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EXECUTIVE SUMMARY 

The objective of this research was to identify potential safety issues in the assessment and 
qualification of tools used in developing airborne electronic hardware (AEH) for aircraft. AEH 
consists of custom, microcoded components or devices that are used as part of the airborne 
system.  The primary technologies include programmable logic devices (PLD), application-
specific integrated circuits, and similar circuits used as components of programmable electronic 
hardware.  While the study’s focus was on the most popular subset of the PLD technology, 
known as field-programmable gate arrays, results will be applicable to custom, microcoded 
devices.  
 
An avionics standard, RTCA DO-254 (referred to as DO-254), provides design assurance 
guidance for project conception, planning, design, implementation, testing, and supporting 
processes in the hardware design life cycle.  In particular, details on the processes that must be 
followed for respective tools’ assessment and qualification are discussed.  This study seeks to 
identify and address potential safety issues in qualifying processes.  
 
The research surveyed the literature, conducted a survey, and implemented hardware test cases to 
address concerns related to: 
 
• When should tool qualification occur, and what are the alternatives to tool qualification? 
 
• Approaches used to qualify tools used in the design and verification of AEH for airborne 

applications. 
 
• The use of a tool’s service experience or service history as related to qualification. 

 
This research supported policy and guidance development for aviation systems in a rapidly 
evolving field of technology that exhibits a proliferation of software tools.  However, this report 
should not be considered as Federal Aviation Administration policy or guidance—it is research-
focused and will be considered as input for future policy and guidance, as appropriate.  
 
This study included a literature search; an industry survey; identification of primary safety, 
performance, and certification concerns; developing a plan for validating these concerns; 
conducting experiments with the tools; evaluating the experiments; and producing the final 
report.  The results of this study are aimed at determining major issues related to the use of tools 
supporting AEH design and verification and providing recommendations for addressing these 
issues in the assessment and qualification process. 
 
Even if the design and verification tools can prove that a design is functionally correct under all 
conditions that were considered, design errors in the hardware can still occur due to conditions 
beyond the scope of the design tools.  The best way to avoid these errors is to have an 
experienced design and verification staff with knowledge of the tool limitations.  This will allow 
the team to identify potential problems while still in the design phase and allow error mitigation 
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techniques to be incorporated.  In addition, an experienced staff will understand the operation of 
the system under normal operating conditions as well as error conditions.  
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1.  INTRODUCTION. 

Modern aviation systems, both airborne (e.g., avionics and engine control) and ground (e.g., 
radar and air traffic control consoles), exemplify safety and mission-critical, dependable systems.  
These systems continue to become more complex, and they often operate in uncertain 
environments.  Both hardware and software for such systems are developed using a variety of 
tools that must address the final product reliability, fault tolerance, and deterministic timing 
guarantees.  Appropriate tools must be selected to meet the needs of a specific project.  The 
quality of the tool and the assurance provided by the tool are critical components of the final 
target system certification.  
 
This report, produced under a contract sponsored by the Federal Aviation Administration (FAA), 
describes research focusing on the use and qualification of the tools used to design and verify 
airborne electronic hardware (AEH) devices.  Typical AEH components are programmable logic 
devices (PLD), application-specific integrated circuits (ASIC), and similar circuits used as 
components of programmable electronic hardware.  The difference between a PLD and an ASIC 
is PLDs are purchased as standard electronic parts and then altered (or programmed) to perform a 
specific function, while ASICs are developed to implement a specific function.  The process of 
PLD programming is accomplished either by using an external dedicated device programmer or 
on the circuit board via in-system programming.  Manufacturing an ASIC component requires an 
expensive design and fabrication process that does not allow the device to be reprogrammed. 
Once manufactured, an ASIC cannot be reprogrammed and, therefore, is not a PLD.   
 
The primary, and most popular, PLD component types are field-programmable gate arrays 
(FPGA).  There are three types of FPGAs, determined by the underlying technology:  

• Fast, but volatile, FPGA based on static random access memory (SRAM) using advanced 
complementary metal-oxide-semiconductors (CMOS) 

• Reprogrammable, but slower, FPGA using flash memory 

• Non-reprogrammable, nonvolatile, anti-fuse FPGA with good resistance to single-event 
upset (SEU) 

 
The scope of the research was limited to tools supporting the development of AEH, focusing on 
applications for developing FPGA that have been used, or have a potential to be used, in airborne 
applications.  The principal document (DO-254 [1]), the three Certification Authorities Software 
Team (CAST) papers (CAST-27 [2], CAST-28 [3], and CAST-30 [4]) that are designed to clarify 
DO-254, and Advisory Circular (AC) 20-152 [5] do not specifically define what a tool is. 
However, paraphrasing the DO-178B [6] terminology, this research defines a tool as “a computer 
program or a hardware device used to help develop, test, analyze, produce or modify hardware 
component, subsystem, system or its documentation.”  The tools that will be focused on are 
software products widely used for the design and verification of hardware components.  
Hardware design and test tools, such as hardware emulators, are available for only very limited 
environments, such as a single processor operating in a single architecture.  Although this 
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research focused on computer programs used as design and verification tools, the conclusions 
apply equally to computer programs and hardware devices used as tools. 
 
The DO-254 [1] glossary defines tool subcategories: 
 

“Design Tools - Tools whose output is part of hardware design and thus can 
introduce errors.  For example, an ASIC router or a tool that creates a board or 
chip layout based on a schematic or other detailed requirement.” 

 
and 
 

“Verification Tool - Tools used to ensure performance against predetermined 
standards or requirements.  These tools do not introduce errors, but may fail to 
detect them.  For example, an analog or digital circuit simulator or an automated 
test that measures actual circuit performance.” 

 
Software tools used for hardware design (creation/programming, synthesis) and hardware 
verification (checking, simulation, testing) are typically very complex computer programs 
operating as part of a comprehensive tool suite.  Some tools are generic, supporting multiple 
hardware platforms.  Often, the tool is associated with a specific hardware vendor and supports 
design and verification of that vendor’s family of electronic components.  In all cases, the tools 
supporting hardware design and verification are off-the-shelf products with a handful of 
established vendors competing for their share of the electronic market.  It should be noted that 
the aviation industry represents only a small fraction of the market, which includes military, 
aerospace, medical, communication, gaming, and consumer electronics. 
 
1.1  OBJECTIVES. 

The main objective of this study was to provide the FAA with input on what criteria should be 
used to determine when and if AEH tool qualification should occur.  This research will attempt 
to identify contradictions and possible shortcomings in the language of the current DO-254 
guidelines.  Safety issues related to the use of the tools will also be identified and discussed.  
This objective will be achieved using literature and industry surveys, identification of primary 
certification, performance, and safety concerns, conducting experiments to address the identified 
concerns using a representative suite of tools, and evaluating the experimental results to create a 
foundation for addressing tool qualification concerns.  Related objectives are to present and 
evaluate the state of the art in hardware design and verification tools and to establish a base for 
qualification guidelines for such tools. 
 
1.2  PROBLEM STATEMENT. 

Considering the current status of AEH guidance, the question to be asked is “Why would one 
need to qualify programmable logic tools?”  The ultimate goal of developing safety-critical 
systems is to provide evidence that, in addition to the functionality and quality of service 
requirements, the specific safety requirements have been met.  
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There are a variety of commercially available software tools suitable for use on AEH projects.  
Selecting the appropriate tool to use may be confusing due to varying functionality, the variety of 
platforms they serve, and the choice of different hardware description languages.  The major 
commercial tools were created without considering the required DO-254 process, which makes it 
difficult to assure the correctness of a design produced by these tools. 
 
It should be noted that tool qualification is only one component of the overall DO-254 design 
assurance process.  Different qualification requirements are placed on tools used to design and 
verify systems at different design assurance levels (DAL).  However, regardless of the DAL, DO-
254 does not require tool qualification if the tool outputs are independently assessed.  
  
DO-254 allows tools to be used on level D AEH without independent assessment of the outputs, 
and without a relevant service history.  For level A, B, or C design tools and level A or B 
verification tools, DO-254 allows the use of a tool’s relevant service history as an alternative to 
independent assessment of the tool outputs.  This research has investigated the validity of this 
alternative to independent assessment. 
 
1.3  RESEARCH METHOD. 

The research performed for this report consists of three components. First, the literature was 
surveyed and an annotated bibliography was produced (appendix D).  Second, a tool survey was 
conducted to determine how the design tools are used and to determine what problems are seen 
in practice.  Finally, hardware test cases were designed and implemented on multiple hardware 
platforms to investigate the possibility of hardware errors occurring when design tool operation is 
correct.  
 
1.4  AUDIENCE. 

The report is primarily intended for use by certification authorities in the development of policy 
and guidance.  The Designated Engineering Representatives (DER) and Aircraft Certification 
Office engineers directly involved in the certification process are also part of the target audience.  
The research outcome will likely also be of interest to program and procurement managers; to 
project leaders; to system, hardware, and software engineers; and to all others directly involved 
in DO-254-compliant AEH projects.  This report attempts to identify contradictions and possible 
shortcomings in the language of the current guidelines.  It also highlights related industry 
approaches toward the use of software tools for PLD. Figure 1 identifies the stakeholders 
involved in the presented investigation.  It must be noted that several industry representatives 
shared their valuable comments and opinions with the research team through e-mails, phone 
interviews, and personal contacts; their names cannot be listed for reasons of confidentiality.  
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Figure 1.  The AEH Stakeholders 

1.5  RESULTS. 

The authors have identified the following results which will be discussed in detail within the 
report body: 
 
• DO254 encourages the use of independent assessment and service history as an 

alternative to tool qualification. 
 
• Independent assessment should not be viewed as a single event but a process consisting 

of a series of overlapping independent assessments. 
 
• Tool service history is a poor indicator of a tool’s ability to produce a correct design.  
 
• Tool qualification should be limited to the exceptionally rare case where independent 

assessment of the tool output is impractical or infeasible.  
 
• Constrained random verification increases the number of errors detected by the test cases. 
 
• Assertions can be used to increase the observability of the errors that any test case  

generates. 
 
1.6  DOCUMENT STRUCTURE. 

This report consists of 11 main sections. 
 
• Section 1 provides introductory material, including the purpose and scope, objective, 

problem statement, audience, and research approach.  
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• Section 2 describes the AEH tool categories, and the role of DO-254 in relation to AEH 
tools.  

 
• Section 3 describes alternatives to tool qualification, focusing on independent assessment 

of the tool’s outputs.  
 
• Section 4 examines the concept of design assurance as viewed by DO-254 and methods to 

improve design assurance. 
 
• Section 5 presents the results of the tool use survey.  
 
• Section 6 is a brief review of the literature compiled in the course of research.  
 
• Section 7 presents the hardware and tool use experiments that were performed. 
 
• Section 8 identifies a number of issues that could impact the safety of a design that has 

been shown to be logically correct.   
 
• Section 9 presents the conclusions of the research.  
 
• Section 10 provides references. 
 
• Section 11 provides a glossary of terms as they are used within this document. 
 
Seven appendices accompany the body of the report. 
 
• Appendix A includes the survey questionnaire.  
• Appendix B provides details of the survey results.  
• Appendix C elaborates on the experimental procedures.  
• Appendix D includes the annotated bibliography elaborating on the material in section 6.  
• Appendix E provides the experimental results for the hardware test cases.  
• Appendix F provides the results of the tool use experiments.  
 
2.  BACKGROUND. 

Modern aircraft not only use increasing numbers of microcomputers and microprocessors, but 
also dedicated hardware, to process the growing amounts of data needed to control and monitor 
the status of the flight and related systems.  Rapid progress of digital technology in the last 25 
years can be demonstrated using an example from Airbus industries:  the number of digital units 
has increased from 70 to 300, the number of transistors from 105 to 108, and the number of gates 
per chip from 10,000 to 600,000 [7].   
 
The recent proliferation of custom, microcoded components changed both the market and how 
the industry operates.  These complex, programmable electronic components not only are 
programmed using conventional programming languages, but also are developed by writing code 
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in a hardware description language (HDL) used to create logic designs.  The two distinctive 
categories used as components of programmable electronic hardware include PLD and ASIC.  
Often, the circuit includes dedicated processors, intellectual property (IP) that is made into the 
final product silicon.  Most of these devices can be configured to implement a particular design 
by downloading a sequence of bits.  In that sense, a circuit implemented on a PLD is technically 
software. In this report, the authors focused on software tools for hardware development in 
avionics and aerospace systems and methods to assure design correctness. 
 
Software tools are used to simulate the logic, synthesize the circuit, and create the placement and 
routing for electronic elements and their connections in preparation for the final implementation, 
i.e., programming the logic devices (conventionally called “burning into the logic”).  Obviously, 
the creation of complex digital circuits is currently not considered a software activity and is 
performed by hardware specialists.  However, hardware and system description languages, such 
as very high-speed integrated circuits HDL (VHDL), Verilog, and System C, are basically 
computer languages with their own syntax and semantics.  The development of hardware relies 
significantly on the quality of tools that translate software artifacts from one form into another.  
Integrated programming environments allow the user to write the programs, debug the programs 
via simulation, convert the programs into hardware via the synthesis and place and route tools, 
and then debug the operational hardware.  To assure the consistency of the resulting system, it is 
prudent that the development activity, including both software and hardware components, be 
done in a unified manner. 
 
The future of software engineering for dependable, safety-critical systems is tied to the close 
relationship between what used to be considered separate categories: software and hardware.  
Due to their background and experience, software application designers focus on the 
development of programs to run on microprocessors and are often unaware of the possibility of 
implementing the system in hardware using a PLD, or the most popular technology, an FPGA.  
An FPGA is a prefabricated integrated circuit that can be configured to implement a particular 
design by downloading a sequence of bits.  In that sense, a circuit implemented on an FPGA is 
technically software.  However, circuit designers are still considered to be hardware specialists 
and algorithms ported to circuits are still known as hardware algorithms.  Vahid [8] noted that 
treating algorithms implemented in circuits as “hardware” poses problems in computing system 
development because the hardware implementation tends to be more concurrent than its software 
implementation.  In addition, differences in the physical hardware implementation of an 
algorithm, such as using a multiport memory to support concurrency rather than using parallel 
dedicated memories, can dramatically affect the performance and dependability of the algorithm.  
 
2.1  SOFTWARE AND HARDWARE RELATIONSHIP. 

Using any combination of software and hardware in the creation of dependable, safety-critical 
systems requires meeting government regulations.  For airborne systems installed on civilian 
aircraft, one needs to gain approval of the software aspects of certification through DO-178B [6], 
which defines the processes and artifacts to meet the approval objectives. DO-254 [1] provides a 
means for approval of electronic hardware components.  In particular, the latter document 
provides design assurance guidance on project conception, planning, design, implementation, 
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testing, and supporting processes in the hardware design life cycle.  Each of these documents 
addresses the issue of qualification of the tools used for creation of an airborne system in a 
slightly different way.  It is, therefore, conceivable that a system of a specific level of safety 
assurance (defined by the categories from A to D, from the most to the least critical) will receive 
different scrutiny, depending on whether or not it is implemented in software or in hardware. 
 
2.2  PROGRAMMABLE LOGIC HISTORY. 

In the past, board-level digital designs consisted of large numbers of components containing a 
few basic gates and memory elements.  Today, virtually every digital design consists of high-
density integrated circuit (IC) devices.  This applies to processors and memory, as well as to 
logic circuits, such as counters, registers, decoders, and state machine controllers. In high-volume 
systems, such circuits are implemented as high-density gate arrays.  For prototyping or low-
volume scenarios, a field-programmable approach where the software component is programmed 
by the end user has been more acceptable.  A wide range and variety of chips makes it a daunting 
task for a digital system designer to research the different types of chips and to understand what 
they can best be used for, to choose a particular manufacturer’s product, to learn the intricacies of 
vendor-specific software, and to then design the hardware.  
 
In the last decade, PLDs, sometimes referred to as field-programmable devices, became an 
alternative to microprocessors in embedded systems.  A PLD is an electronic component that, 
unlike a logic gate, has an undefined function at the time of fabrication and must be configured 
(programmed) by the end user to realize different digital designs.  In the past, programmable 
read-only memory chips could be used to create arbitrary combinational logic functions.  
However, their low speed, inefficient use of space, high power consumption, and inefficiency 
negate the use of read-only memory in applications of a more serious nature.  The introduction of 
simple PLD (SPLD) in the form of programmable logic arrays (PLA) in the late 70s was 
followed by programmable array logic (PAL), generic array logic (GAL), and subsequent 
miniaturization with the introduction of complex PLD (CPLD) that could replace an entire circuit 
board with several SPLDs and hundreds of thousands logic gates.  A CPLD combines a logic 
device and a memory device consisting of one or more programmable sum-of-products logic 
arrays feeding a small number of clocked registers.  Most CPLD are electrically programmable, 
erasable, and nonvolatile. CPLD are less flexible than an FPGA, but have the advantage of more 
predictable timing and a higher logic-to-interconnect ratio.   
 
Invention of gate array technology with a grid of logic gates that could be field-programmable 
gave birth to the FPGA; currently, the most popular component for the creation of complex 
digital designs.  An FPGA is a semiconductor device containing programmable logic blocks and 
programmable interconnects.  The blocks can be programmed to act as basic logic gates or more 
complex combinational functions (decoders, adders, etc.).  Typically, the FPGA logic blocks 
include memory elements, from simple flip-flops to registers, and more complete blocks of 
memory.  FPGA architectures are dominated by interconnect, making them flexible in terms of 
the range of practical designs.  However, they are also far more complex, which makes assuring 
design correctness far more difficult. 
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Fully custom-made ASIC can be very expensive and time consuming to produce; however, they 
provide the benefits of increased density, reduced area, and high performance.  A popular 
technique is cell-based ASIC design, which incorporates well-defined and simple functional 
blocks.  These blocks speed up the synthesis process, as well as reduce the development time. 
Recently, structured ASIC includes predefined standard layers (e.g., with power, clock, testing 
utilities), leaving only part of a silicon mask to be custom designed.  A category called system-
on-chip (SoC) has a large number of functions integrated within a single device.  Figure 2 
presents the relationship between the technologies, demonstrating the thin boundary between 
hardware and software.  Because the boundaries are fluid, the figure illustrates just one way of 
many for visualizing the problem.  
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Figure 2.  Hardware and Software Boundary 

To increase the complexity, complex programmable devices often include a microprocessor core 
with a fixed function and/or a dedicated functionality containing a specified IP core.  Such an IP 
core, referred to as a soft core, is described by its logic function and expressed in an HDL for 
easy integration with other functionality.  Effective modern PLD can be configured to provide 
multiple embedded microprocessors within a logic fabric.  
 
2.3  A TYPICAL AIRBORNE ELECTRONIC HARDWARE DEVELOPMENT FLOW. 

A typical hardware design flow is shown in figure 3.  The design team receives the hardware 
requirements and then designs a system meeting those requirements.  The designers will use 
simulators to debug the design, and also to verify that the design meets all the logical and timing 
requirements.  Any errors in the design that can be detected through simulation, such as logical 
and timing errors, will be identified and corrected.  Hardware designed using this process meets 
the hardware requirements as interpreted by the designers.  
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Figure 3.  A Typical AEH Design and Verification Flow 

The verification team begins development of the verification suite in parallel with the designers 
using the same set of requirements.  The goal of the verification suite is to provide an 
independent assessment of the correctness of the design.  In general, the verification suite is 
limited to verifying the logical correctness of the design because verification tools have limited 
abilities to address timing-related errors.  After the verification suite is run on the design, there 
are three possible causes for any errors that are identified. 
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1. The design is in error.  The design will be corrected and the verification suite will be run 
on the design again. 
 

2. The verification suite is in error.  The verification suite will be corrected and the 
verification suite will be run on the design again. 

 
3. Neither the design nor the verification suite is in error but they expect different results. 

This is usually the result of incomplete or vague hardware requirements.  In this case, the 
hardware requirements must be corrected.  The design and/or the verification suite are 
adjusted to reflect the new requirements and the verification suite will be run on the 
design again.  

 
Running the design through the verification process allows problems in the hardware 
requirements to be identified. Because flawed requirements can produce an incorrect design, it is 
desirable to detect problems with the hardware requirements as soon as possible. In many design 
flows, the verification suite is run against the design every night.  
 
Once the design passes the verification suite, the design is then synthesized and implemented in 
hardware.  The timing performance of the hardware is verified against any timing requirements 
and is also compared to timings predicted by the simulation.  Hardware problems, such as power 
integrity, signal integrity, and noise problems, are extremely difficult to simulate, so it is 
common for hardware performance to differ from simulated performance.  Variations from the 
predicted timing may result in the hardware producing logical errors.  It is desirable to evaluate 
the hardware timing using as robust a test suite as possible.  Some designers will use hardware-
in-the-loop techniques to run the full verification suite on the actual hardware.   
 
Unlike logical requirements, timing requirements are rarely a pass/fail decision.  A timing 
requirement specifies minimum and maximum propagation delays, but not all timings within the 
specification range may be equal.  Although all the allowed timings may produce correctly 
functioning hardware, some timings may result in robust hardware while others may produce 
hardware with minimal timing margins.  An experienced designer is needed to determine the 
optimal timing.   
 
Finally, after the design meets all timing and logical requirements, system validation is 
performed to assure that all system-level requirements are met when the design is used as part of 
a full system.  
 
2.4  THE AIRBORNE ELECTRONIC HARDWARE DESIGN. 

The previous section discussed the AEH development process.  This section will focus on the 
design side of the development process.  Logical design entry may be accomplished in three 
ways:  (1) creating a schematic diagram with a graphical computer-aided design tool, (2) using a 
text-based system to describe a design in an HDL, or (3) a combination of the graphical and 
textual methods.  The initial logic entry, however it is performed, is usually not optimized.   
Because the initial design entry might not be optimized, dedicated algorithms are used to 
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optimize the circuits.  Once the circuits are optimized, additional algorithms are used to analyze 
the resulting logic equations for the purpose of synthesizing the circuit to fit the design into the 
PLD. Simulation is used to verify correct operation of the circuit, often requiring the user to 
modify the initial design entry to correct errors.  When a design can be successfully simulated to 
verify the correctness of its simulated behavior, it can be loaded into a programming unit and 
used to configure the PLD.  It is critical to note that after the original design entry step and any 
required design entry corrections performed manually by the designer, all steps are performed 
automatically by software tools. 
 
The more complex programmable hardware components become, the more complex and 
sophisticated the tools supporting development and verification of the design must be.  For 
complex devices that can accommodate large designs, a mixture of design entry methods for 
different modules of a complete circuit can be used.  For example, some module designs might 
be described using a low-level circuit description language like ABEL, others might be described 
graphically using a symbolic schematic capture tool, while others might be described using a full-
featured HDL such as VHDL or Verilog.  These languages operate using variables and hardware 
signals in addition to sequential constructs, including a variety of concurrency constructs that 
specify parallel implementation reflecting the nature of digital circuits.  The software necessary 
for performing these tasks is supplied by either the hardware manufacturer or a dedicated third-
party tool vendor. 
 
For FPGAs, additional tools are required to support the increased complexity of the IC.  The 
device-fitting step includes mapping from basic logic gates into the FPGA logic blocks, 
placement to select specific FPGA blocks to use, and a router to allocate the wire segments to 
interconnect the logic blocks.  With this added complexity, the tool might require a fairly long 
period of time (often more than several hours) to complete the design. 

 
Software tools for embedded system development, including that of AEH, are used for two 
different reasons:  creation of the system hardware and development of software that runs on the 
processors included in the system. 

 
The presented research focuses on the former, i.e., creation of system hardware.  The tools used 
for hardware design may be applied to a variety of functions, including circuit synthesis, logic 
circuit and hardware simulation, timing analysis, and physical synthesis.  Another aspect of the 
hardware creation activity is verification.  Logic design verification addresses most types of 
design debugging at every point in the design flow, from static timing analysis to support for 
equivalency checking and formal verification.  Functional verification addresses the syntax and 
functionality at the design level using HDL analysis, simulation, and test bench generation. 
Timing verification uses the static timing and delay calculations.  
 
Software tools are critical for the implementation of AEH circuits and devices.  To design any 
modern device, one must use a suite of sophisticated tools including (at a minimum) simulation, 
synthesis, and place-and-route.  Such tools are typically made available by an entity external to 
the developer.  Simulation is supported by accessible and cost-effective tools; however, place-
and-route tools are tightly connected to the specific hardware silicon architecture and vendor.  In 
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the middle of this hardware development cycle is logic synthesis.  The front-end of the logic 
synthesis problem is very complex and not specific to any silicon architecture, while the back-
end stages of synthesis are architecture-specific.  A sophisticated technology for parsing, 
elaborating, and inferring conceptual logic design from code written in a hardware description 
language—such as VHDL, Verilog, or SystemC—facilitates both the creation of the desired 
digital logic circuit design and the eventual mapping into an architecture-specific physical layout.   
 
PLD manufacturers provide automated tools that facilitate this design flow.  For creating the 
hardware circuitry, these tools allow the user to build a system utilizing predesigned building 
blocks for processors, memory controllers, dedicated processing circuits (such as for digital 
signal processing (DSP)), and communication modules (such as for universal asynchronous 
receivers/transmitters).  The software allows easy instantiation of these subcircuits and can 
automatically interconnect them on an FPGA chip.  A generic design flow is shown in figure 4. 
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Figure 4.  Generic Design Flow for the PLD Tool 

Normally, it takes years of real customer designs and exercising a tool to find the peculiarities 
and deficiencies in the tool algorithms and then tuning the algorithms to achieve a technology 
that consistently delivers high-quality results over a wide range of AEH architectures and 
applications.  Commercial synthesis tools, available from third-party vendors, achieve far better 
results.  This directly impacts the competitive performance and utilization of the hardware 
supplier’s silicon.  Therefore, hardware suppliers have been forced into a situation where they 
must partner with software tool vendors to remain competitive.  Some FPGA vendors offer 
proprietary synthesis tools as part of their low-cost (or free) tool suites, while continuing to 
partner with commercial tool companies for higher-end solutions, or offer customized versions of 
commercial tools as part of their tool suite. 
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2.5  VERIFICATION OF AIRBORNE ELECTRONIC HARDWARE. 

Verification of a hardware design can find errors at a variety of levels.  Errors can be identified in 
the hardware requirements, translation of the design into register transfer language (RTL), or 
implementation of the RTL in hardware.  The first two cases involve errors made by the designer 
and are outside of the scope of this work, which focuses on tool qualification.  Verification of the 
hardware implementation can be achieved using formal verification methods to prove correctness 
and by using simulation to verify that the hardware operates as intended.  It is important to 
understand that formal verification only proves that the design is correct, assuming the conditions 
and constraints used during for the formal verification.  Formal verification is not equivalent to 
exhaustively testing a device. 
 
Simulation requires the generation of appropriate test vectors and is an accepted traditional 
method for functional verification during the design creation phase.  Verification of the hardware 
using simulation may consist of both directed test vectors and randomly generated vectors.  This 
method is entirely adequate to verify that the design specified in RTL performs the intended 
function within the limits of simulation.  However, verification of million-gate designs would 
require that transitions on every gate be tracked, resulting in a runtime of weeks for substantial 
million-gate designs.  
 
Since an RTL design can be implemented in a variety of ways at the gate level, the number of test 
vectors grows exponentially during verification.  Any unintended effect of synthesis or timing 
optimization can insert a design error affecting a part of the circuit, and thus manifest itself with 
a few combinations of values on the inputs.  To guarantee detection of such an error with gate-
level simulation, every possible combination of inputs must be applied, resulting in an infeasible 
size of test vector being required to ensure 100% error coverage.  One suggested solution to this 
problem has been the utilization of formal methods [8].  The approach used is based on rigorous 
verification of RTL as an input artifact, while showing that the transition to the gate level is 
consistent, is correct, and does not change the semantic properties of the original input artifact.  
 
One such approach to assuring the transition to the gate level is correct is to use an equivalence 
checker.  An equivalence checker uses static verification techniques to prove that the two 
consecutive representations of digital design are an exact functional match (e.g., RTL-to-gate 
comparison after synthesis and gate-to-gate comparison after place-and-route).  Gate-level 
simulation for modern million-gate designs is infeasible.  A formal checker, an example of Other 
Verification (figure 4), uses a formal verification interface file (FVI) generated by synthesis as a 
basis for comparison with gate-level netlists generated as a result of the first synthesis and 
subsequent place-and-route processes. FVI is a readable text file, including setup information 
with file names, paths, constraints, and name matching.  If the equivalency of these 
representations is assured, strong evidence exists that the final design is consistent with the 
original design intent.  
 
Equivalence checking provides a method of assuring the correctness of the transitions from RTL 
description to the physical implementation, by confirming that transformations throughout the 
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design flow comply with the original functionality.  Equivalence checking cannot replace timing 
analysis. Static timing analysis tools still must be used to confirm gate-level timing. 
 
Despite the obvious advantages of the formal equivalence checking approach, there are 
limitations.  Some types of multipliers do not solve completely and memory blocks must be 
black-boxed to avoid lengthy processing times.  
 
2.6  SIMPLE VS COMPLEX ELECTRONIC HARDWARE. 

DO-254 mainly concerns itself with the design assurance of AEH.  DO-254 distinguishes 
between a simple and complex hardware as follows: 
 

“A simple hardware item is defined as: 
An item with a comprehensive combination of deterministic tests and analyses 
appropriate to the design assurance level that ensures correct functional 
performance under all foreseeable operating conditions, with no anomalous 
behavior.” [1] 

 
A complex item of hardware is one that is not simple.  Since the complexity may be a function of 
interconnectedness, a collection of simple items may itself be complex.  For complex items, the 
proposed method for design assurance should be agreed to by the certification authority early in 
the lifecycle.  AC 20-152 [5] identifies DO-254 [1] as one acceptable means for gaining design 
assurance approval for complex, custom, microcoded components. 
 
