tool without independent assessment of the tool’s output or
establishing relevant history is discouraged, as it may prove to be a task as
challenging as the development of the hardware for which the tool is proposed to
be used.”

DO-254 provides independent assessment of a design tool’s output and establishing a relevant
tool service history as options in the tool qualification process. In the sections that follow, each
method will be examined in detail.

3.1 INDEPENDENT ASSESSMENT OF THE TOOL’S OUTPUTS.

DO-254 states [1]:

“An independent assessment verifies the correctness of the tool output using an
independent means. If the tool output is independently assessed, then no further
assessment is necessary.”

It is clear that independent assessment of a tool’s output avoids the tool qualification process, but
what constitutes independent assessment of the tool’s outputs?

DO-254 provides the following guidance on independent assessment of a design tool:

“Note: Independent assessment of a design tool’s output that is generated in
whole or in part by the tool may be established by the verification activities
performed on the item, such as component, netlist or assembly. In this case, the
integrity of the end item does not depend upon the correctness of the design tool
output alone.”

Verification activities on the component (hardware) and netlist (software) count as an
independent assessment of a tool’s output.

For verification tools, DO-254 states:

“Independent assessment of a verification tool’s output may include a manual
review of the tool outputs or may include a comparison against the outputs of a
separate tool capable of performing the same verification activity as the tool being
assessed.

24

The applicant may propose other methods of independent assessment as well.”

Advanced verification techniques, such as elemental analysis or formal methods, can provide
independent assessment of a verification tool’s outputs.

3.1.1 What Does Independent Assessment Mean?

Independent assessment is more than just the independence of the design and verification tools
used. Independent processes are a means to address potential common mode errors that could
occur if a single person designs and verifies the hardware item. With a single person performing
the design and verification, the verification process will assure that the hardware operates as
designed, but this may not be equivalent to how the hardware is required to operate. The
responsibility for ensuring that the verification process demonstrates that the design requirements
have been met should be performed with an individual, a process, and/or a tool that is
independent of the designer. There are many means of establishing the necessary level of
independence, and the verification plan should address the specific means to be used for a
particular verification activity.

DO-254 enumerates some examples of acceptable means achieving independence [1]:

“1. Requirements or designs are reviewed by another individual.

2. Test cases or procedures are developed by another individual.

3. Test cases or procedures developed by the designer are reviewed by
another individual.

4. An analysis performed by the designer is reviewed by another individual

or a review team.

 5. A different test is performed that confirms the results of testing by the
designer, such as a test during flight test confirms a hardware item test or
software verification tests, developed independently and performed on the
target hardware item, confirm the results of testing by the designer.

6. Test or analysis results are verified by a tool.”

In addition to design reviews by independent individuals, some automated techniques are
allowed. Item 5 allows independently developed tests performed on the hardware to be used to
confirm the results of testing by a designer. Item 6 allows other tools (such as formal analysis) to
be used to confirm the tool’s outputs.

3.1.2 Independent Processes at all Phases of the Design.

It should be noted that rigorous hardware design assurance for dependable systems requires that
the major elements of a project—specification (requirements), conception (design), verification

25

(testing), and validation (analysis) must be executed independently by separate groups to avoid
perpetuation of errors. In addition, both verification and validation results may need to be
reviewed independently to confirm that proper procedures were followed, and that results
adequately verify that the requirements have been met. Independence of the design and
verification team is a double-edged sword. While it can be a negative for knowledge of the
design to influence the work of the verification group, the designers’ knowledge of the hardware
can help identify areas that warrant particular attention during verification. For designs intended
to satisfy DALs A and B, the independence required by the standard must not prevent the transfer
of information from the design team to the verification team.

3.1.3 What Happens if the Independent Assessment Results do not Agree?

Independent assessment data that indicates a failure cannot be treated lightly. While there is
always the possibility that the independent assessment is in error, great care must be taken when
such a situation is discovered. The mirror on the Hubble space telescope was ground to an
incorrect shape, despite the fact that mirror shape was independently assessed with three separate
systems. Two of the three measurement systems identified the mirror shape as incorrect.
However, the main measurement system was considered to be far more accurate, and the
conflicting independent measurements were ignored, eliminating the independent assessment of
the mirror shape. It was not until the mirror was in service and determined to be flawed that the
error in the primary measurement source was identified [11]. Even in cases where the
independent assessment is not as strong as the main design tool, the results of the independent
assessment must be carefully considered. It is interesting to note that the losing bidder for the
mirror was a team from Kodak and Itek Corporations who proposed to independently build two
mirrors and check each other’s work. This type of independent assessment would have easily
identified the measurement errors.

3.1.4 Independent Assessment is a Process, not an Event.

Independent assessment of a design tool’s outputs should not be viewed as a single event.
Independent assessment of the design tool’s output is a process that can and should occur
continuously throughout the design. There should be multiple independent assessments
occurring, each assuring the design correctness at different levels. The independent assessment
process follows a bottom-up strategy. The initial independent assessments will use simulations to
assure that each signal in each low-level block of the design meets the appropriate hardware and
derived requirements. Later assessments will assure that the low-level blocks correctly
interoperate as part of the final design. The final assessment during validation will assure that the
design meets all system-level requirements in the actual system application. The independent
assessment process operates the same for all DALs. Level A designs will require far more
extensive assessment than level C designs in order to assess the design robustness and any
architectural failure mitigation techniques that may be in place.

It is often possible to assure some lower-level requirements in later assessments, such as at the
system level, but many low-level requirements cannot be assured at the system level. It is also
possible that there are requirements that can only be fully assessed at the system level. In this
case, the assessment at lower levels should cover as much of the requirement as possible. At

26

every stage in the assessment process, the assessment should attempt to verify as many design
requirements as possible and to assess each requirement to the fullest extent possible.

3.2 SERVICE HISTORY.

In the absence of independent assessment of a tool’s output, the DO-254 tool assessment and
qualification process allows a tool’s relevant service history to be used as an alternative to tool
qualification. In section 11.4.1, DO-254 [1] gives the following guidance with respect to tool
service history:

“The history of the tool may be based on either an airborne or nonairborne
application, provided that data is available to substantiate the relevance and
credibility of the tool’s history.”

Design and verification tools from mainstream vendors, such as Mentor or Synplicity, have been
used by hundreds of users on thousands of predominantly nonairborne projects. Mainstream
vendors actively track problem reports and keep change logs for the software revisions. Many of
the projects are more complex and speed intensive than is typical for aviation applications. But
very few of the nonairborne projects are concerned with safety-critical hardware; therefore, the
relevance and credibility of the tool history should be questioned.

3.2.1 Service History Case Studies.

A good service history does not assure that a design is error free. Consider the following
examples, in which significant system failures occurred despite an excellent service history.

• The Intel® floating point processor circuitry was incorporated in both the 486™ and

Pentium® processors. There were hundreds of thousands of these processors in use for
several years without any issues or failures related to the floating point processor. In
1994, a user identified an error in the floating point circuitry. Byte magazine estimated
that the error would occur once in every 9 billion randomly generated calculations [12].

• The European space agency spent 10 years and $7 billion to produce the Ariane 5 rocket.
In 1996, at 36.7 seconds into the maiden flight, the inertial navigation system attempted a
data format conversion and ran into a number that was too large for the destination
register to store. The resulting error caused the navigation system to shutdown. The
backup navigation unit came online and ran into the same problem. The rocket lost
navigation control and was subsequently destroyed in flight [13].

To apply the guidance of DO-254 to the above cases, the task begins with assessing the relevance
of previous applications, installations, and environments to the target application. The Intel
floating point processor was used in numerous previous processor designs. The application,
installation, and environment of the new processor applications were identical to previous
successful applications. The application of the navigation system of the Ariane 5 rocket was
identical to the Ariane 4. The physical installation was identical, except for differences in the

27

dimensions of the equipment bay. The environment appeared identical; it connected to similar
hardware, on a similar rocket. Engineering analysis of both the Intel and Ariane examples
concluded that the new applications were identical in application, installation, and environment.
Now consider the actual failure rates in operation. There were no known functional failures of
the floating point processor or the Ariane navigation system. Both systems had long and
problem-free service histories.

Both systems would meet all the criteria necessary to qualify based on service history. So why
didn’t the service history predict the future performance? The bug in the floating point processor
had slipped by detailed verification by Intel. It was also sufficiently rare that randomly generated
test patterns had a negligible probability of finding the bug. If 100,000 users in the user base
averaged a single floating point calculation per second, the error would have occurred a
minimum of once a day for years. The actual rate of occurrence is expected to be substantially
more frequent. Despite the high error rate, the error was not detected because the error was not
producing detectable errors in user applications. When an application requiring extreme
precision independently assessed the calculations, the error was identified.

The excellent service history of the floating point processor was based on users doing general
computing. This proved a poor predictor of the system performance for an extreme precision
application. The excellent service history caused even the mathematician who discovered the
error to suspect that the problem was in his calculations, and not in the hardware.

In the case of the Ariane 5 rocket, the particular subsystem that failed was only used to align the
navigation system before launch. The system that generated the failure could have and should
have been turned off prior to launch. However, in a decision made many years before, the
navigation system was left enabled for the first 40 seconds of flight to make it easier to restart the
system if there were holds on the launch pad. The navigation system failure occurred because the
Ariane 5 was a much faster rocket and generated velocities that could not be achieved on the
Ariane 4.

The new application of the navigation system was identical in all physical respects, but the data
coming from other systems had changed. Again, service history yielded a poor prediction of
future performance, because the environment the system operated in had changed in a subtle way
that had not been recognized.

3.2.2 Service History Guidance for Hardware.

DO-254[1] gives guidance about product service histories for hardware in Section 11.3 and
Appendix B, Section 3.2. Sections 11.3.1 and 11.3.2 of DO-254 give guidance on product
service experience acceptability. One or more of the several criteria should be met to determine
the product service history acceptability. Quoting DO-254 these criteria include:

“Assess the relevance of previous applications, installations and environments to
the target application, based upon engineering analysis.”

28

and

“Actual failure rates in operation.”

The guidance in Section 3.2 of Appendix B of DO-254 [1] requires additional design assurance
for DAL A and B hardware if service experience is claimed. It also contains a requirement to
link any analysis of product service history experience into the FFPA for levels A and B.

3.2.3 Service History for Design Tools.

The performance of hardware is the same regardless of who is using it. If the application,
installation, and environment are similar for multiple applications, it is reasonable to expect that
if the hardware worked well in one application, it will work well in the other applications. As
shown in appendix F, this does not extend to design and verification tools. The performance of a
design or verification tool instead depends heavily on the abilities and experience of the tool
user. Experienced users can work around the known weaknesses and bugs of a known design
tool. The user’s experience with the tool is a better predictor of design correctness than the tool’s
service history.

3.2.4 Service History Versus the Latest Technology.

When it comes to safety, there can be a tradeoff between service history and new technology.
Consider the introduction of airbags in the auto industry. The airbag was first offered as optional
equipment in passenger cars in 1975. The first recorded accident between two vehicles in which
an airbag deployed to protect each driver occurred in 1990 [14]. It took until 1998 before the
government made airbags mandatory equipment for all passenger vehicles. Part of the reason for
this delay was that legislators wanted a known service history and safety record before airbags
were mandated. Many lives could have been saved and highway safety improved if the
government had embraced the new technology sooner.

Design and verification tool technology is constantly improving. New tools may produce far
safer designs than older tools with documented service histories. Independent assessment of the
tool’s output provides far more assurance of design correctness than tool service history.

3.2.5 Tool Service History is not Sufficient.

The authors do not believe that a relevant service history alone is sufficient to prevent errors in
the final design. The authors recommend that the design tool’s service history should not be
allowed to avoid tool qualification. The tool’s service history should be used instead to modulate
the level of independent assessment effort required. A tool that lacks a relevant service history
should be subjected to additional independent assessments to assess the correctness of the tool.

Since there will be other independent assessments of the tool’s outputs, these additional
assessments need not be as exhaustive as those required for tool qualification. The additional
assessment can be an independent manual review of the outputs of the new tool, analyzing the
design with both the new and old tools and comparing the results. In some cases, a tool with no

29

relevant service history may address an issue that was not addressed by any previous tool. In this
case, the correctness tool outputs should be subjected to a manual review.

3.2.6 Testing Maturity Model.

The Testing Maturity Model (TMM), introduced in mid-90s, did not find much acceptance due to
its limited documentation and theoretical style [15 and 16]. However, the approach is still
promoted by the TMMi Foundation (http://www.tmmifoundation.org/html/tmmiorg.html).
TMM focuses on testing inspired by the Software Engineering Institute Capability Maturity
Model (CMM), which assumes that there is a correlation between organizational maturity and the
quality of produced software. Since the TMM approach is primarily used in enterprise
computing and IT organizations and because the testing component of verification and validation
is adequately addressed in the existing guidance, the TMM approach has not been considered
relevant for AEH.

4. DESIGN ASSURANCE.

DO-254 defines design assurance as follows [1]:

“Design Assurance – All of those planned and systematic actions used to
substantiate, at an adequate level of confidence, that design errors have been
identified and corrected such that the hardware satisfies the application
certification basis.”

The key to design assurance using DO-254 is identifying all possible design errors. Before a
design error can be identified, a test case that produces the error must be generated, and then the
error must manifest itself in a way that the test system can detect. The following sections
investigate methods to generate more complete test cases, and to better observe errors when they
occur.

4.1 CONSTRAINED RANDOM VERIFICATION.

Constrained random verification is a technique where the input conditions of the device under
test are bounded according to the hardware requirements. Within these bounds, test cases are
randomly constructed and used to assess the correctness of the design. If a condition is not
prohibited by the requirements, then it can be used as a test case.

Because the test cases are computer generated, they often identify failures that are legal
conditions that were not considered by the design and verification teams. Because the input
constraints are defined by the hardware requirements, constrained random verification often
identifies problems with the hardware requirements. As part of a normal design process, many
semiconductor companies run a new set of random test cases on the design in progress every
night.

30

Synopsys published a study on a USB 2.0 Host core [17]. The core had been verified by
traditional simulation methods, as well as manual-directed tests backed up by some random
testing in Verilog. The suite consisted of 450 directed/random tests and achieved what seemed to
be excellent coverage results:

• 97.50% Finite State Machine (FSM) coverage
• 88.64% toggle coverage
• 84.71% condition coverage
• 98.58% line statement coverage

Given a design that was well verified in simulation, hardware verification was then performed on
the design. A total of 25 new bugs were found. The design bugs were put into four
classifications:

• B4—show-stopper bug that could prevent a product from working
• B3—significant functional bug that would affect some applications
• B2 and B1—relatively minor bugs, usually with workarounds

The 25 bugs discovered during hardware verification were in the B3 and B2 categories. There
were no show-stopper bugs found, so the initial verification effort was successful. But the
hardware verification still found and fixed a number of important problems. At this point, most
designers would be confident that the design has been assured to be correct.

Constrained random verification was then performed on the already well-verified design. An
additional 28 bugs were found:

• 15 were B3 level
• 12 were B2 level
• 1 was B1 level

Constrained random verification helps generate test cases to identify bugs that slip by the normal
design and verification efforts. Constrained random verification should be part of any safety-
critical AEH design flow.

4.2 OBSERVABILITY.

For safety-critical designs, both the verification and validation test suites need to be assessed for
completeness. Elemental analysis is often used to assure that every element of the design is
exercised by the test suite. It is important to realize that merely exercising every element is not
sufficient to assure the design is correct. If an element makes an error, it is necessary for the
error to propagate to an observable point for the error to be detected. Consider the case of
several circuits connected to a single output. If an error in one circuit occurs while some other
circuit has control of the output, the error will go undetected, but the elemental analysis can
report that the element was tested.

31

The number of internal states usually far exceeds the number of outputs, so visibility into the
circuits operation is limited. Modern design methodologies use assertions to give better visibility
into internal circuit operation during simulation. An assertion acts like a comment that checks
itself during simulation. Suppose that, as part of his HDL design process, a designer puts in
assertions, such as the contents of a four-bit counter must always be between 0 and 10. If during
any simulation the counter contains an illegal value, the assertion fires and the violation is noted
in the error log. Even if this condition quickly goes away and the illegal value does not
propagate to any observable points, it still generates a detectable error.

If the hardware fails during system validation, determining the failure mechanism in the
hardware often requires that the conditions leading to the failure are simulated. The assertions
will provide a detailed map of where and when the failure originated and where and how it
propagated. Assertions are widely used in the semiconductor industry, because of their ability to
improve the observability of failures, and their usefulness as a debug tool if the hardware fails in
the field or during system validation. An additional benefit of using assertions is that they
highlight how well a design component is specified.

4.3 DERIVED REQUIREMENTS.

DO-254 defines a derived requirement as follows:

“Derived Requirement - Additional requirement resulting from the hardware
design processes, which may not be directly traceable to higher level
requirements.”

Derived requirements that impact safety must be verified. DO-254 lists some example
conditions in which derived requirements may address safety conditions.

“Note: Derived requirements may address conditions, such as:

a. Specific constraints to ensure that functions of a higher design assurance level

can withstand anomalies of functions of a lower design assurance level as seen
at the interface of the function with the lower design assurance level.

b. The range of data inputs considering typical and full-scale data values as well
as the high and low states of bits in data words or control registers.

c. Power-up reset or other reset states.

d. Supply voltage and current demands.

e. Performance of time-related functions, such as filters, integrators and delays.

f. State machine transitions that are possible, whether they are anticipated or not.

32

g. Signal timing relationships or electrical conditions under normal and worst-
case conditions.

h. Signal noise and cross-talk.

i. Signal glitches in asynchronous logic circuits.

j. Specific constraints to control unused functions.”

Assertions cannot cover timing, power, or noise issues (conditions d, e, and h), but all other
derived requirements can and should be covered by one or more assertions. Covering a
requirement with an assertion provides an independent assessment of the design tools output.

5. SURVEY OF TOOL USERS.

To identify issues and concerns in AEH tool qualification and certification, one must start with a
broader view of an industry perspective. This section reports on the survey of the aviation
community conducted to collect relevant information.

5.1 AVIATION COMMUNITY SURVEY.

The survey was conducted to collect data on experiences and opinions concerning the use of
programmable logic tools as applied to the design or verification of AEH (FPGA, PAL, GAL,
PLA, ASIC, or SoC) according to the DO-254 standard. The questionnaire was sent out, targeted
toward individuals who have experience with developing or using such tools or experience with
qualifying such tools. The purpose was to gather industry and certifying authority feedback on
assessment and qualification of AEH programmable logic tools.

5.1.1 Survey Population.

The questionnaire was distributed first during the 2007 FAA SW&AEH Conference in New
Orleans, LA, July 24-26, 2007, which was attended by over 200 participants. A special session
dedicated to AEH was attended by 54 individuals, representing industry and government
organizations interested in AEH and the application of DO-254. In addition to distributing and
collecting paper copies of the questionnaire at the conference, a follow-up mailing was
distributed to over 150 individuals engaged in the development of aviation software and
hardware. The questionnaire was also distributed internally within several companies engaged in
the design of PLDs. As a result of these activities, a sample of only 17 fully completed responses
was received. As a follow-up, surveys were distributed at the Programmable Logic User Group
meeting in Clearwater, FL, November 15, 2007, resulting in three more responses. This is a
rather disappointing outcome and a potential risk issue. However, the collected results provide
several interesting observations.

In January 2008, using an external survey website (www.surveymonkey.com) the questionnaire
was posted on the web and followed up with an additional 266 mailings requesting response.

33

Additionally, the link to the web survey was placed on the DO-254 Users Group website (select
the “tools” tab). To date, only eight responses have been received.

A copy of this questionnaire is included in appendix A. The detailed results and the majority of
relevant graphs are presented in appendix B. The general conclusions of the survey, based on the
current respondents’ database, are presented below.

The survey population by organization type is shown in figure 6. The majority of respondents
work for avionics or engine control developers (~65%). Over 95% of the respondents have a
technical background, with ~55% having bachelor’s degrees, ~45% master’s degrees, and over
72% having an educational background in electronics. Ninety-seven percent of the respondents
have more than 3 years of experience, with fifty-nine percent having more than 12 years of
experience.

Consultant

Aircraft or Engine
Manufacturer

CEH Programmable
Tool Developer

Avionics or Engine
Control Developer

6% 6%6%

64%

6%

12%

NASA

RADAR
Systems

Organization Type

Figure 6. Survey Population—Type of Organization

5.1.2 Multiple Choice Answers.

The most frequent respondents’ role relevant to the AEH tools were as follows (figure 7):

• Use of the tools, including development/verification of systems (~62%)
• Managing and acting as DER (~26%)
• Development of the tools (~2%)
• Development of components (~12%)

34

Project
Supervisor

16%

Tool Data
Approver

10% Other
9%

Component
Developer

13%

System
Developer

16%

System
Verification

16%

Tool User
18%

Tool
Developer

2%

Respondent Roles

Figure 7. Role of Respondents in DO-254 Projects

The respondents’ primary interest was divided between verification (32%), development (27%),
hardware (22%), and concept/architecture (18%).

A wide range of devices were used, with the most frequently used being FPGA (~27%), CPLD
(~18%), ASIC (~15%), PAL (~11%), PLA (~9%), and Erasable PLD (~8%). The most popular
hardware device vendors are Actel (~27%), Xilinx (~24%), Lattice (~13%), and Cypress (~11%),
with Quick Logic, Altera, and Atmel below 10%.

The most widely used tools are from Mentor Graphics (~27%) and Synplify (~22%), followed by
Synopsys (~17%), Aldec (~11%), and Cadence (~8%). About 23% of respondents use other
tools.

In regard to criteria for the selection of tools for use in DO-254 projects, the most important are
availability of documentation, ease of qualification, previous tool use, and host platform,
followed by the quality of support, tool functionality, tool vendor reputation, and previous use on
airborne project. Selection of a tool for a project is based either on a limited familiarization with
the demo version (50%) or on an extensive review and test (40%). The approach of reviewing
and testing the tool by training personnel and using the trial period on a smaller project seems to
be prevalent.

For those who have experienced the effort of qualifying programmable logic tools (only 14% of
respondents), the quality of the guidelines is considered sufficient or appropriate (62%), as is the
ease of finding required information (67%), while the increase in workload was deemed
negligible or moderate (80%). An interesting observation concerns the scale of safety
improvement: marginal (43%), moderate (21%), noticeable (7%), and significant (29%).
Similarly, the question about errors found in the tools may be a source for concern: no errors
(11%), few and minor errors (50%), and significant and numerous (17%). Despite all this, the
satisfaction level regarding programmable logic tools was positive, and more than 96% of the
respondents marked their satisfaction level 4 out of 5.

35

Complete results in a graphical form are included in appendix B.

5.1.3 Narrative Answers.

Three questions from the questionnaire required some form of narrative answers. The transcript
of the unedited answers is in appendix B following the statistical data from the survey.

In summary, the following were identified as major issues for using programmable logic tools:

• Ease of using the tool for verification and reading the results of the tool
• Quality of the tool
• Speed with which the tool verifies designs
• Problems with timing and timing analysis

Difficulties identified with qualification of these tools include:

• Lack of useful guidance for how to qualify tools
• Lack of cooperation from the tool vendors
• Frequent version updates of tools
• Length of qualification process

Other issues identified include:

• Difficulties compensating for certain tool idiosyncrasies
• Lack of configuration control
• Lack of other vendor cooperation

5.2 SEMICONDUCTOR INDUSTRY VIEWPOINT.

While working on the results of this survey, a similar survey targeting hardware development
tools without a safety objective was discovered, “A Census of 818 Engineers on Design and
Verification Tool Use” (http://www.deepchip.com/posts/dvcon07.html), while the population
surveyed was primarily composed of chip and low-level component designers, the results show
general industry trends and viewpoints regarding the use of tools. This particular survey was
done in consideration of the IC and digital components that industry uses the tools daily. There
is a huge population of digital system developers unfamiliar with the specifics of DO-254.

The Census was sent to 25,000 members of E-Mail Synopsys Users Group and received 818
responses. The objective of the survey was to identify the actual utility of the tools, as opposed
to the market share expressed in dollars, the statistic often presented in trade literature.

36

The major items identified by the survey were:

• Specific language use for simulations: Verilog (only/mostly) 73% and VHDL
(only/mostly) 20%. It was observed that the justification for using Mentor’s Modelsim
was the need to provide support for legacy code and reuse.

• The most popular simulators are Synopsys VCS (44.7%), Mentor ModelSim (35.3%),
Cadence NC-Sim (24.3%), and NC-Verilog (18%).

• The most popular waveform/debug tools include Synopsys (33.2%), Novas Debussy
(33.1%), Cadence debugger (29.6%), and Mentor MTI debugger (26.3%)

• Only 23% of respondents use SystemC, mostly for high-level modeling and verification;
the most popular SystemC tools include Free OSCI (43%), Cadence MC-System (33.6%),
and Mentor ModelSim (16.8%).

• 35.1% of the projects uses System Verilog, almost exclusively, for testbench (80.2%);
Synopsys VCS is the most popular (65.6%), with Cadence NC-Sim (24.7%), Mentor
Quest (15%), and Mentor ModelSim (12.3%) following.

• The assertions are used by both designers and verification personnel and the responders
found their application useful (89.4%); the most popular was System Verilog SVA
(37.8%).

• Use of formal “bug-hunters” was not popular (74.5% respondents do not use them);
Mentor 0-In, Synopsys Magellan, and Cadence ISV/IFV/BlackTie were most often
quoted.

It should be noted that most of the companies use more than one tool from multiple vendors.
Such an approach introduces an additional element of independence, assuring that products of
different vendors are applied to design and verification, thus avoiding potential exacerbation of
errors.

As part of the research into design and verification tool use by AEH developers, the Vice
President of Design Services of a two billion dollar company was interviewed. He had a number
of interesting observations relative to the research. His company used Cadence tools for both
design and verification. When asked if he felt that there was any risk in using design and
verification tools from the same vendor, he replied that even within a single vendor the design
and verification tools are very different and independently developed. His primary concern was
using the tool that performed the best in his applications, rather than having independent vendors
for the design and verification tools.

37

He mentioned that the company uses formal design tools for smaller blocks and at an
architectural level, but they did not find them suitable for complete design verification. He
described his verification flow as:

1. Assertions are incorporated as the HDL code is written.

2. Formal proofs are performed on small blocks as soon as possible.

3. Directed tests are generated by the designers to exercise areas of concern and constrained

random tests are run on a daily basis as the design progresses.

It is noteworthy that the designers have direct input into the verification process to assure that
areas that the designers viewed as areas of concern are adequately verified.

He also mentioned that newer verification management tools were extremely useful in helping to
evaluate the verification coverage of the entire system, from low-level blocks to system-level
coverage. These tools help guarantee that all the blocks in a design have been correctly exercised
with directed tests, constrained random testing, fault coverage, and assertion coverage.

6. LITERATURE OVERVIEW.

One of the project objectives was to research the literature related to the use of software tools for
design and verification of AEH. Literature research was categorized from three perspectives:

• A general research perspective, which gives a broad view of the issues involved in

designing AEH.

• A focus on safety issues in avionics applications, which discuss more specific problems

related to safety-critical aspects of AEH development.

• An industry perspective, which provides the most detailed view of industry practices in

qualification of AEH tools with respect to their compliance with DO-254 standard.

An attempt was made to collect the literature providing a general overview of the research issues
related to the use of software tools in the development of AEH. These papers are presented in
appendix D, with the respective entries grouped in section D.1 (papers 1-26). Each entry
includes an abstract of the respective paper, which is listed in references 18-43.

Six of the selected papers contain explicit relevance to safety-critical aspects in avionics (papers
12, 13, 17, 22, 24, and 25). This discussion is elaborated in section D.2 in appendix D. The
objective of this discussion is to provide a synopses of selected research papers that are directly
related to issues raised with respect to safety concerns in the area of AEH with a focus on
avionics applications. The purpose of this analysis is to identify the issues raised by researchers

38

and developers concerning the use of AEH tools for design and verification of PLDs. The
specific concerns are as follows:

• Input/output (I/O), (to determine the state of undefined I/O pins)

• Power (routing connections within a FPGA so that electro-magnetic fields and maximum

current draws do not affect the logic or output voltage levels)

• Simulation (high-level behavior simulation and implementation behavior are not always

identical)

• Timing (the tool meets the timing constraints that it displays in its report and that it

retains a margin of safety)

Each paper has been analyzed to identify the objective, brief description, and the relevance to the
project.

The papers reviewed in the safety category suggest the following about the use of PLDs in
advanced airborne applications:

• Plan to develop and verify PLD programs in the same way as software programs.

• Plan the safety argument from the start and build up evidence throughout development.

• Use mature tools, amenable to qualification and supported throughout the project life

time.

• Investigate the use of formal notations and analysis techniques to increase verifiability.

• Do not use programmable logic hardware just to avoid developing safety-critical

software.

The third perspective of the literature research focused on industry practices related to AEH tools
qualifications, as reported in related articles. These entries are grouped in section D.3 of
appendix D. Each entry includes a brief description of the problem discussed in the paper and a
suggested solution. These papers are also listed in references 44-71.

Ten of these papers deal directly with the vendors’ views on tool qualification according to DO-
254 [1]. Mentor Graphics [44] and TNI-Software [57 and 61] describe their approach to comply
with DO-254 for their respective verification tools: ModelSim, Reqtify, and a formal property
checker, improve-HDL. Two COTS tools from the GNU package, a configuration management
tool, CVS, and a problem-reporting tool, GNATS, are recommended in reference 49. Four
vendors, Xilinx, Altera, TNI-Software, and Mentor Graphics, identify their tools and processes in
reference 53, and Aldec and Barco-Siles S.A. outline their processes to comply with DO-254 in

39

references 58 through 60, respectively. Airbus [46] and the DO-254 User Group [52] outline
their processes separately, with a list of issues and clarifications regarding compliance.

Four papers take a guideline approach to clarify respective AEH issues, whether related to
DO-254 or not:

• The objective of the National Aeronautics and Space Administration (NASA) [45] is to

provide guidelines to improve understanding of AEH among those interested.

• The FAA report on COTS [50] identifies key attributes to meet the DO-254 objectives,

but falls short of relating them to tool qualification.

• The ERA Technology, Ltd. [51] covers DO-254 but does not address the tool

qualification issue.

• Reference 72 discusses DO-254 briefly and identifies the Avionics Process Management

Committee’s EIA-933 Standard providing recommendations on how to select and manage
suppliers of avionic products.

The remaining four papers discussed in this section present academic and research views on the
issue of certification. Lundquist [54] addresses the question of certification of an Actel FPGS
chip and concludes that this question “remains unanswered.” Hilton and Hill [47] advocate the
use of synchronous receptive process theory to reason about the FPGA as a collection of small
processes reacting to signal inputs. Jacklin, et al. [55], argues that complete verification and
validation of learning systems should not be viewed as running test cases and comparing
expected results to actual results, because these tests can never reveal the absence of errors.
Finally, Crum, et al. [56], point out that the lack of research investment in certification
technologies will have a significant impact on levels of autonomous control approaches that can
be properly flight certified and could lead to limiting capability for future autonomous systems.

Additionally, the research explored a variety of web references and collected nearly 300 positions
from SOCCentral, a webpage containing multiple articles related to ASIC, FPGA, electronic
design automation, and IP.

7. CASE STUDIES.

There are a number of factors that may affect system safety, including system quality,
complexity, user experience, fault tolerance, producer’s pedigree, documentation, testing, quality
assurance policies, etc. These factors are shown in figure 8, and tool quality is one of the factors.

40

System Safety

System
Quality other factors

Complexity

User
Experience

Fault
Tolerance

Producer’s
Pedigree Tool Quality

Documentation

Testing

QA

Figure 8. Factors Affecting System Safety

To evaluate tool quality completely, one would need to look at it from three different
perspectives and collect data accordingly:

• How the tool itself was developed.
• How the tool is operating.
• How the quality of the product developed is affected by the use of the tool.

To quote the previous paper on tool evaluation [73]:

“The framework for this process, based on the context of tool use, is shown in
figure 9. The central part of this model is the macroevaluation based on the use
of the tool during the design phase. However, much information on tool quality
can be derived from the development of the tool itself, considered as a
metaevaluation: evaluating the process to develop a tool. The tool vendor can
provide the data for evaluation of this stage. In addition to the macro- and
metaevaluation, the product developed with a particular tool can be included in
the evaluation. This is called microevaluation, and it focuses on the level lower
than the tool itself. Such a product evaluation can be based both on static code
analysis and code execution. Consequently, to have the entire picture of the tool’s
quality, one needs to do the evaluation at three different levels.”

Figure 9. Macroevaluation Model of the Tool Evaluation Process

41

It is next to impossible to obtain data on tool development from the tool vendors. This is mainly
due to the vendor’s reluctance to release proprietary information to the public where it could be
used by competitors. For this reason, performing the meta-evaluation is normally not done.
Therefore, this work focuses on macroevaluation, described in appendix F, and microevaluation,
described in appendix E.

8. SAFETY ISSUES.

This section focuses on safety issues that can occur in a design using tools that have been through
the full qualification process. Using these tools, it is possible to produce systems that have been
proven to operate correctly under all anticipated conditions. However, this confidence is based
on the assumption that the system and all of its related systems will operate as expected. The
examples in this section emphasize the need for independent assessment of a tool’s output. This
section will begin with examining the data from the semiconductor industry on the types of
design errors prevalent in hardware designs. Each of these errors will then be examined in more
detail.