2.7  AIRBORNE ELECTRONIC HARDWARE TOOL CATEGORIES. 

The leading PLD hardware vendors are Altera®, Xilinx®, Actel®, and Lattice®.  Some vendors 
offer internally developed synthesis tool, while others partner with synthesis tool vendors such as 
Synopsys, Altium, Cadence, Mentor Graphics, or Synplicity.   
 
Contemporary logic design includes a variety of technologies: 
 
• Design Entry:  Performs HDL, schematic entry, and integration of IP cores. 
 
• Linting:  Enforces coding style. 
 
• Synthesis:  Translation of the HDL design definition into the logical primitives available 

on the hardware platform. 
 
• Place-and-route:  Locating and routing the hardware primitives to meet timing 

constraints. 
 
• Verification:  Design verification ranging from simulation to static timing analysis to 

equivalency checking via formal verification. 
 



 

15 

An initial review of the AEH tools market identifies a wide variety of products used in different 
configurations with functionality covering the entire hardware design and verification spectrum.  
To better understand the state of the industry, several tools were identified during the course of 
the research.  Table 1 shows a comparison of key features for 21 popular tools, categorized by 
function.  The design functions match the five basic functionalities (design, entry, linting, 
synthesis, and place-and-route), but the verification function has been separated into several 
categories.  Simulation tools used for both digital and analog/mixed signal simulations fall under 
both the design and verification categories.  Verification has been divided into three categories: 
assertion based, test bench automation, and coverage-based tools.  Assertion-based tests use 
assertions—checks that are coded into the HDL and are checked continuously during all 
simulations.  Test bench automation assists in automatically generating test benches that meet a 
given coverage criteria.  Coverage-based tests determine the number of lines of HDL code that 
have been exercised in a test; each line of HDL should be exercised at least once to achieve full 
statement coverage.  To meet DAL A safety requirements, coverage methods must be extended 
to determine the coverage on the gate-level netlist produced by the synthesis, estimating the 
number of gates that were exercised by the test. 
 
Almost all tools supporting FPGA design also support other types of programmable devices and 
occasionally ASIC.  However, there are selected high-end tools that are ASIC-specific.  
Manufacturing an ASIC, due to need for creation of permanent mask, is an extremely expensive 
proposition and is undertaken only if (1) there is a high-demand market for the device, so it can 
be sold by the millions (e.g., dedicated circuitry to mobile phones) and (2) the design is 
verifiable.  To reduce or eliminate potential defects, the tools used for creation and verification of 
ASIC are very expensive and top of the line.  The low-demand market, in contrast, calls for the 
use of technology that can easily be reprogrammed; therefore, tools supporting that market are 
less expensive and developers can afford an occasional miss in a non-safety-critical environment.   
However, these tools need to be carefully examined if they are to be used for a safety-critical 
application. 
 
As shown in table 1, the top six tools contain all the technologies listed above, and any one of 
these tools can provide a full design and verification suite.  Experimentation with the tools 
indicated that the differences between the tools vary significantly at the user interface level, but 
all the tools have similar design entry and synthesis capabilities.  More significant than the 
variations in the tool suites is variation in the underlying hardware.  This research chose to focus 
on the two largest hardware vendors Xilinx and Altera.  
 
Xilinx’s ISE and Altera’s Maxplus tool suites were installed in the contractor laboratory, and the 
personnel familiarized themselves with their operation.  These tools were chosen to support the 
experimental portion of this work.  More advanced tools from Mentor Graphics (HDL Designer, 
Questa, and O-In Formal Verification) were too specialized to fit into the flow of this research, 
but they may warrant further study in the future.  
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Table 1.  Tool Feature Comparison 

DesignCreationLintingPlace andRouteSynthesisDigitalSimulationMixed SignalSimulationAssertionBasedTest BenchAutomationCoverageBasedMaxplus IIQuartus IIISP LEVERISE FoundationPlatform StudioEDKActel DesignerHDL DesignerAllegro Design EntryHDLDAlintLedaNC-Verilog/NC-VHDLActive HDLModelSimVCS/SciroccoTausimAdvance MSSynplifyQuestaRivieraIncisive0-In FormalVerificationDesignVerification

 
2.8  THE AIRBORNE ELECTRONIC HARDWARE TOOLS IN DO-254 FRAMEWORK. 

Until recently, it was conceivable to verify avionics hardware using only systems-level testing, 
due to its simplicity.  Since DO-178B required extensive effort for software assurance, while no 
assurance process was required for hardware, a large portion of system functionality migrated 
from software to hardware implementations to avoid certification effort.  In recent years, the 
introduction of high-performance, programmable logic has allowed the functions of thousands of 
individual hardware devices to be integrated into a single hardware element.  This increase in 
both density and complexity has allowed what used to be entire systems to be implemented in a 
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single hardware device.  Hardware devices can now be applied to complex problems that 
previously required software solutions.  It is commonly accepted that hardware and software are 
closely linked and that high assurance of both is required for system reliability.  The DO-254 
design assurance standard is the hardware community’s equivalent to DO-178B for software 
development assurance.   
 
2.8.1  The DO-254 Design Assurance Guidance. 

Two documents provide guidance for the development of dependable systems; SAE ARP 4754 
[9] is the source of development guidance for highly integrated aircraft systems, while SAE ARP 
4761 [10] identifies safety assessment methods to be used in the hardware design assurance 
process.  Applying these documents allows system engineers to determine system criticality, and 
thus identify the DAL as allocated to hardware.  Since DALs are based on classification of the 
worst system failure conditions, they are similar to ARP 4754 [9] “Development Assurance 
Levels” and DO-178B [6] “Software Levels.” 
 
DO-254 [1] was released in 2000, addressing design assurance for AEH.  The guidance is 
applicable to a wide range of hardware devices, ranging from integrated technology hybrid and 
multichip components; to custom, programmable, microcoded components; to circuit board 
assemblies; to entire line replaceable units.  This guidance also addresses the issue of commercial 
off-the-shelf (COTS) components.  The document’s appendices provide guidance for data to be 
submitted, including independence and control data category based on the assigned assurance 
level, description of the functional failure path analysis (FFPA) method applicable to hardware 
with DALs A and B, and discussion of additional assurance techniques, such as formal methods, 
to support and verify analysis results.  The FFPA can be accomplished on four levels—system, 
hardware, circuit, and component—and is used to determine which paths to analyze with 
increased rigor. 
 
Because it is easily automated, elemental analysis is one of the most popular techniques to assess 
coverage.  Elemental analysis depends on the hardware element type and complexity, and the 
functional operations of the element.  This analysis may show either that all the low-level 
primitive blocks, such as counters, registers, multiplexers, adders, op amps, and filters, have been 
adequately tested, or that all groups of interconnected primitives have been adequately tested and 
achieve the verification coverage criteria.  The analysis criteria of the test procedures should be 
based on an assessment of element operation and its integration with other elements to perform 
the next higher hierarchical-level hardware function.  Applications of formal methods are most 
effective during structured portions of the design, such as during requirements capture and high-
level design, where they are effective at identifying incomplete specifications.  Formal methods 
may be applied to verify system functionality, or they may be used to confirm that a design does 
not exhibit certain undesirable properties, rather than to prove that it has full functionality.  
Although the same number of objectives is applicable to items of DALs A and B, level A may 
require additional design assurance techniques to provide complete mitigation of potential 
failures and anomalous behaviors. 
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One acceptable method for AEH approval is compliance with AC 20-152 [5], which refers the 
hardware developers to guidance of DO-254 [1]. AC 20-152 [5], which was released in 2005, 
applies to manufacturers and installers of products or appliances incorporating complex, custom, 
microcoded components, as discussed in this report, with hardware DALs from A to D.  
AC 20-152 provides a method for obtaining FAA approval by demonstrating that the equipment 
design is appropriate for its intended function.  Additionally, AC 20-152 helps satisfy 
airworthiness requirements when these types of electronic components are implemented.  It is 
applicable for technical standard order, type certificate, as well as parts manufacturer approval.  
The AC is limited to complex, custom, microcoded devices of DALs A, B, C, and D.  However, 
an applicant does not need to show artifacts to the FAA for level D. 
 
Due to the increasing complexity of modern digital systems, automated tools are widely used.  
Assessment of a tool resulting in basic tool qualification allows developers to substantiate claims 
regarding the tool’s correctness.  For qualification of a tool on DALs A and B, the qualification 
process is more rigorous. 
 
2.8.2  The DO-254 Tool Guidance. 

It is widely recognized that in safety-critical applications, with millions of gates on a chip, the 
role of hardware design tools and hardware verification tools becomes increasingly critical.  The 
process of developing AEH is described in DO-254, as is the tool qualification process.  Section 
11.4 of this standard [1] distinguishes between design tools and verification tools: 

 
“When design tools are used to generate the hardware item or the hardware 
design, an error in the tool could introduce an error in the hardware item.” 

 
“When verification tools are used to verify the hardware item, an error in the tool 
may cause the tool to fail to detect an error in the hardware item or hardware 
design.” 

 
Therefore, it is essential that tools be evaluated before their use, because they are critical to 
overall system safety. It is specifically stated in DO-254 [1] that “Prior to the use of a tool, a tool 
assessment should be performed.”  Furthermore, it states: 
 

“The purpose of tool assessment and qualification is to ensure that the tool is 
capable of performing the particular design or verification activity to an 
acceptable level of confidence for which the tool will be used.”   

 
Finally, DO-254 identifies a process for “Design and Verification Tool Assessment and 
Qualification” [1], which is itemized as ten steps (see Figure 11-1 of reference 1): 

 
1. Identify the Tool.  This includes the name, source, version, and the host 

environment. 
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2. Identify the Process the Tool Supports.  This concerns the distinction between the 
design and verification processes, as well as the outputs the tool produces in the 
hardware design life cycle. 

 
3. Is the Tool Output Independently Assessed?  If the tool output is independently 

assessed, then no further assessment is necessary and the process is completed 
(Step 10 below); otherwise the assessment proceeds to Step 4. 

 
4. Is the Tool Output a Level A, B or C Design Tool, or a Level A or B Verification 

Tool?  If not, no further assessment is necessary and the process is completed 
(Step 10 below); otherwise the assessment proceeds to Step 5. 

 
5. Does the Tool Have Relevant History?  If so, no further assessment is necessary 

and the process is completed (Step 10 below); otherwise the assessment proceeds 
to Step 6. 

 
6. Establish Baseline and Problem Reporting for Tool Qualification.   
 
7. Basic Tool Qualification.  This step seeks confirmation, using either analysis or 

testing, that the tool produces correct outputs for its intended application. 
 
8. Type of Tool and Level?  If the tool is a Level C design tool or a Level A or B 

verification tool, then the process is considered completed; otherwise (Level A or 
B design tool), the assessment proceeds to Step 9. 

 
9. Design Tool Qualification.  This step proceeds according to strategies described in 

appendix B of DO-254, DO-178B for software development tools, or other means 
acceptable to the certification authority.  It is essential to note that “Independence 
of this activity from the tool development,” is called for. 

 
10. Complete.  This step relies on documenting (1) the tool assessment, (2) 

justification for the assessment decisions, and if applicable, (3) tool qualification 
data, as necessary to support the tool assignment and qualification.  Section 11.4.2 
of DO-254 specifies further, what tool assessment and qualification data should 
include. 
 

The above process still leaves room for interpretation and is the source of numerous 
disagreements on whether tool qualification is required.  
 
2.9  WHAT IS A TOOL? 

DO-254 [1] provides guidance for design assurance of AEH defining design assurance, life cycle, 
processes (planning, design, validation and verification, configuration management, assurance, 
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certification liaison), and life cycle data.  However, there is no clear definition of a tool in 
DO-254 [1] or associated CAST papers; paraphrasing DO-178B [6] a tool is: 
 

“A computer program or a hardware device used to help develop, test, analyze, 
produce or modify hardware component, subsystem, system or its 
documentation.” 

 
For this purpose, a tool reduces, eliminates, or automates the objectives of the design or 
verification process. This very broad definition of a tool requires that the tool assessment and 
qualification process detailed above must be considered for design and for testing aids that may 
not be recognized as tools.  
 
For example, consider a company working on a DAL A project that writes a simulator-based test 
bench that produces a pass/fail output. The following are observations about this test bench: 

• The test bench automates the verification process and is therefore a tool. 

• A verification tool for a DAL A must use the Design and Verification Tool Assessment 
and Qualification procedure. 

• No relevant service history would exist.  

• Unless the test bench outputs are independently assessed, the tool will need to go through 
basic qualification. 

 
2.10  WHEN IS TOOL QUALIFICATION REQUIRED? 

The tool assessment and qualification process flow chart is shown in figure 5.  Tool qualification 
is required only if all three of the following conditions exist: 
 
1. There is no independent assessment of the tool’s outputs.  
 
2. The tool is used for levels A, B, and C for design or levels A and B for 

verification. 
 
3. No relevant service history exists. 
 

DO-254 offers the following guidance on independent assessment of the tool’s outputs: 
 

“Independent assessment of a design tool’s output that is generated in whole or in 
part by the tool may be established by the verification activities performed on the 
item, such as component, netlist or assembly.  In this case, the integrity of the end 
item does not depend upon the correctness of the design tool output alone.” 
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Figure 5.  The DO-254 Tool Assessment and Qualification Process [1] 

The design process documented in figure 5 shows four distinct decision elements (highlighted in 
the figure).  Each one of these decision elements offers the opportunity for an independent 
assessment of the correctness of the design.  The correctness of the design will be evaluated 
numerous ways.  The verification suite will assure that the design outputs meet all the logical 
requirements.  Simulations allow the designers to view and analyze the design, using not just the 
output signals, but every signal in the design.  Analysis and debugging of the hardware will allow 
the designers to verify that the hardware performs as predicted by the design tools.  In the typical 
AEH design, following the verification process shown in figure 3, the process of multiple 
overlapping independent assessments allows the assertion that (quoting DO-254) “the integrity of 
the end item does not depend on the design tool output alone.” [1] 
 
In section 4.2, it will be shown that qualification of a FPGA design tool is not sufficient to 
guarantee correct operation of the hardware, since proving that the design implementation is 
logically correct does not guarantee correct operation of the hardware.  Correct operation of the 
hardware is heavily dependent on the system environment in which the hardware is operating.  
Multiple layers of verification will prove more fruitful than attempting to qualify a tool as correct 
over all voltage, temperature, timing, and environmental conditions.  
 
2.11  TOOLS DISCLAIMERS. 

DO-254 indicates that tool qualification is a challenging task, perhaps more difficult than the 
hardware design itself.  The tool vendors understand the difficulty in guaranteeing correct 
operation over all possible operating conditions.  The excerpts presented below are from a 
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manufacturer’s product description.  Despite great progress and improved trustworthiness of new 
products, there is no certainty that the product is perfect.  This leads to the limited warranty’s 
legal disclaimers, such as: 
 
• Example logic synthesizer:  
 

“<vendor>warrants that the program portion of the SOFTWARE will perform 
substantially in accordance with the accompanying documentation for a period of 
90 days from the date of receipt. 
 
IN NO EVENT SHALL <vendor> OR ITS LICENSORS OR THEIR AGENTS 
BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL OR 
INCIDENTAL DAMAGES WHATSOEVER (INCLUDING, WITHOUT 
LIMITATION, DAMAGES FOR LOSS OF BUSINESS PROFITS, BUSINESS 
INTERRUPTIONS, LOSS OF BUSINESS INFORMATION, OR OTHER 
PECUNIARY LOSS) ARISING OUT OF THE USE OF OR INABILITY TO 
USE THE SOFTWARE, EVEN IF <vendor> AND/OR ITS LICENSORS HAVE 
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES” 

 
• Example simulator: 
 

“<vendor> warrants that during the warranty period Software, when properly 
installed, will substantially conform to the functional specifications set forth in the 
applicable user manual.  
<vendor> does not warrant that Software will meet your requirements or that 
operation of Software will be uninterrupted or error free. 
<vendor>AND ITS LICENSORS SPECIFICALLY DISCLAIM ALL IMPLIED 
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A 
PARTICULAR PURPOSE AND NON-INFRINGEMENT OF INTELLECTUAL 
PROPERTY.” 

 
The simulator vendor does not guarantee that the software will meet the designer’s requirements, 
or that the operation of the software will be error free.  The tool qualification process attempts to 
provide an assurance that the tool will operate correctly over the operating conditions of interest 
to the project.  Assuring correct operation of the tool requires knowledge of the internal operation 
of the software.  This information is rarely available to the tool user.  The tool manufacturers 
have the necessary information but, because the information often contains trade secrets, they are 
often unwilling to provide the information required for tool qualification to outsiders.  
 
3.  ALTERNATIVES TO TOOL ASSESSMENT AND QUALIFICATION. 

The purpose of tool assessment and qualification is to ensure that the tool is capable of 
performing the particular design or verification activity to an acceptable level of confidence for 
which the tool will be used.  In sections 4.2 and 8.1, this research will demonstrate that, even if a 
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design tool’s outputs are known to be correct, it is still possible that the implemented hardware 
will fail to function correctly. 
 
Section 11.4.1 of DO-254 [1] has a comment about level A and B design tools, implying that 
qualifying a design tool instead of assessing the tool’s output, or establishing relevant history, 
may be more difficult than the hardware design itself.  
 

“Using such a design tool without independent assessment of the tool’s output or 
establishing relevant history is discouraged, as it may prove to be a task as 
challenging as the development of the hardware for which the tool is proposed to 
be used.” 

 
DO-254 provides independent assessment of a design tool’s output and establishing a relevant 
tool service history as options in the tool qualification process.  In the sections that follow, each 
method will be examined in detail. 
 
3.1  INDEPENDENT ASSESSMENT OF THE TOOL’S OUTPUTS. 

DO-254 states [1]: 
 

“An independent assessment verifies the correctness of the tool output using an 
independent means.  If the tool output is independently assessed, then no further 
assessment is necessary.” 
 

It is clear that independent assessment of a tool’s output avoids the tool qualification process, but 
what constitutes independent assessment of the tool’s outputs? 
 
DO-254 provides the following guidance on independent assessment of a design tool: 
 

“Note:  Independent assessment of a design tool’s output that is generated in 
whole or in part by the tool may be established by the verification activities 
performed on the item, such as component, netlist or assembly.  In this case, the 
integrity of the end item does not depend upon the correctness of the design tool 
output alone.” 
 

Verification activities on the component (hardware) and netlist (software) count as an 
independent assessment of a tool’s output.  
 
For verification tools, DO-254 states: 
 

“Independent assessment of a verification tool’s output may include a manual 
review of the tool outputs or may include a comparison against the outputs of a 
separate tool capable of performing the same verification activity as the tool being 
assessed.  

 



 

24 

The applicant may propose other methods of independent assessment as well.” 
 

Advanced verification techniques, such as elemental analysis or formal methods, can provide 
independent assessment of a verification tool’s outputs. 
 
3.1.1  What Does Independent Assessment Mean? 

Independent assessment is more than just the independence of the design and verification tools 
used. Independent processes are a means to address potential common mode errors that could 
occur if a single person designs and verifies the hardware item.  With a single person performing 
the design and verification, the verification process will assure that the hardware operates as 
designed, but this may not be equivalent to how the hardware is required to operate.  The 
responsibility for ensuring that the verification process demonstrates that the design requirements 
have been met should be performed with an individual, a process, and/or a tool that is 
independent of the designer.  There are many means of establishing the necessary level of 
independence, and the verification plan should address the specific means to be used for a 
particular verification activity.  
 
DO-254 enumerates some examples of acceptable means achieving independence [1]: 
  

“1.  Requirements or designs are reviewed by another individual.  
 

2.  Test cases or procedures are developed by another individual.  
 

3.  Test cases or procedures developed by the designer are reviewed by 
another individual.  

 
4.  An analysis performed by the designer is reviewed by another individual 

or a review team.  
 

 5.  A different test is performed that confirms the results of testing by the 
designer, such as a test during flight test confirms a hardware item test or 
software verification tests, developed independently and performed on the 
target hardware item, confirm the results of testing by the designer.  

 
6.  Test or analysis results are verified by a tool.” 

 
In addition to design reviews by independent individuals, some automated techniques are 
allowed.  Item 5 allows independently developed tests performed on the hardware to be used to 
confirm the results of testing by a designer.  Item 6 allows other tools (such as formal analysis) to 
be used to confirm the tool’s outputs.  
 
3.1.2  Independent Processes at all Phases of the Design. 

It should be noted that rigorous hardware design assurance for dependable systems requires that 
the major elements of a project—specification (requirements), conception (design), verification 
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(testing), and validation (analysis) must be executed independently by separate groups to avoid 
perpetuation of errors.  In addition, both verification and validation results may need to be 
reviewed independently to confirm that proper procedures were followed, and that results 
adequately verify that the requirements have been met.  Independence of the design and 
verification team is a double-edged sword.  While it can be a negative for knowledge of the 
design to influence the work of the verification group, the designers’ knowledge of the hardware 
can help identify areas that warrant particular attention during verification.  For designs intended 
to satisfy DALs A and B, the independence required by the standard must not prevent the transfer 
of information from the design team to the verification team.   
 
3.1.3  What Happens if the Independent Assessment Results do not Agree? 

Independent assessment data that indicates a failure cannot be treated lightly.  While there is 
always the possibility that the independent assessment is in error, great care must be taken when 
such a situation is discovered.  The mirror on the Hubble space telescope was ground to an 
incorrect shape, despite the fact that mirror shape was independently assessed with three separate 
systems.  Two of the three measurement systems identified the mirror shape as incorrect.  
However, the main measurement system was considered to be far more accurate, and the 
conflicting independent measurements were ignored, eliminating the independent assessment of 
the mirror shape. It was not until the mirror was in service and determined to be flawed that the 
error in the primary measurement source was identified [11].  Even in cases where the 
independent assessment is not as strong as the main design tool, the results of the independent 
assessment must be carefully considered. It is interesting to note that the losing bidder for the 
mirror was a team from Kodak and Itek Corporations who proposed to independently build two 
mirrors and check each other’s work.  This type of independent assessment would have easily 
identified the measurement errors. 
 
3.1.4  Independent Assessment is a Process, not an Event. 

Independent assessment of a design tool’s outputs should not be viewed as a single event. 
Independent assessment of the design tool’s output is a process that can and should occur 
continuously throughout the design. There should be multiple independent assessments 
occurring, each assuring the design correctness at different levels. The independent assessment 
process follows a bottom-up strategy. The initial independent assessments will use simulations to 
assure that each signal in each low-level block of the design meets the appropriate hardware and 
derived requirements. Later assessments will assure that the low-level blocks correctly 
interoperate as part of the final design. The final assessment during validation will assure that the 
design meets all system-level requirements in the actual system application. The independent 
assessment process operates the same for all DALs. Level A designs will require far more 
extensive assessment than level C designs in order to assess the design robustness and any 
architectural failure mitigation techniques that may be in place.  
 
It is often possible to assure some lower-level requirements in later assessments, such as at the 
system level, but many low-level requirements cannot be assured at the system level. It is also 
possible that there are requirements that can only be fully assessed at the system level. In this 
case, the assessment at lower levels should cover as much of the requirement as possible. At 



 

26 

every stage in the assessment process, the assessment should attempt to verify as many design 
requirements as possible and to assess each requirement to the fullest extent possible. 
 
3.2  SERVICE HISTORY. 

In the absence of independent assessment of a tool’s output, the DO-254 tool assessment and 
qualification process allows a tool’s relevant service history to be used as an alternative to tool 
qualification.  In section 11.4.1, DO-254 [1] gives the following guidance with respect to tool 
service history: 
 

“The history of the tool may be based on either an airborne or nonairborne 
application, provided that data is available to substantiate the relevance and 
credibility of the tool’s history.” 

 
Design and verification tools from mainstream vendors, such as Mentor or Synplicity, have been 
used by hundreds of users on thousands of predominantly nonairborne projects.  Mainstream 
vendors actively track problem reports and keep change logs for the software revisions.  Many of 
the projects are more complex and speed intensive than is typical for aviation applications.  But 
very few of the nonairborne projects are concerned with safety-critical hardware; therefore, the 
relevance and credibility of the tool history should be questioned.  
 
3.2.1  Service History Case Studies. 

A good service history does not assure that a design is error free.  Consider the following 
examples, in which significant system failures occurred despite an excellent service history.  
  
• The Intel® floating point processor circuitry was incorporated in both the 486™ and 

Pentium® processors.  There were hundreds of thousands of these processors in use for 
several years without any issues or failures related to the floating point processor.  In 
1994, a user identified an error in the floating point circuitry.  Byte magazine estimated 
that the error would occur once in every 9 billion randomly generated calculations [12]. 
 

• The European space agency spent 10 years and $7 billion to produce the Ariane 5 rocket. 
In 1996, at 36.7 seconds into the maiden flight, the inertial navigation system attempted a 
data format conversion and ran into a number that was too large for the destination 
register to store.  The resulting error caused the navigation system to shutdown.  The 
backup navigation unit came online and ran into the same problem. The rocket lost 
navigation control and was subsequently destroyed in flight [13]. 

 
To apply the guidance of DO-254 to the above cases, the task begins with assessing the relevance 
of previous applications, installations, and environments to the target application.  The Intel 
floating point processor was used in numerous previous processor designs.  The application, 
installation, and environment of the new processor applications were identical to previous 
successful applications.  The application of the navigation system of the Ariane 5 rocket was 
identical to the Ariane 4.  The physical installation was identical, except for differences in the 
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dimensions of the equipment bay.  The environment appeared identical; it connected to similar 
hardware, on a similar rocket.  Engineering analysis of both the Intel and Ariane examples 
concluded that the new applications were identical in application, installation, and environment. 
Now consider the actual failure rates in operation.  There were no known functional failures of 
the floating point processor or the Ariane navigation system.  Both systems had long and 
problem-free service histories. 
 
Both systems would meet all the criteria necessary to qualify based on service history.  So why 
didn’t the service history predict the future performance?  The bug in the floating point processor 
had slipped by detailed verification by Intel.  It was also sufficiently rare that randomly generated 
test patterns had a negligible probability of finding the bug.  If 100,000 users in the user base 
averaged a single floating point calculation per second, the error would have occurred a 
minimum of once a day for years.  The actual rate of occurrence is expected to be substantially 
more frequent.  Despite the high error rate, the error was not detected because the error was not 
producing detectable errors in user applications.  When an application requiring extreme 
precision independently assessed the calculations, the error was identified. 
 
The excellent service history of the floating point processor was based on users doing general 
computing.  This proved a poor predictor of the system performance for an extreme precision 
application.  The excellent service history caused even the mathematician who discovered the 
error to suspect that the problem was in his calculations, and not in the hardware. 
 
In the case of the Ariane 5 rocket, the particular subsystem that failed was only used to align the 
navigation system before launch.  The system that generated the failure could have and should 
have been turned off prior to launch.  However, in a decision made many years before, the 
navigation system was left enabled for the first 40 seconds of flight to make it easier to restart the 
system if there were holds on the launch pad.  The navigation system failure occurred because the 
Ariane 5 was a much faster rocket and generated velocities that could not be achieved on the 
Ariane 4. 
 
The new application of the navigation system was identical in all physical respects, but the data 
coming from other systems had changed.  Again, service history yielded a poor prediction of 
future performance, because the environment the system operated in had changed in a subtle way 
that had not been recognized. 
 
3.2.2  Service History Guidance for Hardware. 

DO-254[1] gives guidance about product service histories for hardware in Section 11.3 and 
Appendix B, Section 3.2.  Sections 11.3.1 and 11.3.2 of DO-254 give guidance on product 
service experience acceptability.  One or more of the several criteria should be met to determine 
the product service history acceptability. Quoting DO-254 these criteria include: 
 

“Assess the relevance of previous applications, installations and environments to 
the target application, based upon engineering analysis.” 
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and  
 

“Actual failure rates in operation.” 
 
The guidance in Section 3.2 of Appendix B of DO-254 [1] requires additional design assurance 
for DAL A and B hardware if service experience is claimed.  It also contains a requirement to 
link any analysis of product service history experience into the FFPA for levels A and B.  
 
3.2.3  Service History for Design Tools. 

The performance of hardware is the same regardless of who is using it.  If the application, 
installation, and environment are similar for multiple applications, it is reasonable to expect that 
if the hardware worked well in one application, it will work well in the other applications.  As 
shown in appendix F, this does not extend to design and verification tools.  The performance of a 
design or verification tool instead depends heavily on the abilities and experience of the tool 
user.  Experienced users can work around the known weaknesses and bugs of a known design 
tool.  The user’s experience with the tool is a better predictor of design correctness than the tool’s 
service history.  
 
3.2.4  Service History Versus the Latest Technology. 

When it comes to safety, there can be a tradeoff between service history and new technology. 
Consider the introduction of airbags in the auto industry.  The airbag was first offered as optional 
equipment in passenger cars in 1975.  The first recorded accident between two vehicles in which 
an airbag deployed to protect each driver occurred in 1990 [14].  It took until 1998 before the 
government made airbags mandatory equipment for all passenger vehicles.  Part of the reason for 
this delay was that legislators wanted a known service history and safety record before airbags 
were mandated.  Many lives could have been saved and highway safety improved if the 
government had embraced the new technology sooner.  
 
Design and verification tool technology is constantly improving.  New tools may produce far 
safer designs than older tools with documented service histories.  Independent assessment of the 
tool’s output provides far more assurance of design correctness than tool service history. 
 
3.2.5  Tool Service History is not Sufficient. 

The authors do not believe that a relevant service history alone is sufficient to prevent errors in 
the final design.  The authors recommend that the design tool’s service history should not be 
allowed to avoid tool qualification.  The tool’s service history should be used instead to modulate 
the level of independent assessment effort required.  A tool that lacks a relevant service history 
should be subjected to additional independent assessments to assess the correctness of the tool.  
 
Since there will be other independent assessments of the tool’s outputs, these additional 
assessments need not be as exhaustive as those required for tool qualification.  The additional 
assessment can be an independent manual review of the outputs of the new tool, analyzing the 
design with both the new and old tools and comparing the results.  In some cases, a tool with no 
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relevant service history may address an issue that was not addressed by any previous tool.  In this 
case, the correctness tool outputs should be subjected to a manual review. 
 
3.2.6  Testing Maturity Model. 

The Testing Maturity Model (TMM), introduced in mid-90s, did not find much acceptance due to 
its limited documentation and theoretical style [15 and 16].  However, the approach is still 
promoted by the TMMi Foundation (http://www.tmmifoundation.org/html/tmmiorg.html).  
TMM focuses on testing inspired by the Software Engineering Institute Capability Maturity 
Model (CMM), which assumes that there is a correlation between organizational maturity and the 
quality of produced software.  Since the TMM approach is primarily used in enterprise 
computing and IT organizations and because the testing component of verification and validation 
is adequately addressed in the existing guidance, the TMM approach has not been considered 
relevant for AEH.  
 
4.  DESIGN ASSURANCE. 

DO-254 defines design assurance as follows [1]: 
 

“Design Assurance – All of those planned and systematic actions used to 
substantiate, at an adequate level of confidence, that design errors have been 
identified and corrected such that the hardware satisfies the application 
certification basis.” 

 
The key to design assurance using DO-254 is identifying all possible design errors.  Before a 
design error can be identified, a test case that produces the error must be generated, and then the 
error must manifest itself in a way that the test system can detect.  The following sections 
investigate methods to generate more complete test cases, and to better observe errors when they 
occur.  
 
4.1  CONSTRAINED RANDOM VERIFICATION. 

Constrained random verification is a technique where the input conditions of the device under 
test are bounded according to the hardware requirements.  Within these bounds, test cases are 
randomly constructed and used to assess the correctness of the design.  If a condition is not 
prohibited by the requirements, then it can be used as a test case. 
 
Because the test cases are computer generated, they often identify failures that are legal 
conditions that were not considered by the design and verification teams.  Because the input 
constraints are defined by the hardware requirements, constrained random verification often 
identifies problems with the hardware requirements.  As part of a normal design process, many 
semiconductor companies run a new set of random test cases on the design in progress every 
night.   
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Synopsys published a study on a USB 2.0 Host core [17].  The core had been verified by 
traditional simulation methods, as well as manual-directed tests backed up by some random 
testing in Verilog.  The suite consisted of 450 directed/random tests and achieved what seemed to 
be excellent coverage results: 
 
• 97.50% Finite State Machine (FSM) coverage 
• 88.64% toggle coverage 
• 84.71% condition coverage 
• 98.58% line statement coverage 
 
Given a design that was well verified in simulation, hardware verification was then performed on 
the design.  A total of 25 new bugs were found.  The design bugs were put into four 
classifications: 
 
• B4—show-stopper bug that could prevent a product from working 
• B3—significant functional bug that would affect some applications 
• B2 and B1—relatively minor bugs, usually with workarounds 
 
The 25 bugs discovered during hardware verification were in the B3 and B2 categories.  There 
were no show-stopper bugs found, so the initial verification effort was successful.  But the 
hardware verification still found and fixed a number of important problems.  At this point, most 
designers would be confident that the design has been assured to be correct. 
 
Constrained random verification was then performed on the already well-verified design.  An 
additional 28 bugs were found: 
 
• 15 were B3 level 
• 12 were B2 level 
• 1 was B1 level 
 
Constrained random verification helps generate test cases to identify bugs that slip by the normal 
design and verification efforts.  Constrained random verification should be part of any safety-
critical AEH design flow.  
   
4.2  OBSERVABILITY. 

For safety-critical designs, both the verification and validation test suites need to be assessed for 
completeness.  Elemental analysis is often used to assure that every element of the design is 
exercised by the test suite.  It is important to realize that merely exercising every element is not 
sufficient to assure the design is correct.  If an element makes an error, it is necessary for the 
error to propagate to an observable point for the error to be detected.  Consider the case of 
several circuits connected to a single output.  If an error in one circuit occurs while some other 
circuit has control of the output, the error will go undetected, but the elemental analysis can 
report that the element was tested.  
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The number of internal states usually far exceeds the number of outputs, so visibility into the 
circuits operation is limited.  Modern design methodologies use assertions to give better visibility 
into internal circuit operation during simulation.  An assertion acts like a comment that checks 
itself during simulation.  Suppose that, as part of his HDL design process, a designer puts in 
assertions, such as the contents of a four-bit counter must always be between 0 and 10.  If during 
any simulation the counter contains an illegal value, the assertion fires and the violation is noted 
in the error log.  Even if this condition quickly goes away and the illegal value does not 
propagate to any observable points, it still generates a detectable error.  
 
If the hardware fails during system validation, determining the failure mechanism in the 
hardware often requires that the conditions leading to the failure are simulated.  The assertions 
will provide a detailed map of where and when the failure originated and where and how it 
propagated.  Assertions are widely used in the semiconductor industry, because of their ability to 
improve the observability of failures, and their usefulness as a debug tool if the hardware fails in 
the field or during system validation.  An additional benefit of using assertions is that they 
highlight how well a design component is specified.  
 
4.3  DERIVED REQUIREMENTS. 

DO-254 defines a derived requirement as follows: 
 

“Derived Requirement - Additional requirement resulting from the hardware 
design processes, which may not be directly traceable to higher level  
requirements.” 
 

Derived requirements that impact safety must be verified.  DO-254 lists some example 
conditions in which derived requirements may address safety conditions. 
 

“Note: Derived requirements may address conditions, such as:  
 
a. Specific constraints to ensure that functions of a higher design assurance level 

can withstand anomalies of functions of a lower design assurance level as seen 
at the interface of the function with the lower design assurance level.  
 

b. The range of data inputs considering typical and full-scale data values as well 
as the high and low states of bits in data words or control registers.  

 
c. Power-up reset or other reset states.  
 
d. Supply voltage and current demands.  
 
e. Performance of time-related functions, such as filters, integrators and delays. 
 
f.  State machine transitions that are possible, whether they are anticipated or not. 
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g.  Signal timing relationships or electrical conditions under normal and worst-
case conditions. 

 
h.  Signal noise and cross-talk.  
 
i.  Signal glitches in asynchronous logic circuits. 
 
j.  Specific constraints to control unused functions.” 

 
Assertions cannot cover timing, power, or noise issues (conditions d, e, and h), but all other 
derived requirements can and should be covered by one or more assertions.  Covering a 
requirement with an assertion provides an independent assessment of the design tools output.  
 
5.  SURVEY OF TOOL USERS. 

To identify issues and concerns in AEH tool qualification and certification, one must start with a 
broader view of an industry perspective.  This section reports on the survey of the aviation 
community conducted to collect relevant information.  
 
5.1  AVIATION COMMUNITY SURVEY. 

The survey was conducted to collect data on experiences and opinions concerning the use of 
programmable logic tools as applied to the design or verification of AEH (FPGA, PAL, GAL, 
PLA, ASIC, or SoC) according to the DO-254 standard.  The questionnaire was sent out, targeted 
toward individuals who have experience with developing or using such tools or experience with 
qualifying such tools.  The purpose was to gather industry and certifying authority feedback on 
assessment and qualification of AEH programmable logic tools. 
 
5.1.1  Survey Population. 

The questionnaire was distributed first during the 2007 FAA SW&AEH Conference in New 
Orleans, LA, July 24-26, 2007, which was attended by over 200 participants.  A special session 
dedicated to AEH was attended by 54 individuals, representing industry and government 
organizations interested in AEH and the application of DO-254.  In addition to distributing and 
collecting paper copies of the questionnaire at the conference, a follow-up mailing was 
distributed to over 150 individuals engaged in the development of aviation software and 
hardware.  The questionnaire was also distributed internally within several companies engaged in 
the design of PLDs.  As a result of these activities, a sample of only 17 fully completed responses 
was received.  As a follow-up, surveys were distributed at the Programmable Logic User Group 
meeting in Clearwater, FL, November 15, 2007, resulting in three more responses.  This is a 
rather disappointing outcome and a potential risk issue.  However, the collected results provide 
several interesting observations. 
 
In January 2008, using an external survey website (www.surveymonkey.com) the questionnaire 
was posted on the web and followed up with an additional 266 mailings requesting response.  
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Additionally, the link to the web survey was placed on the DO-254 Users Group website (select 
the “tools” tab).  To date, only eight responses have been received.  
 
A copy of this questionnaire is included in appendix A.  The detailed results and the majority of 
relevant graphs are presented in appendix B.  The general conclusions of the survey, based on the 
current respondents’ database, are presented below. 
 
The survey population by organization type is shown in figure 6. The majority of respondents 
work for avionics or engine control developers (~65%). Over 95% of the respondents have a 
technical background, with ~55% having bachelor’s degrees, ~45% master’s degrees, and over 
72% having an educational background in electronics.  Ninety-seven percent of the respondents 
have more than 3 years of experience, with fifty-nine percent having more than 12 years of 
experience. 
 

Consultant

Aircraft or Engine 
Manufacturer

CEH Programmable 
Tool Developer

Avionics or Engine 
Control Developer

6% 6%6%

64%

6%

12%

NASA

RADAR 
Systems

Organization Type

 

Figure 6.  Survey Population—Type of Organization 

5.1.2  Multiple Choice Answers. 

The most frequent respondents’ role relevant to the AEH tools were as follows (figure 7): 
 
• Use of the tools, including development/verification of systems (~62%) 
• Managing and acting as DER (~26%) 
• Development of the tools (~2%) 
• Development of components (~12%) 
 



 

34 

Project 
Supervisor

16%

Tool Data 
Approver

10% Other
9%

Component 
Developer

13%

System 
Developer

16%

System 
Verification

16%

Tool User
18%

Tool 
Developer

2%

Respondent Roles

 

Figure 7.  Role of Respondents in DO-254 Projects 

The respondents’ primary interest was divided between verification (32%), development (27%), 
hardware (22%), and concept/architecture (18%). 
 
A wide range of devices were used, with the most frequently used being FPGA (~27%), CPLD 
(~18%), ASIC (~15%), PAL (~11%), PLA (~9%), and Erasable PLD (~8%).  The most popular 
hardware device vendors are Actel (~27%), Xilinx (~24%), Lattice (~13%), and Cypress (~11%), 
with Quick Logic, Altera, and Atmel below 10%. 
 
The most widely used tools are from Mentor Graphics (~27%) and Synplify (~22%), followed by 
Synopsys (~17%), Aldec (~11%), and Cadence (~8%).  About 23% of respondents use other 
tools.  
 
In regard to criteria for the selection of tools for use in DO-254 projects, the most important are 
availability of documentation, ease of qualification, previous tool use, and host platform, 
followed by the quality of support, tool functionality, tool vendor reputation, and previous use on 
airborne project.  Selection of a tool for a project is based either on a limited familiarization with 
the demo version (50%) or on an extensive review and test (40%).  The approach of reviewing 
and testing the tool by training personnel and using the trial period on a smaller project seems to 
be prevalent. 
 
For those who have experienced the effort of qualifying programmable logic tools (only 14% of 
respondents), the quality of the guidelines is considered sufficient or appropriate (62%), as is the 
ease of finding required information (67%), while the increase in workload was deemed 
negligible or moderate (80%).  An interesting observation concerns the scale of safety 
improvement: marginal (43%), moderate (21%), noticeable (7%), and significant (29%). 
Similarly, the question about errors found in the tools may be a source for concern: no errors 
(11%), few and minor errors (50%), and significant and numerous (17%).  Despite all this, the 
satisfaction level regarding programmable logic tools was positive, and more than 96% of the 
respondents marked their satisfaction level 4 out of 5. 
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Complete results in a graphical form are included in appendix B.  
 
5.1.3  Narrative Answers. 

Three questions from the questionnaire required some form of narrative answers.  The transcript 
of the unedited answers is in appendix B following the statistical data from the survey.   
 
In summary, the following were identified as major issues for using programmable logic tools: 
 
• Ease of using the tool for verification and reading the results of the tool 
• Quality of the tool 
• Speed with which the tool verifies designs 
• Problems with timing and timing analysis 

 
Difficulties identified with qualification of these tools include: 
 
• Lack of useful guidance for how to qualify tools 
• Lack of cooperation from the tool vendors 
• Frequent version updates of tools 
• Length of qualification process 
 
Other issues identified include: 
 
• Difficulties compensating for certain tool idiosyncrasies 
• Lack of configuration control 
• Lack of other vendor cooperation 
 
5.2  SEMICONDUCTOR INDUSTRY VIEWPOINT. 

While working on the results of this survey, a similar survey targeting hardware development 
tools without a safety objective was discovered, “A Census of 818 Engineers on Design and 
Verification Tool Use” (http://www.deepchip.com/posts/dvcon07.html), while the population 
surveyed was primarily composed of chip and low-level component designers, the results show 
general industry trends and viewpoints regarding the use of tools.  This particular survey was 
done in consideration of the IC and digital components that industry uses the tools daily.  There 
is a huge population of digital system developers unfamiliar with the specifics of DO-254.  
 
The Census was sent to 25,000 members of E-Mail Synopsys Users Group and received 818 
responses.  The objective of the survey was to identify the actual utility of the tools, as opposed 
to the market share expressed in dollars, the statistic often presented in trade literature.  
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The major items identified by the survey were: 

• Specific language use for simulations: Verilog (only/mostly) 73% and VHDL 
(only/mostly) 20%.  It was observed that the justification for using Mentor’s Modelsim 
was the need to provide support for legacy code and reuse.  

• The most popular simulators are Synopsys VCS (44.7%), Mentor ModelSim (35.3%), 
Cadence NC-Sim (24.3%), and NC-Verilog (18%).  

• The most popular waveform/debug tools include Synopsys (33.2%), Novas Debussy 
(33.1%), Cadence debugger (29.6%), and Mentor MTI debugger (26.3%) 

• Only 23% of respondents use SystemC, mostly for high-level modeling and verification; 
the most popular SystemC tools include Free OSCI (43%), Cadence MC-System (33.6%), 
and Mentor ModelSim (16.8%). 

• 35.1% of the projects uses System Verilog, almost exclusively, for testbench (80.2%); 
Synopsys VCS is the most popular (65.6%), with Cadence NC-Sim (24.7%), Mentor 
Quest (15%), and Mentor ModelSim (12.3%) following.  

• The assertions are used by both designers and verification personnel and the responders 
found their application useful (89.4%); the most popular was System Verilog SVA 
(37.8%). 

• Use of formal “bug-hunters” was not popular (74.5% respondents do not use them); 
Mentor 0-In, Synopsys Magellan, and Cadence ISV/IFV/BlackTie were most often 
quoted.  

 
It should be noted that most of the companies use more than one tool from multiple vendors.  
Such an approach introduces an additional element of independence, assuring that products of 
different vendors are applied to design and verification, thus avoiding potential exacerbation of 
errors.   
 
As part of the research into design and verification tool use by AEH developers, the Vice 
President of Design Services of a two billion dollar company was interviewed. He had a number 
of interesting observations relative to the research.  His company used Cadence tools for both 
design and verification.  When asked if he felt that there was any risk in using design and 
verification tools from the same vendor, he replied that even within a single vendor the design 
and verification tools are very different and independently developed.  His primary concern was 
using the tool that performed the best in his applications, rather than having independent vendors 
for the design and verification tools.  
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He mentioned that the company uses formal design tools for smaller blocks and at an 
architectural level, but they did not find them suitable for complete design verification.  He 
described his verification flow as:  
 
1. Assertions are incorporated as the HDL code is written. 

 
2. Formal proofs are performed on small blocks as soon as possible. 

 
3. Directed tests are generated by the designers to exercise areas of concern and constrained 

random tests are run on a daily basis as the design progresses.  
 
It is noteworthy that the designers have direct input into the verification process to assure that 
areas that the designers viewed as areas of concern are adequately verified.  
 
He also mentioned that newer verification management tools were extremely useful in helping to 
evaluate the verification coverage of the entire system, from low-level blocks to system-level 
coverage.  These tools help guarantee that all the blocks in a design have been correctly exercised 
with directed tests, constrained random testing, fault coverage, and assertion coverage.  
 
6.  LITERATURE OVERVIEW. 

One of the project objectives was to research the literature related to the use of software tools for 
design and verification of AEH. Literature research was categorized from three perspectives: 
 
• A general research perspective, which gives a broad view of the issues involved in 

designing AEH. 
 
• A focus on safety issues in avionics applications, which discuss more specific problems 

related to safety-critical aspects of AEH development. 
 
• An industry perspective, which provides the most detailed view of industry practices in 

qualification of AEH tools with respect to their compliance with DO-254 standard. 
 
An attempt was made to collect the literature providing a general overview of the research issues 
related to the use of software tools in the development of AEH.  These papers are presented in 
appendix D, with the respective entries grouped in section D.1 (papers 1-26).  Each entry 
includes an abstract of the respective paper, which is listed in references 18-43.    
 
Six of the selected papers contain explicit relevance to safety-critical aspects in avionics (papers 
12, 13, 17, 22, 24, and 25).  This discussion is elaborated in section D.2 in appendix D.  The 
objective of this discussion is to provide a synopses of selected research papers that are directly 
related to issues raised with respect to safety concerns in the area of AEH with a focus on 
avionics applications.  The purpose of this analysis is to identify the issues raised by researchers 
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and developers concerning the use of AEH tools for design and verification of PLDs.  The 
specific concerns are as follows: 
 
• Input/output (I/O), (to determine the state of undefined I/O pins) 
 
• Power (routing connections within a FPGA so that electro-magnetic fields and maximum 

current draws do not affect the logic or output voltage levels) 
 
• Simulation (high-level behavior simulation and implementation behavior are not always 

identical) 
 
• Timing (the tool meets the timing constraints that it displays in its report and that it 

retains a margin of safety) 
 
Each paper has been analyzed to identify the objective, brief description, and the relevance to the 
project. 
 
The papers reviewed in the safety category suggest the following about the use of PLDs in 
advanced airborne applications: 
 
• Plan to develop and verify PLD programs in the same way as software programs. 
 
• Plan the safety argument from the start and build up evidence throughout development. 
 
• Use mature tools, amenable to qualification and supported throughout the project life 

time. 
 
• Investigate the use of formal notations and analysis techniques to increase verifiability. 
 
• Do not use programmable logic hardware just to avoid developing safety-critical 

software. 
 
The third perspective of the literature research focused on industry practices related to AEH tools 
qualifications, as reported in related articles.  These entries are grouped in section D.3 of 
appendix D.  Each entry includes a brief description of the problem discussed in the paper and a 
suggested solution.  These papers are also listed in references 44-71.  
 
Ten of these papers deal directly with the vendors’ views on tool qualification according to DO-
254 [1].  Mentor Graphics [44] and TNI-Software [57 and 61] describe their approach to comply 
with DO-254 for their respective verification tools:  ModelSim, Reqtify, and a formal property 
checker, improve-HDL.  Two COTS tools from the GNU package, a configuration management 
tool, CVS, and a problem-reporting tool, GNATS, are recommended in reference 49.  Four 
vendors, Xilinx, Altera, TNI-Software, and Mentor Graphics, identify their tools and processes in 
reference 53, and Aldec and Barco-Siles S.A. outline their processes to comply with DO-254 in 
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references 58 through 60, respectively.  Airbus [46] and the DO-254 User Group [52] outline 
their processes separately, with a list of issues and clarifications regarding compliance. 
 
Four papers take a guideline approach to clarify respective AEH issues, whether related to 
DO-254 or not: 
 
• The objective of the National Aeronautics and Space Administration (NASA) [45] is to 

provide guidelines to improve understanding of AEH among those interested. 
 
• The FAA report on COTS [50] identifies key attributes to meet the DO-254 objectives, 

but falls short of relating them to tool qualification. 
 
• The ERA Technology, Ltd. [51] covers DO-254 but does not address the tool 

qualification issue. 
 
• Reference 72 discusses DO-254 briefly and identifies the Avionics Process Management 

Committee’s EIA-933 Standard providing recommendations on how to select and manage 
suppliers of avionic products. 

 
The remaining four papers discussed in this section present academic and research views on the 
issue of certification.  Lundquist [54] addresses the question of certification of an Actel FPGS 
chip and concludes that this question “remains unanswered.”  Hilton and Hill [47] advocate the 
use of synchronous receptive process theory to reason about the FPGA as a collection of small 
processes reacting to signal inputs.  Jacklin, et al. [55], argues that complete verification and 
validation of learning systems should not be viewed as running test cases and comparing 
expected results to actual results, because these tests can never reveal the absence of errors.  
Finally, Crum, et al. [56], point out that the lack of research investment in certification 
technologies will have a significant impact on levels of autonomous control approaches that can 
be properly flight certified and could lead to limiting capability for future autonomous systems. 
 
Additionally, the research explored a variety of web references and collected nearly 300 positions 
from SOCCentral, a webpage containing multiple articles related to ASIC, FPGA, electronic 
design automation, and IP. 
 
7.  CASE STUDIES. 

There are a number of factors that may affect system safety, including system quality, 
complexity, user experience, fault tolerance, producer’s pedigree, documentation, testing, quality 
assurance policies, etc.  These factors are shown in figure 8, and tool quality is one of the factors.  
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Figure 8.  Factors Affecting System Safety 

To evaluate tool quality completely, one would need to look at it from three different 
perspectives and collect data accordingly: 
 
• How the tool itself was developed. 
• How the tool is operating. 
• How the quality of the product developed is affected by the use of the tool. 
 
To quote the previous paper on tool evaluation [73]: 
 

“The framework for this process, based on the context of tool use, is shown in 
figure 9.  The central part of this model is the macroevaluation based on the use 
of the tool during the design phase.  However, much information on tool quality 
can be derived from the development of the tool itself, considered as a 
metaevaluation: evaluating the process to develop a tool.  The tool vendor can 
provide the data for evaluation of this stage.  In addition to the macro- and 
metaevaluation, the product developed with a particular tool can be included in 
the evaluation.  This is called microevaluation, and it focuses on the level lower 
than the tool itself.  Such a product evaluation can be based both on static code 
analysis and code execution.  Consequently, to have the entire picture of the tool’s 
quality, one needs to do the evaluation at three different levels.” 

 

 

Figure 9.  Macroevaluation Model of the Tool Evaluation Process 
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It is next to impossible to obtain data on tool development from the tool vendors.  This is mainly 
due to the vendor’s reluctance to release proprietary information to the public where it could be 
used by competitors.  For this reason, performing the meta-evaluation is normally not done.  
Therefore, this work focuses on macroevaluation, described in appendix F, and microevaluation, 
described in appendix E. 
 
8.  SAFETY ISSUES. 

This section focuses on safety issues that can occur in a design using tools that have been through 
the full qualification process.  Using these tools, it is possible to produce systems that have been 
proven to operate correctly under all anticipated conditions.  However, this confidence is based 
on the assumption that the system and all of its related systems will operate as expected.  The 
examples in this section emphasize the need for independent assessment of a tool’s output.  This 
section will begin with examining the data from the semiconductor industry on the types of 
design errors prevalent in hardware designs.  Each of these errors will then be examined in more 
detail. 
 
8.1  HARDWARE DESIGN ERROR CHARACTERIZATION. 

Figure 10 shows data on designs that required two or more re-spins to get correct.  In a 
semiconductor design, the entire design is fabricated on a single piece of silicon.  An error 
anywhere in the design requires new silicon to be fabricated using new mask sets.  This is known 
as re-spin, and its cost can exceed $1 million.  The data from a 2-year market study (2002 and 
2004) categorizes the number and types of errors found in semiconductor designs.  The defects 
total to more than 100% because a single design may have several types of errors.  The most 
common error is the logical/functional error.  This error is often caused by inadequate 
specification of the design.  Other errors of interest are delays, clocking, and fast path and slow 
path errors, all of which are timing-related errors.  The number of all timing-related errors 
exceeds the number of logical and functional errors. IR (voltage) drops is a shorthand way of 
describing voltage drops due to resistance in the power and ground supply networks.  Glitches 
are unexpected signal transitions that can be timing or signal integrity-related problems.  The 
chart shows that there are numerous ways that a design can be functionally correct but still 
produce errors in operation. 
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…the Problem is Getting Worse

 

Figure 10.  Functional Flaws Requiring Design Re-Spins [64] 

In 1965, Gordon Moore postulated that the number of transistors on an integrated circuit will 
double every 2 years.  This law has held true for over 40 years, and it appears that it will continue 
to hold true in the future. Therefore, when comparing the data of figure 10, one must understand 
that, on average, the designs of 2004 contain twice as many transistors as the designs of 2002.  
Given that the designs produced in 2004 are roughly twice as complex as the designs produced in 
2002, one would expect that the number of category errors would nearly double as well.  
However, the number errors did not double, because the designs produced in 2004 were more 
advanced than in 2002.  
 
The foregoing example indicates that if one wants to minimize the number of design errors, one 
should use the latest tools and design techniques.  This example is counter to the idea of 
requiring an established tool service history. 
 
A closer examination of the year-to-year data shows that as the number of transistors (or 
complexity) increases, the number of timing-related errors rapidly increases relative to the 
number of logical errors.  This indicates that tool assessment needs to not only assess whether a 
tool’s outputs are logically correct, but also the accuracy of the tool with respect to timing 
analysis.  Assessing the correctness of the timing analysis is a difficult problem because identical 
semiconductor devices will not have identical timings.  The need to accommodate device 
variations, temperature variations, and supply voltage variations results in broad timing 
specifications that make it difficult to assess the correctness of any single timing calculation.  It is 
difficult (if not impossible) to assess the timing accuracy of a tool without a defining architecture 
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and physical layout.  The timing calculations of a tool can only be assessed within the context of 
a design.  
 
Generating functionally correct HDL code is only one part of the overall FPGA design process.  
Equally as important as HDL code functionality is the location of the HDL code implementation.  
Locating all the HDL blocks close together improves the timing at the risk of introducing power 
distribution problems.  But, spreading the blocks apart may introduce clock skew and timing 
problems. In addition to the locations of the individual blocks, the actual location of every input 
and output pin that is used must be defined.  The location of these pins is defined by interface 
requirements (pins with similar power requirements are grouped together) and external system 
requirements.  The FPGA ultimately connects to the rest of the system through the printed circuit 
board (PCB) on which it is mounted. Because of the flexibility of the FPGA internal routing, the 
FPGA pin-out is often determined by the routing constraints of the PCB.  Although the FPGA 
designer may know that clock inputs should not be placed near large-output busses, the physical 
layout of the PCB may force a suboptimal pin-out upon the designer.  Figure 11 shows the 
synchronization and interactions between processes involved in putting a programmable 
integrated circuit, such as an FPGA on a PCB. 
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Figure 11.  Communication Barriers That can Prevent Clear Design Specifications 

The FPGA is usually part of a larger system; therefore, successful design requires the close 
collaboration of a variety of specialists.  Figure 11 shows ten domains of the engineers working 
on a specific project that all have a part in specifying the I/O interface.  Lack of communication 
between any of these members can cause incompatibilities in the design, which can lead to 
failures.  For example, improper power distribution in the PCB could cause the FPGA to 
malfunction, or signal integrity issues in the PCB can allow signals to interfere with each other 
and produce failures.  Therefore, the designer must understand the relation between the system, 
algorithms, board-level circuitry, PLD, and microprocessor software.  
 
In the sections that follow, assume that a DAL A design that has been proven to be logically 
correct and the techniques of appendix B of DO-254 [1], including architectural mitigation and 
elemental analysis, have been applied to the design.  Is it possible for the design to not operate as 
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expected in the final system?  The following sections investigate issues ranging from PCB design 
to neutron radiation effects.  
 
8.2  THE FPGA’S ENVIRONMENT. 

The FPGA is mounted on a PCB that supplies the device with power and routes the signals to the 
necessary locations.  Errors in the PCB design can lead to power integrity or signal integrity 
problems.  These problems are difficult to identify because they heavily depend on the particular 
operational mode that is implemented in the FPGA.  Signal rise and fall times generated by 
modern FPGAs continue to become faster.  This means that signals can no longer be arbitrarily 
wired together.  High-speed signaling requires design engineers with experience in high-
frequency analog design to assure that the traces are correctly matched and terminated on the 
PCB.  In older systems, the signal rise and fall times were often slow enough that signal integrity 
issues did not matter.  Many designers currently in the field are unaware of the need to use high-
speed signal design techniques.  Designers (especially the most senior designers) often do not 
realize that the rise and fall times of the signals they are now using require a new design 
paradigm.  If the engineers are unaware of the potential failure, the processes of DO-254 and its 
appendices will not help to prevent signal integrity-related failures.  
 