8.1 HARDWARE DESIGN ERROR CHARACTERIZATION.

Figure 10 shows data on designs that required two or more re-spins to get correct. In a
semiconductor design, the entire design is fabricated on a single piece of silicon. An error
anywhere in the design requires new silicon to be fabricated using new mask sets. This is known
as re-spin, and its cost can exceed $1 million. The data from a 2-year market study (2002 and
2004) categorizes the number and types of errors found in semiconductor designs. The defects
total to more than 100% because a single design may have several types of errors. The most
common error is the logical/functional error. This error is often caused by inadequate
specification of the design. Other errors of interest are delays, clocking, and fast path and slow
path errors, all of which are timing-related errors. The number of all timing-related errors
exceeds the number of logical and functional errors. IR (voltage) drops is a shorthand way of
describing voltage drops due to resistance in the power and ground supply networks. Glitches
are unexpected signal transitions that can be timing or signal integrity-related problems. The
chart shows that there are numerous ways that a design can be functionally correct but still
produce errors in operation.

42

Gardner MAPLD 2005/P145
30

Functional Flaws Driving Need for Re-Spin
IC/ASIC Designs Requiring Re-Spins by Type of Flaw

75%
71%

0% 20% 40% 60% 80% 100%

Other

Firmware

IR Drops

Power Consumption

Mixed-Signal Interface

Slow Path

Delays/Glitches

Yield/Reliability

Fast Path

Tuning Analog Circuit

Clocking

Logic/Functional

Percent of Designs Requiring Two or More Silicon Spins

Market Study 2002
Market Study 2004

Source: 2004/2002 IC/ASIC Functional Verification Study, Collett International Research, Used with PermissionSource: 2004/2002 IC/ASIC Functional Verification Study, Collett International Research, Used with Permission

…the Problem is Getting Worse

Figure 10. Functional Flaws Requiring Design Re-Spins [64]

In 1965, Gordon Moore postulated that the number of transistors on an integrated circuit will
double every 2 years. This law has held true for over 40 years, and it appears that it will continue
to hold true in the future. Therefore, when comparing the data of figure 10, one must understand
that, on average, the designs of 2004 contain twice as many transistors as the designs of 2002.
Given that the designs produced in 2004 are roughly twice as complex as the designs produced in
2002, one would expect that the number of category errors would nearly double as well.
However, the number errors did not double, because the designs produced in 2004 were more
advanced than in 2002.

The foregoing example indicates that if one wants to minimize the number of design errors, one
should use the latest tools and design techniques. This example is counter to the idea of
requiring an established tool service history.

A closer examination of the year-to-year data shows that as the number of transistors (or
complexity) increases, the number of timing-related errors rapidly increases relative to the
number of logical errors. This indicates that tool assessment needs to not only assess whether a
tool’s outputs are logically correct, but also the accuracy of the tool with respect to timing
analysis. Assessing the correctness of the timing analysis is a difficult problem because identical
semiconductor devices will not have identical timings. The need to accommodate device
variations, temperature variations, and supply voltage variations results in broad timing
specifications that make it difficult to assess the correctness of any single timing calculation. It is
difficult (if not impossible) to assess the timing accuracy of a tool without a defining architecture

43

and physical layout. The timing calculations of a tool can only be assessed within the context of
a design.

Generating functionally correct HDL code is only one part of the overall FPGA design process.
Equally as important as HDL code functionality is the location of the HDL code implementation.
Locating all the HDL blocks close together improves the timing at the risk of introducing power
distribution problems. But, spreading the blocks apart may introduce clock skew and timing
problems. In addition to the locations of the individual blocks, the actual location of every input
and output pin that is used must be defined. The location of these pins is defined by interface
requirements (pins with similar power requirements are grouped together) and external system
requirements. The FPGA ultimately connects to the rest of the system through the printed circuit
board (PCB) on which it is mounted. Because of the flexibility of the FPGA internal routing, the
FPGA pin-out is often determined by the routing constraints of the PCB. Although the FPGA
designer may know that clock inputs should not be placed near large-output busses, the physical
layout of the PCB may force a suboptimal pin-out upon the designer. Figure 11 shows the
synchronization and interactions between processes involved in putting a programmable
integrated circuit, such as an FPGA on a PCB.

System
Designer

PCB
Layout

PCB Timing
Analysis

PCB
Signal

Integrity

FPGA
Designer

DSP
Designer

We do the
FPGA I/O

Design

Embedded
System

Designer

We do the
FPGA I/O

Design

We do the
FPGA I/O

Design

We do the
FPGA I/O

Design

We do the
FPGA I/O

Design

We do the
FPGA I/O

Design

We do the
FPGA I/O

Design

We do the
FPGA I/O

Design

PCB
(Schematic)

Designer

Software
Engineer

We do the
FPGA I/O

Design

From Dave Brady & Bruce Riggins, Mentor Graphics

Figure 11. Communication Barriers That can Prevent Clear Design Specifications

The FPGA is usually part of a larger system; therefore, successful design requires the close
collaboration of a variety of specialists. Figure 11 shows ten domains of the engineers working
on a specific project that all have a part in specifying the I/O interface. Lack of communication
between any of these members can cause incompatibilities in the design, which can lead to
failures. For example, improper power distribution in the PCB could cause the FPGA to
malfunction, or signal integrity issues in the PCB can allow signals to interfere with each other
and produce failures. Therefore, the designer must understand the relation between the system,
algorithms, board-level circuitry, PLD, and microprocessor software.

In the sections that follow, assume that a DAL A design that has been proven to be logically
correct and the techniques of appendix B of DO-254 [1], including architectural mitigation and
elemental analysis, have been applied to the design. Is it possible for the design to not operate as

44

expected in the final system? The following sections investigate issues ranging from PCB design
to neutron radiation effects.

8.2 THE FPGA’S ENVIRONMENT.

The FPGA is mounted on a PCB that supplies the device with power and routes the signals to the
necessary locations. Errors in the PCB design can lead to power integrity or signal integrity
problems. These problems are difficult to identify because they heavily depend on the particular
operational mode that is implemented in the FPGA. Signal rise and fall times generated by
modern FPGAs continue to become faster. This means that signals can no longer be arbitrarily
wired together. High-speed signaling requires design engineers with experience in high-
frequency analog design to assure that the traces are correctly matched and terminated on the
PCB. In older systems, the signal rise and fall times were often slow enough that signal integrity
issues did not matter. Many designers currently in the field are unaware of the need to use high-
speed signal design techniques. Designers (especially the most senior designers) often do not
realize that the rise and fall times of the signals they are now using require a new design
paradigm. If the engineers are unaware of the potential failure, the processes of DO-254 and its
appendices will not help to prevent signal integrity-related failures.

Wide data busses can cause large supply currents that can interact with the inductances in the
PCB leading to supply variations at the PCB level. Capacitors on the PCB can interact with
parasitic inductances to produce unexpected resonances. These failures are known as power
integrity failures. The increased switching speeds of modern FPGAs place much more stringent
requirements on the system power supply design than were placed in the past.

In system designs, it is good design practice to reuse previous successful designs. However, one
must be aware that a design that worked fine for one FPGA implementation may fail if the
circuitry implemented in the FPGA or the devices connected to the FPGA change. Because they
are data- and timing-dependent effects, signal integrity and power supply integrity issues are
difficult to identify during the design or in simulation. Best practices design techniques can be
used to identify and address problem areas in the design phase. Any errors of this type that slip
through should be observable during system validation, if the validation testing includes tests that
are intended to exacerbate signal and power integrity issues. The FPGA can only be assured to
work correctly if the PCB is attached correctly. Assuring the PCB design correctness does not
directly fall under DO-254 scrutiny and often requires a completely different skill set than
assuring the correctness of the FPGA.

8.3 TIMING ISSUES.

Perhaps the most difficult aspect in verifying the correctness of hardware is that minor changes in
the timing can produce major differences in the logical operation of a circuit. To better
understand this problem, consider a bus of many bits that instantaneously transitions from all of
the bits being zero (0) to all of the bits being one (1). Due to differences in the routing and
random variations in the devices, some bits will transition faster than others. This results in a
period of time where some of the bits are stable and some of the bits are still transitioning.
During this period, the data on the bus is invalid. Accurate simulation of this timing variation

45

requires knowledge of the exact placement and routing of the devices. Any simulation not
incorporating timing data from the place-and-route process will not be able to see these
differences. In addition, if the simulation timing step size is larger than the timing differences,
then the timing differences will not show up in the simulation output. One must always be aware
of the limits of the simulation.

It is possible to minimize the timing variations caused by routing differences by placing timing
constraints on the design tools. However, there is always a timing variation due to random
device variations; these effects are rarely (if ever) included in logic simulator models. A 2005
presentation [65] indicated that there was a problem with the VHDL design tools because the
output signal simulations of the Gray code circuit were not valid at all times. The author does
not mention trying to eliminate the timing difference by constraining the design, but instead
shows that changing the VHDL code eliminates the glitches in the simulations. What the author
failed to grasp is that even when the simulations show that the data is always valid, random
device variations guarantee there are periods where the data on the bus is invalid. The design
tools cannot change the physics. Designs must be tolerant of the fact that there are always
periods when the data on any bus is invalid.

8.3.1 Synchronous Design.

To overcome the problem of not knowing when the data is valid, almost all hardware designs use
a clock to define when the data is valid. This is known as synchronous design. In this design
style, the data is valid for some time before the clock edge (setup time) and some time after the
clock edge (hold time). The clock signal is generated from a master source and then distributed
throughout the device. Special care must be taken so that the clock arrives to all functional
blocks in the device at the same time. Delivery of the clock to different devices at different times
is known as clock skew. FPGAs contain a limited number of specialized trees that can be used to
minimize clock skew. Although the design tool attempts to recognize clock trees, the designer
must often explicitly declare these trees so that the synthesis tool will correctly accommodate
them. The clock trees are often heavily loaded, driving many devices while the data lines often
only drive a single device. This means the data is often naturally too fast and that the synthesis
tool must incorporate delays to allow the device to meet timing. These delays are often created
by inserting additional buffers in the data signal path or by artificially loading the data. This
delay hardware is inserted without notifying the designer. Speed differences between the clock
and the data path result in the failures listed in figure 10 as fast path (the data arrives too soon)
and slow path (the data is too late). These failures are especially sensitive to variations in
temperature and voltage.

8.3.2 Synchronous Design—Multiple Clock Domains.

Ideally, a design will have only a single master clock. Unfortunately, modern designs commonly
require several independent clocks used within a single system. When signals move from one
clock domain to another, special circuits and analyses are required. The NASA FPGA design
guidelines point out that the synchronizers that are required to allow signals to cross clock
domain boundaries have a nonnegligible failure rate, which must be considered when calculating
the device reliability. Correct operation of circuits crossing clock domain boundaries cannot be

46

guaranteed by simulation because the timing between different clock domains can vary
arbitrarily. This would require an infinite number of simulations to verify. Special design
techniques are used to allow signals to cross between clock domains, and designers will insert
them anytime they need them. The problem is that sometimes signals cross clock domains in
obscure ways that are missed by the designers. Design tool vendors are attempting to address
this problem by automatically identifying where signals cross clock domains and flag them.
More advanced tools offer more comprehensive verification by performing code analysis for
signals crossing clock domains, verifying correctness of synchronization between domains, and
determining circuit behavior by injecting effects of metastability into the simulation [62].

8.3.3 Asynchronous Designs.

The most risky of all design styles is asynchronous design, where inputs and/or outputs are
allowed to vary without respect to any clock. Asynchronous circuits are subject to a condition
called “metastability,” in which signals transition from one value to another via quasi-stable
states exhibiting an intermittent failure. Neither simulation (testing logic function) nor static
timing analysis (testing single clock domain) can detect such a failure.

A typical example of such a situation is when the clock and data inputs of a flip-flop change
values at approximately the same time. This leads to the flip-flop output oscillating and not
settling to a value within the appropriate delay window. It happens when there is communication
between discrete systems using different clocks. Experienced designers mitigate the event by
adding synchronization between clock domains and isolating the “metastable” output to reduce
propagation effects.

This state introduces a delay that varies, depending on the exact timing of the inputs. This delay
can only be analyzed statistically. It is not possible to prevent an error from occurring; the best
that can be done is to limit its probability. Although most designers avoid asynchronous design,
there are cases where asynchronous inputs must be accepted. An example where an
asynchronous design is required would be a reset path that is required to operate, even if the
synchronizing clock is not present.

8.4 WIDE DATA BUSSES AND DATA PATTERN DEPENDENT ERRORS.

Modern, safety-critical systems can contain data and address busses that are 32, or even 64, bits
wide. A wide variety of signaling standards are used in AEH. In single-ended signaling, the I/Os
share a common power and ground connection. If all, or many, of the I/Os connected to the
common power supply or ground change state simultaneously, a large spike in current will occur.
This rapid change in current causes any parasitic inductances in the power supply and ground
distribution network to have voltages induced across them that are proportional to the rate of
change of the current. These parasitic inductances can be on the chip, in the device’s package, in
the connection to the PCB, or in the PCB. These voltages, caused by the changing current, are
known as supply/ground bounce and can be large enough to lead to erroneous circuit operation.
The supply/ground bounce produced by simultaneously switching the outputs will be referred to
as simultaneous switching noise.

47

Noise can also be introduced into the system via crosstalk between signals. Crosstalk coupling is
primarily a function of the total inductance of the current path. This inductance is a function of
the distance between the ground and power supply pins to the signal pin. Signal pins farther
away from a ground or power supply pin are more susceptible to noise. This problem is
exacerbated when a number of I/Os in the region switch simultaneously.

Consider a block of logic that contains a large number of gates that simultaneously switch. I f this
logic is placed in close physical proximity during the design tool’s place-and-route step, then it is
possible that the internal FPGA power supplies will be unable to supply the necessary power and
a localized drop (IR drop) in power supply voltage can occur. This change in power supply
voltage will result in changes in circuit timing and in the signaling levels used for the circuit.
These changes can produce errors whose occurrence is data pattern dependent.

Unless the underlying physics are understood, the conditions necessary to generate errors due to
supply/ground bounce are difficult to identify. The parasitic elements needed to accurately
model supply/ground bounce are rarely known and almost never used in logical simulations.
Special targeted analysis is required to identify if supply/ground bounce is a concern in a design.

8.5 COMBINATIONAL FEEDBACK/QUASI-DIGITAL CIRCUITS.

FPGAs provide the user with the ability to configure the device nearly an infinite number of
ways. This flexibility can allow the designer to implement unexpected configurations.

For example, it is possible to configure an odd number of inverting gates into a circuit known as
a ring oscillator. Inverters 1, 2, and 3 form the oscillator, while inverter 4 converts the analog
sine wave back to a square wave (figure 12). This configuration has an output, but no inputs, and
the timing is determined by the speed of the inverters and is not synchronized to any clock. This
makes the ring oscillator very sensitive to temperature variations and this configuration is often
used as a temperature sensor. When the hardware is operating as a ring oscillator, the signals do
not switch between normal digital signal levels. The oscillator is essentially an analog device
using the gain present in the logic gates to produce an oscillator. Most HDL simulators assume
digital logic and are unable to correctly simulate this simple configuration. Many design tools
prevent the user from implementing a combinational feedback configuration such as a ring
oscillator. To guarantee the correctness of the tools, the designer’s ability to produce such
problematic configurations must be restricted.

1 2 3 4

Figure 12. Ring Oscillator

48

8.6 SYNTHESIS ISSUES—WHAT DID THE TOOL REALLY BUILD?

The synthesis process is highly customizable and varies greatly from vendor to vendor. The
variety of options and configurations makes it difficult for the designer to know exactly what the
default synthesis settings are. Certain functions of synthesis, such as VHDL interpretation, are
standardized by the Institute of Electrical and Electronics Engineers [66]. However, nonstandard
optimization techniques constitute the trade secrets of a given vendor. To put it bluntly, the tool
user or designer does not know the details of synthesis algorithms and, therefore, is not aware of
how the tool works. The magnitude of a change of the intended design in the synthesis process,
and thus the impact on the final design, is not precisely known. This impact depends upon the
intricacies of the actual logic design, the selected tool used for synthesis, and the tool’s current
settings. Synthesis is not a standardized process. Each tool produces a unique implementation of
the design. Due to concerns about IP and competitive advantage, it is not easy to publicize what
synthesis algorithms are or what specific methods and techniques are used for simplification and
optimization.

Creation of a placed-and-routed circuit from the HDL code that meets the performance goals is
accomplished by merging logical and physical synthesis technologies. When such created
designs cannot meet their realistic timing objectives, the solution is to use more traditional design
methodologies. The intricacies of logical and physical synthesis are closely guarded IP of
specific tool vendors. The general underlying background is well known, but the specifics of the
synthesis algorithm are not.

8.6.1 Getting Less Than Expected.

The default configuration for almost all FPGA design tools is that all the compiler and synthesis
optimizations are enabled. This can lead to unexpected implementations. For instance, a
designer may write HDL code to specify a triple-redundant module (TRM), as shown in figure
13(a). However, the synthesis tool may determine that most of the hardware is redundant and
implement the system, as shown in figure 13(b). The independent multipliers were identified as
redundant and optimized away during synthesis.

A

B

Out 3

Out 2

Out 1

A

B

Out 3

Out 2

Out 1

A) Intended B) Implemented(a) Intended Design (b) Synthesized Design

Figure 13. A TRM With Three Multipliers

49

8.6.2 Getting More Than Expected.

To meet timing, the synthesis tool will sometimes create redundant hardware to improve timing
in what is called flip-flop replication. This can produce problems, especially in systems where
some part of the circuit is attempting to monitor the performance of another circuit. In designs
that are intended to be tolerant of SEU, it is common to have an output and monitor that are
guaranteed to be logical opposites of each other under all conditions. Consider the circuit of
figure 14(a). In this circuit, the Output and the Monitor are always logically opposite. The
logically equivalent implementation of the circuit could be generated by the synthesizer to help
meet timing constraints and is presented in figure 14(b). In such a solution, an SEU of the top
flip-flop will not affect the monitor output. Therefore, the resulting synthesized circuit does not
guarantee that Output and Monitor are logical opposites, which defeats the purpose of the
monitor output.

Q

QSET

CLR

S

R

Output

Monitor

Q

QSET

CLR

S

R

Output

Q

QSET

CLR

S

R Monitor

a) Original b) Synthesizer Generated

 (a) Intended Design (b) Synthesized Design

Figure 14. Flip-Flop Replication

8.7 HARDWARE THAT IS NONFUNCTIONAL IN NORMAL OPERATION.

The TRM (see section 8.6.1) and metastability (see section 8.3.3) occur when design
optimizations are applied during synthesis and would not generate explicit warnings that the
optimization had occurred. The biggest problem with this circuitry is in circuits that should not
operate if the hardware is functioning normally. In this case, error may not be detectable on
working hardware. The only method for guaranteeing correct operation of this type of circuitry is
via simulation and assuring that the netlist includes the correct circuitry.

8.7.1 Synthesizer Optimizations.

Since the above problems are caused by the synthesizer performing optimizations, the designer
could turn off all synthesizer optimizations. This is a possible solution, but it will be difficult to
meet timing and area constraints without optimizations. Alternatively, an experienced designer
would recognize these conditions ahead of time and configure the synthesizer optimizations
appropriately. This is a possible solution, but difficult to verify if the designer has handled all
possible areas of concern. The need for experienced personnel points to the need for a testing or
design maturity model where the experience of the design and verification team is considered in
determining the level of verification that must be demonstrated.

50

8.7.2 Gate-Level Verification.

The problems introduced by the synthesizer could be detected by running simulations using the
gate-level netlist with back annotated timing data. In theory, running the full test suite on a gate-
level netlist is possible, but is very slow. However, DO-254 guidance states the design should
not be analyzed at a level lower than the implementation was performed [1].

“Analyzing the implementation below the level of that specified by the designer,
such as at the gate or transistor level, is not necessary ….”

Since the designer worked at the HDL level, not the gate level, DO-254 states that this level of
verification is unnecessary.

8.7.3 Adding Test Circuitry.

It is desirable to catch errors in circuitry that does not operate during normal operation. To
achieve this goal, the designer can add additional test circuitry to allow verification of normally
nonfunctional circuits. However, it is difficult to anticipate the need for this extra test circuitry
early enough in the design to include it in the requirements. These additional requirements will
require addition verification tests, which could also need additional circuitry for testing.

8.8 RADIATION EFFECTS AND FPGA ARCHITECTURES.

Cosmic radiation enters the Earth’s atmosphere and collides with the atoms of the atmospheric
gases. These collisions produce a wide variety of subatomic particles and most of these particles
quickly recombine. However, significant quantities of high-energy neutrons are also produced by
these collisions. Since neutrons possess no electrical charge, they do not recombine. The
neutron flux is absorbed by the atmosphere. The greatest quantities of neutrons (called the
neutron flux density) occur at an altitude of 60,000 feet; the quantity decreases as the altitude
decreases. These high-energy neutrons can cause flip-flops and memory cells in modern
semiconductor electronics to change state. This is shown in figure 15 and is known as an SEU.

Figure 15. An SEU in an FPGA Using a CMOS Process [74]

Table 2 shows the expected SEU mean time to error for a large FPGA on a satellite in a
geosynchronous orbit. Device configuration files are stored in the configuration memory. Errors
in the configuration memory can potentially reprogram the device to produce some erroneous
function. However, in a programmed FPGA, only a small fraction of the total configuration

51

memory or block memory is used. Therefore, many errors may occur in these bits with no
impact to circuit operation. A single event functional interrupt (SEFI) event is a detectable
device error. The probability that a random configuration or block memory error will result in an
SEFI depends on the complexity of the design and the architecture used.

Table 1. The SEU Mean Time to Error for a Large FPGA in Geosynchronous Orbit [74]

XRR2V6000 – 36,000 km Mean Time to Error Units
Configuration Memory 001.8 Hours
Block Memory 011.8 Hours
POR-SEFI 221.0 Years
SMAP-SEFI 181.0 Years

While Xilinx and Altera use SRAM-based configuration memory that is susceptible to neutron
radiation, Actel uses a flash memory-based configuration memory that is far less susceptible to
neutron radiation. Flash-based memory cells are substantially larger and more complex than
SRAM-based memory cells. Therefore, there is a tradeoff in device capability and speed when
using flash-based configuration memory. It should be noted that by using SEU mitigation
techniques, such as triple-redundant modules, it is possible to harden an SRAM-based FPGA
against radiation. SRAM configuration memory-based FPGAs have been used on numerous
space missions with no radiation-induced problems.

8.9 RADIATION—DO-254 AND DO-160.

Section 1.2 of DO-254 states that environmental criteria are beyond the scope of DO-254 but
radiation-effect mitigation is often addressed using the system safety assessment process. Unlike
other environmental conditions, such as humidity and electromagnetic noise susceptibility, there
are no physical tests performed to guarantee correct operation of the device when subjected to
radiation. Susceptibility to radiation effects is truly an environmental issue and would be best
validated by actually irradiating the hardware under test to guarantee that the SEU mitigation
scheme works correctly and can tolerate the expected radiation levels. From this point of view,
radiation effects would best be handled as an environmental test that should be added to DO-160
testing.

8.10 WHAT CIRCUIT IS BEING GENERATED?

A significant concern common to both the ASIC and FPGA flow is that details of the actual
hardware implementation are protected as IP and are not available for inspection. In an FPGA,
the programmable fabric consists of many programmable logic books (PLB). The overall
function of the PLB and the external connection requirements are available for inspection, but the
details of the hardware implementation of the PLB are unavailable. In the ASIC flow, a standard
cell library is used to implement the RTL in hardware. Every cell in the library is characterized
by how its performance varies with temperature, voltage, and loading; this data is used for the
simulations. Standard cell libraries are usually sold or licensed for use as encrypted IP, therefore,

52

the end-user cannot know the details of how the standard cells are implemented without
description.

8.11 UNUSED INPUTS AND OUTPUTS.

FPGAs may contain a large number of pins that may be unused in any given application. These
pins can include pins that are used for manufacturing the FPGA, which need to be correctly
configured for safe operation, as well as numerous other pins that are undefined pins in the
design. Since the compiler and synthesizer treat unused pins as “don’t care,” these pins may be
unpredictable in actual operation. Other issues are related to properly terminated inputs. FPGAs
handle unused pins via software, exploiting the programmable nature of the microcircuit.
However, the specific implementation details may differ. For example, in Actel SX and SX-S,
special-purpose clock inputs do not have an output stage and must therefore be terminated by the
user to prevent large currents. As another example, unused low-voltage differential signaling
receiver inputs should be left unconnected, as advised by the documentation. Depending on the
device, pins labeled “N/C” may be used for internal purposes and terminating them on the board
may result in problems; conversely, not terminating N/C-labeled pins in certain cases can have
adverse effects on system behavior. Some configuration pins have very high-value internal pull-
up resistors and can be switched by high-speed signals at the board level. It is, therefore, critical
to ensure that all pins are properly terminated to avoid parametric and long-term reliability
effects. Some will affect the functionality of the chip, which may or may not be caught in testing
[67].

8.12 OTHER CONSIDERATIONS.

For critical circuits, the designer must examine the output reports from the synthesizer very
carefully. Common things to check for include states which cannot be exited, outputs of Gray
code machines that can glitch, unintended flip-flop replication, and not implementing the
desired/specified style (sometimes the synthesizers just think they know better than the human
and will substitute one type of state machine for another). The actual state machine implemented
for the same HDL code can vary dramatically with different design tools. The designer should
always examine the generated design carefully. For instance, it has been observed that
sometimes the logic will explode with excessive gates. Reset path timing usually has a problem
involving race conditions. If some circuits are reset too soon, it can prevent the reset signals from
propagating to other places they need to go. The required timing for the reset logic depends on
the internal logic delays and is not synchronized to the clock. Differences in the temperature,
power supply voltage, or signal levels can change the timing of the reset paths. To eliminate
these timing variations, logic operating on the opposite clock edge is often inserted to prevent
these race conditions. While solving the variation problem, the designer now must complete all
operations in one-half of a clock cycle, rather than a full clock cycle. This leads to the tight
timing the designer needs to consider at the gate level. Note that VHDL does not cover physical
states, just logical ones. The HDL does not know if it is a one-hot-, or binary-, or gray-coded
implementation and what flip-flops have been replicated during synthesis. Such issues are not
detectable at the black box simulation level nor by checking Boolean equations for logical
equivalence.

53

8.13 POWER UP/RESET ISSUES.

When an FPGA or ASIC is either powered up or comes out of reset, there is often a period of
time when the device outputs are unpredictable. The performance of a component during power
up is difficult to predict, as there are often multiple power supplies to the part that will turn on in
an uncontrolled fashion. If the output drivers receive power before the internal logic, all of the
glitches produced by the internal logic can be sent through the outputs to other devices in the
system. Even a normal reset can contain internal race conditions that can produce periods where
the outputs are unstable. The Wide-Field Infrared Explorer spacecraft was lost when the outputs
of an FPGA produced unexpected outputs during power up. The unexpected output resulted in
the system reset process not completing, which led to the early firing of a pyrotechnic device and
ultimately to the failure of the mission [68].

8.14 WHAT CAN BE DONE TO PREVENT PROBLEMS?

The human factor increases the chance of error or misinterpretation. HDL used for hardware
development can be classified as a computer programming language, with some unusual
constructs to account for the parallel nature of the hardware implementations. The developer
applies the knowledge of the language syntax and structure to describe his or her design idea.
The challenge is to force the conceptual vision of the intended circuit into rigorous constraints of
the HDL. A deep knowledge of the hardware, knowing what is actually produced as the result of
specific HDL structures, is critical for successful implementation of designs.

Manufacturers take many steps to assure that the designs produced are correct on the first design
iteration. The first steps are to assure that the RTL code, as written, is fully specified. The idea
is to not leave anything to the discretion of the compiler. The output of the RTL code for “don’t
care” and illegal conditions should be completely specified. In addition, a project-wide (possibly
corporate-wide) programming style is defined to prevent the usage of risky or problematic RTL
programming techniques. These rules are enforced by using linting programs that check the RTL
style for rule violations. Linting programs act much like an experienced programmer looking
over one’s shoulder.

8.15 DESIGN ISSUES SUMMARY.

Logic designers often replicate logic for reliability or performance reasons. For example, if the
load on an output is too high, then the load will often be split between multiple drivers (in some
cases, outputs may be joined together but this is not preferred and is usually avoidable). In other
cases, cutting the load and duplicating the driver can help improve timing by distributing the
capacitive load. The replication of combinational logic is quite straightforward. However, if this
concept is extended to sequential logic and finite state machine design, then the situation is
trickier, since state information is involved. Indeed, the logic may present different information
to different parts of the circuit, and for example, may be inconsistent in the presence of a
transient fault such as an SEU. The logical flip-flop can present different values to different parts
of the circuit, depending on which physical flip-flop they are connected to. This is a call for

54

caution in high-reliability applications. Software CAD tools are more than happy to generate
circuits of this class, while not generating logic to ensure self-consistency [69].

Despite valiant efforts to assure error-free design, it is still possible for the tool to produce an
incorrect design. This can be caused by a variety of factors, including power distribution
problems, signal coupling, and interference problems. It should be noted that some design tool
vendors have tool suites that can be used to address these issues. These tools are usually poorly
integrated with the rest of the tool flow and many users are unaware of the tools’ existence.

One critical aspect for consideration is that the HDL is not the design; it is simply the designer’s
description of the desired logic. Running HDL simulations and test benches is insufficient proof
of a design’s correctness. The design is then converted from an HDL description to a logical
description, which is then mapped to the hardware on the FPGA. Then the design is physically
located and wired in the device during the place-and-route step. Until the place-and-route step
has occurred, the actual timing of the device is only estimated. The fidelity of the actual design
to the intended design depends on the quality of the synthesizer, which is enigmatic, and the
ability of the designer to:

• write synthesizable HDL.
• understand the synthesis process and tool employed.
• control the synthesis process.
• verify that the synthesis process produced what was intended.
• correctly guide the back-end, place-and-route tools.

The danger in the process of converting HDL into a hardware implementation is that there are
many logically equivalent ways to represent any single design. The tool may implement the
design using a representation contrary to the designer’s intent. Problems can arise from the
synthesizer replicating, or combining circuits in an undesirable manner, or eliminating logic that
the synthesizer believes is redundant. The actual implementation of a design into hardware
requires translating an abstract description of the design into actual hardware. While not as
abstract and complex as logic synthesizers, failure to understand the processes in the place-and-
route process has the potential to cause design errors.

A significant danger to AEH design assurance is using outdated traditional techniques of directed
test and code coverage. New effective techniques, widely adopted in other industries, have been
developed to facilitate AEH verification. These include constrained random test generation,
assertion-based verification, formal model checking, clock domain crossing analysis, unified
coverage, verification management, and requirement tracking. These better verification
techniques address many of the issues addressed above and help developers to achieve early
defect removal and simplification of testing activities [71]. It should be noted that all the above
techniques reduce the probability of an error in the hardware, but none are sufficient to guarantee
that the physical implementation of the hardware is correct.

55

9. FINDINGS AND RECOMMENDATIONS.

The survey of tool users conducted for this research found that 17% of the tool users had
experienced tool errors that they considered significant and numerous. But when asked to list
their satisfaction with the tools on a scale from 1 to 5, with 5 being completely satisfied, over
96% of the respondents marked their level of satisfaction with the tools as a 4 or higher. Further
investigation into this apparent contradiction indicated that many of the reported tool errors
would not impact the safety of the final design. Some examples of non-safety-related tool errors
included tool features not operating as the salesperson represented and tool software crashes.
During the entire research period, the authors continually canvassed tool users about any tool
errors that they encountered. Occasionally, what the tool users identified as a tool error were
actually errors resulting from incorrect application of the tool. The authors were unable to
identify a single case of a tool producing an error that resulted in an error in the final design. The
authors believe the high level of satisfaction with the tools reflects a satisfaction with the tool
outputs.

Preventing errors from reaching a complex final product is a difficult goal to achieve. Even tools
that are known to produce correct results can introduce errors if the tools are applied incorrectly.
There are always humans in the design and verification process, and these humans may not fully
understand the limitations of the tools that they are using. For example, the test cases
demonstrated failures that occurred due to problems related to the inductance of the power supply
network. Tools that analyze the effect of inductance and resistance in the power supply networks
of complex devices require a tool suite far different than the tools used in a normal HDL design
process. Even if the user correctly anticipated the need for the new tools, these tools may require
expertise beyond what an HDL designer would possess.

The following list identifies the recommendations of this research:

• The outputs of the primary design or verification tools used for level A, B, and C safety-

critical designs should always be independently assessed.

• Independent assessment of the design tool’s outputs should not be viewed as a single

event, but instead, as a series of overlapping, independent assessments.

• Independent assessment events require a process where all tests and their results are

documented and fully analyzed. Independent assessment events can include:

- Verification testing
- Simulations
- Debugging
- Hardware verification
- System validation

56

• What independent assessments are applicable to a specific design will vary with the
design flow, so it is difficult to require any particular independent assessment be
performed.

- The amount of independent assessment required can be varied, depending on the
DAL. For instance, a level C might require a single independent assessment of
the working hardware, while a level A might require independent assessments
while the design is at the HDL level, when the design is a gate-level netlist, and
then on the actual hardware.