Wide data busses can cause large supply currents that can interact with the inductances in the 
PCB leading to supply variations at the PCB level.  Capacitors on the PCB can interact with 
parasitic inductances to produce unexpected resonances.  These failures are known as power 
integrity failures.  The increased switching speeds of modern FPGAs place much more stringent 
requirements on the system power supply design than were placed in the past.  
 
In system designs, it is good design practice to reuse previous successful designs.  However, one 
must be aware that a design that worked fine for one FPGA implementation may fail if the 
circuitry implemented in the FPGA or the devices connected to the FPGA change.  Because they 
are data- and timing-dependent effects, signal integrity and power supply integrity issues are 
difficult to identify during the design or in simulation.  Best practices design techniques can be 
used to identify and address problem areas in the design phase.  Any errors of this type that slip 
through should be observable during system validation, if the validation testing includes tests that 
are intended to exacerbate signal and power integrity issues.  The FPGA can only be assured to 
work correctly if the PCB is attached correctly.  Assuring the PCB design correctness does not 
directly fall under DO-254 scrutiny and often requires a completely different skill set than 
assuring the correctness of the FPGA. 
 
8.3  TIMING ISSUES. 

Perhaps the most difficult aspect in verifying the correctness of hardware is that minor changes in 
the timing can produce major differences in the logical operation of a circuit.  To better 
understand this problem, consider a bus of many bits that instantaneously transitions from all of 
the bits being zero (0) to all of the bits being one (1).  Due to differences in the routing and 
random variations in the devices, some bits will transition faster than others.  This results in a 
period of time where some of the bits are stable and some of the bits are still transitioning. 
During this period, the data on the bus is invalid.  Accurate simulation of this timing variation 
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requires knowledge of the exact placement and routing of the devices.  Any simulation not 
incorporating timing data from the place-and-route process will not be able to see these 
differences.  In addition, if the simulation timing step size is larger than the timing differences, 
then the timing differences will not show up in the simulation output.  One must always be aware 
of the limits of the simulation.  
 
It is possible to minimize the timing variations caused by routing differences by placing timing 
constraints on the design tools.  However, there is always a timing variation due to random 
device variations; these effects are rarely (if ever) included in logic simulator models.  A 2005 
presentation [65] indicated that there was a problem with the VHDL design tools because the 
output signal simulations of the Gray code circuit were not valid at all times.  The author does 
not mention trying to eliminate the timing difference by constraining the design, but instead 
shows that changing the VHDL code eliminates the glitches in the simulations.  What the author 
failed to grasp is that even when the simulations show that the data is always valid, random 
device variations guarantee there are periods where the data on the bus is invalid.  The design 
tools cannot change the physics.  Designs must be tolerant of the fact that there are always 
periods when the data on any bus is invalid. 
 
8.3.1  Synchronous Design. 

To overcome the problem of not knowing when the data is valid, almost all hardware designs use 
a clock to define when the data is valid.  This is known as synchronous design. In this design 
style, the data is valid for some time before the clock edge (setup time) and some time after the 
clock edge (hold time).  The clock signal is generated from a master source and then distributed 
throughout the device.  Special care must be taken so that the clock arrives to all functional 
blocks in the device at the same time.  Delivery of the clock to different devices at different times 
is known as clock skew.  FPGAs contain a limited number of specialized trees that can be used to 
minimize clock skew.  Although the design tool attempts to recognize clock trees, the designer 
must often explicitly declare these trees so that the synthesis tool will correctly accommodate 
them.  The clock trees are often heavily loaded, driving many devices while the data lines often 
only drive a single device.  This means the data is often naturally too fast and that the synthesis 
tool must incorporate delays to allow the device to meet timing.  These delays are often created 
by inserting additional buffers in the data signal path or by artificially loading the data.  This 
delay hardware is inserted without notifying the designer.  Speed differences between the clock 
and the data path result in the failures listed in figure 10 as fast path (the data arrives too soon) 
and slow path (the data is too late).  These failures are especially sensitive to variations in 
temperature and voltage. 
 
8.3.2  Synchronous Design—Multiple Clock Domains. 

Ideally, a design will have only a single master clock.  Unfortunately, modern designs commonly 
require several independent clocks used within a single system.  When signals move from one 
clock domain to another, special circuits and analyses are required.  The NASA FPGA design 
guidelines point out that the synchronizers that are required to allow signals to cross clock 
domain boundaries have a nonnegligible failure rate, which must be considered when calculating 
the device reliability.  Correct operation of circuits crossing clock domain boundaries cannot be 



 

46 

guaranteed by simulation because the timing between different clock domains can vary 
arbitrarily.  This would require an infinite number of simulations to verify.  Special design 
techniques are used to allow signals to cross between clock domains, and designers will insert 
them anytime they need them.  The problem is that sometimes signals cross clock domains in 
obscure ways that are missed by the designers.  Design tool vendors are attempting to address 
this problem by automatically identifying where signals cross clock domains and flag them.  
More advanced tools offer more comprehensive verification by performing code analysis for 
signals crossing clock domains, verifying correctness of synchronization between domains, and 
determining circuit behavior by injecting effects of metastability into the simulation [62]. 
 
8.3.3  Asynchronous Designs. 

The most risky of all design styles is asynchronous design, where inputs and/or outputs are 
allowed to vary without respect to any clock.  Asynchronous circuits are subject to a condition 
called “metastability,” in which signals transition from one value to another via quasi-stable 
states exhibiting an intermittent failure.  Neither simulation (testing logic function) nor static 
timing analysis (testing single clock domain) can detect such a failure.  
 
A typical example of such a situation is when the clock and data inputs of a flip-flop change 
values at approximately the same time.  This leads to the flip-flop output oscillating and not 
settling to a value within the appropriate delay window.  It happens when there is communication 
between discrete systems using different clocks.  Experienced designers mitigate the event by 
adding synchronization between clock domains and isolating the “metastable” output to reduce 
propagation effects.  
 
This state introduces a delay that varies, depending on the exact timing of the inputs.  This delay 
can only be analyzed statistically.  It is not possible to prevent an error from occurring; the best 
that can be done is to limit its probability.  Although most designers avoid asynchronous design, 
there are cases where asynchronous inputs must be accepted.  An example where an 
asynchronous design is required would be a reset path that is required to operate, even if the 
synchronizing clock is not present. 
 
8.4  WIDE DATA BUSSES AND DATA PATTERN DEPENDENT ERRORS. 

Modern, safety-critical systems can contain data and address busses that are 32, or even 64, bits 
wide.  A wide variety of signaling standards are used in AEH.  In single-ended signaling, the I/Os 
share a common power and ground connection.  If all, or many, of the I/Os connected to the 
common power supply or ground change state simultaneously, a large spike in current will occur.  
This rapid change in current causes any parasitic inductances in the power supply and ground 
distribution network to have voltages induced across them that are proportional to the rate of 
change of the current.  These parasitic inductances can be on the chip, in the device’s package, in 
the connection to the PCB, or in the PCB.  These voltages, caused by the changing current, are 
known as supply/ground bounce and can be large enough to lead to erroneous circuit operation.  
The supply/ground bounce produced by simultaneously switching the outputs will be referred to 
as simultaneous switching noise.  
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Noise can also be introduced into the system via crosstalk between signals.  Crosstalk coupling is 
primarily a function of the total inductance of the current path.  This inductance is a function of 
the distance between the ground and power supply pins to the signal pin.  Signal pins farther 
away from a ground or power supply pin are more susceptible to noise.  This problem is 
exacerbated when a number of I/Os in the region switch simultaneously. 
 
Consider a block of logic that contains a large number of gates that simultaneously switch. I f this 
logic is placed in close physical proximity during the design tool’s place-and-route step, then it is 
possible that the internal FPGA power supplies will be unable to supply the necessary power and 
a localized drop (IR drop) in power supply voltage can occur.  This change in power supply 
voltage will result in changes in circuit timing and in the signaling levels used for the circuit.  
These changes can produce errors whose occurrence is data pattern dependent.  
 
Unless the underlying physics are understood, the conditions necessary to generate errors due to 
supply/ground bounce are difficult to identify.  The parasitic elements needed to accurately 
model supply/ground bounce are rarely known and almost never used in logical simulations.  
Special targeted analysis is required to identify if supply/ground bounce is a concern in a design. 
 
8.5  COMBINATIONAL FEEDBACK/QUASI-DIGITAL CIRCUITS. 

FPGAs provide the user with the ability to configure the device nearly an infinite number of 
ways. This flexibility can allow the designer to implement unexpected configurations. 
 
For example, it is possible to configure an odd number of inverting gates into a circuit known as 
a ring oscillator.  Inverters 1, 2, and 3 form the oscillator, while inverter 4 converts the analog 
sine wave back to a square wave (figure 12).  This configuration has an output, but no inputs, and 
the timing is determined by the speed of the inverters and is not synchronized to any clock.  This 
makes the ring oscillator very sensitive to temperature variations and this configuration is often 
used as a temperature sensor.  When the hardware is operating as a ring oscillator, the signals do 
not switch between normal digital signal levels.  The oscillator is essentially an analog device 
using the gain present in the logic gates to produce an oscillator.  Most HDL simulators assume 
digital logic and are unable to correctly simulate this simple configuration.  Many design tools 
prevent the user from implementing a combinational feedback configuration such as a ring 
oscillator.  To guarantee the correctness of the tools, the designer’s ability to produce such 
problematic configurations must be restricted.  
 

1 2 3 4

 

Figure 12.  Ring Oscillator 
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8.6  SYNTHESIS ISSUES—WHAT DID THE TOOL REALLY BUILD? 

The synthesis process is highly customizable and varies greatly from vendor to vendor.  The 
variety of options and configurations makes it difficult for the designer to know exactly what the 
default synthesis settings are.  Certain functions of synthesis, such as VHDL interpretation, are 
standardized by the Institute of Electrical and Electronics Engineers [66].  However, nonstandard 
optimization techniques constitute the trade secrets of a given vendor.  To put it bluntly, the tool 
user or designer does not know the details of synthesis algorithms and, therefore, is not aware of 
how the tool works.  The magnitude of a change of the intended design in the synthesis process, 
and thus the impact on the final design, is not precisely known.  This impact depends upon the 
intricacies of the actual logic design, the selected tool used for synthesis, and the tool’s current 
settings.  Synthesis is not a standardized process.  Each tool produces a unique implementation of 
the design.  Due to concerns about IP and competitive advantage, it is not easy to publicize what 
synthesis algorithms are or what specific methods and techniques are used for simplification and 
optimization.   
 
Creation of a placed-and-routed circuit from the HDL code that meets the performance goals is 
accomplished by merging logical and physical synthesis technologies.  When such created 
designs cannot meet their realistic timing objectives, the solution is to use more traditional design 
methodologies.  The intricacies of logical and physical synthesis are closely guarded IP of 
specific tool vendors.  The general underlying background is well known, but the specifics of the 
synthesis algorithm are not. 
 
8.6.1  Getting Less Than Expected. 

The default configuration for almost all FPGA design tools is that all the compiler and synthesis 
optimizations are enabled.  This can lead to unexpected implementations.  For instance, a 
designer may write HDL code to specify a triple-redundant module (TRM), as shown in figure 
13(a).  However, the synthesis tool may determine that most of the hardware is redundant and 
implement the system, as shown in figure 13(b).  The independent multipliers were identified as 
redundant and optimized away during synthesis. 
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Figure 13.  A TRM With Three Multipliers 
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8.6.2  Getting More Than Expected. 

To meet timing, the synthesis tool will sometimes create redundant hardware to improve timing 
in what is called flip-flop replication.  This can produce problems, especially in systems where 
some part of the circuit is attempting to monitor the performance of another circuit.  In designs 
that are intended to be tolerant of SEU, it is common to have an output and monitor that are 
guaranteed to be logical opposites of each other under all conditions.  Consider the circuit of 
figure 14(a).  In this circuit, the Output and the Monitor are always logically opposite.  The 
logically equivalent implementation of the circuit could be generated by the synthesizer to help 
meet timing constraints and is presented in figure 14(b).  In such a solution, an SEU of the top 
flip-flop will not affect the monitor output.  Therefore, the resulting synthesized circuit does not 
guarantee that Output and Monitor are logical opposites, which defeats the purpose of the 
monitor output.  
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Figure 14.  Flip-Flop Replication 

8.7  HARDWARE THAT IS NONFUNCTIONAL IN NORMAL OPERATION. 
 
The TRM (see section 8.6.1) and metastability (see section 8.3.3) occur when design 
optimizations are applied during synthesis and would not generate explicit warnings that the 
optimization had occurred.  The biggest problem with this circuitry is in circuits that should not 
operate if the hardware is functioning normally.  In this case, error may not be detectable on 
working hardware.  The only method for guaranteeing correct operation of this type of circuitry is 
via simulation and assuring that the netlist includes the correct circuitry. 
 
8.7.1  Synthesizer Optimizations. 

Since the above problems are caused by the synthesizer performing optimizations, the designer 
could turn off all synthesizer optimizations.  This is a possible solution, but it will be difficult to 
meet timing and area constraints without optimizations.  Alternatively, an experienced designer 
would recognize these conditions ahead of time and configure the synthesizer optimizations 
appropriately.  This is a possible solution, but difficult to verify if the designer has handled all 
possible areas of concern.  The need for experienced personnel points to the need for a testing or 
design maturity model where the experience of the design and verification team is considered in 
determining the level of verification that must be demonstrated.  
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8.7.2  Gate-Level Verification. 

The problems introduced by the synthesizer could be detected by running simulations using the 
gate-level netlist with back annotated timing data.  In theory, running the full test suite on a gate-
level netlist is possible, but is very slow.  However, DO-254 guidance states the design should 
not be analyzed at a level lower than the implementation was performed [1]. 
 

“Analyzing the implementation below the level of that specified by the designer, 
such as at the gate or transistor level, is not necessary ….”  

 
Since the designer worked at the HDL level, not the gate level, DO-254 states that this level of 
verification is unnecessary. 
 
8.7.3  Adding Test Circuitry. 

It is desirable to catch errors in circuitry that does not operate during normal operation.  To 
achieve this goal, the designer can add additional test circuitry to allow verification of normally 
nonfunctional circuits.  However, it is difficult to anticipate the need for this extra test circuitry 
early enough in the design to include it in the requirements.  These additional requirements will 
require addition verification tests, which could also need additional circuitry for testing.   
 
8.8  RADIATION EFFECTS AND FPGA ARCHITECTURES. 

Cosmic radiation enters the Earth’s atmosphere and collides with the atoms of the atmospheric 
gases.  These collisions produce a wide variety of subatomic particles and most of these particles 
quickly recombine.  However, significant quantities of high-energy neutrons are also produced by 
these collisions.  Since neutrons possess no electrical charge, they do not recombine.  The 
neutron flux is absorbed by the atmosphere.  The greatest quantities of neutrons (called the 
neutron flux density) occur at an altitude of 60,000 feet; the quantity decreases as the altitude 
decreases.  These high-energy neutrons can cause flip-flops and memory cells in modern 
semiconductor electronics to change state.  This is shown in figure 15 and is known as an SEU. 
 

 

Figure 15.  An SEU in an FPGA Using a CMOS Process [74] 

Table 2 shows the expected SEU mean time to error for a large FPGA on a satellite in a 
geosynchronous orbit.  Device configuration files are stored in the configuration memory.  Errors 
in the configuration memory can potentially reprogram the device to produce some erroneous 
function.  However, in a programmed FPGA, only a small fraction of the total configuration 
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memory or block memory is used.  Therefore, many errors may occur in these bits with no 
impact to circuit operation.  A single event functional interrupt (SEFI) event is a detectable 
device error. The probability that a random configuration or block memory error will result in an 
SEFI depends on the complexity of the design and the architecture used. 

 
Table 1.  The SEU Mean Time to Error for a Large FPGA in Geosynchronous Orbit [74] 

XRR2V6000 – 36,000 km Mean Time to Error Units 
Configuration Memory 001.8 Hours 
Block Memory 011.8 Hours 
POR-SEFI 221.0 Years 
SMAP-SEFI 181.0 Years 

 
While Xilinx and Altera use SRAM-based configuration memory that is susceptible to neutron 
radiation, Actel uses a flash memory-based configuration memory that is far less susceptible to 
neutron radiation.  Flash-based memory cells are substantially larger and more complex than 
SRAM-based memory cells.  Therefore, there is a tradeoff in device capability and speed when 
using flash-based configuration memory.  It should be noted that by using SEU mitigation 
techniques, such as triple-redundant modules, it is possible to harden an SRAM-based FPGA 
against radiation.  SRAM configuration memory-based FPGAs have been used on numerous 
space missions with no radiation-induced problems. 
 
8.9  RADIATION—DO-254 AND DO-160. 
 
Section 1.2 of DO-254 states that environmental criteria are beyond the scope of DO-254 but 
radiation-effect mitigation is often addressed using the system safety assessment process.  Unlike 
other environmental conditions, such as humidity and electromagnetic noise susceptibility, there 
are no physical tests performed to guarantee correct operation of the device when subjected to 
radiation.  Susceptibility to radiation effects is truly an environmental issue and would be best 
validated by actually irradiating the hardware under test to guarantee that the SEU mitigation 
scheme works correctly and can tolerate the expected radiation levels.  From this point of view, 
radiation effects would best be handled as an environmental test that should be added to DO-160 
testing. 
 
8.10  WHAT CIRCUIT IS BEING GENERATED? 
 
A significant concern common to both the ASIC and FPGA flow is that details of the actual 
hardware implementation are protected as IP and are not available for inspection.  In an FPGA, 
the programmable fabric consists of many programmable logic books (PLB).  The overall 
function of the PLB and the external connection requirements are available for inspection, but the 
details of the hardware implementation of the PLB are unavailable.  In the ASIC flow, a standard 
cell library is used to implement the RTL in hardware.  Every cell in the library is characterized 
by how its performance varies with temperature, voltage, and loading; this data is used for the 
simulations.  Standard cell libraries are usually sold or licensed for use as encrypted IP, therefore, 
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the end-user cannot know the details of how the standard cells are implemented without 
description.  
 
8.11  UNUSED INPUTS AND OUTPUTS. 
 
FPGAs may contain a large number of pins that may be unused in any given application.  These 
pins can include pins that are used for manufacturing the FPGA, which need to be correctly 
configured for safe operation, as well as numerous other pins that are undefined pins in the 
design.  Since the compiler and synthesizer treat unused pins as “don’t care,” these pins may be 
unpredictable in actual operation.  Other issues are related to properly terminated inputs. FPGAs 
handle unused pins via software, exploiting the programmable nature of the microcircuit.  
However, the specific implementation details may differ.  For example, in Actel SX and SX-S, 
special-purpose clock inputs do not have an output stage and must therefore be terminated by the 
user to prevent large currents.  As another example, unused low-voltage differential signaling 
receiver inputs should be left unconnected, as advised by the documentation.  Depending on the 
device, pins labeled “N/C” may be used for internal purposes and terminating them on the board 
may result in problems; conversely, not terminating N/C-labeled pins in certain cases can have 
adverse effects on system behavior.  Some configuration pins have very high-value internal pull-
up resistors and can be switched by high-speed signals at the board level.  It is, therefore, critical 
to ensure that all pins are properly terminated to avoid parametric and long-term reliability 
effects.  Some will affect the functionality of the chip, which may or may not be caught in testing 
[67].  
 
8.12  OTHER CONSIDERATIONS. 
 
For critical circuits, the designer must examine the output reports from the synthesizer very 
carefully.  Common things to check for include states which cannot be exited, outputs of Gray 
code machines that can glitch, unintended flip-flop replication, and not implementing the 
desired/specified style (sometimes the synthesizers just think they know better than the human 
and will substitute one type of state machine for another).  The actual state machine implemented 
for the same HDL code can vary dramatically with different design tools.  The designer should 
always examine the generated design carefully.  For instance, it has been observed that 
sometimes the logic will explode with excessive gates.  Reset path timing usually has a problem 
involving race conditions. If some circuits are reset too soon, it can prevent the reset signals from 
propagating to other places they need to go.  The required timing for the reset logic depends on 
the internal logic delays and is not synchronized to the clock.  Differences in the temperature, 
power supply voltage, or signal levels can change the timing of the reset paths.  To eliminate 
these timing variations, logic operating on the opposite clock edge is often inserted to prevent 
these race conditions.  While solving the variation problem, the designer now must complete all 
operations in one-half of a clock cycle, rather than a full clock cycle.  This leads to the tight 
timing the designer needs to consider at the gate level.  Note that VHDL does not cover physical 
states, just logical ones.  The HDL does not know if it is a one-hot-, or binary-, or gray-coded 
implementation and what flip-flops have been replicated during synthesis.  Such issues are not 
detectable at the black box simulation level nor by checking Boolean equations for logical 
equivalence.  
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8.13  POWER UP/RESET ISSUES. 
 
When an FPGA or ASIC is either powered up or comes out of reset, there is often a period of 
time when the device outputs are unpredictable. The performance of a component during power 
up is difficult to predict, as there are often multiple power supplies to the part that will turn on in 
an uncontrolled fashion. If the output drivers receive power before the internal logic, all of the 
glitches produced by the internal logic can be sent through the outputs to other devices in the 
system. Even a normal reset can contain internal race conditions that can produce periods where 
the outputs are unstable. The Wide-Field Infrared Explorer spacecraft was lost when the outputs 
of an FPGA produced unexpected outputs during power up. The unexpected output resulted in 
the system reset process not completing, which led to the early firing of a pyrotechnic device and 
ultimately to the failure of the mission [68].   
 
8.14  WHAT CAN BE DONE TO PREVENT PROBLEMS? 
 
The human factor increases the chance of error or misinterpretation.  HDL used for hardware 
development can be classified as a computer programming language, with some unusual 
constructs to account for the parallel nature of the hardware implementations.  The developer 
applies the knowledge of the language syntax and structure to describe his or her design idea.  
The challenge is to force the conceptual vision of the intended circuit into rigorous constraints of 
the HDL.  A deep knowledge of the hardware, knowing what is actually produced as the result of 
specific HDL structures, is critical for successful implementation of designs. 
 
Manufacturers take many steps to assure that the designs produced are correct on the first design 
iteration.  The first steps are to assure that the RTL code, as written, is fully specified.  The idea 
is to not leave anything to the discretion of the compiler.  The output of the RTL code for “don’t 
care” and illegal conditions should be completely specified.  In addition, a project-wide (possibly 
corporate-wide) programming style is defined to prevent the usage of risky or problematic RTL 
programming techniques.  These rules are enforced by using linting programs that check the RTL 
style for rule violations.  Linting programs act much like an experienced programmer looking 
over one’s shoulder.  
 
8.15  DESIGN ISSUES SUMMARY. 
 
Logic designers often replicate logic for reliability or performance reasons.  For example, if the 
load on an output is too high, then the load will often be split between multiple drivers (in some 
cases, outputs may be joined together but this is not preferred and is usually avoidable).  In other 
cases, cutting the load and duplicating the driver can help improve timing by distributing the 
capacitive load.  The replication of combinational logic is quite straightforward.  However, if this 
concept is extended to sequential logic and finite state machine design, then the situation is 
trickier, since state information is involved.  Indeed, the logic may present different information 
to different parts of the circuit, and for example, may be inconsistent in the presence of a 
transient fault such as an SEU.  The logical flip-flop can present different values to different parts 
of the circuit, depending on which physical flip-flop they are connected to.  This is a call for 
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caution in high-reliability applications.  Software CAD tools are more than happy to generate 
circuits of this class, while not generating logic to ensure self-consistency [69].  
 
Despite valiant efforts to assure error-free design, it is still possible for the tool to produce an 
incorrect design.  This can be caused by a variety of factors, including power distribution 
problems, signal coupling, and interference problems.  It should be noted that some design tool 
vendors have tool suites that can be used to address these issues.  These tools are usually poorly 
integrated with the rest of the tool flow and many users are unaware of the tools’ existence.    
 
One critical aspect for consideration is that the HDL is not the design; it is simply the designer’s 
description of the desired logic.  Running HDL simulations and test benches is insufficient proof 
of a design’s correctness.  The design is then converted from an HDL description to a logical 
description, which is then mapped to the hardware on the FPGA.  Then the design is physically 
located and wired in the device during the place-and-route step.  Until the place-and-route step 
has occurred, the actual timing of the device is only estimated.  The fidelity of the actual design 
to the intended design depends on the quality of the synthesizer, which is enigmatic, and the 
ability of the designer to: 
 
• write synthesizable HDL. 
• understand the synthesis process and tool employed. 
• control the synthesis process. 
• verify that the synthesis process produced what was intended. 
• correctly guide the back-end, place-and-route tools. 
 
The danger in the process of converting HDL into a hardware implementation is that there are 
many logically equivalent ways to represent any single design.  The tool may implement the 
design using a representation contrary to the designer’s intent.  Problems can arise from the 
synthesizer replicating, or combining circuits in an undesirable manner, or eliminating logic that 
the synthesizer believes is redundant.  The actual implementation of a design into hardware 
requires translating an abstract description of the design into actual hardware.  While not as 
abstract and complex as logic synthesizers, failure to understand the processes in the place-and-
route process has the potential to cause design errors.  

 
A significant danger to AEH design assurance is using outdated traditional techniques of directed 
test and code coverage.  New effective techniques, widely adopted in other industries, have been 
developed to facilitate AEH verification.  These include constrained random test generation, 
assertion-based verification, formal model checking, clock domain crossing analysis, unified 
coverage, verification management, and requirement tracking.  These better verification 
techniques address many of the issues addressed above and help developers to achieve early 
defect removal and simplification of testing activities [71].  It should be noted that all the above 
techniques reduce the probability of an error in the hardware, but none are sufficient to guarantee 
that the physical implementation of the hardware is correct. 
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9.  FINDINGS AND RECOMMENDATIONS. 

The survey of tool users conducted for this research found that 17% of the tool users had 
experienced tool errors that they considered significant and numerous.  But when asked to list 
their satisfaction with the tools on a scale from 1 to 5, with 5 being completely satisfied, over 
96% of the respondents marked their level of satisfaction with the tools as a 4 or higher.  Further 
investigation into this apparent contradiction indicated that many of the reported tool errors 
would not impact the safety of the final design.  Some examples of non-safety-related tool errors 
included tool features not operating as the salesperson represented and tool software crashes.  
During the entire research period, the authors continually canvassed tool users about any tool 
errors that they encountered.  Occasionally, what the tool users identified as a tool error were 
actually errors resulting from incorrect application of the tool.  The authors were unable to 
identify a single case of a tool producing an error that resulted in an error in the final design.  The 
authors believe the high level of satisfaction with the tools reflects a satisfaction with the tool 
outputs.  
 
Preventing errors from reaching a complex final product is a difficult goal to achieve.  Even tools 
that are known to produce correct results can introduce errors if the tools are applied incorrectly.  
There are always humans in the design and verification process, and these humans may not fully 
understand the limitations of the tools that they are using.  For example, the test cases 
demonstrated failures that occurred due to problems related to the inductance of the power supply 
network.  Tools that analyze the effect of inductance and resistance in the power supply networks 
of complex devices require a tool suite far different than the tools used in a normal HDL design 
process.  Even if the user correctly anticipated the need for the new tools, these tools may require 
expertise beyond what an HDL designer would possess.  
 
The following list identifies the recommendations of this research: 
 
• The outputs of the primary design or verification tools used for level A, B, and C safety-

critical designs should always be independently assessed. 
 
• Independent assessment of the design tool’s outputs should not be viewed as a single 

event, but instead, as a series of overlapping, independent assessments.  
 
• Independent assessment events require a process where all tests and their results are 

documented and fully analyzed. Independent assessment events can include: 
 

- Verification testing 
- Simulations 
- Debugging 
- Hardware verification 
- System validation 
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• What independent assessments are applicable to a specific design will vary with the 
design flow, so it is difficult to require any particular independent assessment be 
performed. 

- The amount of independent assessment required can be varied, depending on the 
DAL.  For instance, a level C might require a single independent assessment of 
the working hardware, while a level A might require independent assessments 
while the design is at the HDL level, when the design is a gate-level netlist, and 
then on the actual hardware.   

• If there is no independent assessment of a tool’s outputs, DO-254 currently allows a 
relevant tool service history to be used to avoid tool qualification. The authors believe 
that tool service history is a poor indicator of a tool’s ability to produce a correct design.  
Because the authors believe that independent assessment should always occur for level A, 
B, and C designs, service history should not be used to avoid tool qualification.  

• Many tools undergo minor improvements throughout their life.  Designers should be 
allowed, and perhaps encouraged, to use these improved versions of the tools for their 
designs.  It is probably unwise to be the first users of a tool that has undergone a major 
software revision, but it may make sense if the new tool has new capabilities that will 
enhance the safety of the final design.  

• Tool qualification should be limited to the exceptionally rare case where independent 
assessment of the tool output is impractical or infeasible.  

• In a complex design it is impossible to generate a comprehensive verification suite.  
Constrained random verification should be utilized to increase the number testcases 
generated and thus increase of errors detected by the test cases. 

- DAL A and B designs should also be required to use constrained random 
verification methods. 

• Assertions should be used to increase the observability of the errors that are generated. 

- DAL A and B designs should be required to use assertions for all requirements 
and derived requirements that can be addressed by assertions. 

• Linting tools should be required to enforce HDL coding standards. 

• Level A and B designs require an experienced design team.  A team could demonstrate 
expertise by executing a level C design before being allowed to attempt level A and B 
designs.  

Even if the design and verification tools can prove that a design is functionally correct under all 
conditions that were considered, design errors in the hardware can still occur due to unforeseen 
conditions.  The best way to avoid these errors is to have an experienced design and verification 
staff with the appropriate expertise.  This will allow the team to identify potential problems while 
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still in the design phase and allow error mitigation techniques to be incorporated.  In addition, an 
experienced staff writing the requirements will carefully detail the logical and timing functions of 
the system for both normal operation and error conditions.  
 
Because obscure errors can slip past even the best design and verification teams using the highest 
quality tools, it is the opinion of the authors that the outputs of the primary design or verification 
tools used for level A, B, and C safety-critical designs must always be independently assessed.  
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11.  GLOSSARY OF TERMS. 

Component:  Self-contained part, combination of parts, subassembly, or unit that performs a 
distinct function of a system. 
 
Element:  An electronic device with terminals for connection to other electrical devices. 
 
Functional Failure Path:  The specific set of interdependent circuits that could cause a particular 
anomalous behavior in either the hardware that implements the function or the hardware 
dependent on the function. 
 
Gray Code:  A binary numerical system in which two successive values differ by only one digit. 
 
Linting:  A process of static analysis of source code flagging suspicious and nonportable 
constructs (derived from lint program in UNIX/C). 
 
Metastability:  A property of a digital circuit that results from input signals not being sufficiently 
stable immediately after a clock change and leads to an unpredictable future state. 
 
Netlist:  A software description of the connectivity of an electrical design. 
 
Place-and-Route:  A stage in the design of integrated circuits at which a layout of a larger block 
of the circuit or the whole circuit is created from layouts of similar subblocks; the process for a 
board is similar with varying levels of detail; the operation is usually performed by electronic 
design automation tools. 
 
Testing Maturity Model:  A maturity model with focus on testing inspired by the Software 
Engineering Institute Capability Maturity Model that assumes that there is a correlation between 
organizational maturity and the quality of software produced. 
 
Validation:  The process of determining that the requirements are the correct requirements and 
that they are complete.  
 
Verification:  The evaluation of an implementation of requirements to determine that they have 
been met. 
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APPENDIX A—SURVEY QUESTIONAIRE 

Programmable Logic Tools Questionnaire 
 

Introduction 
 
This questionnaire is about your experiences and opinions concerning the use of programmable logic tools used to 
help design or verify airborne electronic hardware (AEH) like FPGA, PAL, GAL, PLA, ASIC, or SoC on a DO-254 
development program.  The questionnaire is intended for the individuals who have experience with developing or 
using such tools or experience qualifying such tools.  The purpose is to gather industry and certifying authority 
feedback on assessment and qualification of AEH programmable logic tools.  
 
Your feedback will help establish critical issues and problems with AEH programmable logic tools and tool 
qualification and will help direct research in these areas. If you prefer, you may submit the survey anonymously (do 
not need to provide your or company names).  
 
Background Information 
 
1. What kind of organization do you work for? 
o Avionics or engine control developer 
o Aircraft or engine manufacturer 
o Communications, navigation, or surveillance system developer for air traffic management 
o AEH programmable logic tool developer 
o Consultant 
o Federal Aviation Administration 
o Other government agency (please specify): ________________________________________ 
o Other, (please specify): ________________________________________________________ 
 
2. What is your educational background? (check all that apply) 
o technical     
o non-technical    
o associate    
o bachelor     
o master    
o doctoral 
 

o software 
o control   
o electronics   
o mechanical  
o computer science  
o other (please specify) ___________

3. What is your role relevant to AEH Programmable Logic tools? (check all that apply) 
o I am engaged in development of AEH programmable logic tools 
o I am engaged in development of AEH programmable logic components 
o I develop systems using AEH programmable logic components 
o I verify systems using AEH programmable logic components 
o I use AEH programmable logic tools 
o I am a manager supervising DO-254 project 
o I am an FAA engineer who approves tool data 
o I am a Designated Engineering Representative (DER) who approves tool data 
o Other, (please specify): ________________________________________________________ 

 
4. What are your primary interests (check all that apply)
o development   
o concept/architecture   
o verification  

o hardware 
o other: ________
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4. How many years of experience? 
 
○     <3   ○    3-6   ○     7-12  ○     >12 
 
AEH Programmable Logic Information 
 
The objective of this study is to provide the sponsor, the FAA, with input on potential safety issues in the assessment 
and qualification of tools used in developing airborne electronic hardware (AEH) for the aircraft. The devices in this 
category include components based on PAL (Programmable Array Logic), GAL (Generic Array Logic), PLA 
(Programmable Logic Array), EEPLD (Electrically-Erasable Programmable Logic Device), CPLD (Complex 
Programmable Logic Devices), FPGA (Field Programmable Gate Arrays), ASIC (Application Specific Integrated 
Circuits), System-on-a-Chip (SOC), and similar circuits used as programmable components of electronic hardware. 
This questionnaire is part of an ongoing research project funded by the FAA to help evaluate and clarify the tool 
assessment and qualification process defined in the Section 11.4 of the RTCA DO-254, “Design Assurance Guidance 
for Airborne Electronic Hardware”. 
 
1. What types of programmable logic devices are used (or considered for use) in your organization? 
(check all that apply) 
o Field Programmable Gate Array (FPGA) 
o Programmable Array Logic (PAL)   
o Generic Array Logic (GAL) 
o Programmable Logic Array (PLA)   
o Erasable Programmable Logic Device (EPLD)   
o Complex Programmable Logic Device (CPLD)  
o System-on-a-Chip (SoC)     
o Application Specific Integrated Circuit (ASIC) 
o Other, (please specify): ________________________________________________________ 
 
2. Which vendor’s programmable logic devices you use? 

Name of the device/version    Satisfaction level 
       (1 not satisfied to 5 extremely satisfied) 
o Actel  __________________________________  _____________  
o Atmel  __________________________________  _____________  
o Altera  __________________________________  _____________  
o Cypress  __________________________________  _____________  
o Lattice  __________________________________  _____________  
o Quick Logic  __________________________________  _____________  
o Xilinx  __________________________________  _____________  
o other   vendor:__________product____________  _____________ 
  
3. Which vendor’s programmable logic tool you use? 

Name of the Tool/Version    Satisfaction level 
       (1 not satisfied to 5 extremely satisfied) 
o Synopsys  __________________________________  _____________  
o Intusoft  __________________________________  _____________  
o Mentor Graphics __________________________________  _____________  
o Tanner  __________________________________  _____________  
o Cadence  __________________________________  _____________  
o Aldec  __________________________________  _____________  
o Novas  __________________________________  _____________  
o Tau Simulation __________________________________  _____________  
o Synplify  __________________________________  _____________  
o Magma  __________________________________  _____________  
o Verisity   __________________________________  _____________  
o other  vendor:_____________tool____________  _____________ 
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4.  Please use the table below to list AEH tools you currently use or have used recently on a DO-254 program 
(if you have experience with more than three tools, please list the three most frequently used)  
 

Tool 
Name 
and 

Version 

Programmable 
Logic Tool 

Vendor 

Type of Project  
(describe what it is 
used for;  include 

typical project size 
in number of gates) 

Phase of development used 
(check all) 

Has the tool 
been qualified? 

 
 
 
 

  
 
 
 
 
 
 
 
 
 
Satisfaction level: 
_________ 
(1 not satisfied, 5 
extremely satisfied) 

o Logic Synthesis 
o Physical Synthesis 
o Design 
o Simulation 
o Emulation 
o Timing Anal 
o Power Anal 
o Testing 
o Verification  
o Place/route 
o Integration   
o ____________ 

o yes, Level 
(circle one) 

       A, B, C, D,        
       not sure  
o no 
o don’t know 

 
 
 
 

  
 
 
 
 
 
 
 
 
 
Satisfaction level: 
_________ 
(1 not satisfied, 5 
extremely satisfied) 
 

o Logic Synthesis 
o Physical Synthesis 
o Design 
o Simulation 
o Emulation 
o Timing Anal 
o Power Anal 
o Testing 
o Verification  
o Place/route 
o Integration   
____________ 

o yes, Level 
(circle one) 

       A, B, C, D,        
       not sure  
o no 
o don’t know 

   
 
 
 
 
 
 
 
 
 
 
Satisfaction level: 
_________ 
(1 not satisfied, 5 
extremely satisfied) 
 

o Logic Synthesis 
o Physical Synthesis 
o Design 
o Simulation 
o Emulation 
o Timing Anal 
o Power Anal 
o Testing 
o Verification  
o Place/route 
o Integration   
____________ 

o yes, Level 
(circle one) 

       A, B, C, D,        
       not sure  
o no 
o don’t know 
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5. Identify major criteria for evaluating new tools for selection to be used in DO-254 project? Rank the first 
five criteria assigning numbers from 1 (high) to 5 (low).  

o ___ Tool vendor reputation 
o ___ Tool functionality  
o ___ Acquisition cost 
o ___ Compatibility with the existing tools in use 
o ___ Compatibility with the development platform 
o ___ Reliability/quality of the tool 
o ___ Availability of vendor-supported training  
o ___ Amount of training needed to use the tool 
o ___ Amount/quality of documentation available 
o ___ Quality of support and the access to the vendor’s technical staff 
o ___ Previous team familiarity with the tool 
o ___ Tool performance on in-house internal evaluation 
o ___ Host platform of the tool (workstation, operating system) 
o ___ Compatibility with the selected programmable logic platform (FPGA, CPLA, ASIC, SOC) 
o ___ Previous tool use on airborne product projects (under DO-254/DO-178B) 
o ___ Tool performance (effort required, product quality in terms of size, power) 
o ___ Ease of qualification 
o ___ Other (please explain): _______________________________ 

 
6.  When it comes to acquiring new programmable logic tools, which of the following apply prior to selection 

for a project? 
o We review the tool documentation, but do not test the actual tool relying on the vendor information 
o We do limited tool familiarization (with e.g. demo version), but do not attempt extensive testing on a smaller 

project 
o We extensively review and test the tool by training the personnel and using trial period on a smaller project 
o We do formal independent third party assessment of the tool 
o Other (please specify): _______________________________________________________ 
 
7.  Have you experienced successful/failed efforts to qualify programmable logic tools?   
o no 
o I don’t know 
o yes, (please explain):__________________________________________________ 
_______________________________________________________________________ 
_______________________________________________________________________ 
_______________________________________________________________________ 
_______________________________________________________________________ 
 
8. If the tool assessment/qualification was performed/attempted, please comment  

o Clarity of the guidelines      
excellent appropriate sufficient   marginal 
 

o Ease of finding required information   
excellent appropriate sufficient   marginal 
 

o Increase of workload      
negligible  moderate significant extreme 
 

o Safety improvement      
significant  noticeable moderate marginal 
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9. Have you experienced finding errors (through the tool use or through the qualification process) in the 
programmable logic tools? 
o No errors, as far as I know, have been found 
o Some errors have been found, but they have been few and minor 
o Errors have been found that are significant or numerous 
o I don’t know 
 
10.  What do you see as major issues regarding use of programmable logic tools? 

 

 

 

 

 

11. What do you see as major issues regarding qualification of programmable logic tools? 
 

 

 

 

 

 

12. What other programmable logic tools related experience or issues would you like to share? 
 
 
 
 
 
 
 
 
 
OPTIONAL: Additional Information 

 
Name:___________________________ 

 
Company:________________________ 
 

 
Phone: ________________________________ 

 
E-mail: ________________________________ 

 
 
Note: If you’d rather submit your contact information in a different format (i.e., you don’t want it attached 
to this survey), please send your contact information to Dr. Andrew J. Kornecki, ERAU as an e-mail with 
the subject “AEH TOOL HELP” kornecka@erau.edu 
 

 

mailto:kornecka@erau.edu
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APPENDIX B—SURVEY RESULTS 

B.1 GRAPHICAL SURVEY RESULTS. 
 
This appendix includes additional graphical representations of the survey results, complementing 
section 3.  Figures B-1 through B-5 address the survey population in terms of their experience, 
background, and interests.  Figures B-6 through B-8 identify types of tools, devices, and tool 
vendors. Figures B-9 and B-10 present evaluation and selection criteria.  Figures B-11through B-
16 show the qualification issues.  
 

How many years of experience?

<3
0% 3-6

12%

7-12
24%

>12 
64%

 

Figure B-1.  Respondent Population—Experience 
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Figure B-2.  Respondent Population—Educational Background:  Type 
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Figure B-3.  Respondent Population—Educational Background:  Level 
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Figure B-4.  Respondent Population—Educational Background:  Major 
 
 



 

B-3 

What are your primary interests?
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Figure B-5.  Interest 
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Figure B-6.  Types of Programmable Logic Device 
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Figure B-7.  Device/Hardware Vendors 
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Figure B-8.  Programmable Logic Device Tool Vendors 
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Figure B-9.  Evaluation Criteria 
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Figure B-10.  Selection of Tools 
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Have you experienced successful/failed efforts to qualify programmable logic tools?
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Figure B-11.  Qualification Percentage 
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Figure B-12.  Clarity of Guidelines 
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Ease of finding required information
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Figure B-13.  Ease of Finding Information 
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Figure B-14.  Increase Workload 
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Figure B-15.  Safety Improvement 
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Figure B-16.  Errors Found 
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B.2  SURVEY NARRATIVE RESPONSES. 
 
The following provides the unedited text of narrative responses from the survey, as referenced in 
section 5.1.3. 
 
1. The major issues regarding use of programmable logic tools are: 

• Ease of verification 

• Three issues- quality of tool, your design, model used to verify your design. 

• Simulation wrong, wrong timing analysis. 

• No ability to lock down place route and make small changes. Any changes 
requires full verification suite. 

• Becoming familiarized with the specific CPLD/FPGA vendors fitting tools to 
synthesize, place and route and program. 

• Conformity of libraries of VHDL and VTL models. Compliance of tool to 
published standards. (e.g. IEEE VHDL standards). 

• Some people/organizations become complacent and trust the tools to much, then 
expend their use of a tool without verifying their usage. 

• Failure to identify limitations of verification tools to the design assurance process. 
For example, simulation tools do not adequately account for electronics effects of 
real hardware. On the other hand, using gate level simulation is inappropriate for 
comprehensive timing analysis. 

• Speed. Stability of application of long simulations. 

• Version control (configuration management & baselines) errata list traceability. 

• They do not and can not eliminate physical testing! (Functional). 

• Verification, defect containment, reuse. 

• Clear visibility and traceability to output results. 

• I don't see any major issues with the tools. Most of these tools are widely in use 
and do not have a negative safety impact. Mainly the repeatability and verification 
of the design itself affects safety. 

• Errors in timing models resulting in incorrect timing analysis. Errors in simulation 
models resulting in missed errors. Errors in place and route tools resulting in logic 
errors in the silicon. I have not experienced any of these issues 
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• Complexity limits control over build process which can be very important. 
Advanced features are hidden when they shouldn't be because they are the ones 
that can solve your problem. 

• The tools are designed for rapid freeform development and not for requirements 
based methodical design. Fine for commercial applications but not really targeted 
to high reliability design. 

• If it can be qualified per DO-254 

• Bugs  

• Qualification 
 
2. The major issues regarding qualification of programmable logic tools are:  

• Availability of design information 

• No guidance on what results documents should contain and how that data is 
utilized/submitted. Comparing simulation clock by clock against logic analyzer on 
target is one means of quality 

• Lack of guidance in terms of what is acceptable. 

• Lack of cooperation from programmable logic tools vendor 

• Visibility of processes/signals. Willingness of tool vendors (e.g. Cadence; 
Simplicity) to openly discuss algorithms for simulation or synthesis and conform 
those algorithms. 

• Availability of tool requirement and verifying data. Our suppliers sometimes have 
to do this themselves. 

• Understanding the modes/features of tool that require qualification and applying 
appropriate qualification based on them. 

• Standardized test suite ran by the tool vendor. 

• We perform a crucial qualification of ModelSim using only crucial VHDL 
constructs. How extensive do we have to be? (Within DO-254 guidelines.). 

• Price & vendor availability for support. 

• Too much reliance on tools simulation to demonstrate functionality. In every case 
w/near total reliance on tools has resulted in re-spin (in my experience). 
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• The guidance on tool qualification is not useful. We qualified a tool by comparing 
a logic analyzer trace from the actual system with a simulation from the tool. This 
including propagations delays and functionality. The DO-254 guidance also does 
not include what should be done with the data, i.e. FAA approval or submittal. 
What kind of tool errors are we looking for, that would help drive the tool qual 
plan. What are the goals of a DO-254 tool qualification, what should the 
documentation look like, and what should be done with the qual data? I assume all 
companies are doing this differently and we have not seen any increase in safety 
by doing a qualification. These tools are in use in thousands of designs in the 
world and the probability of a tool qualification effort finding an error is very low 
or negligible. 

• Assessment is not a big issue because independent verification of the tools is a 
natural outcome of the design process. Qualification is much more involved and 
should be done by the vendor. Tool versions change so rapidly that qualification is 
impractical at the designer level and possibly the vendor level. 

• Frequent tool updates with big fixes limit the amount of time a tool can be 
"qualified" due to the fact that most tools are completely replaced by the update. 

• Qualification is basically demonstrating the pedigree of the tool itself, most 
vendors either do not keep requirements based design and verification information 
or that information is considered proprietary or trades secret. Thus independent 
assessment of tool output will continue to be the primary, and sometimes only, 
methodology available for “qualification”. As long as that fact doesn’t change, 
there will be very little progress. 

• Verification of hard and soft IP cores. 

• Guidelines that are easy to understand. 

• Templates that we can use. 

• Long process to prove qualification  
 
3. Other issues related to programmable logic tools experience are: 

• A missing functionality of LIBERO is the netlist editor for netlist after place and 
route. Any minor change in the design will result in a complete new place and 
route operation and then all the time consuming verification steps on the netlist 
must be redone as a consequence any change in an Actel design should be 
considered as major. 

• Trace to verification completed on final implementations. 
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• Altera has something’s called a macrofuntions, a t function used in VHDL code. 
The compiler calls a generic macro function and it works well. For a D0-178 D 
project I had to write my own 8-bit adder just to avoid qualifying Altera t 
functions. 

• Our biggest problem occur with the chip vendor’s place and route tools (e.g. 
Xilinx; Actel, etc) because they are trying to minimize tool costs -- they are selling 
chips, not software. Consequently, they don't have good configuration control of 
the tools/libraries and often introduce errors with new releases. 

• Vendors would like to be able to qualify tools once to provide qualified tools to 
HW vendors. 

• I've heard from FPGA vendors that they are attempting to understand what tool 
qualification means and consider offering it to their customers. While this is a 
noble goal, I wonder if they have an appropriate understanding of aircraft safety 
and design assurance to address qualification. 

• I was hoping that tool vendors would become more involved to the point that they 
could sell qualified tools rather that each user trying to figure out how to qualify 
the tool. 

• Use of System Verilog and assertions seem to fit into flow.  
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APPENDIX C—TEST PROCEDURE 

The document provides details of the proposed test procedures for the Power Integrity, I/O, and 
Timing Analyses. 
 
A common configuration, shown in figure C-1, will be used for all the test cases.  The test will 
consist of multiple N-bit counters (aggressor signals) surrounding a known (victim) signal.  The 
counters will be synthesized to operate at the maximum frequency allowed by the hardware.  All 
the aggressor and victim input/output (I/O) pins will be assigned to a single bank of the field-
programmable gate array (FPGA) and will share power supply resources.  The aggressor signal 
outputs will be driving their maximum specified load.  The victim signal will be assigned I/O 
pins in the middle of the aggressors to force routing in the middle of the aggressor signals. 
 
InputbufferN-bitCounterOutputDriverMaximumLoadInputbufferN-bitCounterOutputDriverMaximumLoadInputbufferN-bitCounterOutputDriverMaximumLoadInputbufferN-bitCounterOutputDriverMaximumLoadVariable Frequency Clock (Noise Generator)OutputDriverInputbufferKnown Signal(Victim)OutputMonitorAggressorSignals

 
Figure C-1.  Ripple Counter 

 
The design will be synthesized and configured to each platform independently.  Each platform 
will require that the timing constraints are set for the ripple counters.  It is acceptable that each 
platform’s tightest timing constraints will be different. 

 
C.1  AIRBORNE ELECTRONIC HARDWARE POWER INTEGRITY ANALYSIS CASE 
STUDY.  
 
C.1.1  OBJECTIVE.  
 
This case study will examine if an airborne electronic hardware (AEH) design tool is aware of 
potential power integrity issues.  The test case will simultaneously switch as many signals on an 
I/O bank as possible.  The signals will be connected to output drivers that will be configured as 
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LVTTL 24mA fast drivers.  The drivers will be connected to loads intended to maximize the 
current passing through each I/O.  Failures can occur due to excessive inductance in the device 
power connections or excessive resistive drops in the internal power bussing of the device under 
test.  The test will use one signal on the I/O bank as an input, which will be driven to VIL (0.8V) 
and VIH (2.0V) LVTTL specification limits.  Failures in the power bussing will be seen as 
erroneous values read by this input.  The outputs will be continuously monitored using an 
oscilloscope for inconsistencies. 
 
C.1.2  DESIGN.  
 
This is an overview of how the test will be designed. 
 
• The experiments instruction set shall be written so that it is platform-independent.   
• All signal lines shall be LVTTL 
• One input in I/O bank shall branch to the remaining outputs in that I/O bank.  
• Each I/O pin shall be designated as High current and Fast slew. 
 
C.1.3  SETUP.  
 
This is a preparatory procedure for conducting the experiment.  This experiment requires a 
function generator, a radio frequency (RF) generator (>10 GHz), and an oscilloscope.  For each 
platform, it is necessary to create different configuration files to use the development board I/O 
and save the place-and-route report/configuration. 
 
• The design shall be synthesized and configured to each platform independently. 
 
• Each platform will require I/O pin designations be made as high current and fast slew. 
 
• This experiment requires a precision digital power supply, oscilloscope, and logic 

analyzer. 
 
C.1.4  DATA COLLECTION PROCEDURE. 
 
This is the data collection procedure: 
 
• During this experiment all the outputs shall be monitored by a logic analyzer for logic, or 

an oscilloscope may be used. 
 
• The input pin, one of the output pins, and the VDD shall be monitored with an 

oscilloscope. 
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C.1.5  EXPERIMENT.  
 
The experiment consists of the following steps: 
 
• Connect outputs together. 
 
• Configure and synthesize, generate and save all tool reports and logs. 
 
• Burn the design onto the board.  Save all logs. 
 
• Connect both sources, respectively, and power up all systems. Record the input pin 

designations. 
 
• Start the data collection procedure. 
 
• Repeat for each platform. 
 
C.2  AN AEH I/O ANALYSIS CASE STUDY.  
 
C.2.1  OBJECTIVE.  
 
The purpose of this case study is to determine the state of undefined I/O pins.  The unused FPGA 
pins, when a component is burned onto the device, could have residual logic, be grounded, be 
active, or floating.  Ultimately, the AEH tool determines what happened to the pins left 
undefined in a design.  The method with which a tool chooses to delegate with these unused pins 
is a safety concern. 
 
C.2.2  DESIGN.  
 
This is an overview of how the test will be designed. 
 
• The code shall be a subset of the AEH Power Integrity Analysis code. 
 
• Modify the AEH Power Integrity Analysis code so that the variable frequency signal lines 

are removed.  All the rest of the code remains the same. 
 
C.2.3  SETUP.  
 
This is a preparatory procedure for conducting the experiment.  This experiment requires a 
function generator, an RF generator, and an oscilloscope.  For each platform, it will be necessary 
to create different configuration files to use the development board I/O and save the place-and-
route report/configuration. 
 
• The design shall be burned to the FPGA immediately following the implementation of the 

AEH Power Integrity Analysis experiment. 
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• The design shall be synthesized and configured to each platform independently. 
 
• Each platform will require that timing constraints be set for the ripple counters.  It is 

acceptable that each platform’s tightest timing constraints will be different. 
 
• All signals shall be transistor/transistor logic (TTL). 
 
• Record the timing constrains settings. 
 
• This experiment requires a function generator, an RF generator (>10 GHz), an 

oscilloscope, and a logic analyzer. 
 
• For each platform, it will be necessary to create different configuration files using the 

development board I/O’s.  Replication of the place-and-route report/configuration from 
AEH Power Integrity Analysis experiment to variable frequency lines will no longer be 
available for configuration. 

 
C.2.4  DATA COLLECTION PROCEDURE. 
 
This is the data collection procedure: 
 
• During this experiment, the varying square wave frequency input shall be started at 0 Hz 

and increased to the RF generator-allowable maximum frequency (>10 GHz) and shall be 
continually monitored for abnormalities, such as wave skew, rounding of wave edges, 
missed pulses, and non-TTL levels. 

 
• Data shall consist of frequency, voltage levels, rise and fall times, noise levels, and 

interfering frequencies.  Data shall be collected from all 54 output pins. 
 
• Starting at 0 Hz in logarithmic intervals, data shall be recorded.  Between the frequency 

of 950 Hz and 1050 Hz, data points shall be recorded in 10-Hz intervals. 
 
• At each interval, the VDD voltage shall be recorded.  
 
• Each of the four fixed signal outputs shall be monitored for any 2’s factor of the current 

variable frequency. 
 
C.2.5  EXPERIMENT. 
 
The experiment consists of the following steps: 
 
• The design shall be burned onto an FPGA immediately following the implementation of 

the AEH Power Integrity Analysis experiment. 
 
• Burn the design onto the platform. 
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• Use the exact I/O pin designations as they were in the AEH Power Integrity Analysis 
experiment.  Connect the output pins exactly the same with the exception that the current 
sinking device shall be removed. 

 
• All the previously assigned output pins shall be analyzed with an oscilloscope to 

determine if they are floating or fixed. 
 
 - Connect the known logic lines to its signal source. 
 
 - Connect the previously assigned variable frequency pin to a 1-kHz signal. 
 
 - Probe all the previously assigned I/O pins, and record their voltage levels for 1 

second.   
 
 - Use a 10k-Ω resistor to pull the previously assigned I/O pins to VDD and measure 

and record the pin voltage for 1 second. 
 
 - Use a 10k-Ω resistor to pull the previously assigned I/O pins to ground, measure 

and record the pin voltage for 1 second. 
 

• Connect the known logic to a 1-kHz-square wave source. 
 
• Execute the Data Collection Procedure.  Note: it is acceptable to do a continuous sweep 

and monitor for any signal.  If no signal is found record the finding.  If a signal is found, 
follow the data collection procedure exactly. 

 
C.3  AN AEH TIMING ANALYSIS CASE STUDY. 
 
C.3.1  OBJECTIVE.  
 
The purpose of this case study is to determine if a tool meets its reported timing constraints and 
retains a margin of safety.  The tools allow the user to specify the time that it will take a specific 
operation to complete.  If the bounds of the speed of the gates are pushed closer to their 
minimums, the tool will redesign the circuit so that the delay is less.  The subjects of interest are 
where are these bounds, how close does the tool allow the design to get to the bounds, and is 
there a safety margin with actual delay and estimated delay.  During the frequency sweep, both 
the input and output waves of the component shall be checked for phase accuracy and phase 
differences on the oscilloscope.  As the input frequency increases, the point when either the 
signal path time is not met or the output wave is not correct is considered a failure.  The phase 
differences will yield the signal path time, the point of failure will determine the safety margins 
applied.  All data and settings shall be recorded accurately for analysis. 
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C.3.2  DESIGN. 
 
This is an overview of how the test will be designed. 
 
• This case study will examine a ripple counter.  A ripple counter can be instantiated in 

high-level requirements (HDL) either behaviorally (i.e., A = A + 1) or as a series of flip 
flops cascaded together.  A 16-bit counter that will be coded both behaviorally and 
explicitly and both cases will be implemented. 

 
• The input to the ripple counter shall be an external pin that is connected to a high-

frequency source.  The final output of the counter shall be connected to an output pin. 
 
• The output signal frequency shall be the input signal frequency over 216.  
 
• The static timing produced by the tool will be recorded.  The hardware will then proceed 

through place-and-route, and the post place-and-route timing numbers will be used for the 
test.  

 
• All signals shall be LVTTL. 
 
C.3.3  SETUP. 
 
This experiment requires a function generator, RF generator, and oscilloscope.  For each 
platform, it will be necessary to create different configuration files to use the development board 
I/O.  Save the place-and-route report/configuration. 
 
• The design shall be synthesized and configured to each platform independently. 
 
• Each platform will require that the tool’s timing constraints be set for the ripple counters.  

It is acceptable that each platform’s tightest timing constraints will be different. 
 
• Record the timing constraint settings. 
 
• During the initial implementation, a report will be or can be generated by the tool to 

establish the maximum input frequency and the signal path delay. 
 
• All signals shall be TTL. 
 
C.3.4  DATA COLLECTION PROCEDURE. 
 
This is the data collection procedure: 
 
• During this experiment, the varying square wave frequency input shall be started at 0 Hz 

and increased to RF generator-allowable maximum frequency (>10 GHz) and shall be 
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• continually monitored for abnormalities, such as glitches, cycle slips, missed pulses, and 
non-TTL levels.  Record these findings. 

 
• Data shall consist of frequency, voltage levels, rise and fall times, noise levels, interfering 

frequencies, and phase difference of input and output waves. 
 
• Starting at 0 Hz and increasing in logarithmic intervals up to the RF generator’s 

maximum frequency, data shall be recorded. 
 