• If there is no independent assessment of a tool’s outputs, DO-254 currently allows a
relevant tool service history to be used to avoid tool qualification. The authors believe
that tool service history is a poor indicator of a tool’s ability to produce a correct design.
Because the authors believe that independent assessment should always occur for level A,
B, and C designs, service history should not be used to avoid tool qualification.

• Many tools undergo minor improvements throughout their life. Designers should be
allowed, and perhaps encouraged, to use these improved versions of the tools for their
designs. It is probably unwise to be the first users of a tool that has undergone a major
software revision, but it may make sense if the new tool has new capabilities that will
enhance the safety of the final design.

• Tool qualification should be limited to the exceptionally rare case where independent
assessment of the tool output is impractical or infeasible.

• In a complex design it is impossible to generate a comprehensive verification suite.
Constrained random verification should be utilized to increase the number testcases
generated and thus increase of errors detected by the test cases.

- DAL A and B designs should also be required to use constrained random
verification methods.

• Assertions should be used to increase the observability of the errors that are generated.

- DAL A and B designs should be required to use assertions for all requirements
and derived requirements that can be addressed by assertions.

• Linting tools should be required to enforce HDL coding standards.

• Level A and B designs require an experienced design team. A team could demonstrate
expertise by executing a level C design before being allowed to attempt level A and B
designs.

Even if the design and verification tools can prove that a design is functionally correct under all
conditions that were considered, design errors in the hardware can still occur due to unforeseen
conditions. The best way to avoid these errors is to have an experienced design and verification
staff with the appropriate expertise. This will allow the team to identify potential problems while

57

still in the design phase and allow error mitigation techniques to be incorporated. In addition, an
experienced staff writing the requirements will carefully detail the logical and timing functions of
the system for both normal operation and error conditions.

Because obscure errors can slip past even the best design and verification teams using the highest
quality tools, it is the opinion of the authors that the outputs of the primary design or verification
tools used for level A, B, and C safety-critical designs must always be independently assessed.

10. REFERENCES.

1. DO-254, “Design Assurance Guidance for Airborne Electronic Hardware,” RTCA Inc.,
Washington, DC, April 19, 2000.

2. CAST-27, “Clarifications on the use of RTCA Document DO-254 and EUROCAE
Document ED-80, Design Assurance Guidance for Airborne Electronic Hardware,” June
2006.

3. CAST-28, “Frequently Asked Questions (FAQs) on the use of RTCA Document DO-254
and EUROCAE Document ED-80, Design Assurance Guidance for Airborne Electronic
Hardware,” December 2006.

4. CAST-30, “Simple Electronic Hardware and RTCA Document DO-254 and EUROCAE

Document ED-80, Design Assurance Guidance for Airborne Electronic Hardware,”
August 2007.

5. FAA AC 20-152, “RTCA, Inc., Document RTCA/DO-254, Design Assurance Guidance
for Airborne Electronic Hardware,” June 30, 2005.

6. DO-178B (EUROCAE ED-12B), “Software Considerations in Airborne Systems and

Equipment Certification,” RTCA Inc., Washington, DC, 2001.

7. Pampagnin, P. and Menis, J.F., “DO254-ED80 for High Performance and High Reliable

Electronic Components,” Barco-Siles S.A., Peynier, France, internal paper, 2007.

8. Henson, J., “Equivalence Checking for FPGA Design,” Mentor Graphic Technical

Publication, May 2007.

9. SAE ARP 4754/EUROCAE ED-79, “Certification Considerations for Highly Integrated

or Complex Aircraft Systems.”

10. SAE ARP 4761, “Guidelines and Methods for Conducting the Safety Assessment Process

on Civil Airborne Systems.”

11. Dunar A. and Waring S., The Power to Explore, Chapter 12, June 1, 2009,

http://history.msfc.nasa.gov/book/chpttwelve.pdf (last visited 1/29/10).

58

12. Halfhill T., “An Error in a Lookup Table Created the Infamous bug in Intel’s Latest
Processor,” BYTE Magazine, March 1995.

13. Flight 501 Inquiry Board, “Ariane 5 Flight 501 Failure,” Paris, July 1996, June 1, 2009,
http://sunnyday.mit.edu/accidents/Ariane5accidentreport.html (last visited 1/29/10).

14. McCormick L., “A Short History of the Airbag,” June 1, 2009, http://www
.consumeraffairs.com/news04/2006/airbags/airbags_invented.html (Last visited 1/29/10).

15. Staab, Thomas C., “Using SW-TMM to Improve the Testing Process,” Crosstalk The
Journal of Defense Software Engineering, November 2002.

16. Burnstein, I., Homyen, A., Grom, R., and Carlson, C.R., “A Model to Access Testing
Process Maturity,” Crosstalk The Journal of Defense Software Engineering, November
1998.

17. Rosebrugh, C., “Using Vera and Constrained Random Verification to Improve
DesignWare Core Quality,” June 1, 2009, http://www.design-reuse.com/articles/9818
/using-vera-and-constrained-random-verification-to-improve-designware-core-
quality.html (last visited 1/29/10).

18. Aljer, A. and Devienne, P., “Co-Design and Refinement for Safety Critical Systems,”
Proc. DFT '04 19th IEEE International Symposium on Defect and Fault Tolerance in
VLSI Systems, IEEE, 2004, pp. 78-86.

19. Bannow, N. and Haug, K., “Evaluation of an Object-Oriented Hardware Design

Methodology for Automotive Applications,” Proc. Design, Automation and Test in
Europe Conference and Exhibition, Paris, 16-20 February 2004, Vol. 3, pp. 268-273.

20. Bhatt, D., et al., “Model-Based Development and the Implications to Design Assurance

and Certification,” Proc. DASC 2005, 24th Digital Avionics Systems Conference, 30
October - 3 November 2005.

21. Bunker, A., Gopalakrishnan, G., and McKee, S.A., “Formal Hardware Specification

Languages for Protocol Compliance Verification,” ACM Trans. on Design Automation of
Electronic Systems, Vol. 9, No. 1, January 2004.

22. Bunker, A., McKee, S.A., and Gopalakrishnan,, G., “An Overview of Formal Hardware

Specification Languages,” Grace Hopper Celebration of Women in Computing, 2002.

23. Camposano R. and Wilberg J., “Embedded System Design,” Design Automation for

Embedded Systems, Vol. 1, No. 1-2, January 1996, pp. 5-50.

59

24. Chee, W.L., Zain, Ali, N.B., and Nair, R.S., “Design of Low Cost FPGA Based PCI Bus
Sniffer,” Proc. FPT 2003 IEEE International Conference on Field-Programmable
Technology, Tokyo, 15-17 December 2003.

25. Cooper P.A., “Lessons Learned Using Software-Assisted Systems Engineering on Large

Satellite Development Contracts,” IEEE Aerospace and Electronic Systems Magazine,
Vol. 21, No. 5, May 2006, pp. 7-11.

26. Dajani-Brown, S., Cofer, and D.’ Bouali, A., “Formal Verification of an Avionics Sensor

Voter Using SCADE,” Proc. FORMATS 2004 Joint International Conference on Formal
Modelling and Analysis of Timed Systems, and FTRTFT 2004 Formal Techniques in
Real-Time and Fault-Tolerant Systems, Lecture Notes in Computer Science, Vol. 3253,
pp. 5-20.

27. Hayek, A. and Robach, C., “From Specification Validation to Hardware Testing: A

Unified Method,” Proc. International Test Conference, 20-25 October 1996, pp. 885-893.

28. Hilton, A.J., High-Integrity Hardware-Software Codesign, Ph.D. Thesis, The Open

University, April 2004.

29. Hilton, A. and Hall, J.G., “On Applying Software Development Best Practice to FPGAs

in Safety-Critical Systems,” Proc. FPL 2000, 10th International Conference on Field-
Programmable Logic and Applications, Villach, Austria, August 27-30, 2000.

30. Hilton, A.J. and Hall, J.G., “Developing Critical Systems With PLD Components,” Proc.

FMCIS 10th International Workshop on Formal Methods for Industrial Critical Systems,
September 2005.

31. Hilton, A.J., Townson, G., and Hall, J.G., “FPGAs in Critical Hardware/Software

Systems,” Proc. FPGA 2003 ACM/SIGDA 11th International Symposium on Field
Programmable Gate Arrays, Monterey, California, ACM, 2003, pp. 244.

32. Hoskote, Y.V., et al., “Automatic Verification of Implementations of Large Circuits

Against HDL Specifications,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, March 1997.

33. Karlsson, K. and Forsberg, H., “Emerging Verification Methods for Complex Hardware

in Avionics,” Proc. DASC 2005, 24th Digital Avionics Systems Conference, 30 October -
3 November 2005, Vol. 1, pp. 6.B.1 - 61-12.

34. Kern, C. and Greenstreet, M.R., “Formal Verification in Hardware Design: A Survey,”

ACM Trans. on Design Automation of Electronic Systems, Vol. 4, No. 2, 1999, pp. 123-
193.

60

35. Marcon, C.A.M., et al., “Prototyping of Embedded Digital Systems from SDL Language:
A Case Study,” Proc. HLDVT'02 Seventh IEEE International High-Level Design
Validation and Test Workshop, Cannes, France, 27-29 October 2002, pp. 133-138.

36. Mencer, O., “ASC: A Stream Compiler for Computing With FPGAs,” IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems, Vol. 25,
No. 9, September 2006, pp. 1603-17.

37. Mills, M. and Peterson, G., “Hardware/Software Co-Design: VHDL and Ada 95 Code

Migration and Integrated Analysis,” Proc. 1998 Annual ACM SIGAda International
Conference on Ada, Washington, DC, 1998, pp. 18-27.

38. Miner, P.S., et al., “A Case-Study Application of RTCA DO-254: Design Assurance

Guidance for Airborne Electronic Hardware,” Proc. DASC 2000, 19th Digital Avionics
Systems Conferences, Vol. 1, pp. 1A1/1-1A1/8.

39. Nehme, C. and Lundqvist, K., “A Tool for Translating VHDL to Finite State Machines,”

Proc. 22nd Digital Avionics Systems Conference, Vol. 1, pp. 3.B.6-1-7.

40. Peterson, G.D. and Hines, J.W., “Advanced Avionics System Development: Achieving

Systems Superiority through Design Automation,” Proc. 1998 IEEE Aerospace
Conference, 1998. Vol. 1, Issue 21, pp. 231-238.

41. Salzwedel, H., “Mission Level Design of Avionics,” Proc. 23rd Digital Avionics Systems

Conference, Vol. 2, pp. 9.D.2-1-10.

42. Sangiovanni-Vincentelli, A., “Quo Vadis, SLD? Reasoning About the Trends and

Challenges of System Level Design,” Proceedings of the IEEE, Vol. 95, No. 3, March
2007, pp. 467-506.

43. Turner K.J. and He, J., “Formally-Based Design Evaluation,” Proc. CHARME 2001,

Proc. 11th IFIP WG 10.5 Advanced Research Working Conference on Correct Hardware
Design and Verification Methods, Lecture Notes in Computer Science, Vol. 2144, pp.
104-109.

44. Lange, M., Assessing the ModelSim Tool for Use in DO-254 and ED-80 Projects, Rev.

1.1, Mentor Graphics Corp., May 2007.

45. Berens, K., “NASA Complex Electronics Guidebook for Assurance Professionals,”

December 2004.

46. A380 Certification Review Item, March 2003.

47. Hilton, A. and Hill, J., “On Applying Software Development Best Practices to FPGAs in

Safety-Critical Systems,” The Open University, 2000.

61

48. Young, D., “RTCA/DO-254: No Hiding Place for Avionics Suppliers?” VMEbus
Systems, February 2004.

49. Hilderman V. and Baghai T., “Avionics Hardware Must Now Meet Same FAA

Requirements as Airborne Software,” COTS Journal, September 2003.

50. Thornton, R.K., “Review of Pending Guidance and Industry Findings on Commercial

Off-the-Shelf (COTS) Electronics in Airborne Systems,” FAA report DOT/FAA/AR-
01/41, August 2001.

51. Lee C., “IPT Guidance for Acquisition of Systems With Complex Programmable

Hardware Using DO-254,” ERA Technology Ltd, June 2007.

52. Baghai T. and Burgaud L., “DO-254 Package: Process and Checklists Overview and

Compliance with RTCA/DO-254 Document,” March 2004.

53. Burgaud, L., “The DO-254 Users Group: A Proactive Initiative to Federate Industry

Efforts,” Presentation at the FAA Software & AEH Conference, New Orleans, Louisiana,
July 2007.

54. Lundquist, P., “Certification of Actel Fusion According to RTCA DO-254,” Master

Thesis, Report LiTH-ISY-EX-ET-07/0332-SE, Linköping University, Sweden, May 4,
2007.

55. Jacklin, S., et al., “Development of Advanced Verification and Validation Procedures and

Tools for the Certification of Learning Systems in Aerospace Applications,” Proc. AIAA
Infotech@Aerospace 2007 Conference and Exhibit, Arlington, Virginia, September 26-
29, 2005, Paper No. AIAA 2005-6912.

56. Crum, V., Homan D., and Bortner R., “Certification Challenges for Autonomous Flight

Control Systems,” Proc. AIAA Guidance, Navigation, and Control Conference and
Exhibit, Providence, Rhode Island, August 16-19, 2004, Paper No. AIAA 2004-5257.

57. Baghai T. and Burgaud L., Reqtify: Product Compliance with RTCA/DO-254 Document,

May 2006.

58. Aldec, Inc., DO-254 Hardware Verification: Prototyping With Vectors Mode, June 26,

2007.

59. Leroy J.E. and Bezamat J., ”Experience at Barco-Silex in FPGA Design With DAL C

(DO254),” Barco-Siles S.A., Peynier, France, internal paper, 2007.

60. Pampagnin P. and Menis J., “DO254-ED80 for High Performance and High Reliable

Electronic Components,” Barco-Siles S.A., Peynier, France, Internal Paper, 2007.

62

61. Dellacherie, S., Burgaud L., and di Crescenzo P., “Improve—HDL: A DO-254 Formal
Property Checker Used for Design and Verification of Avionics Protocol Controllers,”
Proc. DACS’03, 22nd Digital Avionics Systems Conference, Indianapolis, Indiana,
October 12-16, 2003, Vol. 1, pp. 1.A.1-1.1-8.

62. Lange, M., Automating Clock-Domain Crossing Verification for DO-254 (and other

Safety-Critical) Design, White Paper, Mentor Graphics Corporation, December 2007.

63. Cyliax, I., The Foundation Environment. Circuit Cellar Online, 2000, June 1, 2009,

http://www.circuitcellar.com/library/ropes/0100/c0100lrpdf.pdf (last visited 1/29/10).

64. Gardner, D., “Methods to Differentiate Mil/Aero Solutions Using FPGA,” Proc. 8th
Annual MAPLD International Conference, Washington, DC, September 7-9, 2007, Paper
No. 145, Slide #30, June 1, 2009, http://klabs.org/mapld05/abstracts/index.html (last
visited 1/29/10).

65. Katz, R., “A Designer Engineer’s View,” presentation at the FAA 2005 SW&AEH
Conference, Norfolk, Virginia, July 2005.

66. IEEE STd P1076-2002 Standard VHDL Language Reference Manual, IEEE, 2002.

67. Design Guidelines and Criteria for Space Flight Digital Electronics, “Section I Special

Pins,” NASA Office of Logic Design, 2004, June 1, 2009, http://klabs.org
/DEI/References/design_guidelines/nasa_guidelines/special_pins/special_pins.htm#unuse
d_Inputs, (last visited 1/29/10).

68. Habinc, S., “Lessons Learned from FPGA Developments. Technical Report,” Gaisler
Research, Goeteborg, Sweden, April 2002, June 1, 2009, http://www.klabs.org/DEI
/lessons_learned/esa_lessons/esa_fpga_001_01-0-0.pdf (last visited 1/29/10).

69. “Design Guidelines and Criteria for Space Flight Digital Electronics,” Section XII,
Review of Digital Electronic Circuits, NASA Office of Logic Design, 2004, June 1, 2009,
http://klabs.org/DEI/References/design_guidelines/nasa_guidelines/review/review.htm,
(last visited 1/29/10).

70. “Design Guidelines and Criteria for Space Flight Digital Electronics,” Section IV. Finite
State Machines, NASA Office of Logic Design, 2004, June 1, 2009,
http://klabs.org/DEI/References/design_guidelines/nasa_guidelines/fsm/finite_state_mach
ines.htm#lockup_states_hdl (last visited 1/29/10).

71. Mentor Graphics, et al., “Understanding DO-254 and Solutions to Facilitate
Compliance,” June 1, 2009, http://www.mentor.com/products/fv/techpubs/mentorpaper
_35473.cfm.

63/64

72. Duncan, Young, “RTCA/DO-254: No Hiding Place for Avionics Suppliers?,” VMEbus
Systems, February 2004.

73. Kornecki A. and Zalewski J., “Experimental Evaluation of Software Development Tools

for Safety-Critical Real-Time Systems,” Innovations in System Software Engineering,
Vol. 1, 2005, pp. 176-188.

74. Xilinx Inc., “XAPP987, Single-Event Upset Mitigation Selection Guide,” March 2008.

11. GLOSSARY OF TERMS.

Component: Self-contained part, combination of parts, subassembly, or unit that performs a
distinct function of a system.

Element: An electronic device with terminals for connection to other electrical devices.

Functional Failure Path: The specific set of interdependent circuits that could cause a particular
anomalous behavior in either the hardware that implements the function or the hardware
dependent on the function.

Gray Code: A binary numerical system in which two successive values differ by only one digit.

Linting: A process of static analysis of source code flagging suspicious and nonportable
constructs (derived from lint program in UNIX/C).

Metastability: A property of a digital circuit that results from input signals not being sufficiently
stable immediately after a clock change and leads to an unpredictable future state.

Netlist: A software description of the connectivity of an electrical design.

Place-and-Route: A stage in the design of integrated circuits at which a layout of a larger block
of the circuit or the whole circuit is created from layouts of similar subblocks; the process for a
board is similar with varying levels of detail; the operation is usually performed by electronic
design automation tools.

Testing Maturity Model: A maturity model with focus on testing inspired by the Software
Engineering Institute Capability Maturity Model that assumes that there is a correlation between
organizational maturity and the quality of software produced.

Validation: The process of determining that the requirements are the correct requirements and
that they are complete.

Verification: The evaluation of an implementation of requirements to determine that they have
been met.

A-1

APPENDIX A—SURVEY QUESTIONAIRE

Programmable Logic Tools Questionnaire

Introduction

This questionnaire is about your experiences and opinions concerning the use of programmable logic tools used to
help design or verify airborne electronic hardware (AEH) like FPGA, PAL, GAL, PLA, ASIC, or SoC on a DO-254
development program. The questionnaire is intended for the individuals who have experience with developing or
using such tools or experience qualifying such tools. The purpose is to gather industry and certifying authority
feedback on assessment and qualification of AEH programmable logic tools.

Your feedback will help establish critical issues and problems with AEH programmable logic tools and tool
qualification and will help direct research in these areas. If you prefer, you may submit the survey anonymously (do
not need to provide your or company names).

Background Information

1. What kind of organization do you work for?
o Avionics or engine control developer
o Aircraft or engine manufacturer
o Communications, navigation, or surveillance system developer for air traffic management
o AEH programmable logic tool developer
o Consultant
o Federal Aviation Administration
o Other government agency (please specify): __
o Other, (please specify): __

2. What is your educational background? (check all that apply)
o technical
o non-technical
o associate
o bachelor
o master
o doctoral

o software
o control
o electronics
o mechanical
o computer science
o other (please specify) ___________

3. What is your role relevant to AEH Programmable Logic tools? (check all that apply)
o I am engaged in development of AEH programmable logic tools
o I am engaged in development of AEH programmable logic components
o I develop systems using AEH programmable logic components
o I verify systems using AEH programmable logic components
o I use AEH programmable logic tools
o I am a manager supervising DO-254 project
o I am an FAA engineer who approves tool data
o I am a Designated Engineering Representative (DER) who approves tool data
o Other, (please specify): __

4. What are your primary interests (check all that apply)
o development
o concept/architecture
o verification

o hardware
o other: ________

A-2

4. How many years of experience?

○ <3 ○ 3-6 ○ 7-12 ○ >12

AEH Programmable Logic Information

The objective of this study is to provide the sponsor, the FAA, with input on potential safety issues in the assessment
and qualification of tools used in developing airborne electronic hardware (AEH) for the aircraft. The devices in this
category include components based on PAL (Programmable Array Logic), GAL (Generic Array Logic), PLA
(Programmable Logic Array), EEPLD (Electrically-Erasable Programmable Logic Device), CPLD (Complex
Programmable Logic Devices), FPGA (Field Programmable Gate Arrays), ASIC (Application Specific Integrated
Circuits), System-on-a-Chip (SOC), and similar circuits used as programmable components of electronic hardware.
This questionnaire is part of an ongoing research project funded by the FAA to help evaluate and clarify the tool
assessment and qualification process defined in the Section 11.4 of the RTCA DO-254, “Design Assurance Guidance
for Airborne Electronic Hardware”.

1. What types of programmable logic devices are used (or considered for use) in your organization?
(check all that apply)
o Field Programmable Gate Array (FPGA)
o Programmable Array Logic (PAL)
o Generic Array Logic (GAL)
o Programmable Logic Array (PLA)
o Erasable Programmable Logic Device (EPLD)
o Complex Programmable Logic Device (CPLD)
o System-on-a-Chip (SoC)
o Application Specific Integrated Circuit (ASIC)
o Other, (please specify): __

2. Which vendor’s programmable logic devices you use?

Name of the device/version Satisfaction level
 (1 not satisfied to 5 extremely satisfied)
o Actel __________________________________ _____________
o Atmel __________________________________ _____________
o Altera __________________________________ _____________
o Cypress __________________________________ _____________
o Lattice __________________________________ _____________
o Quick Logic __________________________________ _____________
o Xilinx __________________________________ _____________
o other vendor:__________product____________ _____________

3. Which vendor’s programmable logic tool you use?

Name of the Tool/Version Satisfaction level
 (1 not satisfied to 5 extremely satisfied)
o Synopsys __________________________________ _____________
o Intusoft __________________________________ _____________
o Mentor Graphics __________________________________ _____________
o Tanner __________________________________ _____________
o Cadence __________________________________ _____________
o Aldec __________________________________ _____________
o Novas __________________________________ _____________
o Tau Simulation __________________________________ _____________
o Synplify __________________________________ _____________
o Magma __________________________________ _____________
o Verisity __________________________________ _____________
o other vendor:_____________tool____________ _____________

A-3

4. Please use the table below to list AEH tools you currently use or have used recently on a DO-254 program
(if you have experience with more than three tools, please list the three most frequently used)

Tool
Name
and

Version

Programmable
Logic Tool

Vendor

Type of Project
(describe what it is
used for; include

typical project size
in number of gates)

Phase of development used
(check all)

Has the tool
been qualified?

Satisfaction level:

(1 not satisfied, 5
extremely satisfied)

o Logic Synthesis
o Physical Synthesis
o Design
o Simulation
o Emulation
o Timing Anal
o Power Anal
o Testing
o Verification
o Place/route
o Integration
o ____________

o yes, Level
(circle one)

 A, B, C, D,
 not sure
o no
o don’t know

Satisfaction level:

(1 not satisfied, 5
extremely satisfied)

o Logic Synthesis
o Physical Synthesis
o Design
o Simulation
o Emulation
o Timing Anal
o Power Anal
o Testing
o Verification
o Place/route
o Integration

o yes, Level
(circle one)

 A, B, C, D,
 not sure
o no
o don’t know

Satisfaction level:

(1 not satisfied, 5
extremely satisfied)

o Logic Synthesis
o Physical Synthesis
o Design
o Simulation
o Emulation
o Timing Anal
o Power Anal
o Testing
o Verification
o Place/route
o Integration

o yes, Level
(circle one)

 A, B, C, D,
 not sure
o no
o don’t know

A-4

5. Identify major criteria for evaluating new tools for selection to be used in DO-254 project? Rank the first
five criteria assigning numbers from 1 (high) to 5 (low).

o ___ Tool vendor reputation
o ___ Tool functionality
o ___ Acquisition cost
o ___ Compatibility with the existing tools in use
o ___ Compatibility with the development platform
o ___ Reliability/quality of the tool
o ___ Availability of vendor-supported training
o ___ Amount of training needed to use the tool
o ___ Amount/quality of documentation available
o ___ Quality of support and the access to the vendor’s technical staff
o ___ Previous team familiarity with the tool
o ___ Tool performance on in-house internal evaluation
o ___ Host platform of the tool (workstation, operating system)
o ___ Compatibility with the selected programmable logic platform (FPGA, CPLA, ASIC, SOC)
o ___ Previous tool use on airborne product projects (under DO-254/DO-178B)
o ___ Tool performance (effort required, product quality in terms of size, power)
o ___ Ease of qualification
o ___ Other (please explain): _______________________________

6. When it comes to acquiring new programmable logic tools, which of the following apply prior to selection

for a project?
o We review the tool documentation, but do not test the actual tool relying on the vendor information
o We do limited tool familiarization (with e.g. demo version), but do not attempt extensive testing on a smaller

project
o We extensively review and test the tool by training the personnel and using trial period on a smaller project
o We do formal independent third party assessment of the tool
o Other (please specify): ___

7. Have you experienced successful/failed efforts to qualify programmable logic tools?
o no
o I don’t know
o yes, (please explain):__

8. If the tool assessment/qualification was performed/attempted, please comment

o Clarity of the guidelines
excellent appropriate sufficient marginal

o Ease of finding required information
excellent appropriate sufficient marginal

o Increase of workload
negligible moderate significant extreme

o Safety improvement
significant noticeable moderate marginal

A-5

9. Have you experienced finding errors (through the tool use or through the qualification process) in the
programmable logic tools?
o No errors, as far as I know, have been found
o Some errors have been found, but they have been few and minor
o Errors have been found that are significant or numerous
o I don’t know

10. What do you see as major issues regarding use of programmable logic tools?

11. What do you see as major issues regarding qualification of programmable logic tools?

12. What other programmable logic tools related experience or issues would you like to share?

OPTIONAL: Additional Information

Name:___________________________

Company:________________________

Phone: ________________________________

E-mail: ________________________________

Note: If you’d rather submit your contact information in a different format (i.e., you don’t want it attached
to this survey), please send your contact information to Dr. Andrew J. Kornecki, ERAU as an e-mail with
the subject “AEH TOOL HELP” kornecka@erau.edu

mailto:kornecka@erau.edu

B-1

APPENDIX B—SURVEY RESULTS

B.1 GRAPHICAL SURVEY RESULTS.

This appendix includes additional graphical representations of the survey results, complementing
section 3. Figures B-1 through B-5 address the survey population in terms of their experience,
background, and interests. Figures B-6 through B-8 identify types of tools, devices, and tool
vendors. Figures B-9 and B-10 present evaluation and selection criteria. Figures B-11through B-
16 show the qualification issues.

How many years of experience?

<3
0% 3-6

12%

7-12
24%

>12
64%

Figure B-1. Respondent Population—Experience

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

What is your educational background?

Type 95.45% 4.55%

technical non-technical

Figure B-2. Respondent Population—Educational Background: Type

B-2

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

What is your educational background?

Level 2.70% 54.05% 43.24% 0.00%

associate bachelor master doctoral

Figure B-3. Respondent Population—Educational Background: Level

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

What is your educational background?

Disipline 8.33% 0.00% 72.22% 0.00% 8.33% 11.11%

software control electronics mechanical computer science other (please specify)

Figure B-4. Respondent Population—Educational Background: Major

B-3

What are your primary interests?

development
27%

concept/architecture
18%

verification
32%

hardware
22%

other: ________
1%

Figure B-5. Interest

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

What types of programmable logic devices are used (or considered for use) in your organization?

Devices 26.96% 11.30% 4.35% 8.70% 7.83% 18.26% 6.96% 14.78% 0.87%

Field
Programmable

Gate Array
(FPGA)

Programmable
Array Logic

(PAL)

Generic Array
Logic (GAL)

Programmable
Logic Array

(PLA)

Erasable
Programmable
Logic Device

(EPLD)

Complex
Programmable
Logic Device

(CPLD)

System-on-a-
Chip (SoC)

Application
Specific

Integrated
Circuit (ASIC)

Other, (please
specify):

Figure B-6. Types of Programmable Logic Device

B-4

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

Which vendor's programmable logic devices you use?

Vendor 27.14% 7.14% 7.14% 11.43% 12.86% 8.57% 24.29% 0.00%

Actel Atmel Altera Cypress Lattice Quick Logic Xilinx other

Figure B-7. Device/Hardware Vendors

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

Which vendor's programmable logic tool you use?

Vendor 17.32% 3.15% 26.77% 1.57% 7.87% 11.02% 1.57% 3.15% 22.05% 1.57% 1.57% 9.45%

Synopsys Intusoft Mentor
Graphics Tanner Cadence Aldec Novas Tau

Simulation Synplify Magma Verisity other

Figure B-8. Programmable Logic Device Tool Vendors

B-5

0

0.5

1

1.5

2

2.5

3

Tool vendor reputation

Tool functionality

Acquisition cost

Com
patibility with the existing tools in use

Com
patibility with the developm

ent platform

Reliability/quality of the tool

Availability of vendor-supported training

Am
ount of training needed to use the tool

Am
ount/quality of docum

entation available

Q
uality of support and the access to the vendor's te...

Previous team
 fam

iliarity with the tool

Tool perform
ance on in-house internal evaluation

Host platform
 of the tool (workstation, operating sy...

Com
patibility with the selected program

m
able logic p...

Previous tool use on airborne product projects (und..

Tool perform
ance (effort required, product quality in ...

Ease of qualification

O
ther (please explain):

Identify major criteria for evaluating new tools for selection to be used in DO-254 project? Rank the first
five criteria assigning numbers from 1 (high) to 5 (low).

Figure B-9. Evaluation Criteria

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

40.00%

45.00%

50.00%

When it comes to acquiring new programmable logic tools, which of the following apply prior to
selection for a project?

Entries 0.00% 50.00% 40.00% 0.00% 10.00%

We review the tool documentation, but do
not test the actual tool relying on the

vendor information

We do limited tool familiarization (with
e.g. demo version), but do not attempt
extensive testing on a smaller project

We extensively review and test the tool
by training the personnel and using trial

period on a smaller project

We do formal independent third party
assessment of the tool

Other (please specify):

Figure B-10. Selection of Tools

B-6

Have you experienced successful/failed efforts to qualify programmable logic tools?

no
67%

I don’t know
19%

yes, (please explain):
14%

Figure B-11. Qualification Percentage

Clarity of the guidelines

excellent
0%

appropriate
31%

sufficient
31%

marginal
38%

Figure B-12. Clarity of Guidelines

B-7

Ease of finding required information

appropriate
13%

sufficient
54%

marginal
33%

excellent
0%

Figure B-13. Ease of Finding Information

Increase of workload

negligible
10%

moderate
70%

significant
20%

extreme
0%

Figure B-14. Increase Workload

B-8

Safety improvement

significant
29%

noticeable
7%

moderate
21%

marginal
43%

Figure B-15. Safety Improvement

Have you experienced finding errors (through the tool use or through the qualification process) in the
programmable logic tools?

No errors, as far as I know, have
been found

11%

Some errors have been found, but
they have been few and minor

50%

Errors have been found that are
significant or numerous

17%

I don’t know
22%

Figure B-16. Errors Found

B-9

B.2 SURVEY NARRATIVE RESPONSES.

The following provides the unedited text of narrative responses from the survey, as referenced in
section 5.1.3.

1. The major issues regarding use of programmable logic tools are:

• Ease of verification

• Three issues- quality of tool, your design, model used to verify your design.

• Simulation wrong, wrong timing analysis.

• No ability to lock down place route and make small changes. Any changes
requires full verification suite.

• Becoming familiarized with the specific CPLD/FPGA vendors fitting tools to
synthesize, place and route and program.

• Conformity of libraries of VHDL and VTL models. Compliance of tool to
published standards. (e.g. IEEE VHDL standards).

• Some people/organizations become complacent and trust the tools to much, then
expend their use of a tool without verifying their usage.

• Failure to identify limitations of verification tools to the design assurance process.
For example, simulation tools do not adequately account for electronics effects of
real hardware. On the other hand, using gate level simulation is inappropriate for
comprehensive timing analysis.

• Speed. Stability of application of long simulations.

• Version control (configuration management & baselines) errata list traceability.

• They do not and can not eliminate physical testing! (Functional).

• Verification, defect containment, reuse.

• Clear visibility and traceability to output results.

• I don't see any major issues with the tools. Most of these tools are widely in use
and do not have a negative safety impact. Mainly the repeatability and verification
of the design itself affects safety.

• Errors in timing models resulting in incorrect timing analysis. Errors in simulation
models resulting in missed errors. Errors in place and route tools resulting in logic
errors in the silicon. I have not experienced any of these issues

B-10

• Complexity limits control over build process which can be very important.
Advanced features are hidden when they shouldn't be because they are the ones
that can solve your problem.

• The tools are designed for rapid freeform development and not for requirements
based methodical design. Fine for commercial applications but not really targeted
to high reliability design.

• If it can be qualified per DO-254

• Bugs

• Qualification

2. The major issues regarding qualification of programmable logic tools are:

• Availability of design information

• No guidance on what results documents should contain and how that data is
utilized/submitted. Comparing simulation clock by clock against logic analyzer on
target is one means of quality

• Lack of guidance in terms of what is acceptable.

• Lack of cooperation from programmable logic tools vendor

• Visibility of processes/signals. Willingness of tool vendors (e.g. Cadence;
Simplicity) to openly discuss algorithms for simulation or synthesis and conform
those algorithms.

• Availability of tool requirement and verifying data. Our suppliers sometimes have
to do this themselves.

• Understanding the modes/features of tool that require qualification and applying
appropriate qualification based on them.

• Standardized test suite ran by the tool vendor.

• We perform a crucial qualification of ModelSim using only crucial VHDL
constructs. How extensive do we have to be? (Within DO-254 guidelines.).

• Price & vendor availability for support.

• Too much reliance on tools simulation to demonstrate functionality. In every case
w/near total reliance on tools has resulted in re-spin (in my experience).

B-11

• The guidance on tool qualification is not useful. We qualified a tool by comparing
a logic analyzer trace from the actual system with a simulation from the tool. This
including propagations delays and functionality. The DO-254 guidance also does
not include what should be done with the data, i.e. FAA approval or submittal.
What kind of tool errors are we looking for, that would help drive the tool qual
plan. What are the goals of a DO-254 tool qualification, what should the
documentation look like, and what should be done with the qual data? I assume all
companies are doing this differently and we have not seen any increase in safety
by doing a qualification. These tools are in use in thousands of designs in the
world and the probability of a tool qualification effort finding an error is very low
or negligible.

• Assessment is not a big issue because independent verification of the tools is a
natural outcome of the design process. Qualification is much more involved and
should be done by the vendor. Tool versions change so rapidly that qualification is
impractical at the designer level and possibly the vendor level.

• Frequent tool updates with big fixes limit the amount of time a tool can be
"qualified" due to the fact that most tools are completely replaced by the update.

• Qualification is basically demonstrating the pedigree of the tool itself, most
vendors either do not keep requirements based design and verification information
or that information is considered proprietary or trades secret. Thus independent
assessment of tool output will continue to be the primary, and sometimes only,
methodology available for “qualification”. As long as that fact doesn’t change,
there will be very little progress.

• Verification of hard and soft IP cores.

• Guidelines that are easy to understand.

• Templates that we can use.

• Long process to prove qualification

3. Other issues related to programmable logic tools experience are:

• A missing functionality of LIBERO is the netlist editor for netlist after place and
route. Any minor change in the design will result in a complete new place and
route operation and then all the time consuming verification steps on the netlist
must be redone as a consequence any change in an Actel design should be
considered as major.

• Trace to verification completed on final implementations.

B-12

• Altera has something’s called a macrofuntions, a t function used in VHDL code.
The compiler calls a generic macro function and it works well. For a D0-178 D
project I had to write my own 8-bit adder just to avoid qualifying Altera t
functions.

• Our biggest problem occur with the chip vendor’s place and route tools (e.g.
Xilinx; Actel, etc) because they are trying to minimize tool costs -- they are selling
chips, not software. Consequently, they don't have good configuration control of
the tools/libraries and often introduce errors with new releases.

• Vendors would like to be able to qualify tools once to provide qualified tools to
HW vendors.

• I've heard from FPGA vendors that they are attempting to understand what tool
qualification means and consider offering it to their customers. While this is a
noble goal, I wonder if they have an appropriate understanding of aircraft safety
and design assurance to address qualification.

• I was hoping that tool vendors would become more involved to the point that they
could sell qualified tools rather that each user trying to figure out how to qualify
the tool.

• Use of System Verilog and assertions seem to fit into flow.

C-1

APPENDIX C—TEST PROCEDURE

The document provides details of the proposed test procedures for the Power Integrity, I/O, and
Timing Analyses.

A common configuration, shown in figure C-1, will be used for all the test cases. The test will
consist of multiple N-bit counters (aggressor signals) surrounding a known (victim) signal. The
counters will be synthesized to operate at the maximum frequency allowed by the hardware. All
the aggressor and victim input/output (I/O) pins will be assigned to a single bank of the field-
programmable gate array (FPGA) and will share power supply resources. The aggressor signal
outputs will be driving their maximum specified load. The victim signal will be assigned I/O
pins in the middle of the aggressors to force routing in the middle of the aggressor signals.

InputbufferN-bitCounterOutputDriverMaximumLoadInputbufferN-bitCounterOutputDriverMaximumLoadInputbufferN-bitCounterOutputDriverMaximumLoadInputbufferN-bitCounterOutputDriverMaximumLoadVariable Frequency Clock (Noise Generator)OutputDriverInputbufferKnown Signal(Victim)OutputMonitorAggressorSignals

Figure C-1. Ripple Counter

The design will be synthesized and configured to each platform independently. Each platform
will require that the timing constraints are set for the ripple counters. It is acceptable that each
platform’s tightest timing constraints will be different.

C.1 AIRBORNE ELECTRONIC HARDWARE POWER INTEGRITY ANALYSIS CASE
STUDY.

C.1.1 OBJECTIVE.

This case study will examine if an airborne electronic hardware (AEH) design tool is aware of
potential power integrity issues. The test case will simultaneously switch as many signals on an
I/O bank as possible. The signals will be connected to output drivers that will be configured as

C-2

LVTTL 24mA fast drivers. The drivers will be connected to loads intended to maximize the
current passing through each I/O. Failures can occur due to excessive inductance in the device
power connections or excessive resistive drops in the internal power bussing of the device under
test. The test will use one signal on the I/O bank as an input, which will be driven to VIL (0.8V)
and VIH (2.0V) LVTTL specification limits. Failures in the power bussing will be seen as
erroneous values read by this input. The outputs will be continuously monitored using an
oscilloscope for inconsistencies.

C.1.2 DESIGN.

This is an overview of how the test will be designed.

• The experiments instruction set shall be written so that it is platform-independent.
• All signal lines shall be LVTTL
• One input in I/O bank shall branch to the remaining outputs in that I/O bank.
• Each I/O pin shall be designated as High current and Fast slew.

C.1.3 SETUP.

This is a preparatory procedure for conducting the experiment. This experiment requires a
function generator, a radio frequency (RF) generator (>10 GHz), and an oscilloscope. For each
platform, it is necessary to create different configuration files to use the development board I/O
and save the place-and-route report/configuration.

• The design shall be synthesized and configured to each platform independently.

• Each platform will require I/O pin designations be made as high current and fast slew.

• This experiment requires a precision digital power supply, oscilloscope, and logic

analyzer.

C.1.4 DATA COLLECTION PROCEDURE.

This is the data collection procedure:

• During this experiment all the outputs shall be monitored by a logic analyzer for logic, or

an oscilloscope may be used.

• The input pin, one of the output pins, and the VDD shall be monitored with an

oscilloscope.

C-3

C.1.5 EXPERIMENT.

The experiment consists of the following steps:

• Connect outputs together.

• Configure and synthesize, generate and save all tool reports and logs.

• Burn the design onto the board. Save all logs.

• Connect both sources, respectively, and power up all systems. Record the input pin

designations.

• Start the data collection procedure.

• Repeat for each platform.

C.2 AN AEH I/O ANALYSIS CASE STUDY.

C.2.1 OBJECTIVE.

The purpose of this case study is to determine the state of undefined I/O pins. The unused FPGA
pins, when a component is burned onto the device, could have residual logic, be grounded, be
active, or floating. Ultimately, the AEH tool determines what happened to the pins left
undefined in a design. The method with which a tool chooses to delegate with these unused pins
is a safety concern.

C.2.2 DESIGN.

This is an overview of how the test will be designed.

• The code shall be a subset of the AEH Power Integrity Analysis code.

• Modify the AEH Power Integrity Analysis code so that the variable frequency signal lines

are removed. All the rest of the code remains the same.

C.2.3 SETUP.

This is a preparatory procedure for conducting the experiment. This experiment requires a
function generator, an RF generator, and an oscilloscope. For each platform, it will be necessary
to create different configuration files to use the development board I/O and save the place-and-
route report/configuration.

• The design shall be burned to the FPGA immediately following the implementation of the

AEH Power Integrity Analysis experiment.

C-4

• The design shall be synthesized and configured to each platform independently.

• Each platform will require that timing constraints be set for the ripple counters. It is

acceptable that each platform’s tightest timing constraints will be different.

• All signals shall be transistor/transistor logic (TTL).

• Record the timing constrains settings.

• This experiment requires a function generator, an RF generator (>10 GHz), an

oscilloscope, and a logic analyzer.

• For each platform, it will be necessary to create different configuration files using the

development board I/O’s. Replication of the place-and-route report/configuration from
AEH Power Integrity Analysis experiment to variable frequency lines will no longer be
available for configuration.

C.2.4 DATA COLLECTION PROCEDURE.

This is the data collection procedure:

• During this experiment, the varying square wave frequency input shall be started at 0 Hz

and increased to the RF generator-allowable maximum frequency (>10 GHz) and shall be
continually monitored for abnormalities, such as wave skew, rounding of wave edges,
missed pulses, and non-TTL levels.

• Data shall consist of frequency, voltage levels, rise and fall times, noise levels, and

interfering frequencies. Data shall be collected from all 54 output pins.

• Starting at 0 Hz in logarithmic intervals, data shall be recorded. Between the frequency

of 950 Hz and 1050 Hz, data points shall be recorded in 10-Hz intervals.

• At each interval, the VDD voltage shall be recorded.

• Each of the four fixed signal outputs shall be monitored for any 2’s factor of the current

variable frequency.

C.2.5 EXPERIMENT.

The experiment consists of the following steps:

• The design shall be burned onto an FPGA immediately following the implementation of

the AEH Power Integrity Analysis experiment.

• Burn the design onto the platform.

C-5

• Use the exact I/O pin designations as they were in the AEH Power Integrity Analysis
experiment. Connect the output pins exactly the same with the exception that the current
sinking device shall be removed.

• All the previously assigned output pins shall be analyzed with an oscilloscope to

determine if they are floating or fixed.

 - Connect the known logic lines to its signal source.

 - Connect the previously assigned variable frequency pin to a 1-kHz signal.

 - Probe all the previously assigned I/O pins, and record their voltage levels for 1

second.

 - Use a 10k-Ω resistor to pull the previously assigned I/O pins to VDD and measure

and record the pin voltage for 1 second.

 - Use a 10k-Ω resistor to pull the previously assigned I/O pins to ground, measure

and record the pin voltage for 1 second.

• Connect the known logic to a 1-kHz-square wave source.

• Execute the Data Collection Procedure. Note: it is acceptable to do a continuous sweep

and monitor for any signal. If no signal is found record the finding. If a signal is found,
follow the data collection procedure exactly.

C.3 AN AEH TIMING ANALYSIS CASE STUDY.

C.3.1 OBJECTIVE.

The purpose of this case study is to determine if a tool meets its reported timing constraints and
retains a margin of safety. The tools allow the user to specify the time that it will take a specific
operation to complete. If the bounds of the speed of the gates are pushed closer to their
minimums, the tool will redesign the circuit so that the delay is less. The subjects of interest are
where are these bounds, how close does the tool allow the design to get to the bounds, and is
there a safety margin with actual delay and estimated delay. During the frequency sweep, both
the input and output waves of the component shall be checked for phase accuracy and phase
differences on the oscilloscope. As the input frequency increases, the point when either the
signal path time is not met or the output wave is not correct is considered a failure. The phase
differences will yield the signal path time, the point of failure will determine the safety margins
applied. All data and settings shall be recorded accurately for analysis.

C-6

C.3.2 DESIGN.

This is an overview of how the test will be designed.

• This case study will examine a ripple counter. A ripple counter can be instantiated in

high-level requirements (HDL) either behaviorally (i.e., A = A + 1) or as a series of flip
flops cascaded together. A 16-bit counter that will be coded both behaviorally and
explicitly and both cases will be implemented.

• The input to the ripple counter shall be an external pin that is connected to a high-

frequency source. The final output of the counter shall be connected to an output pin.

• The output signal frequency shall be the input signal frequency over 216.

• The static timing produced by the tool will be recorded. The hardware will then proceed

through place-and-route, and the post place-and-route timing numbers will be used for the
test.

• All signals shall be LVTTL.

C.3.3 SETUP.

This experiment requires a function generator, RF generator, and oscilloscope. For each
platform, it will be necessary to create different configuration files to use the development board
I/O. Save the place-and-route report/configuration.

• The design shall be synthesized and configured to each platform independently.

• Each platform will require that the tool’s timing constraints be set for the ripple counters.

It is acceptable that each platform’s tightest timing constraints will be different.

• Record the timing constraint settings.

• During the initial implementation, a report will be or can be generated by the tool to

establish the maximum input frequency and the signal path delay.

• All signals shall be TTL.

C.3.4 DATA COLLECTION PROCEDURE.

This is the data collection procedure:

• During this experiment, the varying square wave frequency input shall be started at 0 Hz

and increased to RF generator-allowable maximum frequency (>10 GHz) and shall be

C-7/C-8

• continually monitored for abnormalities, such as glitches, cycle slips, missed pulses, and
non-TTL levels. Record these findings.

• Data shall consist of frequency, voltage levels, rise and fall times, noise levels, interfering

frequencies, and phase difference of input and output waves.

• Starting at 0 Hz and increasing in logarithmic intervals up to the RF generator’s

maximum frequency, data shall be recorded.

C.3.5 EXPERIMENT.

This is the method in which the implementation shall be tested. The test shall attempt to produce
the highest operational frequency for each platform.

• Synthesize and burn the design. Generate and save tool reports, make sure to include the

timing report and timing constraint settings. Examine the reports to see what
optimizations, if any, occurred.

• Connect the signal generation, and power up the system.

• Follow the data collection procedure.

D-1

APPENDIX D—ANNOTATED BIBLIOGRAPHY

This appendix presents detailed information briefly discussed in section 4 of the main report.
The presented literature items collected during this research are divided into three sections: (1)
annotated research papers (section D.1), (2) selection of papers directly related to safety issues
detailing the objective and relevance to the project (section D.2), and (3) papers contributed by
industry with defined problems and suggested solutions (section D.3).

D.1 ANNOTATED RESEARCH PAPERS.

The research revealed several papers on the use of software tools in the development of airborne
electronic hardware (AEH). This section includes an annotated bibliography of the papers
related to general issues of using software tools in hardware development.

1. Aljer, A. and Devienne, P., “Co-Design and Refinement for Safety Critical Systems,”

Proc. DFT '04 19th IEEE International Symposium on Defect and Fault Tolerance in
VLSI Systems, IEEE, 2004, pp. 78-86.

Summary: In this paper, the authors focus on design entry of complex systems, that is,
the highest abstract tier of the global system without implementation choices to specific
technologies. At this very first level, the use of a formal specification language is
considered as the foundation of a real validation process. The paper calls attention to
formal design entry, and points out that the project management can be formally
controlled by formal refinement. Architecture, based on stepwise refinement of a formal
model to achieve controllable implementation, is proposed. This leads to
implementations that are highly effective, but remain formally related to the first formal
specification. Partitioning, fault tolerance, and system management are seen as particular
cases of refinement in order to conceptualize systems that are correct by proven
construction. In this paper, the basic principles of system methodologies are presented,
and the methodology based on the refinement paradigm is described. To prove this
approach, the B-HDL (B high-level design language) Tool, based on very high-speed
integrated circuit (VHDL) (digital circuits) and B Method (formal language based on set
theory and logic) has been developed. The benefits of such tools would be an amazing
productivity gain, a better reuse automation, and a formal redundancy management.

2. Bannow, N. and Haug, K., “Evaluation of an Object-Oriented Hardware Design

Methodology for Automotive Applications,” Proc. Design, Automation and Test in
Europe Conference and Exhibition, Paris, 16-20 February 2004, Vol. 3, pp. 268-273.

Summary: The authors present results in using the new object-oriented design approach
OSSS (ODETTE System Synthesis Subset). The methodology and tools of the ODETTE
(tool that uses object-oriented co-design and functional test techniques) project have been
developed within the context of the Information Society Technologies program of the
European Commission. The main focus of OSSS lies in the field of hardware design and
synthesis capability. The strategy is based on an extension of the synthesizable subset of

D-2

standard SystemC. The approach supports real object-oriented and synthesizable design
features like classes, inheritance, templates, polymorphism, and global object access.
Therefore, OSSS promises high efficiency in its capability to handle complex designs,
faster development time, improved code quality, and faster time to market. In contrast,
standard SystemC is also based on C++ constructs, but no object-oriented constructs are
available yet for a synthesizable system description. The OSSS has been evaluated on an
automotive design example. It was chosen for the implementation of a component that is
part of all video projects: a camera’s exposure control unit (ExpoCU). The first main
goal that was achieved is a synthesizable design by the automatic generation of an FPGA
netlist from an OSSS description. Furthermore, the methodology seems to be proven to
fulfill industrial requirements, such as usability for complex system development,
integration of the existing intellectual property (IP), improved code quality, and decreased
development effort. Comparison will be done against existing VHDL-based design flow.
The paper focuses on implementation and testability by comparing the new object-
oriented synthesis approach with a standard VHDL flow by laying emphasis on
synthesizability. The OSSS and equivalent methodologies show a potential to handle
new generations of complex hardware/software systems. Moreover, the gap between
increasing design complexity and available methodologies already gets larger and, thus
needs to be closed by new solutions such as OSSS.

3. Bhatt, D., et al., “Model-Based Development and the Implications to Design Assurance

and Certification,” Proc. DASC 2005, 24th Digital Avionics Systems Conference, 30
October - 3 November 2005.

Summary: The term model-based design/development (MBD) has grown in popularity
over the past decade. Within the avionics community, the term MBD implies the
development and application of “control models and simulations” using tools such as
MATLAB/Simulink. At Honeywell, the authors have been engaged in MBD and
development of associated tools for avionics applications. This position paper applies the
lessons learned and discusses several issues, relating to sound MBD, to meet design
assurance and certification objectives. The paper examines the dominant approaches
describing commercially available code generation and verification tool suites. The paper
contrasts these approaches to traditional software design, implementation, and
verification methods. This paper also recommends taking a broader perspective of MBD
and suggests adopting lessons learned from the classical software engineering arena
considering future investigation, standardization, automation tool development, and
integration.

4. Bunker, A., Gopalakrishnan, G., and McKee, S.A., “Formal Hardware Specification

Languages for Protocol Compliance Verification,” ACM Trans. on Design Automation of
Electronic Systems, Vol. 9, No. 1, January 2004.

Summary: The advent of the system-on-chip (SoC) and IP hardware design paradigms
makes protocol compliance verification increasingly important to the success of a project.
One of the central tools in any verification project is the modeling language, and the

D-3

paper describes the survey of the field of candidate languages for protocol compliance
verification, limiting discussion to languages originally intended for hardware and
software design and verification activities. The comparison is framed by first
constructing taxonomy of these languages, and then by discussing the applicability of
each approach to the compliance verification problem. Each discussion includes a
summary of the development of the language, an evaluation of the language’s utility for
the problem domain, and where feasible, an example of how the language might be used
to specify hardware protocols. Finally, some general observations are made regarding the
considered languages.

5. Bunker A., McKee, S.A., and Gopalakrishnan, G., “An Overview of Formal Hardware

Specification Languages,” Grace Hopper Celebration of Women in Computing, 2002.

Summary: Verification is widely recognized as one of the most difficult aspects of
computer hardware design. The gap between design and verification capabilities grows,
as does the cost of missed flaws. Many researchers investigate ways to formally verify
processor designs, interconnects, and protocols, but creating verification methods and
tools will remain a central problem for computer scientists for at least the next decade.
This field is explored in the paper by surveying formal specification languages. A
taxonomy of languages is presented, and the paper discusses the applicability of each
language to standard compliance verification, demonstrating that a hardware design
complies to an interconnect standard.

6. Camposano, R. and Wilberg, J., “Embedded System Design,” Design Automation for

Embedded Systems, Vol. 1, No. 1-2, January 1996, pp. 5-50.

Summary: In the past decade, the main engine of electronic design automation has been
the widespread application of ASIC. Present technology supports complete SoC, most
often used as so-called embedded systems in an increasing number of applications.
Embedded systems pose new design challenges that will be the driving forces of design
automation in the years to come. These include the design of electronic systems
hardware, embedded software, and hardware/software co-design. This paper explores
novel technical challenges in embedded system design and presents experiences and
results of the work in this area using the CASTLE system. CASTLE supports the design
of complex embedded systems and the design of the required tools. It provides a central
design representation, Verilog, VHDL, and C/C++ front ends, hardware generation in
VHDL and Berkeley Logical Interchange Format, a re-targetable compiler backend, and
several analysis and visualization tools. Two design examples, video compression and a
diesel injection control, illustrate the presented concepts.

7. Chee, W.L., Zain, Ali, N.B., and Nair, R.S., “Design of Low-Cost FPGA-Based PCI Bus

Sniffer,” Proc. FPT 2003 IEEE International Conference on Field-Programmable
Technology, Tokyo, 15-17 December 2003.

D-4

Summary: This paper describes FPGA design and implementation of the Peripheral
Component Interconnect (PCI) Bus Sniffer—a device used by semiconductor industries
to analyze the characteristics of signals transmitted in the PCI bus. These devices are
expensive and not easily affordable by individual users. The paper presents a novel
method of device design using available freeware tools that facilitate learning hardware
design at a low cost. The objective of the paper is to present design and implementation
of a low-cost PCI Bus Sniffer using FPGA and the Verilog HDL. The target FPGA
device is a Xilinx SPARTAN II with the necessary interface to probe PCI signals. This
project has successfully shown that it is possible to design and implement a complex
hardware design using freeware tools.

8. Cooper, P.A., “Lessons Learned Using Software-Assisted Systems Engineering on Large

Satellite Development Contracts,” IEEE Aerospace and Electronic Systems Magazine,
Vol. 21, No. 5, May 2006, pp. 7-11.

Summary: Over the years, the world’s defense industries have become quite proficient at
developing large, complex hardware and software systems. In recent years, the ubiquitous
deployment of personal computers has changed the way people work and has had a major
impact on major systems development efforts. The government’s faster-better-cheaper
acquisition philosophy has started driving contractors to a concurrent engineering
approach toward systems engineering. This confluence of experts has had unexpected
impacts on both the flexibility and rigor of requirements management processes. While
the maturing requirements and design hold promise in maintaining requirements
traceability throughout the design process, the widespread use of desktop computing
systems has inadvertently lulled many experienced systems engineers into sloppy
processes because it appears to be a simple matter to make a requirements change in a
soft copy of a requirements document. Without strong process and management support,
requirements changes may be done in incompatible formats. This author describes the
design phase of a major classified government satellite development effort. As an
integral member of an extremely experienced requirements management team (boasting
over 150 years of combined experience in the defense industry), the author had the
opportunity to watch the team navigate straight into many of the systems engineering
potholes created when talented engineers implement concurrent engineering using a
variety of tools without a consistent process framework. This paper, therefore,
specifically addresses process and implementation challenges that arose when
establishing a software-assisted, concurrent-engineering project.

9. Dajani-Brown, S., Cofer, and D.’ Bouali, A., “Formal Verification of an Avionics Sensor

Voter Using SCADE,” Proc. FORMATS 2004 Joint International Conference on Formal
Modelling and Analysis of Timed Systems, and FTRTFT 2004 Formal Techniques in
Real-Time and Fault-Tolerant Systems, Lecture Notes in Computer Science, Vol. 3253,
pp. 5-20.

Summary: Redundancy management is widely used in mission-critical digital flight
control systems. This study focuses on the use of Safety-Critical Application

D-5

Development Environment (SCADE) and its formal verification component, the Design
Verifier, to assess the design correctness of a sensor voter algorithm used for management
of three redundant sensors. The sensor voter algorithm is representative of embedded
software used in many aircraft today. The algorithm, captured as a Simulink diagram,
takes input from three sensors and computes an output signal and a hardware flag,
indicating correctness of the output. This study is part of an overall effort to compare
several model checking tools to the same problem. SCADE is used to analyze the voter’s
correctness in this part of the study. Since synthesis of a correct environment for analysis
of the voter’s normal and off-normal behavior is a key factor when applying formal
verification tools, this paper is focused on (1) the different approaches used for modeling
the voter’s environment and (2) the strengths and shortcomings of such approaches when
applied to the problem under investigation.

10. Hayek, A. and Robach, C., “From Specification Validation to Hardware Testing: A

Unified Method,” Proc. International Test Conference, 20-25 October 1996, pp. 885-893.

Summary: With the advancement in the design automation field, tools allow to describe
hardware systems as software programs using high-level HDLs, such as VHDL or
Verilog. Consequently, a design fault that affects the system specification can be
considered a software fault. To test the system specification against (software) design
faults, the authors’ propose an adaptation of a mutation analysis, originally proposed for
software testing, to test VHDL functional description. The resulted test set is applied to
the gate-level structure of the system to measure its capacity to uncover hardware faults,
such as the stuck-at faults. Heuristics are presented to enhance the test set in order to be
sufficient for testing hardware faults, and the results are compared to traditional automatic
test pattern generation. Accordingly, this paper presents a unified method for testing both
the system specification and the hardware implementation.

11. Hilton, A.J., “High-Integrity Hardware-Software Codesign,” Ph.D. Thesis, The Open

University, April 2004.

Summary: Programmable logic devices (PLD) are increasing in complexity and speed
and are being widely used in safety-critical systems. Methods for developing high-
integrity software for these systems are well known, but this may not be true for
programmable logic. The author proposes a process for developing a system
incorporating both software and PLD, suitable for safety-critical systems of the highest
levels of integrity. This process incorporates the use of Synchronous Receptive Process
Theory as a semantic basis for specifying and proving properties of programs executing
on PLD. This process also extends the use of the Southampton Program Analysis
Development Environment Ada Kernel (SPARK Ada) from a programming language for
safety-critical systems software to cover the interface between software and
programmable logic. The proposed approach has been validated through the specification
and development of a substantial safety-critical system incorporating both software and
programmable logic components and the development of tools to support this work. The
authors claim that the demonstrated methods are not only feasible but also scale up to

D-6

realistic system sizes, allowing development of such safety-critical software and hardware
systems to the levels required by current system safety standards.

12. Hilton A. and Hall, J.G., “On Applying Software Development Best Practice to FPGAs in

Safety-Critical Systems,” Proc. FPL 2000, 10th International Conference on Field-
Programmable Logic and Applications, Villach, Austria, August 27-30, 2000.

Summary: New standards for developing safety-critical systems require the developer to
demonstrate the safety and correctness of the programmable logic in such systems. The
paper describes adaptation of software development best practices to developing high-
integrity FPGA programs.

13. Hilton, A.J. and Hall, J.G., “Developing Critical Systems with PLD Components,” Proc.

FMCIS 10th International Workshop on Formal Methods for Industrial Critical Systems,
September 2005.

Summary: Understanding the roles that rigor and formality can have in the design of
critical systems is critical to anyone wishing to contribute to their development. Whereas
software developers have good knowledge of these issues, for the developers of PLDs and
specifically for the combination of PLDs and software, the issues are less known. Indeed,
even in industry there are differences between current and recommended practice, and
engineering opinion differs on how to apply existing standards. This situation has led to
gaps in the formal and rigorous treatment of PLDs in critical systems. In the paper, the
range of, and potential for, formal specification and analysis techniques that address the
requirements for verifiable PLD programs are examined. The existing formalisms that
may be used are identified. The areas of contributions that academia and industry in
collaboration can make that would allow high-integrity PLD programming to be as
practicable as high-integrity software development are presented. The paper touches
briefly on important practical, technical, organizational, social, and psychological aspects
of the introduction of formal methods into industrial practice for hardware and system
design. It also provides an update and summary of the recent UK Defence Standard 00-
56, as it relates to hardware.

14. Hilton A.J., Townson G., and Hall, J.G., “FPGAs in Critical Hardware/Software

Systems,” Proc. FPGA 2003 ACM/SIGDA 11th International Symposium on Field
Programmable Gate Arrays, Monterey, CA, ACM, 2003, p. 244.

Summary: FPGAs are being used in increasingly complex roles in critical systems,
interacting with conventional critical software. Established safety standards require
rigorous justification of safety and correctness of the conventional software in such
systems. Newer standards now make similar requirements for safety-related electronic
hardware, such as FPGAs, in these systems. In the paper, the current state-of-the-art in
programming FPGAs, and their use in conventional (low-criticality) hardware and
software systems are examined. The paper discusses the impact that the safety standards
requirements have on the co-development of hardware/software combinations in critical

D-7

systems and suggests adaptations of the existing best practice in software development
that could discharge them. Particular attention is paid to the development and analysis of
high-level language programs for FPGAs designed to interact with conventional software.

15. Hoskote, Y.V., et al., “Automatic Verification of Implementations of Large Circuits

Against HDL Specifications,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, March 1997.

Summary: This paper addresses the problem of verifying the correctness of gate-level
implementations of large, synchronous, sequential circuits with respect to their higher-
level specifications in HDL. The verification strategy is to verify containment of the
finite state machine (FSM) represented by the HDL description in the gate-level FSM by
computing pairs of compatible states. This formulation of the verification problem
dissociates the verification process from the specification of initial states, whose encoding
may be unknown or obscured during optimization and also enables verification of reset
circuitry. To make verification of large circuits with merged data path and control
tractable, the concept of strong containment is introduced. This is a conservative
approach that exploits correspondence between data path registers in the two descriptions
without requiring any correspondence between the control units. An important result
with an associated proof that computation of pairs of equivalent or compatible states can
be achieved by considering subsets of the circuit outputs is presented. Consequently,
verification of circuits with large and diverse I/O sets, which was previously intractable
due to lack of a single effective variable order for the binary decision diagrams is now
feasible. Experimental results are presented for the verification of several industry level
circuits.

16. Karlsson K. and Forsberg, H., “Emerging Verification Methods for Complex Hardware in

Avionics,” Proc. DASC 2005, 24th Digital Avionics Systems Conference, 30 October - 3
November 2005, Vol. 1, pp. 6.B.1-61-12.

Summary: This paper discusses the additional design assurance strategies stated in
RTCA DO-254, appendix B, “Design Assurance Considerations for Level A and Level B
functions.” In particular, the use of formal specification languages, such as the property
specification language in combination with dynamic (simulation) and static (formal)
verification methods for PLDs, are addressed. Using these methods, a design assurance
strategy for complex programmable airborne electronics compliant with the guidelines of
DO-254 is suggested. The proposed strategy is a semi-formal solution, a hybrid of static
and dynamic assertion-based verification.

17. Kern, C. and Greenstreet, M.R., “Formal Verification in Hardware Design: A Survey,”

ACM Transactions on Design Automation of Electronic Systems, Vol. 4, No. 2, pp. 123-
193, 1999.

Summary: In recent years, formal methods have emerged as an alternative approach to
ensuring the quality and correctness of hardware designs, overcoming some of the

D-8

limitations of traditional validation techniques, such as simulation and testing. There are
two main aspects to the application of formal methods in a design process: (1) the formal
framework used to specify desired properties of a design and (2) the verification
techniques and tools used to reason about the relationship between a specification and a
corresponding implementation. The paper presents a survey of a variety of frameworks
and techniques proposed in the literature and applied to actual designs. The specification
frameworks include temporal logics, predicate logic, abstraction and refinement, as well
as containment between regular languages. The verification techniques presented include
model checking, automata-theoretic techniques, automated theorem proving, and
approaches that integrate the above methods. To provide insight into the scope and
limitations of currently available techniques, a selection of case studies where formal
methods were applied to industrial-scale designs, such as microprocessors, floating-point
hardware, protocols, memory subsystems, and communications hardware, are presented.

18. Marcon, C.A.M., et al., “Prototyping of Embedded Digital Systems From SDL Language:

A Case Study,” Proc. HLDVT'02 Seventh IEEE International High-Level Design
Validation and Test Workshop, Cannes, France, 27-29 October 2002, pp. 133-138.

Summary: The author’s goal was to evaluate the performance of embedded digital
systems generated from a system-level description language. The target language is SDL,
which is automatically synthesized with a co-design tool, resulting in VHDL and C
descriptions. The co-design tool is responsible for software, hardware, and
communication synthesis. Two case studies are presented, exploring the results with
respect of the chip area and delays. The results focus on the hardware synthesis, since the
goal is to compare the performance of systems generated from a hand-coded HDL
descriptions against a synthesized HDL. The analysis of the advantages and drawbacks of
this automatic hardware design flow and the evaluation of the commercial tools
integration are also reported.

19. Mencer, O., “ASC: A Stream Compiler for Computing with FPGAs,” IEEE Transactions

on Computer-Aided Design of Integrated Circuits and Systems, Vol. 25, No. 9,
September 2006, pp. 1603-17.

Summary: A Stream Compiler (ASC) for computing with FPGA emerges from the
ambition to bridge the hardware-design productivity gap where the number of available
transistors grows more rapidly than the productivity of very large-scale integration and
FPGA computer-coded design tools. ASC addresses this problem with a software-like
programming interface to hardware design while maintaining the performance of hand-
designed circuits. ASC improves productivity by letting the programmer optimize the
implementation on the algorithm, architecture, arithmetic, and gate levels, all within the
same C++ program. The increased productivity of ASC is applied to the hardware
acceleration of a wide range of applications. Traditionally, hardware accelerators are
tediously handcrafted to achieve top performance. ASC simplifies design space
exploration of hardware accelerators by transforming the hardware design task into a
software design process, using only the “make” process to obtain a hardware netlist. From

D-9

experience, the hardware design productivity and ease of use are close to pure software
development. This paper presents results and case studies with three levels of
optimizations: (1) on the gate level—Kasumi and International Data Encryption
Algorithm encryptions, (2) on the arithmetic level—redundant addition and multiplication
function evaluation for two-dimensional rotation, and (3) on the architecture level—
Wavelet and Lempel-Ziv (LZ)-like compression.