C.3.5  EXPERIMENT. 
 
This is the method in which the implementation shall be tested.  The test shall attempt to produce 
the highest operational frequency for each platform. 
 
• Synthesize and burn the design. Generate and save tool reports, make sure to include the 

timing report and timing constraint settings. Examine the reports to see what 
optimizations, if any, occurred. 

 
• Connect the signal generation, and power up the system. 
 
• Follow the data collection procedure. 
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APPENDIX D—ANNOTATED BIBLIOGRAPHY 

This appendix presents detailed information briefly discussed in section 4 of the main report.  
The presented literature items collected during this research are divided into three sections:  (1) 
annotated research papers (section D.1), (2) selection of papers directly related to safety issues 
detailing the objective and relevance to the project (section D.2), and (3) papers contributed by 
industry with defined problems and suggested solutions (section D.3). 
 
D.1  ANNOTATED RESEARCH PAPERS. 
 
The research revealed several papers on the use of software tools in the development of airborne 
electronic hardware (AEH).  This section includes an annotated bibliography of the papers 
related to general issues of using software tools in hardware development.  
 
1.  Aljer, A. and Devienne, P., “Co-Design and Refinement for Safety Critical Systems,” 

Proc. DFT '04 19th IEEE International Symposium on Defect and Fault Tolerance in 
VLSI Systems, IEEE, 2004, pp. 78-86.  

 
Summary:  In this paper, the authors focus on design entry of complex systems, that is, 
the highest abstract tier of the global system without implementation choices to specific 
technologies. At this very first level, the use of a formal specification language is 
considered as the foundation of a real validation process.  The paper calls attention to 
formal design entry, and points out that the project management can be formally 
controlled by formal refinement.  Architecture, based on stepwise refinement of a formal 
model to achieve controllable implementation, is proposed.  This leads to 
implementations that are highly effective, but remain formally related to the first formal 
specification.  Partitioning, fault tolerance, and system management are seen as particular 
cases of refinement in order to conceptualize systems that are correct by proven 
construction.  In this paper, the basic principles of system methodologies are presented, 
and the methodology based on the refinement paradigm is described.  To prove this 
approach, the B-HDL (B high-level design language) Tool, based on very high-speed 
integrated circuit (VHDL) (digital circuits) and B Method (formal language based on set 
theory and logic) has been developed.  The benefits of such tools would be an amazing 
productivity gain, a better reuse automation, and a formal redundancy management. 

 
2.  Bannow, N. and Haug, K., “Evaluation of an Object-Oriented Hardware Design 

Methodology for Automotive Applications,” Proc. Design, Automation and Test in 
Europe Conference and Exhibition, Paris, 16-20 February 2004, Vol. 3, pp. 268-273. 

 
Summary:  The authors present results in using the new object-oriented design approach 
OSSS (ODETTE System Synthesis Subset).  The methodology and tools of the ODETTE 
(tool that uses object-oriented co-design and functional test techniques) project have been 
developed within the context of the Information Society Technologies program of the 
European Commission.  The main focus of OSSS lies in the field of hardware design and 
synthesis capability.  The strategy is based on an extension of the synthesizable subset of 
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standard SystemC.  The approach supports real object-oriented and synthesizable design 
features like classes, inheritance, templates, polymorphism, and global object access. 
Therefore, OSSS promises high efficiency in its capability to handle complex designs, 
faster development time, improved code quality, and faster time to market. In contrast, 
standard SystemC is also based on C++ constructs, but no object-oriented constructs are 
available yet for a synthesizable system description.  The OSSS has been evaluated on an 
automotive design example.  It was chosen for the implementation of a component that is 
part of all video projects: a camera’s exposure control unit (ExpoCU).  The first main 
goal that was achieved is a synthesizable design by the automatic generation of an FPGA 
netlist from an OSSS description.  Furthermore, the methodology seems to be proven to 
fulfill industrial requirements, such as usability for complex system development, 
integration of the existing intellectual property (IP), improved code quality, and decreased 
development effort.  Comparison will be done against existing VHDL-based design flow.  
The paper focuses on implementation and testability by comparing the new object-
oriented synthesis approach with a standard VHDL flow by laying emphasis on 
synthesizability.  The OSSS and equivalent methodologies show a potential to handle 
new generations of complex hardware/software systems.  Moreover, the gap between 
increasing design complexity and available methodologies already gets larger and, thus 
needs to be closed by new solutions such as OSSS. 

 
3.  Bhatt, D., et al., “Model-Based Development and the Implications to Design Assurance 

and Certification,” Proc. DASC 2005, 24th Digital Avionics Systems Conference, 30 
October - 3 November 2005.  

 
Summary:  The term model-based design/development (MBD) has grown in popularity 
over the past decade.  Within the avionics community, the term MBD implies the 
development and application of “control models and simulations” using tools such as 
MATLAB/Simulink.  At Honeywell, the authors have been engaged in MBD and 
development of associated tools for avionics applications.  This position paper applies the 
lessons learned and discusses several issues, relating to sound MBD, to meet design 
assurance and certification objectives.  The paper examines the dominant approaches 
describing commercially available code generation and verification tool suites.  The paper 
contrasts these approaches to traditional software design, implementation, and 
verification methods.  This paper also recommends taking a broader perspective of MBD 
and suggests adopting lessons learned from the classical software engineering arena 
considering future investigation, standardization, automation tool development, and 
integration. 

 
4.  Bunker, A., Gopalakrishnan, G., and McKee, S.A., “Formal Hardware Specification 

Languages for Protocol Compliance Verification,” ACM Trans. on Design Automation of 
Electronic Systems, Vol. 9, No. 1, January 2004. 

 
Summary: The advent of the system-on-chip (SoC) and IP hardware design paradigms 
makes protocol compliance verification increasingly important to the success of a project.  
One of the central tools in any verification project is the modeling language, and the 
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paper describes the survey of the field of candidate languages for protocol compliance 
verification, limiting discussion to languages originally intended for hardware and 
software design and verification activities.  The comparison is framed by first 
constructing taxonomy of these languages, and then by discussing the applicability of 
each approach to the compliance verification problem.  Each discussion includes a 
summary of the development of the language, an evaluation of the language’s utility for 
the problem domain, and where feasible, an example of how the language might be used 
to specify hardware protocols.  Finally, some general observations are made regarding the 
considered languages. 

 
5.  Bunker A., McKee, S.A., and Gopalakrishnan, G., “An Overview of Formal Hardware 

Specification Languages,” Grace Hopper Celebration of Women in Computing, 2002. 
 

Summary:  Verification is widely recognized as one of the most difficult aspects of 
computer hardware design.  The gap between design and verification capabilities grows, 
as does the cost of missed flaws.  Many researchers investigate ways to formally verify 
processor designs, interconnects, and protocols, but creating verification methods and 
tools will remain a central problem for computer scientists for at least the next decade.  
This field is explored in the paper by surveying formal specification languages.  A 
taxonomy of languages is presented, and the paper discusses the applicability of each 
language to standard compliance verification, demonstrating that a hardware design 
complies to an interconnect standard. 

 
6.  Camposano, R. and Wilberg, J., “Embedded System Design,” Design Automation for 

Embedded Systems, Vol. 1, No. 1-2, January 1996, pp. 5-50. 
 

Summary:  In the past decade, the main engine of electronic design automation has been 
the widespread application of ASIC.  Present technology supports complete SoC, most 
often used as so-called embedded systems in an increasing number of applications.  
Embedded systems pose new design challenges that will be the driving forces of design 
automation in the years to come.  These include the design of electronic systems 
hardware, embedded software, and hardware/software co-design.  This paper explores 
novel technical challenges in embedded system design and presents experiences and 
results of the work in this area using the CASTLE system.  CASTLE supports the design 
of complex embedded systems and the design of the required tools.  It provides a central 
design representation, Verilog, VHDL, and C/C++ front ends, hardware generation in 
VHDL and Berkeley Logical Interchange Format, a re-targetable compiler backend, and 
several analysis and visualization tools.  Two design examples, video compression and a 
diesel injection control, illustrate the presented concepts. 

 
7.  Chee, W.L., Zain, Ali, N.B., and Nair, R.S., “Design of Low-Cost FPGA-Based PCI Bus 

Sniffer,” Proc. FPT 2003 IEEE International Conference on Field-Programmable 
Technology, Tokyo, 15-17 December 2003. 
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Summary:  This paper describes FPGA design and implementation of the Peripheral 
Component Interconnect (PCI) Bus Sniffer—a device used by semiconductor industries 
to analyze the characteristics of signals transmitted in the PCI bus.  These devices are 
expensive and not easily affordable by individual users.  The paper presents a novel 
method of device design using available freeware tools that facilitate learning hardware 
design at a low cost.  The objective of the paper is to present design and implementation 
of a low-cost PCI Bus Sniffer using FPGA and the Verilog HDL.  The target FPGA 
device is a Xilinx SPARTAN II with the necessary interface to probe PCI signals.  This 
project has successfully shown that it is possible to design and implement a complex 
hardware design using freeware tools. 

 
8.  Cooper, P.A., “Lessons Learned Using Software-Assisted Systems Engineering on Large 

Satellite Development Contracts,” IEEE Aerospace and Electronic Systems Magazine, 
Vol. 21, No. 5, May 2006, pp. 7-11.  

 
Summary:  Over the years, the world’s defense industries have become quite proficient at 
developing large, complex hardware and software systems. In recent years, the ubiquitous 
deployment of personal computers has changed the way people work and has had a major 
impact on major systems development efforts.  The government’s faster-better-cheaper 
acquisition philosophy has started driving contractors to a concurrent engineering 
approach toward systems engineering.  This confluence of experts has had unexpected 
impacts on both the flexibility and rigor of requirements management processes.  While 
the maturing requirements and design hold promise in maintaining requirements 
traceability throughout the design process, the widespread use of desktop computing 
systems has inadvertently lulled many experienced systems engineers into sloppy 
processes because it appears to be a simple matter to make a requirements change in a 
soft copy of a requirements document.  Without strong process and management support, 
requirements changes may be done in incompatible formats.  This author describes the 
design phase of a major classified government satellite development effort.  As an 
integral member of an extremely experienced requirements management team (boasting 
over 150 years of combined experience in the defense industry), the author had the 
opportunity to watch the team navigate straight into many of the systems engineering 
potholes created when talented engineers implement concurrent engineering using a 
variety of tools without a consistent process framework.  This paper, therefore, 
specifically addresses process and implementation challenges that arose when 
establishing a software-assisted, concurrent-engineering project.  

 
9.  Dajani-Brown, S., Cofer,  and D.’ Bouali, A., “Formal Verification of an Avionics Sensor 

Voter Using SCADE,” Proc. FORMATS 2004 Joint International Conference on Formal 
Modelling and Analysis of Timed Systems, and FTRTFT 2004 Formal Techniques in 
Real-Time and Fault-Tolerant Systems,  Lecture Notes in Computer Science, Vol. 3253, 
pp. 5-20. 

 
Summary:  Redundancy management is widely used in mission-critical digital flight 
control systems.  This study focuses on the use of Safety-Critical Application 
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Development Environment (SCADE) and its formal verification component, the Design 
Verifier, to assess the design correctness of a sensor voter algorithm used for management 
of three redundant sensors.  The sensor voter algorithm is representative of embedded 
software used in many aircraft today.  The algorithm, captured as a Simulink diagram, 
takes input from three sensors and computes an output signal and a hardware flag, 
indicating correctness of the output.  This study is part of an overall effort to compare 
several model checking tools to the same problem.  SCADE is used to analyze the voter’s 
correctness in this part of the study.  Since synthesis of a correct environment for analysis 
of the voter’s normal and off-normal behavior is a key factor when applying formal 
verification tools, this paper is focused on (1) the different approaches used for modeling 
the voter’s environment and (2) the strengths and shortcomings of such approaches when 
applied to the problem under investigation. 

 
10.  Hayek, A. and Robach, C., “From Specification Validation to Hardware Testing: A 

Unified Method,” Proc. International Test Conference, 20-25 October 1996, pp. 885-893. 
 

Summary:  With the advancement in the design automation field, tools allow to describe 
hardware systems as software programs using high-level HDLs, such as VHDL or 
Verilog.  Consequently, a design fault that affects the system specification can be 
considered a software fault.  To test the system specification against (software) design 
faults, the authors’ propose an adaptation of a mutation analysis, originally proposed for 
software testing, to test VHDL functional description.  The resulted test set is applied to 
the gate-level structure of the system to measure its capacity to uncover hardware faults, 
such as the stuck-at faults.  Heuristics are presented to enhance the test set in order to be 
sufficient for testing hardware faults, and the results are compared to traditional automatic 
test pattern generation.  Accordingly, this paper presents a unified method for testing both 
the system specification and the hardware implementation. 

 
11.  Hilton, A.J., “High-Integrity Hardware-Software Codesign,” Ph.D. Thesis, The Open 

University, April 2004. 
 

Summary:  Programmable logic devices (PLD) are increasing in complexity and speed 
and are being widely used in safety-critical systems.  Methods for developing high-
integrity software for these systems are well known, but this may not be true for 
programmable logic.  The author proposes a process for developing a system 
incorporating both software and PLD, suitable for safety-critical systems of the highest 
levels of integrity.  This process incorporates the use of Synchronous Receptive Process 
Theory as a semantic basis for specifying and proving properties of programs executing 
on PLD.  This process also extends the use of the Southampton Program Analysis 
Development Environment Ada Kernel (SPARK Ada) from a programming language for 
safety-critical systems software to cover the interface between software and 
programmable logic.  The proposed approach has been validated through the specification 
and development of a substantial safety-critical system incorporating both software and 
programmable logic components and the development of tools to support this work.  The 
authors claim that the demonstrated methods are not only feasible but also scale up to 
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realistic system sizes, allowing development of such safety-critical software and hardware 
systems to the levels required by current system safety standards. 

 
12.  Hilton A. and Hall, J.G., “On Applying Software Development Best Practice to FPGAs in 

Safety-Critical Systems,” Proc. FPL 2000, 10th International Conference on Field-
Programmable Logic and Applications, Villach, Austria, August 27-30, 2000. 

 
Summary: New standards for developing safety-critical systems require the developer to 
demonstrate the safety and correctness of the programmable logic in such systems.  The 
paper describes adaptation of software development best practices to developing high-
integrity FPGA programs. 

 
13.  Hilton, A.J. and Hall, J.G., “Developing Critical Systems with PLD Components,” Proc. 

FMCIS 10th International Workshop on Formal Methods for Industrial Critical Systems, 
September 2005. 

 
Summary:  Understanding the roles that rigor and formality can have in the design of 
critical systems is critical to anyone wishing to contribute to their development.  Whereas 
software developers have good knowledge of these issues, for the developers of PLDs and 
specifically for the combination of PLDs and software, the issues are less known.  Indeed, 
even in industry there are differences between current and recommended practice, and 
engineering opinion differs on how to apply existing standards.  This situation has led to 
gaps in the formal and rigorous treatment of PLDs in critical systems.  In the paper, the 
range of, and potential for, formal specification and analysis techniques that address the 
requirements for verifiable PLD programs are examined.  The existing formalisms that 
may be used are identified.  The areas of contributions that academia and industry in 
collaboration can make that would allow high-integrity PLD programming to be as 
practicable as high-integrity software development are presented.  The paper touches 
briefly on important practical, technical, organizational, social, and psychological aspects 
of the introduction of formal methods into industrial practice for hardware and system 
design.  It also provides an update and summary of the recent UK Defence Standard 00-
56, as it relates to hardware. 

 
14.  Hilton A.J., Townson G., and Hall, J.G., “FPGAs in Critical Hardware/Software 

Systems,” Proc. FPGA 2003 ACM/SIGDA 11th International Symposium on Field 
Programmable Gate Arrays, Monterey, CA, ACM, 2003, p. 244. 

 
Summary: FPGAs are being used in increasingly complex roles in critical systems, 
interacting with conventional critical software.  Established safety standards require 
rigorous justification of safety and correctness of the conventional software in such 
systems.  Newer standards now make similar requirements for safety-related electronic 
hardware, such as FPGAs, in these systems.  In the paper, the current state-of-the-art in 
programming FPGAs, and their use in conventional (low-criticality) hardware and 
software systems are examined.  The paper discusses the impact that the safety standards 
requirements have on the co-development of hardware/software combinations in critical 
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systems and suggests adaptations of the existing best practice in software development 
that could discharge them.  Particular attention is paid to the development and analysis of 
high-level language programs for FPGAs designed to interact with conventional software. 

 
15.  Hoskote, Y.V., et al., “Automatic Verification of Implementations of Large Circuits 

Against HDL Specifications,” IEEE Transactions on Computer-Aided Design of 
Integrated Circuits and Systems, March 1997.  

 
Summary:  This paper addresses the problem of verifying the correctness of gate-level 
implementations of large, synchronous, sequential circuits with respect to their higher-
level specifications in HDL.  The verification strategy is to verify containment of the 
finite state machine (FSM) represented by the HDL description in the gate-level FSM by 
computing pairs of compatible states.  This formulation of the verification problem 
dissociates the verification process from the specification of initial states, whose encoding 
may be unknown or obscured during optimization and also enables verification of reset 
circuitry.  To make verification of large circuits with merged data path and control 
tractable, the concept of strong containment is introduced.  This is a conservative 
approach that exploits correspondence between data path registers in the two descriptions 
without requiring any correspondence between the control units.  An important result 
with an associated proof that computation of pairs of equivalent or compatible states can 
be achieved by considering subsets of the circuit outputs is presented.  Consequently, 
verification of circuits with large and diverse I/O sets, which was previously intractable 
due to lack of a single effective variable order for the binary decision diagrams is now 
feasible.  Experimental results are presented for the verification of several industry level 
circuits. 

 
16.  Karlsson K. and Forsberg, H., “Emerging Verification Methods for Complex Hardware in 

Avionics,” Proc. DASC 2005, 24th Digital Avionics Systems Conference, 30 October - 3 
November 2005, Vol. 1, pp. 6.B.1-61-12. 
 
Summary:  This paper discusses the additional design assurance strategies stated in 
RTCA DO-254, appendix B, “Design Assurance Considerations for Level A and Level B 
functions.”  In particular, the use of formal specification languages, such as the property 
specification language in combination with dynamic (simulation) and static (formal) 
verification methods for PLDs, are addressed.  Using these methods, a design assurance 
strategy for complex programmable airborne electronics compliant with the guidelines of 
DO-254 is suggested.  The proposed strategy is a semi-formal solution, a hybrid of static 
and dynamic assertion-based verification. 

 
17.  Kern, C. and Greenstreet, M.R., “Formal Verification in Hardware Design:  A Survey,” 

ACM Transactions on Design Automation of Electronic Systems, Vol. 4, No. 2, pp. 123-
193, 1999.  

 
Summary:  In recent years, formal methods have emerged as an alternative approach to 
ensuring the quality and correctness of hardware designs, overcoming some of the 
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limitations of traditional validation techniques, such as simulation and testing.  There are 
two main aspects to the application of formal methods in a design process:  (1) the formal 
framework used to specify desired properties of a design and (2) the verification 
techniques and tools used to reason about the relationship between a specification and a 
corresponding implementation.  The paper presents a survey of a variety of frameworks 
and techniques proposed in the literature and applied to actual designs.  The specification 
frameworks include temporal logics, predicate logic, abstraction and refinement, as well 
as containment between regular languages.  The verification techniques presented include 
model checking, automata-theoretic techniques, automated theorem proving, and 
approaches that integrate the above methods.  To provide insight into the scope and 
limitations of currently available techniques, a selection of case studies where formal 
methods were applied to industrial-scale designs, such as microprocessors, floating-point 
hardware, protocols, memory subsystems, and communications hardware, are presented. 

 
18.  Marcon, C.A.M., et al., “Prototyping of Embedded Digital Systems From SDL Language: 

A Case Study,” Proc. HLDVT'02 Seventh IEEE International High-Level Design 
Validation and Test Workshop, Cannes, France, 27-29 October 2002, pp. 133-138.  

 
Summary:  The author’s goal was to evaluate the performance of embedded digital 
systems generated from a system-level description language.  The target language is SDL, 
which is automatically synthesized with a co-design tool, resulting in VHDL and C 
descriptions.  The co-design tool is responsible for software, hardware, and 
communication synthesis.  Two case studies are presented, exploring the results with 
respect of the chip area and delays.  The results focus on the hardware synthesis, since the 
goal is to compare the performance of systems generated from a hand-coded HDL 
descriptions against a synthesized HDL.  The analysis of the advantages and drawbacks of 
this automatic hardware design flow and the evaluation of the commercial tools 
integration are also reported. 

 
19.  Mencer, O., “ASC:  A Stream Compiler for Computing with FPGAs,” IEEE Transactions 

on Computer-Aided Design of Integrated Circuits and Systems, Vol. 25, No. 9, 
September 2006, pp. 1603-17. 

 
Summary:  A Stream Compiler (ASC) for computing with FPGA emerges from the 
ambition to bridge the hardware-design productivity gap where the number of available 
transistors grows more rapidly than the productivity of very large-scale integration and 
FPGA computer-coded design tools.  ASC addresses this problem with a software-like 
programming interface to hardware design while maintaining the performance of hand-
designed circuits.  ASC improves productivity by letting the programmer optimize the 
implementation on the algorithm, architecture, arithmetic, and gate levels, all within the 
same C++ program.  The increased productivity of ASC is applied to the hardware 
acceleration of a wide range of applications.  Traditionally, hardware accelerators are 
tediously handcrafted to achieve top performance.  ASC simplifies design space 
exploration of hardware accelerators by transforming the hardware design task into a 
software design process, using only the “make” process to obtain a hardware netlist. From 
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experience, the hardware design productivity and ease of use are close to pure software 
development.  This paper presents results and case studies with three levels of 
optimizations:  (1) on the gate level—Kasumi and International Data Encryption 
Algorithm encryptions, (2) on the arithmetic level—redundant addition and multiplication 
function evaluation for two-dimensional rotation, and (3) on the architecture level—
Wavelet and Lempel-Ziv (LZ)-like compression. 

 
20.  Mills, M. and Peterson, G., “Hardware/Software Co-Design: VHDL and Ada 95 Code 

Migration and Integrated Analysis,” Proc. 1998 Annual ACM SIGAda International 
Conference on Ada, Washington, DC, 1998, pp. 18-27. 

 
Summary:  Optimizing the design is an important task in efficiently developing and 
deploying effective complex weapons systems.  Often, architectural tradeoffs between 
hardware and software implementation must be performed early in the design cycle, 
resulting in potentially inefficient systems or subsystems.  As technologies and costs in 
hardware and software implementation change over time, the optimal partitioning of 
system functionality into hardware and software components may also change.  Currently, 
recasting a component from hardware to software (or vice-versa) is a difficult and error-
prone activity.  The paper explores a new approach to ease the hardware/software co-
design and repartitioning activities by providing a mechanism to exchange software 
written in Ada 95 with behavioral VHDL. 

 
21.  Miner, P.S., et al., “A Case-Study Application of RTCA DO-254: Design Assurance 

Guidance for Airborne Electronic Hardware,” Proc. DASC 2000, 19th Digital Avionics 
Systems Conferences, Vol. 1, pp. 1A1/1-1A1/8. 
 
Summary:  In a joint project with the Federal Aviation Association (FAA), National 
Aeronautics and Space Administration (NASA) Langley Research Center is developing a 
hardware design in accordance with DO-254.  The purpose of the case study was to gain 
understanding of the guidance document and generate an example suitable for use in 
training.  For the case study, a core subsystem of the Scalable Processor-Independent 
Design for Electromagnetic Resilience, which is a new fault-tolerant architecture under 
development at NASA Langley Research Center, was selected. 

 
12.  Nehme, C. and Lundqvist, K., “A Tool for Translating VHDL to Finite State Machines,” 

Proc. 22nd Digital Avionics Systems Conference, Vol. 1, pp. 3.B.6-1-7. 
 

Summary:  The paper describes a framework for design, verification, and execution of 
safety-critical applications.  The framework consists of both software tools for application 
verification and hardware platforms for execution and real-time monitoring.  The paper 
discusses the development of a tool to translate safety-critical VHDL code into a formal 
representation in a form of an FSM model.  Different formal techniques can then be 
applied on this representation to verify properties, such as liveness and deadlock, and to 
validate that the timing constraints of the original system hold.  This paper will discuss 
three aspects of the tool implementation:  transformation of source code into an 
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intermediate representation, verification of real-time properties, and some tool-related 
implementation issues. 

 
23.  Peterson, G.D. and Hines, J.W., “Advanced Avionics System Development: Achieving 

Systems Superiority Through Design Automation,” Proc. 1998 IEEE Aerospace 
Conference, 1998. Vol. 1, Issue 21, pp. 231-238. 

 
Summary:  Avionics systems in advanced aircraft provide the improved capability critical 
to achieving mission success for the war fighter.  As the costs associated with aircraft 
avionics continue to mount, improved weapons system acquisition and support depends 
on cost-effective design methodologies and accurate design documentation.  This paper 
explores how the standard hardware description language VHDL serves a critical role in 
effective acquisition of digital electronic systems.  Wright Laboratory programs focusing 
on electronic systems design automation provide complementary improvements in design, 
documentation, and maintenance capabilities.  Results from this research supports 
acquisition reform efforts to streamline the weapons system procurement process and 
provide contractors the flexibility to use the most effective design management 
techniques.  At the same time, while the U.S. Department of Defense is moving away 
from dictating standards in contracting, the electronics industry continues to embrace 
open standards as a means to ensure hardware and software component compatibility.  
The question arises: what methodology and standards developments are necessary to 
support the continuing development of sophisticated weapons systems for the military?  
To address this question, the paper explores methodological needs for hardware and 
software design, manufacturability, test, and related issues to provide context and 
motivation before describing ongoing work to meet these needs. 

 
24.  Salzwedel, H., “Mission Level Design of Avionics,” Proc. 23rd Digital Avionics Systems 

Conference, Vol. 2, pp. 9.D.2-1-10. 
 

Summary:  Aerospace systems are characterized by architectural complexity, dynamic 
interaction between subsystems, and complex functionality, which are understood by 
teams from different disciplines.  Twenty years ago, the major challenge was the 
multidisciplinary design of avionics.  Over the past 20 years, design methods and tools 
have been developed to cope with these challenges.  Today, the complexity of networked 
electronics in aircraft and the interaction of hardware and software impose similar 
complexity and design challenges.  The complexity of electronics, according to Moore’s 
law, closely followed by industry, increases by a factor of 100 every 10 years.  To cope 
with this increase of complexity, an increasing abstraction in the design methodology is 
required.  This paper shows the move towards performance and mission-level design and 
its advantages over functional-level design approaches. 

 
25.  Sangiovanni-Vincentelli, A. and Quo, Vadis, “SLD?  Reasoning About the Trends and 

Challenges of System-Level Design,” Proceedings of the IEEE, Vol. 95, No. 3, March 
2007, pp. 467-506.  

 



 

D-11 

Summary:  The paper discusses system-level design (SLD) considered by many as the 
next frontier in electronic design automation (EDA).  SLD means many things to different 
people, since there is no consensus on a definition of the term.  Academia, designers, and 
EDA experts have taken different avenues to attack the problem, for the most part, 
springing from the basis of traditional EDA and trying to raise the level of abstraction at 
which integrated circuit designs are captured, analyzed, and synthesized from.  However, 
this is just the tip of the iceberg of a much larger problem that is common to all system 
approach practitioners.  In particular, notwithstanding the obvious differences among 
industrial segments (for example, consumer, automotive, computing, and 
communication), there is a common underlying basis that can be explored.  This basis 
may yield a novel EDA industry and even a novel engineering field that could bring 
substantial productivity gains not only to the semiconductor industry but to all system 
approach practitioners, including industrial and automotive, communication and 
computing, avionics and building automation, space and agriculture, and health and 
security, in short, a real technical renaissance.  The paper presents the challenges faced by 
industry in SLD. A design methodology, platform-based design (PBD), that has the 
potential of addressing these challenges in a unified way is proposed.  The methodology 
and tools available today in the PBD framework and a tool environment called Metropolis 
that both supports PBD and can be used to integrate available tools and methods together 
with two examples of its application to separate industrial domains are presented. 

 
26.  Turner, K.J. and He, J., “Formally Based Design Evaluation,” Proc. CHARME 2001, 

Proc. 11th IFIP WG 10.5 Advanced Research Working Conference on Correct Hardware 
Design and Verification Methods, Lecture Notes in Computer Science, Vol. 2144, pp. 
104-109.  

 
Summary:  The paper investigates specification, verification, and test generation for 
synchronous and asynchronous circuits.  The approach is called digital logic in LOTOS, 
the International Organization for Standardization language of temporal-ordering 
specification, or DILL for short.  Relations for strong conformance are defined to verify a 
design specification against a high-level specification.  Tools have been developed for 
automated testing and verification of conformance between an implementation and its 
specification. 

 
D.2  SAFETY ISSUES.  
 
Several of the papers listed in section E.1 address specific issues of safety in AEH tools.  The 
selected literature entries below were analyzed in-depth to identify the specific paper objective as 
related to the safety issue, provide more extensive but brief description, and specify the relevance 
to the project.  
 