20. Mills, M. and Peterson, G., “Hardware/Software Co-Design: VHDL and Ada 95 Code

Migration and Integrated Analysis,” Proc. 1998 Annual ACM SIGAda International
Conference on Ada, Washington, DC, 1998, pp. 18-27.

Summary: Optimizing the design is an important task in efficiently developing and
deploying effective complex weapons systems. Often, architectural tradeoffs between
hardware and software implementation must be performed early in the design cycle,
resulting in potentially inefficient systems or subsystems. As technologies and costs in
hardware and software implementation change over time, the optimal partitioning of
system functionality into hardware and software components may also change. Currently,
recasting a component from hardware to software (or vice-versa) is a difficult and error-
prone activity. The paper explores a new approach to ease the hardware/software co-
design and repartitioning activities by providing a mechanism to exchange software
written in Ada 95 with behavioral VHDL.

21. Miner, P.S., et al., “A Case-Study Application of RTCA DO-254: Design Assurance

Guidance for Airborne Electronic Hardware,” Proc. DASC 2000, 19th Digital Avionics
Systems Conferences, Vol. 1, pp. 1A1/1-1A1/8.

Summary: In a joint project with the Federal Aviation Association (FAA), National
Aeronautics and Space Administration (NASA) Langley Research Center is developing a
hardware design in accordance with DO-254. The purpose of the case study was to gain
understanding of the guidance document and generate an example suitable for use in
training. For the case study, a core subsystem of the Scalable Processor-Independent
Design for Electromagnetic Resilience, which is a new fault-tolerant architecture under
development at NASA Langley Research Center, was selected.

12. Nehme, C. and Lundqvist, K., “A Tool for Translating VHDL to Finite State Machines,”

Proc. 22nd Digital Avionics Systems Conference, Vol. 1, pp. 3.B.6-1-7.

Summary: The paper describes a framework for design, verification, and execution of
safety-critical applications. The framework consists of both software tools for application
verification and hardware platforms for execution and real-time monitoring. The paper
discusses the development of a tool to translate safety-critical VHDL code into a formal
representation in a form of an FSM model. Different formal techniques can then be
applied on this representation to verify properties, such as liveness and deadlock, and to
validate that the timing constraints of the original system hold. This paper will discuss
three aspects of the tool implementation: transformation of source code into an

D-10

intermediate representation, verification of real-time properties, and some tool-related
implementation issues.

23. Peterson, G.D. and Hines, J.W., “Advanced Avionics System Development: Achieving

Systems Superiority Through Design Automation,” Proc. 1998 IEEE Aerospace
Conference, 1998. Vol. 1, Issue 21, pp. 231-238.

Summary: Avionics systems in advanced aircraft provide the improved capability critical
to achieving mission success for the war fighter. As the costs associated with aircraft
avionics continue to mount, improved weapons system acquisition and support depends
on cost-effective design methodologies and accurate design documentation. This paper
explores how the standard hardware description language VHDL serves a critical role in
effective acquisition of digital electronic systems. Wright Laboratory programs focusing
on electronic systems design automation provide complementary improvements in design,
documentation, and maintenance capabilities. Results from this research supports
acquisition reform efforts to streamline the weapons system procurement process and
provide contractors the flexibility to use the most effective design management
techniques. At the same time, while the U.S. Department of Defense is moving away
from dictating standards in contracting, the electronics industry continues to embrace
open standards as a means to ensure hardware and software component compatibility.
The question arises: what methodology and standards developments are necessary to
support the continuing development of sophisticated weapons systems for the military?
To address this question, the paper explores methodological needs for hardware and
software design, manufacturability, test, and related issues to provide context and
motivation before describing ongoing work to meet these needs.

24. Salzwedel, H., “Mission Level Design of Avionics,” Proc. 23rd Digital Avionics Systems

Conference, Vol. 2, pp. 9.D.2-1-10.

Summary: Aerospace systems are characterized by architectural complexity, dynamic
interaction between subsystems, and complex functionality, which are understood by
teams from different disciplines. Twenty years ago, the major challenge was the
multidisciplinary design of avionics. Over the past 20 years, design methods and tools
have been developed to cope with these challenges. Today, the complexity of networked
electronics in aircraft and the interaction of hardware and software impose similar
complexity and design challenges. The complexity of electronics, according to Moore’s
law, closely followed by industry, increases by a factor of 100 every 10 years. To cope
with this increase of complexity, an increasing abstraction in the design methodology is
required. This paper shows the move towards performance and mission-level design and
its advantages over functional-level design approaches.

25. Sangiovanni-Vincentelli, A. and Quo, Vadis, “SLD? Reasoning About the Trends and

Challenges of System-Level Design,” Proceedings of the IEEE, Vol. 95, No. 3, March
2007, pp. 467-506.

D-11

Summary: The paper discusses system-level design (SLD) considered by many as the
next frontier in electronic design automation (EDA). SLD means many things to different
people, since there is no consensus on a definition of the term. Academia, designers, and
EDA experts have taken different avenues to attack the problem, for the most part,
springing from the basis of traditional EDA and trying to raise the level of abstraction at
which integrated circuit designs are captured, analyzed, and synthesized from. However,
this is just the tip of the iceberg of a much larger problem that is common to all system
approach practitioners. In particular, notwithstanding the obvious differences among
industrial segments (for example, consumer, automotive, computing, and
communication), there is a common underlying basis that can be explored. This basis
may yield a novel EDA industry and even a novel engineering field that could bring
substantial productivity gains not only to the semiconductor industry but to all system
approach practitioners, including industrial and automotive, communication and
computing, avionics and building automation, space and agriculture, and health and
security, in short, a real technical renaissance. The paper presents the challenges faced by
industry in SLD. A design methodology, platform-based design (PBD), that has the
potential of addressing these challenges in a unified way is proposed. The methodology
and tools available today in the PBD framework and a tool environment called Metropolis
that both supports PBD and can be used to integrate available tools and methods together
with two examples of its application to separate industrial domains are presented.

26. Turner, K.J. and He, J., “Formally Based Design Evaluation,” Proc. CHARME 2001,

Proc. 11th IFIP WG 10.5 Advanced Research Working Conference on Correct Hardware
Design and Verification Methods, Lecture Notes in Computer Science, Vol. 2144, pp.
104-109.

Summary: The paper investigates specification, verification, and test generation for
synchronous and asynchronous circuits. The approach is called digital logic in LOTOS,
the International Organization for Standardization language of temporal-ordering
specification, or DILL for short. Relations for strong conformance are defined to verify a
design specification against a high-level specification. Tools have been developed for
automated testing and verification of conformance between an implementation and its
specification.

D.2 SAFETY ISSUES.

Several of the papers listed in section E.1 address specific issues of safety in AEH tools. The
selected literature entries below were analyzed in-depth to identify the specific paper objective as
related to the safety issue, provide more extensive but brief description, and specify the relevance
to the project.

13. Hilton, A.J. and Hall, J.G., “Developing Critical Systems with PLD Components,”

FMCIS 10th International Workshop on Formal Methods for Industrial Critical Systems,
September 2005.

D-12

Paper Objective: The paper provides recommendations on guidelines for PLDs used in
safety-critical systems. PLDs constitute increasingly important components of safety-
critical systems. By placing specific processing tasks within auxiliary hardware, the
software load on a conventional central processing unit (CPU) can be reduced, leading to
improved system performance. They are also used to implement safety-specific functions
that must be outside the direct address space of the main CPU.

Brief Description: The paper addresses high-integrity requirements of contemporary
AEH. DO-254 specifies the verification recommended for component testing based on a
functional failure path analysis (FFPA) that decomposes the identified hazards related to
the component into safety-related requirements for the design elements of the hardware
program. The verification which DO-254 suggests may include some or all of the
following:

• Architectural mitigation: Changing the design to prevent, detect, and correct

hazardous conditions.

• Product service experience: Arguing reliability based on the operational history

of the component.

• Elemental analysis: Applying detailed testing and/or manual analysis of safety-
related design elements and their interconnections.

• Safety-specific analysis: Relating the results of the FFPA to safety conditions on

individual design elements and verifying that these conditions are not violated.

• Formal methods: The application of rigorous notations and techniques to specify
or analyze some or all of the design.

The common requirements for safety-critical devices DO-254:

• To operate under an appropriate quality/safety management system

• To plan the development process and the safety argument in advance

• To consider both random and systematic failures

• To qualify tools involved directly in the compilation chain

• To use analytic techniques (e.g., formal methods) to verify high-integrity

programs

• To conduct the verification based on identified system hazards

D-13

The paper highlights the cases where PLDs were used in a critical function for a system
and related safety concerns. An example is using an FPGA in a space-based tethering
experiment where an unanticipated power-up characteristic of the chosen FPGA caused
the effective loss of the satellite. Despite extensive testing, it was not possible to
reproduce the transient spike twice within several hours—a classic transient fault. It is
clear from this analysis that extensive testing is not sufficient for mission or safety-critical
FPGAs; it is equally true that even formal analysis and proof would be unlikely to detect
such a problem.

The approach to using FPGAs in a hostile environment is described. The main
environmental hazard in their target domain (space) is corruption of volatile memory via
bombardment by high-energy particles. The architecture adopted is a triple-redundant
design with fault detection and periodic “scrubbing” to reset all look-up tables to known
values. This is a classic example of mitigating an unavoidable hazard; however, the
design and function greatly complicates the task of arguing system correctness. The user
must balance increased general reliability against demonstrable correctness.

Recent research and development has contributed to the problem of producing high-
integrity PLD programs. Research relevant to safety-critical PLD program design includes
the following:

• Specification and proof of parallel systems, enabling a correct-by-construction
approach to program design

• Model-checking techniques to verify safety properties of an existing PLD design
at an HDL or netlist level

• The design and use of high-level programming languages to enable PLD
programming at a more abstract level, possibly in a domain-specific language or
tool

Relevance to the Project: The paper focus is on the DO-254 approach for verification and
integration. It also stresses on insufficient product service experience of VHDL compiler
to qualify the tool according to DO-254 requirements; instead, the synthesized output was
inspected manually to ensure that the critical design components were present and
correctly connected.

14. Hilton, A.J., Townson, G., and Hall, J.G., “FPGAs in Critical Hardware/Software

Systems,” Proc. FPGA 2003 ACM/SIGDA 11th International Symposium on Field
Programmable Gate Arrays, Monterey, CA, ACM, 2003, pp. 244.

Paper Objective: The paper discusses safety-critical systems implemented in FPGA
technology. A critical system is one in which failure may lead to serious consequences for
the operator. Failure of safety-critical systems may endanger human life; failure of
business-critical systems may result in serious financial loss. In such systems, preventing
failure is crucial.

D-14

Brief Description: There are possible complications brought on by using FPGAs, e.g., the
highly parallel nature of their computations, the difficulties of interfacing to other system
components, and timing issues. Timing issues can be resolved (to some extent) by using
a simulation or a synchronous HDL. Interfacing problems can be addressed by
implementing an asynchronous interface protocol. However, correct analysis of the
parallel structure of FPGAs remains the key to extending software development best
practice to the PLD domain.

Relevance to the Project: The paper highlights the concerns related to FPGAs: the highly
parallel nature of their computations, the difficulties of interfacing to other system
components, and timing issues that may impact safety, which are further examined in the
project case studies.

16. Karlsson, K. and Forsberg, H., “Emerging Verification Methods for Complex Hardware

in Avionics,” Proc. DASC 2005, 24th Digital Avionics Systems Conference, 30 October -
3 November 2005, Vol. 1, pp. 6.B.1 - 61-12.

Paper Objective: During the last 10 years, there has been a tremendous increase in the
ability to design airborne electronic hardware. However, the ability to verify correctness
of complex hardware has increased at the same pace. Since verification and testing
represents the larger part of development expenses, the industry needs to tackle a test/cost
problem, which is particularly true for the highest design assurance (levels A and B) in
airborne systems. In particular, the paper addresses the use of formal specification
languages, such as the property specification language in combination with dynamic
(simulation) and static (formal) verification methods for PLD. Using these methods, the
author suggests a design assurance strategy for complex, programmable airborne
electronics compliant with DO-254. The strategy is a semiformal solution, a hybrid of
static and dynamic assertion-based verification.

Brief Description: The paper highlights the hardware diversity as one the concern
towards safety in FPGA/PLD identifying accepted architectural mitigation techniques:
(1) triple-redundant module and (2) hardware diversity. The concept of triple-redundant
module mitigates single-event upsets in the FPGA registers. Hardware diversity using
two different technology-independent FPGAs might be used if one cannot prove or assure
that the FPGA component itself is free of design faults (or if the FPGAs place-and-route
tool cannot be shown to be reliable and the output is not independently assessed). FPGA
hardware diversity, however, increases both the cost and the complexity of the design and
should therefore be avoided.

This paper particularly addresses formal methods to be used in the FPGA/PLD
design/verification flow for hardware design assurance levels A, B, and C in airborne
applications. The functional specification can be used for both documentation of
requirements and verification of the design’s compliance. It is possible to tightly connect
documents and reviews to present a complete and consistent design/verification flow.

D-15

Relevance to the Project: The paper helps one to understand how to develop more
confidence in the design and to reduce time spent on exhaustive simulation, which also
reduces the risk of discovering bugs in late stages of the design and provides adequate
means of measuring and presenting functional/structural coverage for safety-critical
functions.

21. Miner, P.S., et al., “A Case Study Application of RTCA DO-254: Design Assurance

Guidance for Airborne Electronic Hardware,” Digital Avionics Systems Conferences,
2000, The 19th Proceedings DASC, Vol. 1, Issue 2000, pp. 1A1/1-1A1/8.

Paper Objective: In a joint project with the FAA, NASA Langley Research Center is
developing a hardware design in accordance with DO-254. The purpose of the case study
is to understand the new guidance document and generate an example suitable for use in
training.

Brief Description: This document is intended to provide a basis for the certification of
airborne electronic hardware devices used in aircraft. NASA Langley Research Center
also has a secondary objective for this case study: to develop a hardware platform
supporting in-house research targeted toward demonstrating systematic recovery from
multiple correlated transient failures.

For the case study, the authors have chosen to design a central subsystem of a new fault-
tolerant architecture, emphasizing the role of early life cycle in the subsequent
verification activities. The correctness of the conceptual design is the prerequisite to
assure correctness of the detailed design and implementation.

The principal focus of conceptual design verification activities is formal proof that the
fault tolerance protocols are correct. Subsequent design and verification activities will be
focused on preserving the implementation integrity of the verified algorithms.

Relevance to the Project: The paper helps the reader understand the role of early
conceptual design and verification activities and their impact on the success of safety-
related design and development.

23. Peterson G.D. and Hines J.W., “Advanced Avionics System Development: Achieving

Systems Superiority Through Design Automation,” Proc. 1998 IEEE Aerospace
Conference, 1998. Vol. 1, Issue 21, pp. 231-238.

Paper Objective: Conservative estimates predict high-performance chips exceeding 100-
million logic transistors and 1-GHz speeds that will be commercially available, thus
rendering a strategy of achieving productivity improvement, which is impractical for all
but the largest and most critical design efforts. Decreasing feature size for devices creates
further demands because analog, electromagnetic, and atomic effects become more
significant in submicron design, thus invalidating assumptions and models previously
employed.

D-16

Brief Description: The pace of technological innovation and the competitiveness in the
commercial market results in continuous reduction of product lifetimes for commercial
parts and manufacturing processes.

Design methodologies and tools must ensure correct and efficient implementations of
designs. Simply exploiting improvements in designing and manufacturing electronics
hardware solves only half the problem: efficient and reliable methods are needed to
develop and maintain both the hardware and software. With advances in reconfigurable
computing, the delineation between these two domains continues to blur. Effective
language support, tools, and methodologies addressing decreasing device size and higher
speeds will help enable the future deployment of sophisticated systems and the
affordable, effective maintenance of existing weapons systems.

To be able to adequately support a methodology for designing complex weapons systems,
accurate specifications of function, timing, interface, and constraints are needed.

During integration and test, performance bottlenecks and hardware bugs are discovered.
Due to the high cost of redesigning hardware, these problems are typically rectified by
making modifications to the system software, resulting in code that is late and over
budget. At this point, additional software engineers may be added to the effort, which can
exacerbate the schedule and budget problems. The software development effort often
receives the blame for the overall project difficulties, when in reality, the problems come
from communication and coordination shortcomings during specification and
development.

Relevance to the Project: Often there is little interaction between the hardware and
software design efforts due to a lack of a unified representation, simulation, and synthesis
framework. Because the integration and test phase of the design process is typically the
first time the hardware and software are joined, a variety of problems are often
encountered. Often, changes in the hardware design are not communicated to the
software design team, so the software is developed for the wrong hardware configuration.

24. Salzwedel, H., “Mission Level Design of Avionics,” Proc. 23rd Digital Avionics Systems

Conference, Vol. 2, pp. 9 D.2-1-10.

Paper Objective: Aerospace systems are characterized by architectural complexity,
dynamic interaction between subsystems, and complex functionality. Today, the
complexity of networked electronics in aircraft and the interaction of hardware and
software impose similar complexity and design challenges. This paper shows the move
toward performance- and mission-level design and its advantages over functional-level
design approaches.

Brief Description: Electronic chips have become systems and complex systems like
aircraft, spacecraft, automobiles, and communication systems are dominated by
networked electronics with embedded software. This compounds the problem of the gap

D-17

between design and implementation. The increase in complexity has caused major
problems throughout the industry, including:

• The failure of the first Ariane 5 rocket was because of a numerical value overflow.

The implementation was not tested against the mission.

• The development of the Teledesic satellite system was discontinued after it was

found that major design specifications had to be revised late in the design.

• In 1999, two spacecraft to Mars failed because of a mixup between units used by
different design teams.

Each of the design engineers and design teams make certain assumptions about how their
design will interact with near or far subsystems of other design teams. These assumptions
will not be the same, and some will not be documented. Additionally, many subsystems
may be reactive with respect to the environment and, hence, events cannot be predicted.
Hardware descriptions may be incompatible for those with different subsystems.
Insufficient communication between design teams will prevent required information from
being passed along. Simulations of the overall functional or implementation models are
not possible, and the overall system cannot be validated and verified on a computer.

When the independently developed subsystems are put together to create the overall
system, it does not work at first. Problems are fixed on a local level. Validation against
overall system requirements cannot be made since they are not executable and may be
inconsistent. Distant effects are often discovered late in the design, or worse, during
operation by the customer.

The critical problems could be in hardware or software, but more often in the coupling
between them. A major contributor to this problem is that the designs are done at the
functional level. However, complex systems can no longer be simulated as a whole at
functional level.

A hierarchical mission-level design approach is developed, that generalizes the design
approach for deep space missions and makes design decision where quantitative
information is first available:

• A validated and executable mission is the behavior of the system that uses a

component to be designed.

• Validated specifications of the functional behavior are generated by validating the

high level architecture and performance of the component against the mission
level requirements.

D-18

• The functional behavior of hardware and software is verified and validated
separately and in combination against the specifications stemming from the
architectural/performance model.

The paper emphasizes the role of modeling and simulation at the architectural and
performance levels that permits the development of executable specifications,
significantly reducing the probability of critical design errors and reducing the number of
design iterations and hence reducing cost. An integrated design process is described that
integrates the design from mission-level requirements to hardware and software
implementations and verifications.

Relevance to the Project: Critical issues are standardization of models at the architectural
performance level and validation at the architectural and performance levels. The
electronic hardware becomes obsolete much faster than software and may not be available
for the lifetime of an aerospace system. The issue is how can hardware be replaced
without changing the embedded software?

D.3 INDUSTRY PROBLEMS AND SOLUTIONS.

Literature entries on tool qualification from an industry perspective were collected as a result of
the project research reflecting industry practices for using AEH tools for design and verification
of PLDs.

27. Lange, Michelle, “Assessing the ModelSim Tool for use in DO-254 and ED-80 Projects,”

Rev. 1.1, Mentor Graphics Corp., May 2007.

Identified Problem: Assessment of Mentor Graphics’ ModelSim tool according to
DO-254. ModelSim is considered a verification tool, performing design analysis so that
no design errors are missed. The tool does not modify the design. The tool assessment
must be performed to provide confidence to the certification agency that ModelSim is
adequate to carry out the verification activity.

Suggested Solution: According to DO-254 (flow diagram for “Design and Verification
Tool Assessment and Qualification”), three methods exist for tool assessment:

• Independent output assessment
• Relevant tool history
• Tool qualification

ModelSim is considered a verification tool in the aerospace and avionics certification
process. It is used for digital simulation of directed test cases and provides coverage data.
The paper identifies the steps and documentation needed for assessing ModelSim in the
design process, following the flow diagram from DO-254. The ten steps are described
with the author’s interpretation of the necessary activities. Several examples are given

D-19

from the ModelSim manual and other sources that help identify major issues in going
through the qualification flow diagram.

28. Berens, Kalynnda, “NASA Complex Electronics Guidebook for Assurance

Professionals,” December 2004.

Identified Problem: Both software and quality assurance engineers need to understand
what airborne electronic devices are, where they are used, and how are they designed.
Since detailed assurance guidance is not available, some kind of guidebook is necessary
to increase confidence in the quality of airborne electronics.

Suggested Solution: The guidebook provides an introduction to the subject of complex
electronics and informs the reader on the following issues:

• Which devices are complex and which are not?

• Overview of airborne electronic devices, including NASA projects using these

devices

• How electronics engineers design and program these devices

• Assurance and verification activities for complex electronics

• NASA’s direction regarding assurance activities for airborne electronics

Ultimately, the role of the guidebook is to provide the reader with a general
understanding of airborne electronic devices and the design and assurance activities.

29. A380 Certification Review Item, March 2003

Identified Problem: Airbus proposed to use PLDs in A380 airborne systems. PLDs are
considered as devices whose complexity may be equivalent to software. An industry
standard, ED-80 (DO-254), has been issued for the design assurance aspects of AEH.
However, it necessitates some clarification when applied to PLD. The purpose of this
document is to define specific guidance for certification aspects associated with PLD for
systems containing digital electronics on the A380 aircraft.

Suggested Solution: The document discusses the Joint Aviation Authority’s (JAA)
position on compliance with the ED-80 (DO-254) and the corresponding position of
Airbus Industries. Among a variety of discussed issues, two positions on tool assessment
and qualification are quoted and declared compatible:

• Item 4.2.6, page 4, JAA: “For levels A and B, assurance compliant with the intent

of ED-80 should be provided for development and verification tools. A claim for

D-20

credit of relevant tool history, as discussed in ED-80 Section 11.4.1 item 5, should
be justified to the authority.”

• Item 4.1.8, page 8, Airbus: “For levels A and B, assurance compliant with DO-

254/ED-80 should be provided for development and verification tools. A claim
for credit of relevant tool history, as discussed in DO-254/ED-80 Section 11.4.1
item 5, should be justified to the authority.”

30. Hilton, Adrian and Hill, Jon G., “On Applying Software Development Best Practices to

FPGAs in Safety-Critical Systems,” The Open University, 2000.

Identified Problem: Standards, such as the UK Defence Standard (Def Stan) 00-54 and
IEC 61508, for developing safety-critical systems require the developer to demonstrate
the safety and correctness of the programmable logic device in such systems. In addition,
programming such devices is similar to programming conventional microprocessors in
terms of program size, complexity, and the need to clarify a program’s purpose and
structure. Def Stan 00-54 includes several recommendations that put emphasis on a
formal language to support reasoning about programmable logic behavior to assist
developers to comply with this standard. Without the ability to reason formally, it is not
possible to meet several requirements of the standard. This is especially true for HDLs
without formal semantics, such as the VHDL or Verilog, which are commonly used in
hardware design.

Suggested Solution: The paper identifies three distinct needs for clear semantics of
FPGA programs to be able to

• demonstrate that programs satisfy their specifications.
• refine designs into code while demonstrating their semantic equivalence.
• reason about behavior at the interface between software and programmable logic.

The paper suggests using the Synchronous Receptive Process Theory (SRPT) to reason
about the FPGA as a collection of small SRPT processes reacting to input signals to
produce outputs, when cells are viewed as processes and their routing is viewed as
describing which signals pass to which process. The authors suggest refining an FPGA
program design from the Z specification language to an implementation, maintaining
demonstrable correctness. A useful stepping stone would be a programming language
that could act as the target of refinement from Z and then could be compiled into an
SRPT process. One suggested candidate is SPARK Ada, a subset of the Ada language.
SPARK Ada has a formal semantics defined in Z, tool support from SPARK Examiner
static analysis tool, and the strong type system of Ada.

31. Young, Duncan, “RTCA/DO-254: No Hiding Place for Avionics Suppliers?” VMEbus

Systems, February 2004.

D-21

Identified Problem: The integrity of a safety-critical system is rooted in understanding
and managing risk. At the hardware side, the risk could involve component failure,
hardware design error, underestimated margins, thermal stress, mechanical integrity,
latent defect, or unpredictable behavior. These issues are especially critical, when more
complexity is being incorporated into avionics systems in the form of processors, graphic
devices, bridges, ASICs, FPGAs, and memory parts. In addition, the designer must make
use of off-the-shelf components to construct a processing subsystem, memory, buses, and
external interfaces that are only tenuously traceable back to top-level system functions.

Suggested Solution: The introduction of commercial off-the-shelf (COTS) VMEbus
products with off-the-shelf firmware and real-time operating system developed to
DO-178B guidelines, with the right quality levels and design assurances, would offer
more cost-effective solutions than the architectural systems based on redundancy.
Recognizing that COTS products could have a place in safety-critical avionics systems
even where DO-254 is a requirement, the Avionics Process Management Committee has
produced the EIA-933 Standard for Preparing a COTS Assembly Management Plan. This
document recommends how to select and manage suppliers of avionics COTS products.

32. Hilderman, Vance and Baghai, Tony, “Avionics Hardware Must Now Meet Same FAA

Requirements as Airborne Software,” COTS Journal, September 2003.

Identified Problem: Until recently, only airborne software had to comply with rigid FAA
design assurance and verification process steps, with certification based on DO-178B
guidelines. However, avionics hardware was not required to meet such strict
requirements, so functionality could be moved from software to hardware to avoid the
rigors of DO-178B.

Suggested Solution: The paper gives a general introduction to DO-254 and lists three
supporting processes important for certification: configuration management, process
assurance, and certification liaison. It is advised to support configuration management by
public open source tools: concurrent version system (CVS) and a bug tracking system.
CVS is a revision control system that maintains a history of changes to the controlled
project. It records who makes a change, the date, and reasons for the change. GNATS is
a problem-reporting tool. Problem reports are submitted via email and are automatically
logged into a database and forwarded to a responsible party. Regarding process
assurance, the recommended strategy is to focus on ensuring correctness at the conceptual
design stage and then preserve the design integrity as one proceeds through detailed
design and implementation. The certification basis depends upon the conceptual design,
which is maintained under configuration management.

33. Thornton, Robert K., “Review of Pending Guidance and Industry Findings on

Commercial Off-The-Shelf (COTS) Electronics in Airborne Systems,” Report
DOT/FAA/AR-01/41, FAA Office of Aviation Research, Washington, DC, August 2001.

D-22

Identified Problem: The use of complex electronic hardware components in airborne
systems poses a challenge to meet safety requirements because, for complex components,
complete verification is, at best, very difficult and, at worst, not achievable. Using COTS
components in airborne systems raises a number of issues with respect to meeting
airborne systems safety requirements and DO-254 objectives. In addition, commercial
market trends are rapidly diverging from the needs of safety-critical airborne systems.
The current move towards SoC designs, which may incorporate close to one million
gates, has sparked the development of a new wave of EDA tools that will enable the trend
towards more complex commercial microelectronics. While the new tools may provide
some increased level of design assurance, qualification of these tools is an issue.

Suggested Solution: About a dozen key component attributes have been identified to
meet the DO-254 objectives and guidance. One of them is the “role of COTS tools in
design and verification.” The report identifies the following aspects of their role:

• Appropriate design models for formal methods
• Assessed tools for formal methods
• Assessed development tools
• Assessed verification tools
• Employ qualified verification tool
• Employ qualified design tools

The report identifies two essential ways of design verification: simulation and formal
verification, and lists six references to access more detailed information. In conclusion,
the report states that qualification of the tools to meet objectives for critical levels A and
B in DO-254 was not evidenced in this investigation and may present a barrier to meeting
the objectives, unless the development effort required to qualify the tools is undertaken or
additional assurance can be gained by other means (pp. 89).

34. Lee, Clive, “IPT Guidance for Acquisition of Systems With Complex Programmable

Hardware Using DO-254,” ERA Technology Ltd, June 2007.

Identified Problem: For UK military systems, the safety assurance of AEH has been
specifically addressed by Def Stan 00-54 introduced in 1999. However, the standard was
withdrawn in December 2004 and replaced by the system-level Def Stan 00-56 issue 3. It
was thought that the less prescriptive approach to system safety assurance would facilitate
the development and certification of novel systems with airborne electronic hardware.
One unintended effect of this approach to safety assurance has been the removal of
detailed guidance for the specification and procurement of AEH. For a rapidly
developing technology, guidance is required for most suppliers at some stage and its lack
may actually discourage its exploitation due to the perception of increased project risk.

Suggested Solution: The report aims to guide the procurement and acceptance of military
avionic systems based on the continuing technical advances that are being made in
electronic system design, in general, and the capabilities of PLDs in particular. An

D-23

interpretation is given of DO-254 in a view of military systems, quoting several common
issues in DO-254 development and certification, such as:

• Inadequate level of detail in requirements
• Inadequate formal planning and following of plans
• Lack of independence in quality assurance and verification
• Inadequate and non-automated traceability
• Lack of automated testing.

The issue of tool qualification is not addressed in this report.

35. Baghai, Tony and Burgaud, Lionel, “DO-254 Package: Process and Checklists Overview

and Compliance With RTCA/DO-254 Document,” March 2004.

Identified Problem: DO-254 was issued several years ago. Although it established the
standard for qualification of airborne electronic hardware, it remains vague in several
aspects, and clarification is needed regarding those ambiguous issues. An interpretation
of the standard needs to be given for actual examples from industrial practice.

Suggested Solution: A DO-254 Users Group has been established to help identify and
resolve common problems. The DO-254 package includes the following five items
designed to assist in the qualification process:

• The processes documents help define, benchmark, and improve the industrial

design, verification, validation, and quality assurance processes.

• The quality assurance checklists, for reviews and audits, ensures that each project

is compliant with the defined industrial process.

• The tools

- “Reqtify” for requirements management and traceability
- VN-Check for checking compliance of HDL code with coding standards
- VN-Cover for HDL code verification
- VN-Optimize for test suite optimization to increase productivity

• The tools integration into the industrial process, until their qualification

(interfaces, report generation for a certification audit, training, tools assessment,
etc.).

• The DO-254 training by consulting partners.

36. Burgaud, Lionel, “The DO-254 Users Group: A Proactive Initiative to Federate Industry

Efforts,” Presentation at the FAA Software & AEH Conference, New Orleans, LA, July
2007.

D-24

Identified Problem: The DO-254 added new objectives and challenges to the hardware
design processes. Requirements management became mandatory in hardware processes.
The avionics and aerospace industries needed to establish partnerships and potentially
share expertise and process improvement plans via structured collaboration.

Suggested Solution: A DO-254 Users Group has been established to help identify
common problems and resolve them. The presentation outlines objectives, membership,
roadmap, and some of the DO-254-oriented improvements in the design process. Xilinx,
Altera®, TNI-Software, and Mentor Graphics present their individual slides. In particular,
TLI-Software identifies their tools to support the process: “Reqtify” (a requirements
traceability and requirements-based engineering tool), RT-Builder (a real-time
architecture modeling and simulation tool), Eclipse-based solutions and workbenches,
and others.

37. Lundquist, Per, “Certification of Actel Fusion According to RTCA DO-254,” Master

Thesis, Report LiTH-ISY-EX-ET-07/0332-SE, Linköping University, Sweden, May 4,
2007.

Identified Problem: In recent years, the aviation industry moved toward using PLDs in
airborne safety-critical systems. To be able to certify the close to fail-safe functionality of
these programmable devices (e.g., FPGA) to the aviation authorities, the aviation industry
uses DO-254 guidance for design assurance for AEH. At the same time the PLD industry
is developing ever more complex embedded SoC solutions integrating more and more
functionality on a single chip. This thesis looks at the problems that arise when trying to
certify SoC solutions according to DO-254. Used as an example of an embedded FPGA,
the Actel Fusion FPGA chip with integrated analog and digital functionality is tested
according to the verification guidance.

Suggested Solution: Standard FPGAs, programmed using Verilog or VHDL languages,
are used today in several real airborne safety-critical systems. For example, more than
700 Actel FPGAs are used in the Airbus A380 commercial airliner. That a certification
procedure for a standard non-embedded FPGA-based, safety-critical system is possible
has been shown in this thesis. The programmable logic industry will continue to design
SoC solutions for the market, including for example, soft processors, analog and digital
amplifiers, communication interfaces, and filters. If these solutions could be used in the
aviation industry, it would mean using fewer systems that could do more, thereby, among
other things, reducing system complexity and developing costs. The question of how
these embedded chips could pass certification to be used in safety-critical systems
remains unanswered.

38. Jacklin, Stephen, et al., “Development of Advanced Verification and Validation

Procedures and Tools for the Certification of Learning Systems in Aerospace
Applications,” Proc. AIAA Infotech@Aerospace 2007 Conference and Exhibit, Arlington,
Virginia, September 26-29, 2005, Paper No. AIAA 2005-6912.

D-25

Identified Problem: Highly advanced adaptive control systems are needed to fulfill the
present and future aerospace needs of the nation. Adaptive control technologies that
incorporate learning algorithms have been proposed to enable automatic flight control and
vehicle recovery, autonomous flight, and to maintain vehicle performance in the face of
unknown, changing, or poorly defined operating environments. For civil aviation,
adaptive control systems have been proposed that use learning to recover loss of vehicle
control due to sudden aircraft damage or component failure. For robotic applications, the
ability to learn gives adaptive control systems greater capability to adapt to changing
mission requirements after deployment. Adaptive control systems have virtually
unlimited applications for NASA space exploration applications, including mated flight
vehicle coordination, docking, and control of autonomous robots, flyers, and satellites.
Because most of these applications are in safety-critical areas, it is obvious that adaptive
control systems with learning systems will never become part of the future unless it can
be proven that this software is very safe and reliable. Rigorous methods for adaptive
software verification and validation must be developed by NASA and others to ensure
that control system software failures will not occur, to ensure the control system functions
as required, to eliminate unintended functionality, and to demonstrate that certification
requirements can be satisfied.

Suggested Solution: The FAA certification requirement to show that learning software
programs meet their intended function do not negatively impact other systems or
functions on the aircraft and are safe for operation, as pointed out in DO-178B, involves
more than just running a set of test cases. The complete verification and validation of
learning systems should not be viewed as running test cases and comparing expected
results to actual results because such tests can never reveal the absence of errors. The
verification and validation objectives must be satisfied by a combination of reviews,
analyses, the development of test cases and procedures, and the subsequent execution of
those test procedures. Simulation and methods to automate simulation remain very
important tools, because at present, only they can really test and explore the most nagging
problems of adaptive system verification, such as algorithm stability and convergent
learning. Yet, the fact that testing can never reveal the absence of errors is a major
shortcoming of this approach. Therefore, future progress toward certification requires
that a number of new tools, such as the ones cited herein, be developed to allow the
ultimate certification of adaptive control systems that use learning algorithms. In all
likelihood, a combination of analysis, tools, and simulation will be needed to address the
full aspect of the certification problem for learning systems.

39. Crum, V., Homan, D., and Bortner, R., “Certification Challenges for Autonomous Flight

Control Systems,” Proc. AIAA Guidance, Navigation, and Control Conference and
Exhibit, Providence, RI, August 16-19, 2004, Paper No. AIAA 2004-5257.

Identified Problem: As the U.S. Air Force works toward developing intelligent and
autonomous weapon systems, a daunting task looms. How can one certify that a
decision-making intelligent system is safe when the decisions are unpredictable?
Trusting decisions made by autonomous control software will require completely new

D-26

methods and processes to guarantee safety. The difficulty lies in determining how these
intelligent systems will operate in a dynamic environment and with less human oversight.
New paradigms will be needed to assure safety. Certification of flight control
technologies is already the most rigorous testing embedded computer systems endure.
Intelligent control adds a whole new dimension of issues. Adding intelligence can be
divided into three challenges: building intelligence, instilling safety, and enabling
affordability. All three are closely related. Cost and safety issues will influence how one
designs and builds intelligence. Unmanned aerial vehicle (UAV) autonomous control is a
revolutionary leap in technology. Such control replaces decision-making that required
years of training for human operators. Neglecting autonomous control certification
research today will dramatically increase tomorrow’s cost of ownership for future users.

Suggested Solution: There are many technical challenges associated with certification of
intelligent and autonomous control systems. Advanced UAV capabilities being
developed today will challenge certification techniques far beyond their current
capacities. New validation and verification (V&V) technologies are needed to enable
timely and efficient certification of the intelligent and autonomous UAV control systems
still in their infancy. V&V tools are needed to achieve the necessary degree of rigor that
will ensure safety and mitigate risks associated with implementing autonomous control.
A lack of research investment in certification technologies will have a significant impact
on levels of autonomous control approaches that can be properly flight-certified and could
lead to limiting capability for future autonomous systems. In addition, these advances in
certification must also be repeatable to ensure that modifications to the control system
cannot directly or regressively compromise airworthiness. The aerospace community has
acknowledged that a consolidated research and development effort will be required to
adequately address certification challenges and to share the investment burden to realize
technological change in the certification process.

40. Baghai, Tony and Burgaud, Lionel, “Reqtify: Product Compliance With RTCA/DO-254

Document,” May 2006.

Identified Problem: Reqtify is an effective solution for requirement traceability, impact
analysis, and automated documentation generation. Reqtify supplies the following
functionalities: requirement coverage analysis, upstream and downstream impact
analysis, requirement change, update and deletion tracking throughout the project life
cycle, requirement attribute handling, filtering and display depending on these attributes,
user-configurable documentation generation, and regression analysis. This technical note
presents how Reqtify complies with the DO-254 objectives.

Suggested Solution: According to DO-254 classification, Reqtify is a verification tool, as
it is a tool “that cannot introduce errors, but may fail to detect an error in the hardware
item or hardware design.” Prior to using the tool, a tool assessment should be performed.
The purpose of tool assessment and qualification is to ensure that the tool is capable of
performing the particular verification activity to an acceptable level of confidence for
which the tool will be used. It is only necessary to assess those functions of the tool used

D-27

for a specific hardware life cycle activity, not the entire tool. The assessment activity
focuses as much or more on the application of the tool as the tool itself. The verification
tool only needs to be qualified if the function that it performs is not verified by another
activity. The flow chart from DO-254 is applied and indicates the tool assessment
considerations and activities and provides guidance for when tool qualification may be
necessary.

41. Aldec, Inc., “DO-254 Hardware Verification: Prototyping With Vectors Mode,” June 26,

2007.

Identified Problem: A sample design includes a counter, with the following features: one
clock domain, asynchronous reset, clock-enable port, counting direction port (up/down),
synchronous initial value reload ability, and 64-bits output data. The system contains two
boards connected through daughter board connectors. The main board is an Aldec HES
board (HES3X3000EX), which is connected to the PCI bus. This board generates stimuli
for the device under test (DUT) and collects results from the DUT. The second board is a
user daughter board with DUT.

Suggested Solution: The verification process contains three independent stages:
simulation, verification, and comparison. The simulation stage is a typical HDL-level
simulation in Active-HDL simulator. During simulation, stimuli and results are captured
to a waveform (ASDB format) on a specified edge of a user clock. The clock line of the
DUT is not stored in the waveform file. It is generated on the HES main board during
verification to assure constant frequency. For hardware verification purposes, the
PrototypeVerificationTool program is used to send test vectors to the DUT and retrieve
response data from the DUT. During the verification process, the application
continuously performs two tasks: writing stimuli to SinFIFO and reading results from
RoutFIFO. The results from RoutFIFO are written to a raw binary file. At the end of
verification, the binary results are transformed to an ASDB waveform file. At the
comparison stage, the waveform captured during simulation is compared with the
waveform obtained from the hardware verification. If there is no differences, it means
that verification has finished successfully. The Aldec waveform viewer, the Wvcore, can
be used for waveform comparison.

42. Leroy, Jean-Eric and Bezamat, James, “Experience at Barco-Silex in FPGA Design With

DAL C (DO254),” Barco-Siles S.A., Peynier, France, Internal Paper, 2007.

Identified Problem: Designing FPGAs for AEH should be compliant with DO-254 rules.
This design assurance implies changes in traditional design rules. Improvements of the
methodology are necessary for circuit development. From communication within the
project toward test bench methodologies, many things will be handled differently by the
design team, thus implying the increase of documentation and, therefore, the final cost.

Suggested Solution: The paper gives an overview of the way Barco-Silex has handled the
DO-254 constraints for designing several FPGA circuits. It addresses the development

D-28

cost impact on FPGA design throughout the verification level and the amount of data
delivered in this process. The golden rule to provide hardware design assurance for any
design entity is to split the three fundamental design rules, which are specification,
conception, and validation. These must be assumed by different people to avoid error
propagation from the beginning until validation. In many cases, validation results may
need to be reviewed independently to confirm that proper procedures were followed and
the results confirm the requirements have been met.

43. Pampagnin, Pascal and Menis, Jean François, “DO254-ED80 for High Performance and

High Reliable Electronic Components,” Barco-Siles S.A., Peynier, France, Internal Paper,
2007.

Identified Problem: Today, avionics manufacturers follow the rules given by nonairborne
markets (telecom, personal computer, multimedia, and home electronics). These strong-
market leaders are driving the whole electronics domain, including components
procurement, computer-aided design tool usage, and methodology implementation.
These leading markets have very short life cycles compared to aircraft (for instance, life
cycle for a memory is around 18 months, but the life cycle of an aircraft is 30-40 years).
Taking into account the technology changes, avionics designers have to also cope with
such trends as:

• New and novel technology issues

• Merging formerly separate and independent functions on the same hardware

• Multifunction components

• Displaying critical and noncritical functional paths in the same systems and

components

• Replacing mechanical with electronic parts (for example, relays and switches)

• Using airborne electronic hardware in roles traditionally targeted at software

• Configurating control of complex and highly integrated systems. This imposes a

very complicated environment to apply DO-254/ED-80 procedures to the design
process.

Suggested Solution: Even if implementing DO-254/ED-80 has a negligible cost, this can
be considered an investment. It obliges the supplier to analyze in detail its processes,
methodologies, and tools and to apply structured development processes, with a rigorous
quality assurance. It also allows the supplier to adapt its set of internal processes to the
design assurance level targeted, to optimize efforts. The resulting products have a better
quality and the development cycles are optimized. Verification is focused on design
errors, and effort and resources are better distributed. It obliges the subcontractor to

D-29

respect a structured development processes. The initial cost has to be compared with the
level of quality for the subcontractor. Applying DO-254/ED-80 gives the assurance that
the applicant can obtain from its subcontractor a high level of quality, good
documentation, and the ability to reuse the design, if necessary.

44. Dellacherie, S., Burgaud, L., and di Crescenzo, P., “imPROVE—HDL: A DO-254

Formal Property Checker Used for Design and Verification of Avionics Protocol
Controllers,” Proc. DACS’03, 22nd Digital Avionics Systems Conference, Indianapolis,
Indiana, October 12-16, 2003, Vol. 1, pp. 1.A.1-1.1-8.

Identified Problem: Today’s airplane contains a large network linking embedded
controllers to sensors/actuators and communications equipment onboard. Efforts made in
recent years to simplify network wirings have resulted in significant reductions in the
aircraft weight and labor required to run wiring harnesses. This has often come at the
cost of more complex data bus architecture (bi-directional protocol instead of
unidirectional protocol). DO-254 considers the use of formal methods and requirements
traceability when developing hardware to support safety-critical (level A or B) functions.
This paper looks at a static formal approach that may be used, in combination with
requirements traceability features, to apply formal methods in the design and verification
of hardware controllers to support such protocols as ARINC 429, ARINC 629, MIL-STD-
1553B, etc.

Suggested Solution: This paper describes the application of a formal tool, imPROVE-
HDL, in the design and verification of AEH developed in a DO-254 context. imPROVE-
HDL is a formal property checker that complements simulation in performing exhaustive
debugging of VHDL/Verilog Register-Transfer-Level hardware models of complex
avionics protocol controllers without creating test benches. The Reqtify tool is used to
track the requirements throughout the verification process and to produce coverage
reports. Using imPROVE-HDL coupled with Reqtify, avionics hardware designers are
assured that their bus controllers meet the most stringent safety guidelines outlined in
DO-254.

45. Lange, Michelle, “Automating Clock-Domain Crossing Verification for DO-254 (and

Other Safety-Critical) Designs,” White Paper, Mentor Graphics Corporation, December
2007.

Identified Problem: “Metastability” is the term used to describe what happens in digital
circuits when the clock and data inputs of a flip-flop change values at approximately the
same time. This leads to the flip-flop output oscillating and not settling to a value within
the appropriate delay window. In this case, the output of the flip-flop is said to have gone
“metastable.” This situation happens in every design containing multiple asynchronous
clocks, which occurs any time two or more discrete systems communicate. Metastability
is a serious problem in safety-critical designs in that it frequently causes chips to exhibit
intermittent failures. To understand clock domain crossing (CDC) in the context of
DO-254, the purpose of DO-254 - design assurance – should be considered.

D-30

Suggested Solution: A comprehensive CDC verification solution, such as 0-In CDC,
must do three distinct things:

• Perform a structural analysis. This is most effectively done on the RTL code to

identify and analyze all signals crossing clock domains, and determine if their
synchronization schemes are present and correct.

• Verify transfer protocols. This assures that the synchronization schemes are used
correctly by monitoring and verifying that protocols are being followed during
simulation.

• Globally check for reconvergence. This is most effectively done by injecting the
effects of potential metastability into the simulation environment and determining
how the design will react.

0-In CDC provides added assurance that the design will function correctly within the
intended system (this is the intent of DO-254). However, unless a specific requirement
has been identified by the customer that states one must verify the clock domain
crossings, 0-In CDC can be run without it becoming part of the DO-254 review process.
On the other hand, if a specific requirement from the customer (or the designated
engineer representative) states the clock domain crossings must be verified to identify and
eliminate instances of metastability, then a method of tool assessment must be chosen.
The simplest one is Independent Output Assessment.

E-1

APPENDIX E—HARDWARE CASE STUDY EXPERIMENTS

The case studies are designed to be a subset of tests that would be run during an airborne
electronic hardware (AEH) tool qualification. The case studies will test the tool from design
entry through synthesis to the actual hardware implementation. The case studies are constructed
as small, focused experiments to analyze tool performance under worst-case conditions. Using
worst-case conditions allows the case study to assess the bounds of the tools’ capability under
challenging conditions. Using small, focused experiments allows the case studies to be fully
verified and known to be correct before the design is committed to hardware. The following case
studies were selected:

• Timing Constraints Analysis: How closely does system timing match the timing

constraints? How much margin (if any) exists to the constraint?

• Wide Data Busses: Large data busses can switch a large number of pins at the same time.

Can large data busses cause any issues?

• Undefined Input/Output (I/O) States: Field-programmable gate arrays (FPGA) often

contain more pins than are used in a design. What is happening to the unused pins?

A case study investigating radiation effects was considered but there were no facilities available
to address radiation effects. It was also decided that, although it was feasible to implement test
cases for the problems identified in sections 8.5 through 8.7, physically implementing these case
studies would offer no additional insights. Therefore, these case studies were also rejected.

Appendix E begins by discussing the FPGA architecture and the electrical hardware used to
implement the case studies. It then examines each case study individually and draws conclusions
from the test cases analyzed.

E.1. ARCHITECTURE BACKGROUND FOR FPGA.

A typical FPGA I/O contains a large amount of circuitry. This circuitry is designed to allow a
single pin to be either an input or an output for numerous I/O signaling standards. Outputs can
have totem pole, open drain, or open source configurations as well as resistive pull-ups and pull-
downs. Outputs can be operated on either one clock edge or both clock edges. Inputs can have
resistive terminations and predefined or user-defined signaling thresholds. Both inputs and
outputs can be operated on single-ended and differential signals.

The circuitry for a standard I/O is shown in figure E-1. For any given signaling configuration,
only a small portion of the hardware is actually active. The remaining hardware is deactivated
transparently to the user. The user may be unaware that the additional hardware exists and
operate the device in a fashion where the unused hardware may impact device operation.

E-2

Figure E-1. The FPGA I/O Architecture for Standard I/O Configurations [E-1]

The Xilinx® Spartan-3E FPGA family [E-1] is a low-cost family offering mid-level performance
and capability. As shown in table E-1, a standard FPGA contains hundreds of I/O pins. To allow
the FPGA to operate using multiple signaling standards, the I/Os are grouped into banks that
share a common power supply voltage. The number of banks and I/Os per bank vary with the
FPGA and the FPGA package.

E-3

Table E-1. The Gate Count and Number of User I/Os for the Xilinx Spartan-3E FPGA Family
[E-2]

Device System Gates
Maximum
User I/O

XC3S100E 100K 108
XC3S250E 250K 172
XC3S500E 500K 232
XC3S1200E 1200K 304
XC3S1600E 1600K 376

One of the safety issues targeted for testing was the possibility of simultaneous switching noise
(SSN) introducing errors. Therefore it was necessary to select a hardware platform
representative of current FPGA technology that could run all of the desired tests and also have
enough outputs to be capable of generating SSN noise. FPGA manufacturers provide guidance
on how many outputs per bank can be switched simultaneously. The I/O standard that is being
used is a significant factor in determining the SSN limits, with the worst-case standard being
LVTTL I/Os. Figure E-2 shows the recommended maximum number of single-ended outputs for
the LVTTL standard. The fewest number of I/Os per VDD/ground (GND) pair occur when the
output is configured for a fast slew rate and a high drive strength. Figure E-3 shows that number
of VDD/GND pairs per I/O bank for several devices in the Spartan 3-E family. The fewest
number of VDD/GND pairs occurs for packages with the fewest number of total pins.

Figure E-2. Recommended Maximum Number of Single-Ended Outputs per
VDD/GND Pair [E-3]

E-4

Figure E-3. The Number of VDD/GND Pairs per I/O Bank for the Xilinx Spartan-3E FPGA
Family [E-3]

E.2 THE CMOS LVTTL STANDARD.

For the 3.3 V LVTTL standard, the maximum voltage that is guaranteed to be interpreted as a 0
is 0.8 V. (The maximum voltage for a low input is called VIL.) The minimum voltage that will
be interpreted as a 1 is 2.0 V. (The minimum voltage for a high input is called VIH.) Input
circuits are designed to have a nominal trip voltage of about 1.4 V. This means that all voltages
above 1.4 V are interpreted as a 1 and all voltages below 1.4 V are interpreted as a 0.

In CMOS processes, the input trip voltage is a function of the applied power supply voltage. For
instance, an input circuit with a trip voltage of 1.4 V and a 3.3 V power supply would have a trip
voltage of 0.42* VDD. If this device is operated at 3.0 V, the trip voltage would decrease to
1.27 V. SSN can induce voltages on the power and ground supplies which can cause the trip
voltages to change and possibly lead to an erroneous circuit operation.

In a CMOS process, numerous parasitic diodes exist. In normal operation, the parasitic diodes
are reverse biased. This results in a substantial internal capacitance between the internal VDD
and the internal ground. Parasitic inductances in the power and ground supply grids effectively
decouple the on-die VDD and ground voltages from external supplies. The resulting on-die
power grid maintains the difference between the internal VDD and internal ground, even if the
internal ground level varies. If the difference between VDD and internal ground is 3.3 V and
SSN causes the internal ground to rise up by 0.6 V, then the internal VDD will also rise by 0.6 V.

E.3 EXPERIMENTAL HARDWARE PLATFORM.

The original board selected for this project was the Spartan-3E starter board, which offered
connections to 38 I/Os on a single bank. For the FG320 package used on the Spartan-3E starter
board, the Xilinx SSN design tool guidance allows up to 45 SSOs on a bank [E-1]. Therefore,
this board would not allow the capabilities of the internal FPGA power networks to be stressed.
It should be noted that the experiment is limited by the outputs the evaluation board makes
available to the user. A custom-designed board for the FPGA could easily exceed the SSN tool
design guidance. Many different FPGA evaluation boards were examined, and numerous trade-
offs ensued. The boards with the best access to large numbers of outputs in a single bank had
devices in large pin count packages that reduced the susceptibility to SSN effects. Boards with
smaller pin count packages had restricted access to the I/O pins. None of the evaluation boards
met the needs of this research. The constraints placed by the evaluation board limitations would

E-5

not be a concern for a real design, since a custom board could be designed. The research
schedule did not allow the time to design a custom board for the FPGA evaluation. After much
deliberation, it was decided to use the Spartan-3E starter board and design a custom load board
that would provide the ability to connect a variety of loads to the output pins, give access to the
necessary test signal levels, and provide monitors for the signal integrity.

The Spartan-3E starter board was selected as being similar enough to the originally selected test
board and did not require major revisions to the test cases, providing the capability of stressing
the SSN guidelines. The Spartan-3E starter board provides connections to 20 I/Os on a single
bank. The Xilinx guidance for the maximum number of I/Os that can be simultaneously
switched is 21 I/Os, configured as 24 m A fast slew LVTTL outputs per bank [E-3]. This board
can never violate the Xilinx-recommended loading, therefore, if any failures occur, they will be
unexpected.

The load board is intended to connect to a variety of evaluation boards via a standard board
expansion connector. For the Spartan-3E starter board, this connector provides access to the
FPGA bank 0 I/O, as well as some of the bank 1 I/Os.

As shown in figure E-4, the FPGA I/Os (pins D5, D6, and E7) are connected to a termination
voltage (Vterm1). In normal operation, Vterm1 is connected via a jumper on header 3 to either
VDDO, GND, or an external reference driving Vterm1. The net result is that the user can
connect a capacitive load to VDD, GND, or some other termination voltage reference. In
addition, the board can be assembled with resistors instead of capacitors to provide resistive
loads to VDD, GND, or some other termination voltage.

Figure E-4. The Custom Load Board Configuration

VDD

E-6

The termination voltage setting is applied to a group of I/Os, as described below.

• Connector A2 Vterm groupings

- Vterm1: pins D5, D6, E7, D7, D8, D10, B4, E6, C5, C6, C8, C9, A3, and A4

- Vterm2: pins B5, B6, A7, A8, B10, B11, A12, A13, A5, B7, B8, A9, A10, B12,

B13, and B14

- Vterm3: All connector B1 I/Os

E.3.1 SIGNAL INTEGRITY MONITORING.

Signal integrity monitoring is necessary to assure that the signals are correct when SSN effects
are not present; in addition, the monitors allow the effects of SSN to be observed. SSN monitor
connections, as shown in figure E-5, are provided on I/O pins C6, A8, and B12. These monitors
are implemented as 950-Ω series resistors to subminiature version A (SMA) connectors. The
intended measurement equipment is a 50-Ω oscilloscope. The 950-Ω resistor plus 50-Ω scope
provides a high impedance probe connection to the I/O. The oscilloscope should be set to a
probe divide-ratio of x20.

Figure E-5. Signal Integrity Monitor Schematic

E.3.2 EXTERNAL DIRECT CURRENT INPUT VOLTAGE.

Input pin C7 is intended to be used as a direct current (DC) input to the FPGA (figure E-6). A
Bayonet Neill Concelmun (BNC) connector is provided for connection to a labortory power
supply. Additionally, a header is provided to allow for connecting input C7 to either VDDO or
GND with a jumper.

E-7

Figure E-6. External DC Voltage Input

E.3.3 EXTERNAL CLOCK INPUT.

An SMA connector is provided for connectivity to I/O A8 (figure E-7). This is intended to be
used as a clock input signal for timing constraint experiments. The FPGA pin is a global clock
input (GCLK) and is specially designed to be used as a clock input.

Figure E-7. External Clock Input

The custom-designed load board is shown in figures E-8 and E-9. Figure E-8 shows a close-up
of the load board, and figure E-9 shows the load board attached to an FPGA evaluation board.

E-8

Figure E-8. A Close-Up of the Custom Load board Showing the Connector Pins, Resistive
Loads, and Monitoring Ports

Figure E-9. An FPGA Evaluation Board Showing the Custom Load board Connected to the
Expansion Connector

E-9

E.4. EXPERIMENT DESCRIPTIONS.

The case studies were developed based on the expressed concerns of the scientific and industrial
communities with reference to airborne electronic hardware (AEH) tools, such as those used for
FPGA development. Largely, these concerns were relevant to development of safety-critical and
real-time systems. These case studies were geared toward qualifying the AEH tools. In an
attempt to qualify the tools, the tools will be used with worst-case scenarios, along with least-
likely uses, to test the bounds of the tools’ capability. The concept is that the black box design
entered into the tool shall have a one-to-one mapping trace to the black box operation that is
finally implemented. This, however, shall be done in a design-independent fashion. To facilitate
design independence, case studies were developed as small focused experiments used to discover
specific attributes of a tool. This method was preferred to large, elaborate designs because
broken links in tracing from design to implementation were often caused by a flaw in the design.
The following test case studies were identified:

• Timing Constraints: A determination of timing based on synthesis redesign used to

establish the safety margin with respect to the timings reported by the tool.
• Wide Data Busses: A systematic way of determining if place-and-route functions are

effective and drawing current in part of the circuit does not adversely affect other parts.

• Undefined I/O States: A test to determine how the tool uses the I/O pins not defined by

the user.

In addition to the above, there are two other safety issues discussed. (1) A simulation error is the
situation in which behavioral simulation results differ from actual implemented circuit behavior.
Determination of accuracy and reliability of the simulation component of the tool is critical.
However, good designers know the simulation is only one step and can be trusted only when the
actual hardware testing confirms the simulation results. (2) A faulty hardware detection is the
capability of the tool to notify the designer if the selected programmable logic device is faulty
and would not properly implement the synthesized circuit.

Thorough literature research, surveys, and industry interviews of uncertainties and faults
regarding the usage and/or operation of the tools have been compiled and analyzed. The case
studies are focused on verifying the validity of these findings. The scope of these findings
includes user interaction with the tool, such as if a user tries to implement something physically
impossible, does the tool notify the user, alter the design to make it possible, or attempt to
implement the design? This leads to another topic in the scope of the case studies, does the tool
have “awareness” of the hardware physical limits, or is this the responsibility of the user? For
example, will the tool try to implement a component on a faulty piece of hardware? Will the tool
exceed the minimum transition time of the gate timing or account for a safety margin? These are
just a few of the many identified concerns, each of which traces to safety constraints or timing
constraints.

The majority of the tools come in a package that contains everything from coding or formal
requirements and design, to redesigning through synthesis, to testing the final implementation.

E-10

The tools appear to be self-contained, in the sense that they do their own verifications and
testing, including even self-validation of formal requirements and design. This raises the
question: if the tool does all the design/redesign and it verifies its own design, will it ever really
know if it is correct? This leads to the question of the independence of the verification that is
required by DO-178B and DO-254.

Also, can software or hardware itself verify through testing something that the software or
hardware is not physically capable of actually doing? How much human intervention is needed
to use these tools and what qualifications does the user need? In addition, the tools have no
knowledge of the actual physical environment that the FPGA will be operating in and assume
that everything is ideal. Is this a reasonable assumption for safety-critical systems? These are
some of the questions that will be answered through an analysis of the case study results. Three
of the previously identified case studies are described below.

E.5 TEST CASE 1—SSN.

To test SSN performance, the FPGA will be configured with the maximum number of
simultaneously switching outputs. It is expected that changing VDD and GND currents drawn by
the outputs will cause the internal VDD and GND voltages to vary. To sense this variation in the
internal power rail voltages, this test case will configure one of the I/Os in the same I/O bank to
be an input. The threshold voltage of this input is a function of the power rail voltages. This
input will be a constant voltage defined to be the maximum voltage allowed for a low input or
the minimum voltage allowed for a high input. This input is then connected to an output on a
lightly used I/O bank, as shown in figure E-10. If the SSN causes the input to misread its input
signal, then the output on the lightly used bank will switch. This output will be monitored during
the test. Any switching or unexpected signal transitions (glitching) of this signal indicates that
SSN has produced a logical error.

InputbufferN-bitCounterOutputDriverMaximumLoadInputbufferN-bitCounterOutputDriverMaximumLoadInputbufferN-bitCounterOutputDriverMaximumLoadInputbufferN-bitCounterOutputDriverMaximumLoadVariable Frequency Clock (Noise Generator)OutputDriverInputbufferKnown Signal(Victim)OutputMonitor

Figure E-10. Power Integrity and I/O Analysis Test Case

E-11

The SSN behavior will be examined with several different load configurations, because LVTTL
loads can be modeled in several ways. First, the loads are rated at a load current of 24 mA.
Resistive loads will be used to draw this much current from the I/O. For this case, a 130-Ω load
will be used. Since it is not known whether switching from 0 to 1 or 1 to 0 is the worst case, the
board will have the capability to terminate the resistor loads to either VDD or GND. This will
allow both transitions to be easily investigated. The standard LVTTL switching load from an
LVTTL part data sheet is a 50-pF capacitive load to GND. The effects of this capacitive load on
SSN will also be measured.

The 19 outputs will switch slowly enough to guarantee that any transients produced by the
switching will have decayed prior to the next switching event. The input will be connected to an
externally referenced voltage. During each test, the input voltage is held constant. Since the
input voltage is constant, the signaling level the input circuit observes should also be constant. If
the input buffer observes any changes in the logic level, then an undesirable operation has
occurred. The changes that are observed in the measured data are usually a rapid switching
between logic levels. This response is called glitching, which is always undesirable since it can
generate signals that do not meet the timing requirements of other circuitry in the device. From a
safety-critical point of view, any glitching at all is a failure of the system. If the signal glitches
when the input is above the VIH level or below the VIL level, then a violation of the LVTTL
standard has occurred.

E.5.1 TEST CASE 1—IMPLEMENTATION DETAILS.

Project AEH_Case1a was used to examine potential simultaneous switching output limitations.
The project consisted of 19 Bank 0 I/Os (signal toggle_out) on the FPGA simultaneously
switching at a frequency of approximately 48 Hz. To monitor the FPGA for possible noise
problems, the remaining Bank 0 I/O was configured as an input, dc_in. Input dc_in will be driven
at the LVTTL specification limits of VIL = 0.8 V for a logic 0 and VIH = 2.0 V for a logic 1.

The project also contained logic to perform a latching function in the event of a high or low
signal being detected on dc_in. Signal latch_low_transition will turn on a light-emitting diode
(LED) if a logic low is detected on dc_in. Signal latch_high_transition will turn on an LED if a
logic high is detected on dc_in.

The state of dc_in was echoed to an output signal, test_out, which used an output on Bank 1 of
the FPGA. The value of signal test_out should always be constant, as signal dc_in does not
change. However, SSN could cause the logic level of dc_in to be misread. This type of error
will be recognized as a logical transition on the test_out signal. The SSN experiments will be
performed first with I/O loads of 130 Ω, then with loads of 50 pF. The load board must be
populated as required by the individual experiments. Additionally, to examine the difference
between low-to-high and high-to-low transitions with respect to SSN, the experiments may be
performed with Vterm = GND and Vterm = VDD by changing the jumper settings of Vterm1 and
Vterm2.

E-12

E.5.2 TEST CASE 1—SSN RESULTS.

SSN experiments were performed with the following load conditions on signals toggle_out:

• Resistive load RL = 130 Ω, Vterm = 0 V
• Resistive load RL = 130 Ω, Vterm = VDD (3.3 V)
• Capacitive load CL = 47 pF, Vterm = 0 V
• Capacitive load CL = 47 pF, Vterm = VDD (3.3 V)

For each of these conditions, the voltage on test input dc_in was stepped from 0 to 3.3 V in 0.1 V
steps; the logic level of test_out was monitored using the Xilinx Chipscope Integrated Logic
Analyzer (ILA) logic core. Using the ILA, test_out was monitored to look for logical errors due
to SSN. Screen captures from the ILA are shown in this report. The following three signals were
monitored with ILA, and are shown in the ILA screen captures in figures E-11 through E-13.

• slw_clk—A transition on this signal indicates a transition on the toggle_out load signals.

• test_out—DC output. A transition on this signal indicates SSN.

• counter<0>—Shown for reference, this is the LSB of the counter used to generate

slw_clk. This signal transitions on each rising edge of the system clock, and the resistive
load R L = 130 Ω.

The performance of the output during glitching conditions was examined more closely. Figure
E-11 shows the output glitching once for the case where Vin dc = 1.1 V. Figure E-12 shows the
output glitching many times at Vin dc = 1.4 V.

Figure E-11. Capacitive Loads With Vterm = GND and Vin dc = 1.1 V (a single glitch due to
SSN was observed.)

E-13

Figure E-12. Capacitive Loads With Vterm = GND and Vin_dc = 1.4 V (Many glitches due to
SSN were observed.)

Glitching was also observed for Vterm=VDD. Figure 30 shows a glitch when Vin dc = 2.3 V.

Figure E-13. Capacitive Loads With Vterm = VDD and Vin dc = 2.3 V (a Single glitch due to
SSN was observed)

When testing with a resistive load, with Vterm = 0 V and Vterm = VDD, no SSN specification
violations were observed. Table E-2 indicates the logic level reported on test_out across the
various input voltage test levels. The decision boundary between a logical 1 and a logical 0 was
between 1.4 and 1.5 V, which is well within specifications for both VIL and VIH.

Table E-2. Logical Output Voltages as a Function of Input Voltage of the Nonswitching Input
for Resitive Loads

Vin_dc
(Volts)

test_out
Logic Level

(binary)

Expected
Logic Level

(binary)
0.0 0 0
0.2 0 0
0.4 0 0
0.6 0 0
0.8 0 0
1.0 0

E-14

Table E-2. Logical Output Voltages as a Function of Input Voltage of the Nonswitching Input
for Resitive Loads (Continued)

Vin_dc
(Volts)

test_out
Logic Level

(binary)

Expected
Logic Level

(binary)
1.2 0
1.4 0
1.6 1
1.8 1
2.0 1 1
2.2 1 1
2.4 1 1
2.6 1 1
2. 1 1
3.0 1 1
3.2 1 1

Note: The data is valid for resistive loads
terminated to both VDD and GND. Blank values
in the expected logic level column indicate
illegal conditions.