13.  Hilton, A.J. and Hall, J.G., “Developing Critical Systems with PLD Components,” 

FMCIS 10th International Workshop on Formal Methods for Industrial Critical Systems, 
September 2005. 
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Paper Objective:  The paper provides recommendations on guidelines for PLDs used in 
safety-critical systems.  PLDs constitute increasingly important components of safety-
critical systems.  By placing specific processing tasks within auxiliary hardware, the 
software load on a conventional central processing unit (CPU) can be reduced, leading to 
improved system performance.  They are also used to implement safety-specific functions 
that must be outside the direct address space of the main CPU.  
 
Brief Description:  The paper addresses high-integrity requirements of contemporary 
AEH.  DO-254 specifies the verification recommended for component testing based on a 
functional failure path analysis (FFPA) that decomposes the identified hazards related to 
the component into safety-related requirements for the design elements of the hardware 
program.  The verification which DO-254 suggests may include some or all of the 
following:  
 
• Architectural mitigation:  Changing the design to prevent, detect, and correct 

hazardous conditions.  
 
• Product service experience:  Arguing reliability based on the operational history 

of the component. 
 

• Elemental analysis:  Applying detailed testing and/or manual analysis of safety-
related design elements and their interconnections. 

 
• Safety-specific analysis:  Relating the results of the FFPA to safety conditions on 

individual design elements and verifying that these conditions are not violated.  
 

• Formal methods:  The application of rigorous notations and techniques to specify 
or analyze some or all of the design.  

 
The common requirements for safety-critical devices DO-254: 
 
• To operate under an appropriate quality/safety management system 
 
• To plan the development process and the safety argument in advance 

 
• To consider both random and systematic failures 

 
• To qualify tools involved directly in the compilation chain 

 
• To use analytic techniques (e.g., formal methods) to verify high-integrity 

programs 
 

• To conduct the verification based on identified system hazards 
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The paper highlights the cases where PLDs were used in a critical function for a system 
and related safety concerns.  An example is using an FPGA in a space-based tethering 
experiment where an unanticipated power-up characteristic of the chosen FPGA caused 
the effective loss of the satellite.  Despite extensive testing, it was not possible to 
reproduce the transient spike twice within several hours—a classic transient fault. It is 
clear from this analysis that extensive testing is not sufficient for mission or safety-critical 
FPGAs; it is equally true that even formal analysis and proof would be unlikely to detect 
such a problem. 
 
The approach to using FPGAs in a hostile environment is described. The main 
environmental hazard in their target domain (space) is corruption of volatile memory via 
bombardment by high-energy particles. The architecture adopted is a triple-redundant 
design with fault detection and periodic “scrubbing” to reset all look-up tables to known 
values. This is a classic example of mitigating an unavoidable hazard; however, the 
design and function greatly complicates the task of arguing system correctness. The user 
must balance increased general reliability against demonstrable correctness. 
 
Recent research and development has contributed to the problem of producing high-
integrity PLD programs. Research relevant to safety-critical PLD program design includes 
the following: 

• Specification and proof of parallel systems, enabling a correct-by-construction 
approach to program design 

• Model-checking techniques to verify safety properties of an existing PLD design 
at an HDL or netlist level 

• The design and use of high-level programming languages to enable PLD 
programming at a more abstract level, possibly in a domain-specific language or 
tool 

Relevance to the Project:  The paper focus is on the DO-254 approach for verification and 
integration.  It also stresses on insufficient product service experience of VHDL compiler 
to qualify the tool according to DO-254 requirements; instead, the synthesized output was 
inspected manually to ensure that the critical design components were present and 
correctly connected. 

 
14.  Hilton, A.J., Townson, G., and Hall, J.G., “FPGAs in Critical Hardware/Software 

Systems,” Proc. FPGA 2003 ACM/SIGDA 11th International Symposium on Field 
Programmable Gate Arrays, Monterey, CA, ACM, 2003, pp. 244. 

 
Paper Objective:  The paper discusses safety-critical systems implemented in FPGA 
technology. A critical system is one in which failure may lead to serious consequences for 
the operator. Failure of safety-critical systems may endanger human life; failure of 
business-critical systems may result in serious financial loss. In such systems, preventing 
failure is crucial.  
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Brief Description:  There are possible complications brought on by using FPGAs, e.g., the 
highly parallel nature of their computations, the difficulties of interfacing to other system 
components, and timing issues.  Timing issues can be resolved (to some extent) by using 
a simulation or a synchronous HDL.  Interfacing problems can be addressed by 
implementing an asynchronous interface protocol.  However, correct analysis of the 
parallel structure of FPGAs remains the key to extending software development best 
practice to the PLD domain.  
 
Relevance to the Project:  The paper highlights the concerns related to FPGAs:  the highly 
parallel nature of their computations, the difficulties of interfacing to other system 
components, and timing issues that may impact safety, which are further examined in the 
project case studies.  

 
16.  Karlsson, K. and Forsberg, H., “Emerging Verification Methods for Complex Hardware 

in Avionics,” Proc. DASC 2005, 24th Digital Avionics Systems Conference, 30 October - 
3 November 2005, Vol. 1, pp. 6.B.1 - 61-12. 

 
Paper Objective:  During the last 10 years, there has been a tremendous increase in the 
ability to design airborne electronic hardware.  However, the ability to verify correctness 
of complex hardware has increased at the same pace.  Since verification and testing 
represents the larger part of development expenses, the industry needs to tackle a test/cost 
problem, which is particularly true for the highest design assurance (levels A and B) in 
airborne systems.  In particular, the paper addresses the use of formal specification 
languages, such as the property specification language in combination with dynamic 
(simulation) and static (formal) verification methods for PLD.  Using these methods, the 
author suggests a design assurance strategy for complex, programmable airborne 
electronics compliant with DO-254.  The strategy is a semiformal solution, a hybrid of 
static and dynamic assertion-based verification.  
 
Brief Description:  The paper highlights the hardware diversity as one the concern 
towards safety in FPGA/PLD identifying accepted architectural mitigation techniques:  
(1) triple-redundant module and (2) hardware diversity.  The concept of triple-redundant 
module mitigates single-event upsets in the FPGA registers.  Hardware diversity using 
two different technology-independent FPGAs might be used if one cannot prove or assure 
that the FPGA component itself is free of design faults (or if the FPGAs place-and-route 
tool cannot be shown to be reliable and the output is not independently assessed).  FPGA 
hardware diversity, however, increases both the cost and the complexity of the design and 
should therefore be avoided. 
 
This paper particularly addresses formal methods to be used in the FPGA/PLD 
design/verification flow for hardware design assurance levels A, B, and C in airborne 
applications.  The functional specification can be used for both documentation of 
requirements and verification of the design’s compliance.  It is possible to tightly connect 
documents and reviews to present a complete and consistent design/verification flow.  
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Relevance to the Project:  The paper helps one to understand how to develop more 
confidence in the design and to reduce time spent on exhaustive simulation, which also 
reduces the risk of discovering bugs in late stages of the design and provides adequate 
means of measuring and presenting functional/structural coverage for safety-critical 
functions.  

 
21.  Miner, P.S., et al., “A Case Study Application of RTCA DO-254: Design Assurance 

Guidance for Airborne Electronic Hardware,” Digital Avionics Systems Conferences, 
2000, The 19th Proceedings DASC, Vol. 1, Issue 2000, pp. 1A1/1-1A1/8. 

 
Paper Objective:  In a joint project with the FAA, NASA Langley Research Center is 
developing a hardware design in accordance with DO-254.  The purpose of the case study 
is to understand the new guidance document and generate an example suitable for use in 
training. 
 
Brief Description:  This document is intended to provide a basis for the certification of 
airborne electronic hardware devices used in aircraft.  NASA Langley Research Center 
also has a secondary objective for this case study:  to develop a hardware platform 
supporting in-house research targeted toward demonstrating systematic recovery from 
multiple correlated transient failures. 
 
For the case study, the authors have chosen to design a central subsystem of a new fault-
tolerant architecture, emphasizing the role of early life cycle in the subsequent 
verification activities.  The correctness of the conceptual design is the prerequisite to 
assure correctness of the detailed design and implementation. 
 
The principal focus of conceptual design verification activities is formal proof that the 
fault tolerance protocols are correct.  Subsequent design and verification activities will be 
focused on preserving the implementation integrity of the verified algorithms. 
 
Relevance to the Project:  The paper helps the reader understand the role of early 
conceptual design and verification activities and their impact on the success of safety-
related design and development. 

 
23.  Peterson G.D. and Hines J.W., “Advanced Avionics System Development: Achieving 

Systems Superiority Through Design Automation,” Proc. 1998 IEEE Aerospace 
Conference, 1998. Vol. 1, Issue 21, pp. 231-238. 

 
Paper Objective:  Conservative estimates predict high-performance chips exceeding 100-
million logic transistors and 1-GHz speeds that will be commercially available, thus 
rendering a strategy of achieving productivity improvement, which is impractical for all 
but the largest and most critical design efforts.  Decreasing feature size for devices creates 
further demands because analog, electromagnetic, and atomic effects become more 
significant in submicron design, thus invalidating assumptions and models previously 
employed. 
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Brief Description:  The pace of technological innovation and the competitiveness in the 
commercial market results in continuous reduction of product lifetimes for commercial 
parts and manufacturing processes. 
 
Design methodologies and tools must ensure correct and efficient implementations of 
designs.  Simply exploiting improvements in designing and manufacturing electronics 
hardware solves only half the problem: efficient and reliable methods are needed to 
develop and maintain both the hardware and software.  With advances in reconfigurable 
computing, the delineation between these two domains continues to blur.  Effective 
language support, tools, and methodologies addressing decreasing device size and higher 
speeds will help enable the future deployment of sophisticated systems and the 
affordable, effective maintenance of existing weapons systems. 
 
To be able to adequately support a methodology for designing complex weapons systems, 
accurate specifications of function, timing, interface, and constraints are needed.   
 
During integration and test, performance bottlenecks and hardware bugs are discovered.  
Due to the high cost of redesigning hardware, these problems are typically rectified by 
making modifications to the system software, resulting in code that is late and over 
budget. At this point, additional software engineers may be added to the effort, which can 
exacerbate the schedule and budget problems.  The software development effort often 
receives the blame for the overall project difficulties, when in reality, the problems come 
from communication and coordination shortcomings during specification and 
development.  
 
Relevance to the Project:  Often there is little interaction between the hardware and 
software design efforts due to a lack of a unified representation, simulation, and synthesis 
framework.  Because the integration and test phase of the design process is typically the 
first time the hardware and software are joined, a variety of problems are often 
encountered.  Often, changes in the hardware design are not communicated to the 
software design team, so the software is developed for the wrong hardware configuration. 

 
24.  Salzwedel, H., “Mission Level Design of Avionics,” Proc. 23rd Digital Avionics Systems 

Conference, Vol. 2, pp. 9 D.2-1-10. 
 

Paper Objective:  Aerospace systems are characterized by architectural complexity, 
dynamic interaction between subsystems, and complex functionality.  Today, the 
complexity of networked electronics in aircraft and the interaction of hardware and 
software impose similar complexity and design challenges.  This paper shows the move 
toward performance- and mission-level design and its advantages over functional-level 
design approaches. 
 
Brief Description: Electronic chips have become systems and complex systems like 
aircraft, spacecraft, automobiles, and communication systems are dominated by 
networked electronics with embedded software.  This compounds the problem of the gap 
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between design and implementation.  The increase in complexity has caused major 
problems throughout the industry, including:  
 
• The failure of the first Ariane 5 rocket was because of a numerical value overflow. 

The implementation was not tested against the mission. 
 
• The development of the Teledesic satellite system was discontinued after it was 

found that major design specifications had to be revised late in the design. 
 

• In 1999, two spacecraft to Mars failed because of a mixup between units used by 
different design teams.  

 
Each of the design engineers and design teams make certain assumptions about how their 
design will interact with near or far subsystems of other design teams.  These assumptions 
will not be the same, and some will not be documented.  Additionally, many subsystems 
may be reactive with respect to the environment and, hence, events cannot be predicted.  
Hardware descriptions may be incompatible for those with different subsystems. 
Insufficient communication between design teams will prevent required information from 
being passed along.  Simulations of the overall functional or implementation models are 
not possible, and the overall system cannot be validated and verified on a computer. 
 
When the independently developed subsystems are put together to create the overall 
system, it does not work at first.  Problems are fixed on a local level.  Validation against 
overall system requirements cannot be made since they are not executable and may be 
inconsistent.  Distant effects are often discovered late in the design, or worse, during 
operation by the customer. 
 
The critical problems could be in hardware or software, but more often in the coupling 
between them. A major contributor to this problem is that the designs are done at the 
functional level. However, complex systems can no longer be simulated as a whole at 
functional level. 
 
A hierarchical mission-level design approach is developed, that generalizes the design 
approach for deep space missions and makes design decision where quantitative 
information is first available: 
 
• A validated and executable mission is the behavior of the system that uses a 

component to be designed. 
 
• Validated specifications of the functional behavior are generated by validating the 

high level architecture and performance of the component against the mission 
level requirements. 
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• The functional behavior of hardware and software is verified and validated 
separately and in combination against the specifications stemming from the 
architectural/performance model. 

 
The paper emphasizes the role of modeling and simulation at the architectural and 
performance levels that permits the development of executable specifications, 
significantly reducing the probability of critical design errors and reducing the number of 
design iterations and hence reducing cost.  An integrated design process is described that 
integrates the design from mission-level requirements to hardware and software 
implementations and verifications.   
 
Relevance to the Project:  Critical issues are standardization of models at the architectural 
performance level and validation at the architectural and performance levels.  The 
electronic hardware becomes obsolete much faster than software and may not be available 
for the lifetime of an aerospace system.  The issue is how can hardware be replaced 
without changing the embedded software? 

 
D.3  INDUSTRY PROBLEMS AND SOLUTIONS. 
 
Literature entries on tool qualification from an industry perspective were collected as a result of 
the project research reflecting industry practices for using AEH tools for design and verification 
of PLDs.  
 
27.  Lange, Michelle, “Assessing the ModelSim Tool for use in DO-254 and ED-80 Projects,” 

Rev. 1.1, Mentor Graphics Corp., May 2007. 
 

Identified Problem:  Assessment of Mentor Graphics’ ModelSim tool according to 
DO-254.  ModelSim is considered a verification tool, performing design analysis so that 
no design errors are missed.  The tool does not modify the design.  The tool assessment 
must be performed to provide confidence to the certification agency that ModelSim is 
adequate to carry out the verification activity. 
 
Suggested Solution:  According to DO-254 (flow diagram for “Design and Verification 
Tool Assessment and Qualification”), three methods exist for tool assessment: 
 
• Independent output assessment 
• Relevant tool history 
• Tool qualification 
 
ModelSim is considered a verification tool in the aerospace and avionics certification 
process.  It is used for digital simulation of directed test cases and provides coverage data.  
The paper identifies the steps and documentation needed for assessing ModelSim in the 
design process, following the flow diagram from DO-254.  The ten steps are described 
with the author’s interpretation of the necessary activities.  Several examples are given 
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from the ModelSim manual and other sources that help identify major issues in going 
through the qualification flow diagram. 

 
28.   Berens, Kalynnda, “NASA Complex Electronics Guidebook for Assurance 

Professionals,” December 2004. 
 

Identified Problem:   Both software and quality assurance engineers need to understand 
what airborne electronic devices are, where they are used, and how are they designed. 
Since detailed assurance guidance is not available, some kind of guidebook is necessary 
to increase confidence in the quality of airborne electronics. 
 
Suggested Solution:  The guidebook provides an introduction to the subject of complex 
electronics and informs the reader on the following issues: 
 
• Which devices are complex and which are not? 
 
• Overview of airborne electronic devices, including NASA projects using these 

devices 
 

• How electronics engineers design and program these devices 
 

• Assurance and verification activities for complex electronics 
 

• NASA’s direction regarding assurance activities for airborne electronics 
 

Ultimately, the role of the guidebook is to provide the reader with a general 
understanding of airborne electronic devices and the design and assurance activities. 

 
29.   A380 Certification Review Item, March 2003 
 

Identified Problem:  Airbus proposed to use PLDs in A380 airborne systems.  PLDs are 
considered as devices whose complexity may be equivalent to software.  An industry 
standard, ED-80 (DO-254), has been issued for the design assurance aspects of AEH.  
However, it necessitates some clarification when applied to PLD.  The purpose of this 
document is to define specific guidance for certification aspects associated with PLD for 
systems containing digital electronics on the A380 aircraft. 
 
Suggested Solution:  The document discusses the Joint Aviation Authority’s (JAA) 
position on compliance with the ED-80 (DO-254) and the corresponding position of 
Airbus Industries.  Among a variety of discussed issues, two positions on tool assessment 
and qualification are quoted and declared compatible: 
 
• Item 4.2.6, page 4, JAA:  “For levels A and B, assurance compliant with the intent 

of ED-80 should be provided for development and verification tools.  A claim for 
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credit of relevant tool history, as discussed in ED-80 Section 11.4.1 item 5, should 
be justified to the authority.” 

 
• Item 4.1.8, page 8, Airbus:  “For levels A and B, assurance compliant with DO-

254/ED-80 should be provided for development and verification tools.  A claim 
for credit of relevant tool history, as discussed in DO-254/ED-80 Section 11.4.1 
item 5, should be justified to the authority.”  

 
30.   Hilton, Adrian and Hill, Jon G., “On Applying Software Development Best Practices to 

FPGAs in Safety-Critical Systems,” The Open University, 2000. 
 

Identified Problem:  Standards, such as the UK Defence Standard (Def Stan) 00-54 and 
IEC 61508, for developing safety-critical systems require the developer to demonstrate 
the safety and correctness of the programmable logic device in such systems.  In addition, 
programming such devices is similar to programming conventional microprocessors in 
terms of program size, complexity, and the need to clarify a program’s purpose and 
structure.  Def Stan 00-54 includes several recommendations that put emphasis on a 
formal language to support reasoning about programmable logic behavior to assist 
developers to comply with this standard.  Without the ability to reason formally, it is not 
possible to meet several requirements of the standard.  This is especially true for HDLs 
without formal semantics, such as the VHDL or Verilog, which are commonly used in 
hardware design. 
 
Suggested Solution:  The paper identifies three distinct needs for clear semantics of 
FPGA programs to be able to 
 
• demonstrate that programs satisfy their specifications. 
• refine designs into code while demonstrating their semantic equivalence. 
• reason about behavior at the interface between software and programmable logic. 

 
The paper suggests using the Synchronous Receptive Process Theory (SRPT) to reason 
about the FPGA as a collection of small SRPT processes reacting to input signals to 
produce outputs, when cells are viewed as processes and their routing is viewed as 
describing which signals pass to which process.  The authors suggest refining an FPGA 
program design from the Z specification language to an implementation, maintaining 
demonstrable correctness.  A useful stepping stone would be a programming language 
that could act as the target of refinement from Z and then could be compiled into an 
SRPT process.  One suggested candidate is SPARK Ada, a subset of the Ada language. 
SPARK Ada has a formal semantics defined in Z, tool support from SPARK Examiner 
static analysis tool, and the strong type system of Ada. 

 
31.   Young, Duncan, “RTCA/DO-254:  No Hiding Place for Avionics Suppliers?”  VMEbus 

Systems, February 2004. 
 



 

D-21 

Identified Problem:  The integrity of a safety-critical system is rooted in understanding 
and managing risk.  At the hardware side, the risk could involve component failure, 
hardware design error, underestimated margins, thermal stress, mechanical integrity, 
latent defect, or unpredictable behavior.  These issues are especially critical, when more 
complexity is being incorporated into avionics systems in the form of processors, graphic 
devices, bridges, ASICs, FPGAs, and memory parts.  In addition, the designer must make 
use of off-the-shelf components to construct a processing subsystem, memory, buses, and 
external interfaces that are only tenuously traceable back to top-level system functions. 
 
Suggested Solution:   The introduction of commercial off-the-shelf (COTS) VMEbus 
products with off-the-shelf firmware and real-time operating system developed to 
DO-178B guidelines, with the right quality levels and design assurances, would offer 
more cost-effective solutions than the architectural systems based on redundancy.  
Recognizing that COTS products could have a place in safety-critical avionics systems 
even where DO-254 is a requirement, the Avionics Process Management Committee has 
produced the EIA-933 Standard for Preparing a COTS Assembly Management Plan.  This 
document recommends how to select and manage suppliers of avionics COTS products. 

 
32.   Hilderman, Vance and Baghai, Tony, “Avionics Hardware Must Now Meet Same FAA 

Requirements as Airborne Software,” COTS Journal, September 2003. 
 

Identified Problem:  Until recently, only airborne software had to comply with rigid FAA 
design assurance and verification process steps, with certification based on DO-178B 
guidelines.  However, avionics hardware was not required to meet such strict 
requirements, so functionality could be moved from software to hardware to avoid the 
rigors of DO-178B. 
 
Suggested Solution:  The paper gives a general introduction to DO-254 and lists three 
supporting processes important for certification: configuration management, process 
assurance, and certification liaison.  It is advised to support configuration management by 
public open source tools:  concurrent version system (CVS) and a bug tracking system.  
CVS is a revision control system that maintains a history of changes to the controlled 
project.  It records who makes a change, the date, and reasons for the change.  GNATS is 
a problem-reporting tool.  Problem reports are submitted via email and are automatically 
logged into a database and forwarded to a responsible party.  Regarding process 
assurance, the recommended strategy is to focus on ensuring correctness at the conceptual 
design stage and then preserve the design integrity as one proceeds through detailed 
design and implementation.  The certification basis depends upon the conceptual design, 
which is maintained under configuration management. 

 
33.   Thornton, Robert K., “Review of Pending Guidance and Industry Findings on 

Commercial Off-The-Shelf (COTS) Electronics in Airborne Systems,” Report 
DOT/FAA/AR-01/41, FAA Office of Aviation Research, Washington, DC, August 2001. 

 



 

D-22 

Identified Problem:  The use of complex electronic hardware components in airborne 
systems poses a challenge to meet safety requirements because, for complex components, 
complete verification is, at best, very difficult and, at worst, not achievable.  Using COTS 
components in airborne systems raises a number of issues with respect to meeting 
airborne systems safety requirements and DO-254 objectives.  In addition, commercial 
market trends are rapidly diverging from the needs of safety-critical airborne systems.  
The current move towards SoC designs, which may incorporate close to one million 
gates, has sparked the development of a new wave of EDA tools that will enable the trend 
towards more complex commercial microelectronics.  While the new tools may provide 
some increased level of design assurance, qualification of these tools is an issue. 
 
Suggested Solution:  About a dozen key component attributes have been identified to 
meet the DO-254 objectives and guidance.  One of them is the “role of COTS tools in 
design and verification.”  The report identifies the following aspects of their role: 
 
• Appropriate design models for formal methods 
• Assessed tools for formal methods 
• Assessed development tools 
• Assessed verification tools 
• Employ qualified verification tool 
• Employ qualified design tools 

 
The report identifies two essential ways of design verification: simulation and formal 
verification, and lists six references to access more detailed information.  In conclusion, 
the report states that qualification of the tools to meet objectives for critical levels A and 
B in DO-254 was not evidenced in this investigation and may present a barrier to meeting 
the objectives, unless the development effort required to qualify the tools is undertaken or 
additional assurance can be gained by other means (pp. 89). 

 
34.  Lee, Clive, “IPT Guidance for Acquisition of Systems With Complex Programmable 

Hardware Using DO-254,” ERA Technology Ltd, June 2007. 
 

Identified Problem:  For UK military systems, the safety assurance of AEH has been 
specifically addressed by Def Stan 00-54 introduced in 1999.  However, the standard was 
withdrawn in December 2004 and replaced by the system-level Def Stan 00-56 issue 3. It 
was thought that the less prescriptive approach to system safety assurance would facilitate 
the development and certification of novel systems with airborne electronic hardware.  
One unintended effect of this approach to safety assurance has been the removal of 
detailed guidance for the specification and procurement of AEH.  For a rapidly 
developing technology, guidance is required for most suppliers at some stage and its lack 
may actually discourage its exploitation due to the perception of increased project risk. 
 
Suggested Solution:  The report aims to guide the procurement and acceptance of military 
avionic systems based on the continuing technical advances that are being made in 
electronic system design, in general, and the capabilities of PLDs in particular.  An 
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interpretation is given of DO-254 in a view of military systems, quoting several common 
issues in DO-254 development and certification, such as: 
 
• Inadequate level of detail in requirements 
• Inadequate formal planning and following of plans 
• Lack of independence in quality assurance and verification 
• Inadequate and non-automated traceability 
• Lack of automated testing. 

 
The issue of tool qualification is not addressed in this report. 

 
35.  Baghai, Tony and Burgaud, Lionel, “DO-254 Package:  Process and Checklists Overview 

and Compliance With RTCA/DO-254 Document,” March 2004. 
 

Identified Problem:  DO-254 was issued several years ago.  Although it established the 
standard for qualification of airborne electronic hardware, it remains vague in several 
aspects, and clarification is needed regarding those ambiguous issues.  An interpretation 
of the standard needs to be given for actual examples from industrial practice.   
 
Suggested Solution:  A DO-254 Users Group has been established to help identify and 
resolve common problems.  The DO-254 package includes the following five items 
designed to assist in the qualification process: 
 
• The processes documents help define, benchmark, and improve the industrial 

design, verification, validation, and quality assurance processes. 
 
• The quality assurance checklists, for reviews and audits, ensures that each project 

is compliant with the defined industrial process. 
 

• The tools 
 

- “Reqtify” for requirements management and traceability 
- VN-Check for checking compliance of HDL code with coding standards 
- VN-Cover for HDL code verification 
- VN-Optimize for test suite optimization to increase productivity 

 
• The tools integration into the industrial process, until their qualification 

(interfaces, report generation for a certification audit, training, tools assessment, 
etc.). 

 
• The DO-254 training by consulting partners. 

 
36.  Burgaud, Lionel, “The DO-254 Users Group:  A Proactive Initiative to Federate Industry 

Efforts,” Presentation at the FAA Software & AEH Conference, New Orleans, LA, July 
2007. 



 

D-24 

Identified Problem:  The DO-254 added new objectives and challenges to the hardware 
design processes.  Requirements management became mandatory in hardware processes.  
The avionics and aerospace industries needed to establish partnerships and potentially 
share expertise and process improvement plans via structured collaboration. 
 
Suggested Solution:  A DO-254 Users Group has been established to help identify 
common problems and resolve them.  The presentation outlines objectives, membership, 
roadmap, and some of the DO-254-oriented improvements in the design process.  Xilinx, 
Altera®, TNI-Software, and Mentor Graphics present their individual slides.  In particular, 
TLI-Software identifies their tools to support the process: “Reqtify” (a requirements 
traceability and requirements-based engineering tool), RT-Builder (a real-time 
architecture modeling and simulation tool), Eclipse-based solutions and workbenches, 
and others. 

 
37.  Lundquist, Per, “Certification of Actel Fusion According to RTCA DO-254,” Master 

Thesis, Report LiTH-ISY-EX-ET-07/0332-SE, Linköping University, Sweden, May 4, 
2007. 

 
Identified Problem:  In recent years, the aviation industry moved toward using PLDs in 
airborne safety-critical systems.  To be able to certify the close to fail-safe functionality of 
these programmable devices (e.g., FPGA) to the aviation authorities, the aviation industry 
uses DO-254 guidance for design assurance for AEH.  At the same time the PLD industry 
is developing ever more complex embedded SoC solutions integrating more and more 
functionality on a single chip.  This thesis looks at the problems that arise when trying to 
certify SoC solutions according to DO-254.  Used as an example of an embedded FPGA, 
the Actel Fusion FPGA chip with integrated analog and digital functionality is tested 
according to the verification guidance. 
 
Suggested Solution:  Standard FPGAs, programmed using Verilog or VHDL languages, 
are used today in several real airborne safety-critical systems.  For example, more than 
700 Actel FPGAs are used in the Airbus A380 commercial airliner.  That a certification 
procedure for a standard non-embedded FPGA-based, safety-critical system is possible 
has been shown in this thesis.  The programmable logic industry will continue to design 
SoC solutions for the market, including for example, soft processors, analog and digital 
amplifiers, communication interfaces, and filters.  If these solutions could be used in the 
aviation industry, it would mean using fewer systems that could do more, thereby, among 
other things, reducing system complexity and developing costs.  The question of how 
these embedded chips could pass certification to be used in safety-critical systems 
remains unanswered. 

 
38.    Jacklin, Stephen, et al., “Development of Advanced Verification and Validation 

Procedures and Tools for the Certification of Learning Systems in Aerospace 
Applications,” Proc. AIAA Infotech@Aerospace 2007 Conference and Exhibit, Arlington, 
Virginia, September 26-29, 2005, Paper No. AIAA 2005-6912. 
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Identified Problem:  Highly advanced adaptive control systems are needed to fulfill the 
present and future aerospace needs of the nation.  Adaptive control technologies that 
incorporate learning algorithms have been proposed to enable automatic flight control and 
vehicle recovery, autonomous flight, and to maintain vehicle performance in the face of 
unknown, changing, or poorly defined operating environments.  For civil aviation, 
adaptive control systems have been proposed that use learning to recover loss of vehicle 
control due to sudden aircraft damage or component failure.  For robotic applications, the 
ability to learn gives adaptive control systems greater capability to adapt to changing 
mission requirements after deployment.  Adaptive control systems have virtually 
unlimited applications for NASA space exploration applications, including mated flight 
vehicle coordination, docking, and control of autonomous robots, flyers, and satellites.  
Because most of these applications are in safety-critical areas, it is obvious that adaptive 
control systems with learning systems will never become part of the future unless it can 
be proven that this software is very safe and reliable.  Rigorous methods for adaptive 
software verification and validation must be developed by NASA and others to ensure 
that control system software failures will not occur, to ensure the control system functions 
as required, to eliminate unintended functionality, and to demonstrate that certification 
requirements can be satisfied. 
 