The loads were then reconfigured to be capacitive loads terminated to ground, and the tests were
run again. The results are shown in table E-3. The observed signal glitching is an unexpected
and unsafe outcome. For input voltages between 2.0 and 2.4 V, the outputs changed, even
though the signal met or exceeded the VIH requirement. This indicates the LVTTL standard has
been violated. Clearly, capacitive loads can produce an erroneous circuit operation.

Table E-3. Logical Output Voltages as a Function of Input Voltage of the Nonswitching Input
for Capacitive Loads

Vin_dc
(Volts)

test_out
Logic Level

(binary)

Expected
Logic Level

(binary)
0.0 0 0
0.2 0 0
0.4 0 0
0.6 0 0
0.8 0 0
1.0 0

E-15

Table E-3. Logical Output Voltages as a Function of Input Voltage of the Nonswitching Input
for Capacitive Loads (Continued)

Vin_dc
(Volts)

test_out
Logic Level

(binary)

Expected
Logic Level

(binary)
1.2 0, with

glitches

1.4 Severe
Glitching

1.6 Severe
Glitching

1.8 1, with
glitching

2.0 1, with
glitching

1

2.2 1, with
glitching

1

2.4 1, with
glitching

1

2.6 1 1
2.8 1 1
3.0 1 1
3.2 1 1

Note: Data valid for capacitive loads terminated
to both VDD and GND.

E.5.3 TEST CASE 1 EXTENSION—USING THE ILA TO VERIFY DESIGN
FUNCTIONALITY.

The Xilinx Chipscope ILA was used to perform the SSN experiments. To ensure that the SSN
errors reported by the ILA were real, a hardware failure indication method was implemented in
the FPGA. This hardware included two latches: one latch would turn on an LED, LED1, when a
high signal was detected on signal dc_in, and the other latch would turn on an LED, LED2, when
a low signal was detected on signal dc_in.

To perform this experiment, the S3 load board was configured with 47-pF loads and Vterm =
GND. Dc_in was set to 0 V, and the latches were cleared. The voltage on dc_in was increased
until LED1 turned on, indicating a logical high on signal dc_in. This occurred at Vdc_in = 0.84
V, indicating an error due to SSN. The ILA did not detect any errors for this test condition until
Vdc_in = 1.1 V. This experiment was then performed starting with Vdc_in = VDD, and
decreasing Vdc_in until LED2 turned on. A transition was observed at Vdc_in = 2.93 V,

E-16

indicating an SSN error. The ILA did not detect any errors for this test condition until Vdc_in =
1.5 V.

The above experiment confirms that the errors found by the ILA were real errors. This
experiment also presents another potential safety issue regarding the use of AEH tools, integrated
hardware debugging tools, such as ILA, logically probe the internal FPGA signals. There is a
possibility that measurements provided by the tool may not match the actual results observed on
the external signals.

E.5.4 TEST CASE 1 ANALYSIS.

A standard FPGA was examined to observe if simultaneously switching outputs would introduce
errors in FPGA operation. The number of I/Os that were switched simultaneously were chosen
to be within the manufacturer’s recommendation. These I/Os were then connected to resistive
loads consistent with the LVTTL specification. Measurements of the FPGA under resistive load
conditions did not find any undesirable circuit operation. The I/Os were then connected to
capacitive loads consistent with the LVTTL specification and the measurements were repeated.
In this case, glitching was observed for inputs between 1.2 and 2.4 V. Since glitching signals can
cause errors in other circuits, this circuit was unsuitable for safety-critical operation. In addition,
glitching occurred at conditions that met the LVTTL standard; therefore, the FPGA was
operating in violation of the standard.

SSN effects were observed to be large enough to produce an erroneous circuit operation for
capacitive loads but not for resistive loads. This happened despite the fact that the magnitude of
the currents drawn in the resistive and capacitive load cases were similar. At first glance, one
would expect similar circuit performance for similar current loads. However, SSN was
proportional to the derivative of the current and not the magnitude of the current. When
switching initially occurred, the capacitor appeared to the output as a short, and this caused a
high, instantaneous current and a correspondingly high di/dt. Because of this effect, capacitive
loads were far more likely to produce SSN-related circuit errors.

E.5.5 CONCLUSIONS.

Erroneous circuit operation occurred when the outputs were connected to capacitive loads and
switched simultaneously. The circuit itself operated entirely as intended. It is unlikely that the
additional design verification processes identified in appendix B of DO-254 would identify this
failure mechanism. The erroneous glitching depends on the current data pattern that is presented
to the circuit as well as on previous data patterns. The root cause of the error is parasitic
inductances and resistances that are normally not considered in complex hardware. SSN
introduces noise which varies much slower than the data rate. Whether or not the noise produces
errors depends on the timing of the noise peaks and the data. This timing is highly dependent on
the sizes of the parasitic elements in the package and in the layout of the printed circuit board the
component is connected to. Simulating and analyzing a full design while considering all of the
parasitic elements is computationally infeasible at this time.

E-17

Although errors were observed when switching the maximum capacitive load, additional
research is needed to determine the maximum capacitive load that can be safely switched.
Because glitching can introduce errors in other parts of the circuit, SSN can be a concern for
safety-critical hardware when driving purely capacitive loads, even if a violation of the LVTTL
standard does not occur. It may be possible to alleviate the problems occurring when driving
capacitive loads by adding resistive terminations to the loads, but this research was unable to
analyze this condition.

E.6 TEST CASE 2—UNDEFINED I/O STATES.

Unused FPGA I/O pins could have residual logic, be grounded, be active, or be floating.
Ultimately, the tool determines what happened to the pins left undefined in a design. The
method by which a tool chooses to handle these unused pins is a safety concern.

The code shall be written so that a signal of variable frequency from zero to the maximum
frequency of the FPGA gate logic can be routed through a significant portion of the components
of the FPGA, and then connected to a significant portion of the I/O pins. At least a single path
shall be coded with a known logic outputting to the I/O pins. Figure E-10 is an adequate
representation for this purpose; except in this case, the solid lines represent previously
programmed logic. The design shall be programmed into the FPGA following an
implementation that used a vast majority of gate count, such as in the power integrity case.

Two signal sources are required. The constant signal path shall be a fixed square wave of known
input and output. The frequency input shall be a 100-Hz signal; the output can be determined by
the design of the ripple counter. The controllable signal path shall be a sweep from 0 to 2 kHz.

A significant amount of previously assigned I/O pins shall be analyzed with an oscilloscope to
determine if they are floating or fixed by probing I/O pins. A 10k-Ω resistor is used to pull the
solid pins first to VDD and then to GND to measure and record the pin voltage. The previously
programmed paths shall be monitored with a logic analyzer while sweeping the frequency.
Simultaneously, all the known logic paths shall be monitored.

E.6.1 TEST CASE 2—TEST PROCEDURE.

The undefined I/O test case is used to determine if previously loaded programs can affect the
undefined I/O pins. The test will begin by loading a known hardware implementation (the SSN
test case) that uses pins that are unused in the test implementation. Then the test implementation
is loaded, and the undefined I/O pins are examined to see if there is any residual logic connected
to these pins.

E-18

The state of the unused I/O will be determined by observing the I/O behavior using an
oscilloscope under the following conditions:

• The I/O will be pulled to VDD through a 10k-Ω resistor. If the I/O voltage measured is

equal to ground, the I/O is being actively driven low. If the I/O voltage is equal to VDD,
the I/O is either being actively driven high or it is in a high impedance state.

• The I/O will be pulled to ground through a 10k-Ω resistor. If the I/O voltage measured is
equal to VDD, the I/O is being actively driven high. If the I/O voltage is equal to GND,
the I/O is either being actively driven low or it is in a high impedance state.

If the I/O toggles, the signal is being driven by logic in the FPGA. For this experiment, the load
board is populated with 10k-Ω loads on the unused I/O. Jumpers Vterm1 and Vterm2 can then
be used to pull the unused I/O to VDD or GND.

E.6.2 TEST CASE 2—UNDEFINED I/O TEST RESULTS.

Two variations of the test were run. In the first variation the signal toggle_out was removed from
both the user constraint file and the top-level Verilog module. The behavior of the unused I/O
was then examined with the loads terminated to both VDD and GND. The results from this
experiment are shown in table E-4.

Table E-4. Unused I/O Voltage Levels

FPGA Pin
Number

VIO FPGA Pin
Number

VIO
Vterm = VDD Vterm = GND Vterm = VDD Vterm = GND

D5 0.312 V 0 V E6 0.306 V 0 V
D6 0.307 V 0 V C5 0.307 V 0 V
E7 0.311 V 0 V C6 0.311 V 0 V
D7 0.306 V 0 V C8 0.311 V 0 V
D8 0.312 V 0 V A3 0.310 V 0 V
B4 0.306 V 0 V A4 0.310 V 0 V
B5 0.309 V 0 V A5 0.309 V 0 V
B6 0.312 V 0 V B7 0.310 V 0 V
A7 0.312 V 0 V B8 Toggle output Toggle output
A8 0.309 V 0 V B13 Echo DC in Echo DC in

The results of this experiment indicate that strong internal pull-down resistors are implemented
on the FPGA on all unused I/Os. The Spartan-3E family datasheet states that the default
configuration for unused I/O is an internal pull-down resistance, confirming the results of this
experiment. The unused I/O can be optionally configured with internal pull-up resistance or with
no internal resistors (high impedance).

In the second variation, the signal toggle_out was removed from the UCF, but the top-level
Verilog module was left unchanged. When building this test design, the AEH tool considered

E-19

these signals to be external signals. Since these signals were not specified in the design
constraints, the AEH tool automatically selected which FPGA I/O pins these signals would be
connected to. This presents a potential risk to FPGA designs. If an FPGA hardware description
language design contains ports that are not actually used by hardware, the AEH tool may still
connect these ports to external FPGA pins. These pins would be unexpectedly driven by logic in
the FPGA.

In the above test, the AEH tool did generate a warning about this problem in the place-and-route
report. The warning stated that a partially locked I/O bus was found in the design. By viewing
the pad report (the report the tool produces), which contains information on how the FPGA I/Os
are implemented, the pins to which the unspecified I/Os were connected can be found.

E.6.3 TEST CASE 2—UNDEFINED I/O TEST CONCLUSIONS.

The first test found that unused pins are connected to a default pull-down resistor. No residual
logic was found. The second test showed that there is a risk of unknowingly driving external
FPGA I/Os with internal FPGA logic. However, these problems can be avoided by constraining
all I/O signals in an FPGA project to known pin locations. Furthermore, any I/O pins that are
intended to be unconnected in an FPGA design can be constrained as prohibited locations. In a
Xilinx design, “CONFIG PROHIBIT=location;” is the prohibit constraint. This constraint
prevents the accidental use of the specified pin.

E.7 TEST CASE 3—TIMING CONSTRAINTS.

The purpose of this case study is to determine if a circuit meets the real-time constraints that the
tool displays in the design report and that any designer-imposed timing margins are maintained.
The tools have the ability to specify the time that it will take a given operation to complete. If
the bounds of the speed of the gates are pushed close to their extremes, the tool will redesign the
circuit so that the delay is smaller. The following subjects are of interest: Where are these
bounds? How close does the tool allow the design to get to the bounds? Is there a safety margin
with actual delay and estimated delay?

The case study shall be implemented with an asynchronous ripple counter. As shown in figure
E-14, an asynchronous ripple counter is a series of N flip-flops cascaded together so that the
output of a flip-flop is the clock input of the next one. The input to the ripple counter shall be an
external pin that is connected to a high-frequency source. The final output of the counter shall be
connected to an output pin. The expected output signal frequency shall be the input signal
frequency divided by 2N. During the initial implementation, a report is generated by the tool to
establish the maximum input frequency and the signal path delay. All signals shall be
transistor/transistor logic.

E-20

INPUTCLOCKClock dividedby 32J

K

CLK

Q

Q

FF-1JKQQ J

K

CLK

Q

Q

FF-2JKQQ J

K

CLK

Q

Q

FF-3JKQQ J

K

CLK

Q

Q

FF-4JKQQ J

K

CLK

Q

Q

FF-5JKQQ1111111111ABCDE

Figure E-14. Ripple Counter

Timing constraints will be set for the ripple counters, and a timing report will be generated by the
tool. The design shall be synthesized and then tested to observe if the timing constraints were
accurate and provided adequate margin.

During the sweep, both the input and output wave of the component shall be scoped for accuracy
and phase differences. The input frequency shall be increased until either the signal path time
does not meet requirements or the output wave is not correct. The phase differences will yield
the signal path time; the point of failure will determine the safety margins applied. All data and
settings shall be recorded accurately for analysis.

E.7.1 TEST CASE 3—IMPLEMENTATION DETAILS.

Test Case 3 was used to evaluate the accuracy of timing constraints in an FPGA design. Project
AEH_case3a is the Verilog implementation of this test case. The AEH_case3a design consists of
an input clock signal, clk_in, a frequency generator that provides signal fast_clk, and an 80-bit
counter that is incremented by signal fast_clk. The size of the counter was chosen because it
allowed for a maximum operating frequency in the range of 125 MHz.

Counter bits 15 and 0 are connected to FPGA I/O C6 and B12, respectively, so that they can be
monitored on an oscilloscope through the load board SMA connections. Counter bit 79 is
connected to FPGA I/O E6. This signal, the most significant bit of the counter, is connected to
an output simply because if it were not used, the AEH tool would recognize and remove the
unused logic associated with this signal.

An 8-ns period (125-MHz) timing constraint was specified for this design, meaning that the
counter should be able to properly function at up to 125 MHz. The post place-and-route timing
analysis of the design indicates a maximum allowable frequency of 125.5 MHz, which slightly
exceeds the timing constraint.

The counter outputs will be monitored using ILA to detect errors, while the frequency of
fast_clock is set to various frequencies. The clock frequency should first be set at 100 MHz, and
the design performance should be evaluated. The clock frequency should then be incrementally
increased until the point at which errors are observed on the counter outputs. Of primary interest
is the operation of the FPGA system at or near the frequency limit specified by the FPGA design
tool; the presence of any errors at or below this frequency will be considered a timing constraint
failure. If no errors are observed at or below the maximum specified clock frequency, the clock
frequency should be increased until errors are observed. This will demonstrate the amount of
margin included in the design by the AEH tool.

E-21

E.7.2 TEST CASE 3—RESULTS.

The purpose of Test Case 3 was to evaluate the accuracy of timing constraints in an FPGA
design. This was examined by implementing an 80-bit counter in an FPGA and operating the
counter at various frequencies. The least significant 20 bits of the counter were captured for
8192 samples using ILA (figure E-15), and the output data were analyzed for errors using a
spreadsheet (figure E-16). The output data were checked for errors using the following formula:
Error = Σ (abs((an – an-1) – (an-1 – an-2))), n=2 to n=8191, where Error ≠ 0 indicates an error.

Figure E-15. An ILA Capture of the Counter Outputs

Figure E-16. Error Tabulation Spreadsheet Showing no Errors Found

E-22

Table E-5 shows the frequencies that were tested and the maximum operational frequency
specified by the AEH tool for the particular FPGA build. Because an internal FPGA clock
multiplier was used, each test frequency required a new FPGA build, which is why different
maximum operational frequencies are shown for the different builds.

Table E-5. Test Frequencies and the Associated Timing Constraints From the AEH Design Tool

Test
Frequency

(MHz)

Max Guaranteed
Frequency

(MHz) Comments Results
75 122 Design meets timing No errors detected
100 117 Design meets timing No errors detected
115 119 Design meets timing No errors detected
120 123 Design meets timing No errors detected
125 126 Design meets timing No errors detected
130 127 Design does not meet timing No errors detected
135 126 Timing impossible warning.

Set AEH tool to ignore timing
constraints.

No errors detected

140 126 Timing impossible warning.
Set AEH tool to ignore timing
constraints.

No errors detected

150 126 Timing impossible warning.
Set AEH tool to ignore timing
constraints.

No errors detected

175 126 Timing impossible warning.
Set AEH tool to ignore timing
constraints.

No errors detected

The AEH tool indicated that designs for test frequencies 75 to 125 MHz met the specified timing
constraints. The AEH tool indicated a timing constraint failure occurred for test frequency 130
MHz. At frequencies above 130 MHz, the AEH tool indicated that it was impossible for the
design to meet the specified timing constraints. To generate these higher-frequency FPGA
builds, the AEH tool had to be configured to ignore timing constraints. At all of the test
frequencies, no operational failures were detected in these experiments. At 175 MHz, the
maximum frequency tested, the ILA was reconfigured to examine the 20 most significant bits of
the counter. For this variant, no errors were detected.

E.7.3 TEST CASE 3—TIMING CONSTRAINT ACCURACY CONCLUSIONS.

The timing constraint accuracy experiments did not detect any timing-related failures in the
FPGA. Although the AEH tool indicated that the design speed was limited to approximately 125
MHz, the counter operated successfully at much higher speeds. Although this design operated

E-23

well above the specified frequency limit, the timing constraints specified by the AEH tool should
be followed. The AEH tool may allow for some timing margin beyond the specified constraints,
but this margin will vary based on the specific application.

E.8 EXPERIMENT CONCLUSIONS.

Test case 1 examined simultaneous switching noise (SSN) effects, which could potentially cause
hardware failures when numerous field-programmable gate array (FPGA) input/output (I/O)
switch at the same time. This experiment was performed when switching multiple outputs into
both resistive and capacitive loads. The experiments did not indicate any failures when driving
resistive loads, indicating that the FPGA can meet the simultaneous switching I/O specifications,
even when driving the maximum specified direct current output current.

When driving capacitive loads, a large I/O current is produced during switching. Under this
condition, failures were observed due to SSN. When driving numerous I/O into capacitive loads,
SSN can present a serious risk to systems using FPGAs.

As an extension to test case 1, an experiment was performed to determine whether or not the
FPGA Internal Logic Analyzer (ILA) reported the same hardware performance as external
hardware measurements. It was found that hardware errors can occur external to the FPGA and
not be reported by the ILA. This presents an additional airborne electronic hardware (AEH) risk
for designs using the FPGA internal hardware debugging tools.

Test case 2 examined the behavior of unconnected I/O in an FPGA, which could potentially be
configured in an unknown or unpredictable way. Of particular concern was whether or not
unused I/O may contain residual logic or be actively driven. The experiments showed that
unused I/Os are configured in a known manner, and risks associated with unused I/O can be
avoided. Although unused I/Os are configured in a known manner, this configuration can consist
of either internal pull-up resistors, internal pull-down resistors, or no internal terminations. For
external hardware that is connected to an FPGA but not implemented in the FPGA, the chosen
configuration mode could potentially cause the external hardware to behave in an unexpected
way. The FPGA design engineer must consider the state of unused I/O and chose a configuration
option that is compatible with all external hardware connected to these pins. If the designer is
unaware of what to do with these pins, then the hardware requirements are incomplete. An
additional potential risk identified in test case 2 is that when a design contains external ports
without specific I/O constraints, the AEH tool may automatically route these signals to I/O pins.
This could cause an I/O pin to unexpectedly be driven with internal FPGA logic. This problem
can be avoided by ensuring that all I/O signals in an FPGA project are constrained to specific I/O
pins.

Test case 3 examined the accuracy of timing constraints in FPGA designs. The AEH
development tools perform timing analysis on FPGA designs. The purpose of this experiment
was to determine the accuracy of this timing analysis, specifically, can the design operate up to
the specified frequency limit, and if so, how much operational margin is provided beyond the
specified frequency limit? The timing constraint accuracy experiments did not detect any timing-

E-24

related failures in the FPGA. Additionally, the experiments showed that the design could operate
at speeds well above the limit specified by the AEH tool. It is likely that this is implementation-
specific, and that the amount of operational margin beyond the specified maximum frequency
will depend on the particular application.

E.9 REFERENCES.

E-1. Xilinx Corporation Spartan-3E Family Data Sheet, December 4, 2009, pp. 13,

http://www.xilinx.com/support/documentation/data_sheets/ds099.pdf.

E-2. Xilinx Corporation Spartan-3E Family Data Sheet, December 4, 2009, extracted from

pp. 3, http://www.xilinx.com/support/documentation/data_sheets/ds099.pdf.

E-3. Xilinx Inc., “Spartan-3E FPGA Family: Data Sheet, DS312,” August 26, 2009, pp. 136-

137.

F-1

APPENDIX F—EVALUATION REPORT FOR HARDWARE DESIGN TOOLS

F.1 PRODUCT DESCRIPTIONS.

The following section provides a short description of the three leading hardware design tools.

F.1.1 QUARTUS® II.

Quartus II design software delivers the highest productivity and performance for Altera® field-
programmable gate arrays (FPGA), complex programmable logic devices, and HardCopy®
application-specific integrated circuits, and offers numerous design features to accelerate the
design process:

• Design entry
• Scripting support
• Incremental compilation: initial setup
• System on a programmable chip builder
• MegaWizard® Plug-In Manager
• I/O Pin Assignment Analysis
• Quartus II Integrated Synthesis
• Third-party design entry and synthesis
• Basic compilation flow

The version of software tested was Quartus II Version 7.0 by Altera Corporation, 101 Innovation
Drive, San Jose, CA 95134. It is used for the Altera DE2 Development and Education Board.

F.1.2 XILINX® ISE™.

Xilinx offers the ISE Design Suite with SmartCompile Technology for faster programmable logic
device timing closure and maximum performance, as well as a range of optional products that
deliver unprecedented designer productivity. Xilinx ISE features include:

• Breakthrough performance with ISE Fmax Technology
• Faster, easier timing closure with SmartCompile Technology
• SmartXplorer to provide distributed processing for more turns-per-day
• Advanced verification and power analysis
• PinAhead technology to simplify the complexities of FPGA pin assignment
• An integrated, front-to-back design environment

The version of software tested was Xilinx ISE Design Suite 10.1 by Xilinx Inc., 2100 Logic
Drive, San Jose, CA 95124-3400. It is used for the Digilent Spartan-3E Starter Board.

F-2

F.1.3 LabVIEW 8.5.

LabVIEW is a graphical programming environment used to develop sophisticated measurement,
test, and control systems using graphical icons and wires that resemble elements of a flow chart.
LabVIEW offers integration with thousands of hardware devices and provides hundreds of built-
in libraries for advanced analysis and data visualization. The LabVIEW platform is scalable
across multiple targets and operating systems and, since its introduction in 1986, has become an
industry leader in applications such as data acquisition, instrument control, measuring and
controlling industrial systems, and embedded systems design. More recently, LabVIEW has been
equipped with a capability for FPGA design. This feature provides an interesting alternative to
traditional text-based design languages, such as VHDL and Verilog, since it used a completely
new graphical approach to programming.

The version of software tested was LabVIEW 8.5 by National Instruments Corp, 11500 N Mopac
Expwy, Austin, TX 78759-3504. It is used for the National Instruments (NI) Compact
Reconfigurable I/O (cRIO) 9074 integrated system.

F.2 EVALUATION PLAN.

This evaluation used a variation of the process described in reference F-1. Three software tools,
used for FPGA development, were evaluated:

• Quartus II by Altera
• ISE by Xilinx
• LabVIEW FPGA module by NI

The Quartus II software was used to compile VHDL code and upload this code to an Altera DE2
Development and Education Board for execution on an Altera Cyclone II FPGA. The Xilinx ISE
was used to compile VHDL code and upload this code to a Digilent Spartan-3E Starter Board for
execution on a Xilinx Spartan-3E FPGA. The LabVIEW FPGA module was used to develop and
upload LabVIEW Virtual Instruments (VI) to the reconfigurable FPGA within the NI cRIO-9074
integrated system.

Experiments performed on these software tools were conducted in two phases. The first phase
was to facilitate learning and familiarization of the tools by using a simple “Hello World” type
program, executed on the development boards. The second phase was to design an up-down
counter using the tools, also executed on the development boards.

This report summarizes the test effort. Any variance from the test plan and the reason for the
variance is recorded. Abnormal termination and any unresolved test incidents are recorded in the
summary of results section of the test summary report. Differences between the manufacturer’s
specifications and the test results for Quartus II and the Xilinx ISE Design Suite are recorded.
The final product of this evaluation is a test summary report.

F-3

F.2.1 EVALUATION TEAMS AND CHARTER.

The evaluation team was composed of the following members:

• Joseph Voelmle, student—responsible for designing and conducting all tests, compiling

test results, and writing evaluation report.

• Dr. Janusz Zalewski, faculty member—supervised the evaluation, comments on the
report, defined the experiments, and interpreted the results.

Both team members derive evaluation criteria. Before the evaluation began, the following
questions were posed:

• What is the evaluation expected to achieve? Determine the functionality, usability, and

efficiency of Altera Quartus II, Xilinx ISE, and NI LabVIEW FPGA module.

• What are the responsibilities of each member of the team? Joseph Voelmle will be
responsible for conducting all tests, and Dr. Zalewski will provide supervision and
technical advice. Both team members will derive evaluation criteria.

• How will success be measured? What tasks are to be performed to measure desired
metrics.

• What is an exit criterion for evaluation? When all desired tasks are measured.

• What constraints must the evaluation team adhere to? The team must use the same exact
procedures to evaluate all tools.

• Goals of the evaluation—What are the criteria and their usefulness for evaluating
hardware design tools applied in safety-critical systems?

• What is the scope of the evaluation?

F.2.2 APPROACH TO EVALUATION.

There are a number of factors that may affect system safety. For instance, Dahll, et al. [F-2
through F-4], list the following: system quality, complexity, user experience, fault tolerance,
producers pedigree, documentation, testing, quality assurance policies, etc. This is shown in
figure F-1 with tool quality as one of the factors.

F-4

System Safety

System
Quality other factors

Complexity

User
Experience

Fault
Tolerance

Producer’s
Pedigree Tool Quality

Documentation

Testing

QA

Figure F-1. Factors Affecting System Safety

To evaluate tool quality completely, one would need to look at it from three different
perspectives, and collect data accordingly:

• How the tool itself was developed.
• How the tool is operating.
• How high a quality is the product developed with this tool.

To quote the previous work on tool evaluation [F-1]:

“The framework for this process, based on the context of tool use, is shown in
{figure F-2}. The central part of this model is the macroevaluation based on the
use of the tool during the design phase. However, much information on tool
quality can be derived from the development of the tool itself, considered as a
metaevaluation: evaluating the process to develop a tool. The tool vendor can
provide the data for evaluation of this stage. In addition to the macro- and
metaevaluation, the product developed with a particular tool can be included in
the evaluation. This is called microevaluation, and it focuses on the level lower
than the tool itself. Such a product evaluation can be based both on static code
analysis and code execution. Consequently, to have the entire picture of the tool’s
quality, one needs to do the evaluation at three different levels.”

Figure F-2. Model of the Tool Evaluation Process

Other Factors

F-5

However, for various reasons, it is next to impossible to obtain data on tool development from
the tool vendors. This is mainly due to the vendor’s reluctance to release proprietary information
to the public where it could possibly be used by competitors. For this reason, performing the
meta-evaluation is normally not done. Therefore, this work focuses on macro- and
microevaluation.

To evaluate tool quality as a system safety factor, the following three criteria were chosen:
functionality, usability, and efficiency, according to a previous work [F-1]. These evaluation
criteria were used to measure the quality of the Altera Quartus II Design Suite, Xilinx ISE Design
Suite, and NI LabVIEW FPGA hardware design tools. This was approached in two steps for
each tool. The first step was to become familiar with the tools and learn their capabilities. The
second step was to use the knowledge gained from the first step to design a simple VHDL circuit
to evaluate the tools from a designer’s perspective. The evaluations were performed in the
following four steps, referred to as tasks in previous work related to software development tool
evaluations [F-1]:

1. Project preparation and tool familiarization
2. Model development and code generation
3. Measurement and data collection
4. Postmortem, including data analysis and report generation

Two sample problems were used to evaluate model development and code generation. The first
was a “Hello World” type program to cause an LED on the evaluation board to blink at a
specified rate. The VHDL code is presented in section F.8. This program was derived from a
tutorial by Martin Schoeberl [F-6]. The second problem was a simple up-down counter program.
Its VHDL code is shown in section F.9. Its purpose was to gauge the user’s level of
comprehension and familiarity of the tools once basic mastery was accomplished with the “Hello
World” program. The approach was to use identical code for all three software tools, so that a
useful comparison could be made.

The ultimate goal of this approach to software tool evaluation was to determine if the results
could be used in the next stage, or project, for a more extensive evaluation on a real-life project.

F.3 EVALUATION CRITERIA.

F.3.1 DEFINITIONS.

The following definitions of basic measurement concepts were adopted from engineering
publications such as in reference F-7.

• Efficiency—A property determining a degree to which a system or component performs

its designated functions with minimum consumption of resources [F-7]. In particular,
this can be applied to execution efficiency and storage efficiency, which would be the
speed and size of the code produced by the software.

F-6

• Functionality—The capacity of a computer program or application to provide a useful
function. Functionality relates to “what” the user wants from the system. Only the user
can evaluate this property of the software, and these attributes are very dependent on the
nature of the project that the tool is helping to develop.

• Measure—A physical or abstract device that is used to apply a metric, i.e., ruler.

• Measurement—The act or process of assigning a number or category to an entity to

describe quantitatively a property of that entity. A figure, extent, or amount is obtained
by a measurement.

• Metric—A scale, with a defined unit, that quantitatively characterizes a certain property.

Example: an inch or centimeter to measure distance, thickness, etc.

• Software Quality Metric—A function whose inputs are software data and whose output is
a single numerical value that can be interpreted as the degree to which software possesses
a given attribute that affects its quality.

• Usability—A property determining an ease with which a user can learn to operate,

prepares inputs for, and interpret outputs of a system or component [F-7]. Usability is
also a measure of interface quality that refers to the effectiveness, efficiency, and
satisfaction with which users can perform tasks with a tool. There are multiple ways that
usability can be measured. One would be the ease of use or user-friendliness. Another
would be concerned with the features, such as the presence or absence of certain features
in the user interface such as windows, icons, menus, etc. A third measure of usability
would be the operational feature of the software, i.e., the capability, in human functional
terms, to be used easily, effectively, and satisfactorily by specific users, performing
specific tasks, in specific environments where usability is at the level of interaction
between users and the artifact.

Figure F-3 shows the relationship between a specific property, that is evaluation criterion, a
metric used for its evaluation, and a measure that is used as an evaluation device to quantify the
metric. Figure F-4 shows how these concepts are applied to the tool evaluation, whose quality is
one of the many factors that affect system safety as shown in figure F-1.

Figure F-3. Relationship Between a Property, its Metric, and a Measure From the Point of View
of Measurement Theory

F-7

Figure F-4. Illustration of Tool Evaluation Concepts

F.3.2 GENERAL METHODOLOGY.

The application of a measure to evaluate software properties has to be supported by a
measurement method. A measurement method is a means for assessing and assigning a value to
the product property, characterizing it quantitatively. This value can be obtained using a
software quality metric, a unit of measure which is the standard of measurement that can be
applied either by direct measurement or decomposition. For this evaluation, the following four
steps (tasks) are used in decomposition:

1. Project preparation and tool familiarization
2. Model development and code generation
3. Measurement and data collection
4. Postmortem, including data analysis and report generation

In this evaluation, the properties measured—usability, functionality, and efficiency—can be
determined only by decomposition steps. For example, one such metric for usability can be the
ease of learning how to operate Quartus II or Xilinx® ISE measured in hours spent learning the
tools.

The data can be gathered on various scales, for example:

• Qualitative—bad, fair, good (e.g., bad is unacceptable, fair is marginally acceptable, and

good is fully acceptable)

• Quantitative—hours spent

• Rating scale—a scale of 0 to 5, with 5 being best, used as a subjective assessment.

F-8

Quantitative data were collected for the properties mentioned in the experiments described in
section F.4. The functionality of the tools is measured using a rating scale of 0 to 5 for tutorial,
user manuals, readability, and flexibility. In this report, only one developer (the tester) provided
these ratings. Having such a small sample to provide ratings, bias will obviously play a large role
in a subjective measurement. However, it should be remembered that this evaluation is the basis
for a larger, more extensive evaluation where there would be a much larger number of developers
to provide ratings. Usability is measured as effort (in hours) spent on the four tasks listed in
section F.2.2. Efficiency is measured in the code size generated by the tools for the sample code
used.

F.4 METHODOLOGY APPLIED IN THIS RESEARCH.

The methodology used in this research was taken from reference F-1. As outlined in reference
F-1, the following four tasks were performed to evaluate each tool:

• Project preparation and tool familiarization
• Model development and code generation
• Measurement and data collection
• Postmortem, including data analysis and report generation

Two experiments are performed to design a Hello World-type program and an up-down counter,
as described in section F.4. The four tasks are performed on each experiment for each tool.
Quantitative data is then collected for three criteria: efficiency, usability, and functionality.
Efficiency is measured in code size generated by each tool. Usability is measured as time spent
on the four tasks. Functionality is measured as a subjective assessment on a rating scale of 0
to 5.

F.5 DATA COLLECTION.

This section contains the actual results of measurements for both tools, the Altera Quartus II and
the Xilinx ISE. The four tasks performed were those listed in section F.4.

The data were collected for the Hello World VHDL program and measured for usability,
functionality, and efficiency for the Altera Quartus II. Once this data was collected, the next step
of the evaluation, using the Altera Quartus II to design an up-down counter, began. In this step,
the Quartus II was measured with respect to usability, functionality, and efficiency performing
the four tasks. Once these tasks were performed and data collected for Quartus II, they were
repeated for the Xilinx ISE, again using the same Hello World and up-down counter programs to
measure the criteria and collect data.

F-9

F.5.1 QUARTUS II.

The Altera Quartus II design software provides a design environment that includes sample
solutions for all phases of FPGA design. The Quartus II software consists of:

• Quartus II Design Suite
• MegaCore IP Library
• Nios II Embedded Design Suite
• ModelSim—Altera 6.1-g Web Edition

Once installed, the Quartus II software’s graphical user interface (GUI) is used to perform all
stages of the design flow. Figure F-5 shows the Quartus II GUI as it appears when you first start
the software.

Figure F-5. Quartus II Graphical User Interface [F-5]

The principle documentation for the novice Quartus II software user is the “Introduction to the
Quartus® II Software”. As stated by Altera, the first two chapters give an overview of the major
GUI, electronic design automation tool, and command-line interface design flows, with
subsequent chapters leading the user through an overview of each task flow in the FPGA design.

F-10

As such, the documentation does not state the intended audience for whom it is written or the
level of expertise assumed for the user in the use of, and design for, FPGAs. The principle tester
in this study had no previous experience with FPGAs. It was found that a tutorial with an
example providing VHDL code was needed as a starting point. As there seemed to be no entry-
level tutorial available from Altera, the tutorial from Martin Schoeberl [F-6] was used as a
starting point. Problems soon occurred because it was discovered that the tutorial was written for
a different version of the Cyclone II FPGA. The tutorial uses pin assignments that are different
than the pin assignments needed for the Altera board. After further research, the correct pin
assignments were located and substituted for the assignments in the tutorial. According to the
tutorial, the files necessary to up load to the Altera board should be created, and the desired light-
emitting diode (LED) should blink. However, further problems were encountered as the desired
files for FPGA were not created. This deviation from the tutorial is most likely due to the fact
that a different FPGA is being used. A further search of the manufacturer’s website uncovered
the instructions needed to create the required file and to have the desired LED blink.

F.5.1.1 Hello World.

For the Hello World program, the results of measuring the criteria are discussed in the following
sections.

F.5.1.1.1 Usability.

The overall usability for Quartus II was measured at 90 hours. The usability for project
preparation and tool familiarization took almost 60 hours. Much of this time was spent
becoming familiar with the Quartus II software, including installing the Altera development
board and learning about FPGAs in general. Also, time was spent becoming familiar with VHDL
programming. A lot of time was spent consulting different sources to make the trivial Hello
World program work. The manufacturer provides many manuals for the system, but they assume
a level of sophistication that not all novice users may possess. It is the author’s opinion that time
could have been saved if a basic, entry-level tutorial, specifically for this board, was available in
one document. Since a program written by someone else was used, no time was spent developing
it. However, approximately 16 hours were spent generating the code itself. Approximately 2
hours were spent measuring the tasks, which was done by logging all hours spent. Finally, the
postmortem, where the data were collected and analyzed, took 12 hours.

F.5.1.1.2 Functionality.

In terms of functionality, the tester rated the following: tutorial—2, user manuals—4.5,
readability—4.5, and flexibility—3.5. It is the author’s opinon that time could have been saved
if a basic, entry-level tutorial, specifically for this board, was available in one document. The
user manuals are high quality, providing detailed information in a logical and useful manner.
The model development and code generation functionality was rated 2.5. Functionality could
have been higher if all the information needed to generate the code was in one place, and a search
of the Internet was not needed.

F-11

F.5.1.1.3 Efficiency.

In terms of efficiency, the code generated 310 bytes of memory.

F.5.1.2 Up-Down Counter.

The next step was to perform the four tasks again using Quartus II to develop a simple up-down
counter in VHDL code, and run it on the Altera board (see section F.9). Figure F-6 shows the
schematic.

Figure F-6. Up-Down Counter

The counter has three inputs and eight outputs. The up-down input tells the counter in which
direction to count, high voltage to count up and low voltage to count down. The asynch_clr input
resets the clock counter to zero. The counter will count up (or down) once with each clock at the
clock (clk) input. The outputs, Q(0) through Q(7), are the 8-bit output of the counter, so on each
clk pulse, the counter will proceed sequentially from (or down from) 00000000, 00000001,
00000010, 00000011, 00000100, up to 11111111 with each clock pulse. When it reaches
11111111, it goes to 00000000 on the next clock pulse and starts the sequence all over again.

The following sections discuss the same four tasks as those performed in the Hello World
program and the results of measuring the criteria for the up-down counter.

F.5.1.2.1 Usability.

The overall usability for Quartus II was measured at 50 hours. The usability for project
preparation and tool familiarization took almost 10 hours. Much of this time was spent
becoming familiar with learning the VHDL language and how to apply it to designing an up-
down counter. About 10 hours were spent learning new features of Quartus II and the Altera
development board that were not explored in the Hello World program. The bulk of the time was
spent designing and writing the VHDL code, making corrections to the code due to compile
errors, and getting the up-down counter to run in the Altera board. As in the Hello World
program, approximately 2 hours were spent measuring the tasks.

F-12

F.5.1.2.2 Functionality.

In terms of functionality, the tester rated the following: tutorial—2, user manuals—4.5,
readability—4.5, and flexibility—3.5. Since the same documentation was used, the measured
functionality was the same. The model development and code generation functionality was rated
3.5. The model development and code generation functionality was rated higher for the up-down
counter because of the experience gained in the Hello World program and the user’s confidence
in using Quartus II.

F.5.1.2.3 Efficiency.

In terms of efficiency, the code generated 292 Bytes of memory.

F.5.2 XILINX ISE.

The Xilinx ISE software provides a design environment that includes sample solutions for all
phases of FPGA design. The Xilinx ISE software consists of:

• ISE Webpack 10.1
• ISE Foundation 10.1 Eval
• EDK 10.1 Eval
• ChipScope Pro 10.1 w/Serial I/O Toolkit License Key Eval
• System Generator AccelDSP Synthesis Tool 10.1 Eval
• PlanAhead Design Analysis Tool 10.1 Eval

Once installed, the Xilinx ISE software GUI is used to perform all stages of the design flow.
Figure F-7 shows the Xilinx ISE iMPACT GUI.

Figure F-7. Xilinx ISE iMPACT Graphical User Interface [F-8]

F-13

The principle documentation for the novice Xilinx ISE software user is the “ISE 10.1 Quick Start
Tutorial” [F-8]. In this tutorial, a counter is implemented. The tutorial was followed as written,
except that the VHDL code of the Hello World program is substituted for the counter program in
the tutorial. One thing that was noticed, which proved to be convenient, was that the pin
numbers that need to be assigned are printed on the circuit board. For example, to use LED 0,
assign F12, to the led variable in the VHDL code. This was found to save time and effort
compared to the Quartus II evaluation.

F.5.2.1 Hello World.

For the Hello World program, the results of measuring the criteria are discussed in the following
sections.

F.5.2.1.1. Usability.

The overall usability for Xilinx ISE was measured at 57 hours. The usability for project
preparation and tool familiarization took almost 35 hours. Much of this time was spent
becoming familiar with the Xilinx ISE software, including installing the Spartan-3E development
board. Preparation time was less since general knowledge about FPGAs and VHDL
programming was gained in the Quartus II evaluation. As with the Quartus II evaluation, time
was spent consulting many different sources to make the Hello World program work. The
manufacturer provides many manuals for the system, but they assume a level of sophistication
that not all novice users may possess. It is the author’s opinion that time could have been saved
if a basic, entry-level tutorial specifically for this board was available in one document. Since the
authors were using a program written by someone else, no time was spent developing it.
However, approximately 8 hours were spent in the generation of the code itself. The time spent
measuring the four tasks took about 2 hours, which was done by logging all hours spent. Finally,
the post mortem, were the data were collected and analyzed, took 12 hours.

F.5.2.1.2 Functionality.

In terms of functionality, the tester rated the following: tutorial—3, user manuals—4,
readability—4.5, and flexibility—4. As noted before, it is the author’s opinion that time could
have been saved if a basic, entry-level tutorial, specifically for this board, was available in one
document. As far as the user manuals themselves, they are high quality, providing detailed
information in a logical and useful manner. The model development and code generation
functionality was rated 3. Functionality seemed to be slightly higher because information seemed
more readily available.

F.5.2.1.3 Efficiency.

In terms of efficiency, the code generated 310 bytes of memory.

F-14

F.5.2.2 Up-Down Counter.

The next step was to perform the four tasks again using Xilinx ISE to develop a simple up-down
counter in VHDL code and run it on the Spartan-3E board (see section F.9). The VHDL program
is identical to the one used for the Quartus II evaluation.

The following sections discuss the same four tasks as those performed in the Hello World
program and the results of measuring the criteria for the up-down counter.

F.5.2.2.1 Usability.

The overall usability for Xilinx ISE was measured at 32 hours. The usability for project
preparation and tool familiarization took almost 8 hours. As with the Hello World program,
preparation time was less in the Xilinx ISE evaluation, since general knowledge about FPGAs
and VHDL programming was gained in the Quartus II evaluation. Therefore, usability, as
measured in hours, is lower for the Xilinx ISE evaluation than for the Quartus II. About 8 hours
were spent learning new features of the Xilinx ISE and the Spartan-3E development board that
were not explored in the Hello World program. Since identical programs were used in the
evaluation of both software tools, negligible time was spent designing and writing the VHDL
code, making corrections to the code due to compile errors, and getting the up-down counter to
run in the Spartan-3E board.

F.5.2.2.2 Functionality.

In terms of functionality, the tester rated the following: tutorial—3, user manuals—4,
readability—4.5, and flexibility—4. Since the same documentation was used, the measured
functionality was the same. The model development and code generation functionality was rated
3.5. The model development and code generation functionality was rated higher for the up-down
counter because of the experience gained in the Hello World program and the user’s confidence
in using Xilinx ISE.

F.5.2.2.3 Efficiency.

In terms of efficiency, the code generated 282 bytes of memory.

F.5.3 LabVIEW 8.5.

The LabVIEW 8.5 FPGA Module allows the user to program an FPGA with a LabVIEW block
diagram. The module uses code-generation techniques to synthesize the graphical development
environment to FPGA hardware. The designer uses graphical programming to create a highly
optimized gate array implementation of analog or digital control logic. Normal LabVIEW
programming techniques are used to develop FPGA applications, although when targeting FPGA
hardware such as CompactRIO, the LabVIEW programming palette is simplified to contain only
the functions that are designed to work on FPGAs, the primary programming difference

F-15

compared to traditional LabVIEW is that FPGA devices use integer math rather than floating-
point math.

The LabVIEW FPGA Module compiles a LabVIEW application to FPGA hardware using an
automatic multistep process (see figure F-8). First, graphical code is translated into text-based
VHDL code. Next, the Xilinx ISE compiler is invoked, and the VHDL code is optimized,
reduced, and synthesized into a hardware circuit realization of the user’s LabVIEW design.
Timing constraints are applied to the design to achieve an efficient use of FPGA resources.
Optimization is performed during the FPGA compilation process to create an optimal
implementation of the LabVIEW application and reduce the digital logic size. Next, the design is
synthesized into an optimized silicon implementation, providing parallel processing capabilities.
The final result is a bit stream file that contains the gate array configuration information. When
the application is run, the bit stream is loaded into the FPGA chip and used to reconfigure the
gate array logic [F-9].

Figure F-8. LabVIEW FPGA Compilation Process

F.5.3.1 Hello World.

Due to the graphical nature of the LabVIEW environment, the approach used for the Hello World
and up-down counter programs was different. A LabVIEW VI was created to implement the
Hello World program. To use the Hello World VHDL program in an FPGA VI, an HDL
Interface Node was used rather than rewriting the code in LabVIEW. All the parameters and the
VHDL code are entered in the HDL Interface Node Properties dialog box (see figure F-9).

F-16

Figure F-9. HDL Interface Node Properties Dialog Box

The parameters become terminals on the HDL Interface Node. The parameters are then wired to
any VI or function on the block diagram. For Hello World, it was necessary to add “led” in the
Parameters tab (see figure F-10). In the beginning section of the code tab, after the “led <=
blink;” statement, add the statement “enable_out <= enable_in;”. The HDL Interface Node uses
an enable chain to follow the LabVIEW data flow model. The enable chain is the collection of
signals and an associated protocol for controlling the HDL component’s input and output data
flows. The HDL Interface Node includes enable_in and enable_out as default ports, and they
must be handled to meet the requirements of using the HDL Interface Node with the LabVIEW
FPGA Module [F-9].

F-17

Figure F-10. HDL Interface Node Parameters Tab

Figure F-11 shows the block diagram of the Hello World VI. It shows the HDL Interface Node
wired to an LED from the led output. This is enclosed within a LabVIEW while loop construct
to allow the VI to run continuously. Figure F-12 shows the Hello World VI front panel.

F-18

Figure F-11. Hello World VI Block Diagram

Figure F-12. Hello World VI Front Panel

The results of measuring the criteria are discussed in the following sections for the Hello World
program.

F-19

F.5.3.1.1 Usability.

The overall usability for the LabVIEW program was measured at 35 hours. The usability for
project preparation and tool familiarization took almost 20 hours. Much of this time was spent
becoming familiar with the LabVIEW HDL Interface Node. Preparation time was less in the
LabVIEW evaluation, since general knowledge about FPGAs and VHDL programming was
gained in the Quartus II evaluation. Also, the author had some previous LabVIEW experience.
As in the Quartus II evaluation, time was spent consulting different sources to make the Hello
World program work. The new feature requiring the most time was the HDL Interface Node.
All information needed to learn how to make VHDL code run in the LabVIEW software was
gathered from National Instrument websites, no printed tutorials were found. As before, it is the
author’s opinion that time could have been saved if a basic, entry-level tutorial specifically for
this board was available in one document. Approximately 5 hours were spent in the generation
of the code itself. The time spent measuring the four tasks took about 2 hours, which was done
by logging all hours spent. Finally, the postmortem, where the data were collected and analyzed,
took 8 hours.

F.5.3.1.2 Functionality.

In terms of functionality, the tester rated the following: tutorial—2, user manuals—2.5,
readability—4.5, and flexibility—4. As noted before, it is the author’s opinion that time could
have been saved if a basic, entry-level tutorial (specifically for this board) was available in one
document or on one website. The websites are high quality, providing detailed information in a
logical and useful manner; however, information had to be found at several different websites to
make Hello World work. The disjointed nature of gathering information from multiple websites
hindered learning how to use the LabVIEW HDL Interface Node. The model development and
code generation functionality was rated 2.5. Functionality seemed to be slightly lower because
information was not readily available.

F.5.3.1.3 Efficiency.

In terms of efficiency, the code generated 941 KB of memory.

F.5.3.2 Up-Down Counter.

The next step was to perform the four tasks again, this time using LabVIEW to develop a simple
up-down counter. Again, the VHDL program used for the previous evaluations was modified for
use in LabVIEW. Using the HDL Interface Node Properties tab, the following parameters were
entered, as shown in figure F-13.

F-20

Figure F-13. Up-Down Counter HDL Interface Node Properties Tab

The code for the up-down counter is shown in figure F-14. As in the Hello World example,
enable_in and enable_out must be handled and are added to the VHDL code following the “Q <=
count;” statement. The block diagram for the up-down counter is shown in figure F-15, followed
by the Up-Down Counter VI front panel in figure F-16.

F-21

Figure F-14. Up-Down Counter HDL Interface Node Code Tab

Figure F-15. Up-Down Counter Block Diagram

F-22

Figure F-16. Up-Down Counter Front Panel

The following sections discuss the four tasks as those performed in the Hello World program and
the results of measuring the criteria for the up-down counter.

F.5.3.2.1 USABILITY.

The overall usability for LabVIEW was measured at 60 hours. The usability for project
preparation and tool familiarization took almost 5 hours. As with the Hello World program,
preparation time was less, since general knowledge about FPGAs and VHDL programming was
gained in the previous evaluations. The bulk of the time was spent modifying the Up-Down
Counter VHDL code so it could be used in the HDL Interface Node. As shown in figure F-13,
three parameters were entered, Q, up_down, and asynch_clr. In section F.9, Q is an eight-
element std_logic_vector, and up_down and asynch_clr are std_logic data types. However, in
figure F-14, note that the HDL Interface Node codes are up_down and “asynch_clr” as
“std_logic_vector(0 downto 0)”. After searching various websites, it was determined that
statements in the original VHDL code had to be modified in order to compile. First, “if
(asynch_clr='0') then” had to be changed to “if (asynch_clr=“0”) then” and “if (up_down='1')
then” had to be changed to “if (up_down=“1”) then”. This is because double quotes (“ ”) are
used for vectors and single quotes (‘ ’) are used for the one-digit scalar sdt_logic. To date, the
author has not uncovered the reason that one-digit scalars are coded as std_logic_vector(0
downto 0) in LabVIEW. These are simple changes, but the opinion was that too much time was
spent searching various websites trying to resolve this problem when an explanation from
National Instruments as to what needed to be modified in standard VHDL code should have been
given. National Instruments should list all changes that developers need to make to their existing
VHDL code to have that code run properly in the HDL Interface Node.

F-23

The time spent measuring the four tasks took about 2 hours, which was done by logging all hours
spent. Finally, the postmortem, where the data were collected and analyzed, took 8 hours.

F.5.3.2.2 Functionality.

In terms of functionality, the tester rated the following: tutorial—2, user manuals—2.5,
readability—4.5, and flexibility—4. Since the same documentation is used, the measured
functionality was the same. Model development and code generation functionality was rated 3.5.
Model development and code generation functionality was rated higher for the up-down counter
because of the experience gained in the Hello World program and the user’s confidence in using
Xilinx ISE.

F.5.3.2.3 Efficiency.

In terms of efficiency, the code generated 941 KB of memory.

F.6. DISCUSSION OF RESULTS AND COMPARISON.

Four experiments with the Quartus II and Xilinx tools were conducted for the Hello World and
up-down counter, as explained in section F.4. The criteria and methodology, as discussed in
section F.3, were applied.

F.6.1 FUNCTIONALITY.

Figure F-17 shows the cumulative results of measuring functionality of all the tools: the Altera
Quartus, Xilinx ISE, and NI LabVIEW FPGA module.

Figure F-17. Comparison of Functionality Measured for all Tools

It appears that all the tools have poor tutorials, and there is a difference between the tutorials for
all the systems. The opinion was that Xilinx provided better tutorials than Altera. The
documentation provided by Altera was comprehensive and complete, but for the novice user,
there seemed to be no clear starting point at which to begin. As an example, time had to be spent

F-24

searching for the necessary pin assignments in order to compile the VHDL code for the Quartus
II board. Less time was required for the Xilinx board since the pin assignments were printed
directly on the board. Thus, time was saved learning how to compile VHDL code for the Xilinx
ISE regardless of general knowledge and experience. LabVIEW was judged the least favorable in
terms of functionality. This was mainly due to the issues regarding the HDL Interface Node, as
described in section F.5.3.1.

F.6.2 USABILITY.

Figure F-18 shows the comparison of usability between Altera Quartus II, Xilinx ISE, and NI
LabVIEW for the Hello World program.

Figure F-18. Comparison of Usability Measured for all Tools

Measurement and postmortem were essentially the same, which is consistent with the fact that
these activities are conducted regardless of the platform used. The big difference is in
preparation. More time was spent in preparation with Quartus II than with the Xilinx ISE. The
least amount of preparation time was spent with LabVIEW. The fact that the author, being new
to development tools for FPGAs, began this research with Quartus II would account for some of
this difference. If this study began with the Xilinx ISE, these numbers would obviously change,
and the usability of the Quartus II would be higher (i.e., less hours). Also, since the author had
more experience and knowledge of FPGAs and their development tools when measuring the
usability of the Xilinx ISE compared to the Quartus II, this would show how experience plays a
factor in how usability is perceived. But functionality also played a role.

Figure F-19 compares the usability of the up-down counter for all tools. The time preparation for
Quartus II, Xilinx ISE, and LabVIEW was essentially the same. The difference here was during
code development. Since the code for the up-down counter was written during the learning
phase for the Quartus II software, more time was spent writing the VHDL code and debugging it.
Again, LabVIEW was judged least usable due to documentation.

F-25

Figure F-19. Comparison of Usability Measured for all Tools

Figures F-20 through F-22 compare the usability between Hello World and the up-down counter
for all tools. The time spent preparing Hello World with the tools is significantly higher than the
of up-down counter, but that may not be significant, because Hello World was the first program
developed with each tool so the learning curve is included in preparation time. The code
development time for up-down counter is slightly higher than for Hello World. This is because
the up-down counter’s code is more complicated.

Figure F-20. Usability Measured for Quartus II (in hours)

F-26

Figure F-21. Usability Measured for Xilinx ISE (in hours)

Figure F-22. Usability Measured for LabVIEW (in hours)

F.7 SUMMARY.

The objective of this research was to measure the usefulness of the Altera Quartus II Design
Suite, Xilinx ISE Design Suite, and National Instruments LabVIEW 8.5 FPGA module hardware
design tools. There were several problems encountered as to what constitutes tool quality. Tool
quality itself is a subjective quality, with the quality of the same tool being judged differently by
different users. The problem of establishing the quality of a tool then becomes how to define
what features constitute “quality” and how to measure them, while at the same time trying to
ensure that personal bias does not play a dominant role. Users have different experiences and a

F-27

different knowledge base that they bring. User’s views on the quality of a particular tool are
important and must play a role. The challenge is to balance the user’s opinions with quantitative
data. If too much emphasis is placed on subjective opinion, then measuring the quality of
hardware design tools becomes an exercise in product review. To have a meaningful measure of
tool quality, it is important that a large sample of users with diverse experience be used.

At the beginning of this study, the authors had little experience using design tools for FPGAs.
When considering the usability measurements, the fact that the authors gained knowledge and
experience as the study progressed must be taken into consideration. The first tool to be studied
was the Altera Quartus II. It was with this tool that the authors learned about FPGAs and VHDL.
Therefore, it would not be fair to compare the usability of the Quartus II to the Xilinx ISE and the
LabVIEW FPGA module, within the context of this study, since most of the preparation and code
development was done for the Quartus II. For example, the time spent learning to code, in
VHDL, the up-down counter was done during the Quartus II phase of this study. For the Xilinx
ISE, the code used for the up-down counter was exactly the same. This is reflected in the
usability measurements where more hours were spent for the Quartus II than the Xilinx ISE. The
code had to be modified in order to work within the constraints of HDL Interface Node for
LabVIEW FPGA module. The changes needed were not that difficult to make. The difficulty
came as a result of the user having to search how to make those changes. For all the tools there
seemed to be a direct correlation between usability and documentation. It is felt from these
experiments that better, more accessible documentation of the tools by the manufactures would
lead to better usability ratings for these tools.

These tools are used to assist the designer to upload their design to an FPGA. They are very
efficient in producing FPGA circuits that satisfy all the design rules of the target technology,
such as hold times, maximum fan-out, and connection rules. They provide many ways that the
designer can simulate his circuit to verify the design’s behavior is logically correct at several
levels of abstraction. But the design tools do not guarantee the logical correctness of the design
itself. Designers usually have a limited amount of time to run simulations of their design to
verify correctness. It is always possible that flaws remain in the design after testing. This is one
of the reasons for the popularity of FPGAs. If bugs are found after a design is in the field, it is
usually a simple matter of having a technician upload the corrected design to the FPGAs already
deployed rather than replace an entire board.

This study was not meant to be the definitive study of tool quality of the Quartus II, Xilinx ISE,
and LabVIEW FPGA hardware design tools. What was attempted was is to provide a framework
for evaluating the quality of hardware design tools. The term “quality” is abstract in its nature.
This study attempted to quantify quality so it could be measured. To truly measure quality, a
larger group of developers with various degrees of knowledge and experience would be needed
so a true picture of the tool’s usefulness will emerge.

F-28

F.8 HELLO WORLD CODE.

--
-- hello_world.vhd
--
-- The ’Hello World’ example for FPGA programming.
--
-- Author: Martin Schoeberl (martin@jopdesign.com)
--
-- 2006-08-04 created
--
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity hello_world is

port (
 clk : in std_logic;
 led : out std_logic
);
end hello_world;

architecture rtl of hello_world is

 constant CLK_FREQ : integer := 20000000;
 constant BLINK_FREQ : integer := 1;
 constant CNT_MAX : integer := CLK_FREQ/BLINK_FREQ/2-1;

 signal cnt : unsigned(24 downto 0);
 signal blink : std_logic;

begin
 process(clk)
 begin

 if rising_edge(clk) then
 if cnt=CNT_MAX then
 cnt <= (others => ’0’);
 blink <= not blink;
 else
 cnt <= cnt + 1;
 end if;
 end if;

 end process;

 led <= blink;

end rtl;

F-29

F.9 UP_DOWN_COUNTER CODE.

-- up_down_counter.vhd
-- Joseph Voelmle
-- 12-22-2008 created
--
library ieee ;
use ieee.std_logic_1164.all ;
use ieee.std_logic_arith.all ;
use ieee.std_logic_unsigned.all;

entity up_down_counter is

port (clk, up_down, asynch_clr: in std_logic;
 Q: out std_logic_vector(7 downto 0)
);
end up_down_counter;

architecture counter_behavior of up_down_counter is

-- the following lines are used as a delay to the counter so that
-- the output of the counter could be visible to the user
 constant CLK_FREQ : integer := 50000000; -- use PIN_N2 for 50MHz clock
 constant BLINK_FREQ : integer := 5;
 constant CNT_MAX : integer := CLK_FREQ/BLINK_FREQ;

 signal count: std_logic_vector(7 downto 0);
 signal cnt : unsigned(24 downto 0);

 begin -- count is an internal signal to this process
 process(clk, asynch_clr) -- sensitivity list
 begin
 if (asynch_clr='0') then -- asynch_clr is Pushbutton[0]
 count <= "00000000";
 elsif (rising_edge(clk)) then
 -- after so many clocks, increment/decrement count
 if cnt=CNT_MAX then
 cnt <= (others => '0');
 -- up_down is Toggle Switch[0], up position count up,
 -- down count down
 if (up_down='1') then
 count <= count + "00000001";
 else
 count <= count - "00000001";
 end if;
 else
 cnt <= cnt + 1;
 end if;
 end if;
 end process;
 Q <= count;
end architecture counter_behavior;

F-30

F.10 REFERENCES.

F-1. Kornecki, A. and Zalewski, J., “Experimental Evaluation of Software Development Tools

for Safety-Critical Real-Time Systems,” Innovations in System Software Engineering,
Vol. 1, 2005, pp. 176-188.

F-2. Dahll, D. and Gran, B.A., “The Use of Bayesian Belief Nets in Safety Assessment of

Software Based Systems,” Int. J. General Systems, Vol. 29 (2), pp 205-229.

F-3. Dahll, D., “Safety Assessment of Programmable Systems Containing COTS

Components,” Proceedings of the ENCRESS Workshop “Using COTS in Component-
based Systems for Dependable Applications,” Naples, May 23, 2000.

F-4. Gran, B.A., Dahll, D., Eisenger, S., Lund, E.J., Nordtrøm, J.G., Strocka, P., Ystanes, B.J.,

“Estimating Dependability of Programmable Systems Using BBNs, Procedding of
SAFECOMP2000,” Intern. Conf. on Safety, Reliability and Security, Springer-Verlag,
Berlin, 2000, pp. 309-320.

F-5. Introduction to the Quartus® II Software, Version 8.0, Altera Corp. San Jose, California,

www.altera.com/literature/manual/intro_to_quartus2.pdf.

F-6. Schoeberl, M., The FPGA Hello World Example, August 4, 2006, www.jopdesign.com

/cyclone/hello_world.pdf.

F-7. IEEE Std 1061-1998, IEEE Standard for a Software Quality Metrics Methodology, The

Institute of Electrical and Electronics Engineers, Inc., New York, December 8, 1998.

F-8. ISE 10.1 Quick Start Tutorial, Xilinx, Inc., San Jose, California, www.xilinx.com/itp

/xilinx10/books/docs/qst/qst.pdf.

F-9. FPGA-Based Control: Millions of Transistors at Your Command, National Instruments
Corp, Austin, Texas, http://zone.ni.com/devzone/cda/tut/p/id/3357.

	1. INTRODUCTION.
	1.1 OBJECTIVES.
	1.2 PROBLEM STATEMENT.
	1.3 RESEARCH METHOD.
	1.4 AUDIENCE.
	1.5 RESULTS.
	1.6 DOCUMENT STRUCTURE.

	2. BACKGROUND.
	2.1 SOFTWARE AND HARDWARE RELATIONSHIP.
	2.2 PROGRAMMABLE LOGIC HISTORY.
	2.3 A TYPICAL AIRBORNE ELECTRONIC HARDWARE DEVELOPMENT FLOW.
	2.4 THE AIRBORNE ELECTRONIC HARDWARE DESIGN.
	2.5 VERIFICATION OF AIRBORNE ELECTRONIC HARDWARE.
	2.6 SIMPLE VS COMPLEX ELECTRONIC HARDWARE.
	2.7 AIRBORNE ELECTRONIC HARDWARE TOOL CATEGORIES.
	2.8 THE AIRBORNE ELECTRONIC HARDWARE TOOLS IN DO-254 FRAMEWORK.
	2.8.1 The DO-254 Design Assurance Guidance.
	2.8.2 The DO-254 Tool Guidance.

	2.9 WHAT IS A TOOL?
	2.10 WHEN IS TOOL QUALIFICATION REQUIRED?
	2.11 TOOLS DISCLAIMERS.

	3. ALTERNATIVES TO TOOL ASSESSMENT AND QUALIFICATION.
	3.1 INDEPENDENT ASSESSMENT OF THE TOOL’S OUTPUTS.
	3.1.1 What Does Independent Assessment Mean?
	3.1.2 Independent Processes at all Phases of the Design.
	3.1.3 What Happens if the Independent Assessment Results do not Agree?
	3.1.4 Independent Assessment is a Process, not an Event.

	3.2 SERVICE HISTORY.
	3.2.1 Service History Case Studies.
	3.2.2 Service History Guidance for Hardware.
	3.2.3 Service History for Design Tools.
	3.2.4 Service History Versus the Latest Technology.
	3.2.5 Tool Service History is not Sufficient.
	3.2.6 Testing Maturity Model.

	4. DESIGN ASSURANCE.
	4.1 CONSTRAINED RANDOM VERIFICATION.
	4.2 OBSERVABILITY.
	4.3 DERIVED REQUIREMENTS.

	5. SURVEY OF TOOL USERS.
	5.1 AVIATION COMMUNITY SURVEY.
	5.1.1 Survey Population.
	5.1.2 Multiple Choice Answers.
	5.1.3 Narrative Answers.

	5.2 SEMICONDUCTOR INDUSTRY VIEWPOINT.

	6. LITERATURE OVERVIEW.
	7. CASE STUDIES.
	8. SAFETY ISSUES.
	8.1 HARDWARE DESIGN ERROR CHARACTERIZATION.
	8.2 THE FPGA’S ENVIRONMENT.
	8.3 TIMING ISSUES.
	8.3.1 Synchronous Design.
	8.3.2 Synchronous Design—Multiple Clock Domains.
	8.3.3 Asynchronous Designs.

	8.4 WIDE DATA BUSSES AND DATA PATTERN DEPENDENT ERRORS.
	8.5 COMBINATIONAL FEEDBACK/QUASI-DIGITAL CIRCUITS.
	8.6 SYNTHESIS ISSUES—WHAT DID THE TOOL REALLY BUILD?
	8.6.1 Getting Less Than Expected.
	8.6.2 Getting More Than Expected.

	8.7 HARDWARE THAT IS NONFUNCTIONAL IN NORMAL OPERATION.
	8.7.1 Synthesizer Optimizations.
	8.7.2 Gate-Level Verification.
	8.7.3 Adding Test Circuitry.

	8.8 RADIATION EFFECTS AND FPGA ARCHITECTURES.
	8.9 RADIATION—DO-254 AND DO-160.
	8.10 WHAT CIRCUIT IS BEING GENERATED?
	8.11 UNUSED INPUTS AND OUTPUTS.
	8.12 OTHER CONSIDERATIONS.
	8.13 POWER UP/RESET ISSUES.
	8.14 WHAT CAN BE DONE TO PREVENT PROBLEMS?
	8.15 DESIGN ISSUES SUMMARY.

	9. FINDINGS AND RECOMMENDATIONS.
	10. REFERENCES.
	11. GLOSSARY OF TERMS.
	SURVEY QUESTIONAIRE
	APPENDIX B— SURVEY RESULTS
	APPENDIX C— TEST PROCEDURE
	APPENDIX D— ANNOTATED BIBLIOGRAPHY
	APPENDIX E— HARDWARE CASE STUDY EXPERIMENTS
	E.3.1 SIGNAL INTEGRITY MONITORING.
	E.3.2 EXTERNAL DIRECT CURRENT INPUT VOLTAGE.
	E.3.3 EXTERNAL CLOCK INPUT.
	E.5.1 TEST CASE 1—IMPLEMENTATION DETAILS.
	APPENDIX F— EVALUATION REPORT FOR HARDWARE DESIGN TOOLS