Suggested Solution:  The FAA certification requirement to show that learning software 
programs meet their intended function do not negatively impact other systems or 
functions on the aircraft and are safe for operation, as pointed out in DO-178B, involves 
more than just running a set of test cases.  The complete verification and validation of 
learning systems should not be viewed as running test cases and comparing expected 
results to actual results because such tests can never reveal the absence of errors.  The 
verification and validation objectives must be satisfied by a combination of reviews, 
analyses, the development of test cases and procedures, and the subsequent execution of 
those test procedures.  Simulation and methods to automate simulation remain very 
important tools, because at present, only they can really test and explore the most nagging 
problems of adaptive system verification, such as algorithm stability and convergent 
learning.  Yet, the fact that testing can never reveal the absence of errors is a major 
shortcoming of this approach.  Therefore, future progress toward certification requires 
that a number of new tools, such as the ones cited herein, be developed to allow the 
ultimate certification of adaptive control systems that use learning algorithms.  In all 
likelihood, a combination of analysis, tools, and simulation will be needed to address the 
full aspect of the certification problem for learning systems. 

 
39.  Crum, V., Homan, D., and Bortner, R., “Certification Challenges for Autonomous Flight 

Control Systems,” Proc. AIAA Guidance, Navigation, and Control Conference and 
Exhibit, Providence, RI, August 16-19, 2004, Paper No. AIAA 2004-5257. 

 
Identified Problem:  As the U.S. Air Force works toward developing intelligent and 
autonomous weapon systems, a daunting task looms.  How can one certify that a 
decision-making intelligent system is safe when the decisions are unpredictable?  
Trusting decisions made by autonomous control software will require completely new 
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methods and processes to guarantee safety.  The difficulty lies in determining how these 
intelligent systems will operate in a dynamic environment and with less human oversight. 
New paradigms will be needed to assure safety.  Certification of flight control 
technologies is already the most rigorous testing embedded computer systems endure. 
Intelligent control adds a whole new dimension of issues.  Adding intelligence can be 
divided into three challenges: building intelligence, instilling safety, and enabling 
affordability.  All three are closely related. Cost and safety issues will influence how one 
designs and builds intelligence.  Unmanned aerial vehicle (UAV) autonomous control is a 
revolutionary leap in technology.  Such control replaces decision-making that required 
years of training for human operators.  Neglecting autonomous control certification 
research today will dramatically increase tomorrow’s cost of ownership for future users. 
 
Suggested Solution:  There are many technical challenges associated with certification of 
intelligent and autonomous control systems.  Advanced UAV capabilities being 
developed today will challenge certification techniques far beyond their current 
capacities.  New validation and verification (V&V) technologies are needed to enable 
timely and efficient certification of the intelligent and autonomous UAV control systems 
still in their infancy.  V&V tools are needed to achieve the necessary degree of rigor that 
will ensure safety and mitigate risks associated with implementing autonomous control.  
A lack of research investment in certification technologies will have a significant impact 
on levels of autonomous control approaches that can be properly flight-certified and could 
lead to limiting capability for future autonomous systems.  In addition, these advances in 
certification must also be repeatable to ensure that modifications to the control system 
cannot directly or regressively compromise airworthiness.  The aerospace community has 
acknowledged that a consolidated research and development effort will be required to 
adequately address certification challenges and to share the investment burden to realize 
technological change in the certification process. 

 
40.  Baghai, Tony and Burgaud, Lionel, “Reqtify:  Product Compliance With RTCA/DO-254 

Document,” May 2006. 
 

Identified Problem:  Reqtify is an effective solution for requirement traceability, impact 
analysis, and automated documentation generation.  Reqtify supplies the following 
functionalities:  requirement coverage analysis, upstream and downstream impact 
analysis, requirement change, update and deletion tracking throughout the project life 
cycle, requirement attribute handling, filtering and display depending on these attributes, 
user-configurable documentation generation, and regression analysis.  This technical note 
presents how Reqtify complies with the DO-254 objectives. 
 
Suggested Solution:  According to DO-254 classification, Reqtify is a verification tool, as 
it is a tool “that cannot introduce errors, but may fail to detect an error in the hardware 
item or hardware design.”  Prior to using the tool, a tool assessment should be performed.  
The purpose of tool assessment and qualification is to ensure that the tool is capable of 
performing the particular verification activity to an acceptable level of confidence for 
which the tool will be used.  It is only necessary to assess those functions of the tool used 
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for a specific hardware life cycle activity, not the entire tool.  The assessment activity 
focuses as much or more on the application of the tool as the tool itself.  The verification 
tool only needs to be qualified if the function that it performs is not verified by another 
activity.  The flow chart from DO-254 is applied and indicates the tool assessment 
considerations and activities and provides guidance for when tool qualification may be 
necessary. 

 
41.  Aldec, Inc., “DO-254 Hardware Verification: Prototyping With Vectors Mode,” June 26, 

2007. 
 

Identified Problem:  A sample design includes a counter, with the following features:  one 
clock domain, asynchronous reset, clock-enable port, counting direction port (up/down), 
synchronous initial value reload ability, and 64-bits output data.  The system contains two 
boards connected through daughter board connectors.  The main board is an Aldec HES 
board (HES3X3000EX), which is connected to the PCI bus.  This board generates stimuli 
for the device under test (DUT) and collects results from the DUT.  The second board is a 
user daughter board with DUT.   
 
Suggested Solution:  The verification process contains three independent stages:  
simulation, verification, and comparison.  The simulation stage is a typical HDL-level 
simulation in Active-HDL simulator.  During simulation, stimuli and results are captured 
to a waveform (ASDB format) on a specified edge of a user clock.  The clock line of the 
DUT is not stored in the waveform file.  It is generated on the HES main board during 
verification to assure constant frequency.  For hardware verification purposes, the 
PrototypeVerificationTool program is used to send test vectors to the DUT and retrieve 
response data from the DUT.  During the verification process, the application 
continuously performs two tasks: writing stimuli to SinFIFO and reading results from 
RoutFIFO.  The results from RoutFIFO are written to a raw binary file.  At the end of 
verification, the binary results are transformed to an ASDB waveform file.  At the 
comparison stage, the waveform captured during simulation is compared with the 
waveform obtained from the hardware verification.  If there is no differences, it means 
that verification has finished successfully. The Aldec waveform viewer, the Wvcore, can 
be used for waveform comparison. 

 
42.  Leroy, Jean-Eric and Bezamat, James, “Experience at Barco-Silex in FPGA Design With 

DAL C (DO254),” Barco-Siles S.A., Peynier, France, Internal Paper, 2007. 
 

Identified Problem:  Designing FPGAs for AEH should be compliant with DO-254 rules.  
This design assurance implies changes in traditional design rules.  Improvements of the 
methodology are necessary for circuit development.  From communication within the 
project toward test bench methodologies, many things will be handled differently by the 
design team, thus implying the increase of documentation and, therefore, the final cost. 
 
Suggested Solution:  The paper gives an overview of the way Barco-Silex has handled the 
DO-254 constraints for designing several FPGA circuits.  It addresses the development 
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cost impact on FPGA design throughout the verification level and the amount of data 
delivered in this process.  The golden rule to provide hardware design assurance for any 
design entity is to split the three fundamental design rules, which are specification, 
conception, and validation.  These must be assumed by different people to avoid error 
propagation from the beginning until validation.  In many cases, validation results may 
need to be reviewed independently to confirm that proper procedures were followed and 
the results confirm the requirements have been met. 

 
43.  Pampagnin, Pascal and Menis, Jean François, “DO254-ED80 for High Performance and 

High Reliable Electronic Components,” Barco-Siles S.A., Peynier, France, Internal Paper, 
2007. 

 
Identified Problem:  Today, avionics manufacturers follow the rules given by nonairborne 
markets (telecom, personal computer, multimedia, and home electronics).  These strong-
market leaders are driving the whole electronics domain, including components 
procurement, computer-aided design tool usage, and methodology implementation.  
These leading markets have very short life cycles compared to aircraft (for instance, life 
cycle for a memory is around 18 months, but the life cycle of an aircraft is 30-40 years).  
Taking into account the technology changes, avionics designers have to also cope with 
such trends as:  
 

• New and novel technology issues 
 
• Merging formerly separate and independent functions on the same hardware 

 
• Multifunction components 

 
• Displaying critical and noncritical functional paths in the same systems and 

components 
 
• Replacing mechanical with electronic parts (for example, relays and switches) 

 
• Using airborne electronic hardware in roles traditionally targeted at software 

 
• Configurating control of complex and highly integrated systems.  This imposes a 

very complicated environment to apply DO-254/ED-80 procedures to the design 
process. 

 
Suggested Solution:  Even if implementing DO-254/ED-80 has a negligible cost, this can 
be considered an investment.  It obliges the supplier to analyze in detail its processes, 
methodologies, and tools and to apply structured development processes, with a rigorous 
quality assurance.  It also allows the supplier to adapt its set of internal processes to the 
design assurance level targeted, to optimize efforts.  The resulting products have a better 
quality and the development cycles are optimized.  Verification is focused on design 
errors, and effort and resources are better distributed.  It obliges the subcontractor to 
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respect a structured development processes.  The initial cost has to be compared with the 
level of quality for the subcontractor.  Applying DO-254/ED-80 gives the assurance that 
the applicant can obtain from its subcontractor a high level of quality, good 
documentation, and the ability to reuse the design, if necessary.   

 
44.  Dellacherie, S., Burgaud, L., and di Crescenzo, P., “imPROVE—HDL: A DO-254 

Formal Property Checker Used for Design and Verification of Avionics Protocol 
Controllers,” Proc. DACS’03, 22nd Digital Avionics Systems Conference, Indianapolis, 
Indiana, October 12-16, 2003, Vol. 1, pp. 1.A.1-1.1-8. 

 
Identified Problem:  Today’s airplane contains a large network linking embedded 
controllers to sensors/actuators and communications equipment onboard.  Efforts made in 
recent years to simplify network wirings have resulted in significant reductions in the 
aircraft weight and labor required to run wiring harnesses.  This has often come at the 
cost of more complex data bus architecture (bi-directional protocol instead of 
unidirectional protocol).  DO-254 considers the use of formal methods and requirements 
traceability when developing hardware to support safety-critical (level A or B) functions.  
This paper looks at a static formal approach that may be used, in combination with 
requirements traceability features, to apply formal methods in the design and verification 
of hardware controllers to support such protocols as ARINC 429, ARINC 629, MIL-STD-
1553B, etc. 
 
Suggested Solution:  This paper describes the application of a formal tool, imPROVE-
HDL, in the design and verification of AEH developed in a DO-254 context.  imPROVE-
HDL is a formal property checker that complements simulation in performing exhaustive 
debugging of VHDL/Verilog Register-Transfer-Level hardware models of complex 
avionics protocol controllers without creating test benches.  The Reqtify tool is used to 
track the requirements throughout the verification process and to produce coverage 
reports.  Using imPROVE-HDL coupled with Reqtify, avionics hardware designers are 
assured that their bus controllers meet the most stringent safety guidelines outlined in 
DO-254. 

 
45.  Lange, Michelle, “Automating Clock-Domain Crossing Verification for DO-254 (and 

Other Safety-Critical) Designs,” White Paper, Mentor Graphics Corporation, December 
2007. 

 
Identified Problem:  “Metastability” is the term used to describe what happens in digital 
circuits when the clock and data inputs of a flip-flop change values at approximately the 
same time.  This leads to the flip-flop output oscillating and not settling to a value within 
the appropriate delay window. In this case, the output of the flip-flop is said to have gone 
“metastable.”  This situation happens in every design containing multiple asynchronous 
clocks, which occurs any time two or more discrete systems communicate. Metastability 
is a serious problem in safety-critical designs in that it frequently causes chips to exhibit 
intermittent failures.  To understand clock domain crossing (CDC) in the context of 
DO-254, the purpose of DO-254 - design assurance – should be considered. 
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Suggested Solution:  A comprehensive CDC verification solution, such as 0-In CDC, 
must do three distinct things: 
 
• Perform a structural analysis.  This is most effectively done on the RTL code to 

identify and analyze all signals crossing clock domains, and determine if their 
synchronization schemes are present and correct. 
 

• Verify transfer protocols.  This assures that the synchronization schemes are used 
correctly by monitoring and verifying that protocols are being followed during 
simulation. 
 

• Globally check for reconvergence.  This is most effectively done by injecting the 
effects of potential metastability into the simulation environment and determining 
how the design will react. 

 
0-In CDC provides added assurance that the design will function correctly within the 
intended system (this is the intent of DO-254).  However, unless a specific requirement 
has been identified by the customer that states one must verify the clock domain 
crossings, 0-In CDC can be run without it becoming part of the DO-254 review process.  
On the other hand, if a specific requirement from the customer (or the designated 
engineer representative) states the clock domain crossings must be verified to identify and 
eliminate instances of metastability, then a method of tool assessment must be chosen.  
The simplest one is Independent Output Assessment. 
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APPENDIX E—HARDWARE CASE STUDY EXPERIMENTS 

The case studies are designed to be a subset of tests that would be run during an airborne 
electronic hardware (AEH) tool qualification.  The case studies will test the tool from design 
entry through synthesis to the actual hardware implementation.  The case studies are constructed 
as small, focused experiments to analyze tool performance under worst-case conditions.  Using 
worst-case conditions allows the case study to assess the bounds of the tools’ capability under 
challenging conditions.  Using small, focused experiments allows the case studies to be fully 
verified and known to be correct before the design is committed to hardware.  The following case 
studies were selected:  
 
• Timing Constraints Analysis:  How closely does system timing match the timing 

constraints? How much margin (if any) exists to the constraint? 
 
• Wide Data Busses:  Large data busses can switch a large number of pins at the same time. 

Can large data busses cause any issues? 
 
• Undefined Input/Output (I/O) States:  Field-programmable gate arrays (FPGA) often 

contain more pins than are used in a design.  What is happening to the unused pins? 
 
A case study investigating radiation effects was considered but there were no facilities available 
to address radiation effects.  It was also decided that, although it was feasible to implement test 
cases for the problems identified in sections 8.5 through 8.7, physically implementing these case 
studies would offer no additional insights.  Therefore, these case studies were also rejected.  
 
Appendix E begins by discussing the FPGA architecture and the electrical hardware used to 
implement the case studies.  It then examines each case study individually and draws conclusions 
from the test cases analyzed.  
 
E.1.  ARCHITECTURE BACKGROUND FOR FPGA. 
 
A typical FPGA I/O contains a large amount of circuitry.  This circuitry is designed to allow a 
single pin to be either an input or an output for numerous I/O signaling standards.  Outputs can 
have totem pole, open drain, or open source configurations as well as resistive pull-ups and pull-
downs.  Outputs can be operated on either one clock edge or both clock edges.  Inputs can have 
resistive terminations and predefined or user-defined signaling thresholds.  Both inputs and 
outputs can be operated on single-ended and differential signals. 
 
The circuitry for a standard I/O is shown in figure E-1.  For any given signaling configuration, 
only a small portion of the hardware is actually active.  The remaining hardware is deactivated 
transparently to the user.  The user may be unaware that the additional hardware exists and 
operate the device in a fashion where the unused hardware may impact device operation.  
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Figure E-1.  The FPGA I/O Architecture for Standard I/O Configurations [E-1] 

The Xilinx® Spartan-3E FPGA family [E-1] is a low-cost family offering mid-level performance 
and capability.  As shown in table E-1, a standard FPGA contains hundreds of I/O pins.  To allow 
the FPGA to operate using multiple signaling standards, the I/Os are grouped into banks that 
share a common power supply voltage.  The number of banks and I/Os per bank vary with the 
FPGA and the FPGA package.   
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Table E-1.  The Gate Count and Number of User I/Os for the Xilinx Spartan-3E FPGA Family 
[E-2] 

Device System Gates 
Maximum 
User I/O 

XC3S100E 100K 108 
XC3S250E 250K 172 
XC3S500E 500K 232 
XC3S1200E 1200K 304 
XC3S1600E 1600K 376 

 
One of the safety issues targeted for testing was the possibility of simultaneous switching noise 
(SSN) introducing errors.  Therefore it was necessary to select a hardware platform 
representative of current FPGA technology that could run all of the desired tests and also have 
enough outputs to be capable of generating SSN noise.  FPGA manufacturers provide guidance 
on how many outputs per bank can be switched simultaneously.  The I/O standard that is being 
used is a significant factor in determining the SSN limits, with the worst-case standard being 
LVTTL I/Os.  Figure E-2 shows the recommended maximum number of single-ended outputs for 
the LVTTL standard.  The fewest number of I/Os per VDD/ground (GND) pair occur when the 
output is configured for a fast slew rate and a high drive strength.  Figure E-3 shows that number 
of VDD/GND pairs per I/O bank for several devices in the Spartan 3-E family.  The fewest 
number of VDD/GND pairs occurs for packages with the fewest number of total pins.  
 

 

Figure E-2.  Recommended Maximum Number of Single-Ended Outputs per 
VDD/GND Pair [E-3] 
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Figure E-3.  The Number of VDD/GND Pairs per I/O Bank for the Xilinx Spartan-3E FPGA 
Family [E-3] 

E.2  THE CMOS LVTTL STANDARD. 
 
For the 3.3 V LVTTL standard, the maximum voltage that is guaranteed to be interpreted as a 0 
is 0.8 V. (The maximum voltage for a low input is called VIL.)  The minimum voltage that will 
be interpreted as a 1 is 2.0 V. (The minimum voltage for a high input is called VIH.) Input 
circuits are designed to have a nominal trip voltage of about 1.4 V.  This means that all voltages 
above 1.4 V are interpreted as a 1 and all voltages below 1.4 V are interpreted as a 0. 
 
In CMOS processes, the input trip voltage is a function of the applied power supply voltage.  For 
instance, an input circuit with a trip voltage of 1.4 V and a 3.3 V power supply would have a trip 
voltage of 0.42* VDD.  If this device is operated at 3.0 V, the trip voltage would decrease to 
1.27 V.  SSN can induce voltages on the power and ground supplies which can cause the trip 
voltages to change and possibly lead to an erroneous circuit operation. 
 
In a CMOS process, numerous parasitic diodes exist.  In normal operation, the parasitic diodes 
are reverse biased.  This results in a substantial internal capacitance between the internal VDD 
and the internal ground.  Parasitic inductances in the power and ground supply grids effectively 
decouple the on-die VDD and ground voltages from external supplies.  The resulting on-die 
power grid maintains the difference between the internal VDD and internal ground, even if the 
internal ground level varies.  If the difference between VDD and internal ground is 3.3 V and 
SSN causes the internal ground to rise up by 0.6 V, then the internal VDD will also rise by 0.6 V. 
 
E.3  EXPERIMENTAL HARDWARE PLATFORM. 
 
The original board selected for this project was the Spartan-3E starter board, which offered 
connections to 38 I/Os on a single bank.  For the FG320 package used on the Spartan-3E starter 
board, the Xilinx SSN design tool guidance allows up to 45 SSOs on a bank [E-1].  Therefore, 
this board would not allow the capabilities of the internal FPGA power networks to be stressed.  
It should be noted that the experiment is limited by the outputs the evaluation board makes 
available to the user.  A custom-designed board for the FPGA could easily exceed the SSN tool 
design guidance.  Many different FPGA evaluation boards were examined, and numerous trade-
offs ensued.  The boards with the best access to large numbers of outputs in a single bank had 
devices in large pin count packages that reduced the susceptibility to SSN effects.  Boards with 
smaller pin count packages had restricted access to the I/O pins.  None of the evaluation boards 
met the needs of this research.  The constraints placed by the evaluation board limitations would 
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not be a concern for a real design, since a custom board could be designed.  The research 
schedule did not allow the time to design a custom board for the FPGA evaluation.  After much 
deliberation, it was decided to use the Spartan-3E starter board and design a custom load board 
that would provide the ability to connect a variety of loads to the output pins, give access to the 
necessary test signal levels, and provide monitors for the signal integrity.   
 
The Spartan-3E starter board was selected as being similar enough to the originally selected test 
board and did not require major revisions to the test cases, providing the capability of stressing 
the SSN guidelines.  The Spartan-3E starter board provides connections to 20 I/Os on a single 
bank.  The Xilinx guidance for the maximum number of I/Os that can be simultaneously 
switched is 21 I/Os, configured as 24 m A fast slew LVTTL outputs per bank [E-3].  This board 
can never violate the Xilinx-recommended loading, therefore, if any failures occur, they will be 
unexpected.  
 
The load board is intended to connect to a variety of evaluation boards via a standard board 
expansion connector.  For the Spartan-3E starter board, this connector provides access to the 
FPGA bank 0 I/O, as well as some of the bank 1 I/Os.   
 
As shown in figure E-4, the FPGA I/Os (pins D5, D6, and E7) are connected to a termination 
voltage (Vterm1).  In normal operation, Vterm1 is connected via a jumper on header 3 to either 
VDDO, GND, or an external reference driving Vterm1.  The net result is that the user can 
connect a capacitive load to VDD, GND, or some other termination voltage reference.  In 
addition, the board can be assembled with resistors instead of capacitors to provide resistive 
loads to VDD, GND, or some other termination voltage. 
 

 

Figure E-4.  The Custom Load Board Configuration 

VDD 
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The termination voltage setting is applied to a group of I/Os, as described below. 
 
• Connector A2 Vterm groupings 
 

- Vterm1:  pins D5, D6, E7, D7, D8, D10, B4, E6, C5, C6, C8, C9, A3, and A4 
 
- Vterm2:  pins B5, B6, A7, A8, B10, B11, A12, A13, A5, B7, B8, A9, A10, B12, 

B13, and B14 
 
- Vterm3:  All connector B1 I/Os 

 
E.3.1  SIGNAL INTEGRITY MONITORING. 

Signal integrity monitoring is necessary to assure that the signals are correct when SSN effects 
are not present; in addition, the monitors allow the effects of SSN to be observed.  SSN monitor 
connections, as shown in figure E-5, are provided on I/O pins C6, A8, and B12.  These monitors 
are implemented as 950-Ω series resistors to subminiature version A (SMA) connectors.  The 
intended measurement equipment is a 50-Ω oscilloscope.  The 950-Ω resistor plus 50-Ω scope 
provides a high impedance probe connection to the I/O.  The oscilloscope should be set to a 
probe divide-ratio of x20. 
 

 

Figure E-5.  Signal Integrity Monitor Schematic 

E.3.2  EXTERNAL DIRECT CURRENT INPUT VOLTAGE. 

Input pin C7 is intended to be used as a direct current (DC) input to the FPGA (figure E-6).  A 
Bayonet Neill Concelmun (BNC) connector is provided for connection to a labortory power 
supply.  Additionally, a header is provided to allow for connecting input C7 to either VDDO or 
GND with a jumper. 
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Figure E-6.  External DC Voltage Input 

E.3.3  EXTERNAL CLOCK INPUT. 

An SMA connector is provided for connectivity to I/O A8 (figure E-7). This is intended to be 
used as a clock input signal for timing constraint experiments. The FPGA pin is a global clock 
input (GCLK) and is specially designed to be used as a clock input.   
 

 

Figure E-7.  External Clock Input 

The custom-designed load board is shown in figures E-8 and E-9.  Figure E-8 shows a close-up 
of the load board, and figure E-9 shows the load board attached to an FPGA evaluation board.  
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Figure E-8.  A Close-Up of the Custom Load board Showing the Connector Pins, Resistive 
Loads, and Monitoring Ports 

 

Figure E-9.  An FPGA Evaluation Board Showing the Custom Load board Connected to the 
Expansion Connector 
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E.4. EXPERIMENT DESCRIPTIONS. 
 
The case studies were developed based on the expressed concerns of the scientific and industrial 
communities with reference to airborne electronic hardware (AEH) tools, such as those used for 
FPGA development.  Largely, these concerns were relevant to development of safety-critical and 
real-time systems.  These case studies were geared toward qualifying the AEH tools.  In an 
attempt to qualify the tools, the tools will be used with worst-case scenarios, along with least-
likely uses, to test the bounds of the tools’ capability.  The concept is that the black box design 
entered into the tool shall have a one-to-one mapping trace to the black box operation that is 
finally implemented.  This, however, shall be done in a design-independent fashion.  To facilitate 
design independence, case studies were developed as small focused experiments used to discover 
specific attributes of a tool.  This method was preferred to large, elaborate designs because 
broken links in tracing from design to implementation were often caused by a flaw in the design.  
The following test case studies were identified:  
 
• Timing Constraints:  A determination of timing based on synthesis redesign used to 

establish the safety margin with respect to the timings reported by the tool. 
• Wide Data Busses:  A systematic way of determining if place-and-route functions are 

effective and drawing current in part of the circuit does not adversely affect other parts. 
 
• Undefined I/O States:  A test to determine how the tool uses the I/O pins not defined by 

the user. 
 
In addition to the above, there are two other safety issues discussed.  (1) A simulation error is the 
situation in which behavioral simulation results differ from actual implemented circuit behavior. 
Determination of accuracy and reliability of the simulation component of the tool is critical.  
However, good designers know the simulation is only one step and can be trusted only when the 
actual hardware testing confirms the simulation results. (2) A faulty hardware detection is the 
capability of the tool to notify the designer if the selected programmable logic device is faulty 
and would not properly implement the synthesized circuit. 
 
Thorough literature research, surveys, and industry interviews of uncertainties and faults 
regarding the usage and/or operation of the tools have been compiled and analyzed.  The case 
studies are focused on verifying the validity of these findings.  The scope of these findings 
includes user interaction with the tool, such as if a user tries to implement something physically 
impossible, does the tool notify the user, alter the design to make it possible, or attempt to 
implement the design?  This leads to another topic in the scope of the case studies, does the tool 
have “awareness” of the hardware physical limits, or is this the responsibility of the user?  For 
example, will the tool try to implement a component on a faulty piece of hardware?  Will the tool 
exceed the minimum transition time of the gate timing or account for a safety margin?  These are 
just a few of the many identified concerns, each of which traces to safety constraints or timing 
constraints.  
 
The majority of the tools come in a package that contains everything from coding or formal 
requirements and design, to redesigning through synthesis, to testing the final implementation.  
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The tools appear to be self-contained, in the sense that they do their own verifications and 
testing, including even self-validation of formal requirements and design.  This raises the 
question: if the tool does all the design/redesign and it verifies its own design, will it ever really 
know if it is correct?  This leads to the question of the independence of the verification that is 
required by DO-178B and DO-254. 
  
Also, can software or hardware itself verify through testing something that the software or 
hardware is not physically capable of actually doing?  How much human intervention is needed 
to use these tools and what qualifications does the user need?  In addition, the tools have no 
knowledge of the actual physical environment that the FPGA will be operating in and assume 
that everything is ideal.  Is this a reasonable assumption for safety-critical systems?  These are 
some of the questions that will be answered through an analysis of the case study results.  Three 
of the previously identified case studies are described below. 
 
E.5  TEST CASE 1—SSN. 
 
To test SSN performance, the FPGA will be configured with the maximum number of 
simultaneously switching outputs.  It is expected that changing VDD and GND currents drawn by 
the outputs will cause the internal VDD and GND voltages to vary.  To sense this variation in the 
internal power rail voltages, this test case will configure one of the I/Os in the same I/O bank to 
be an input.  The threshold voltage of this input is a function of the power rail voltages.  This 
input will be a constant voltage defined to be the maximum voltage allowed for a low input or 
the minimum voltage allowed for a high input.  This input is then connected to an output on a 
lightly used I/O bank, as shown in figure E-10.  If the SSN causes the input to misread its input 
signal, then the output on the lightly used bank will switch.  This output will be monitored during 
the test.  Any switching or unexpected signal transitions (glitching) of this signal indicates that 
SSN has produced a logical error.  
 

InputbufferN-bitCounterOutputDriverMaximumLoadInputbufferN-bitCounterOutputDriverMaximumLoadInputbufferN-bitCounterOutputDriverMaximumLoadInputbufferN-bitCounterOutputDriverMaximumLoadVariable Frequency Clock (Noise Generator)OutputDriverInputbufferKnown Signal(Victim)OutputMonitor

 
 

Figure E-10.  Power Integrity and I/O Analysis Test Case 
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The SSN behavior will be examined with several different load configurations, because LVTTL 
loads can be modeled in several ways.  First, the loads are rated at a load current of 24 mA. 
Resistive loads will be used to draw this much current from the I/O.  For this case, a 130-Ω load 
will be used.  Since it is not known whether switching from 0 to 1 or 1 to 0 is the worst case, the 
board will have the capability to terminate the resistor loads to either VDD or GND.  This will 
allow both transitions to be easily investigated.  The standard LVTTL switching load from an 
LVTTL part data sheet is a 50-pF capacitive load to GND.  The effects of this capacitive load on 
SSN will also be measured. 
 
The 19 outputs will switch slowly enough to guarantee that any transients produced by the 
switching will have decayed prior to the next switching event.  The input will be connected to an 
externally referenced voltage.  During each test, the input voltage is held constant.  Since the 
input voltage is constant, the signaling level the input circuit observes should also be constant.  If 
the input buffer observes any changes in the logic level, then an undesirable operation has 
occurred.  The changes that are observed in the measured data are usually a rapid switching 
between logic levels.  This response is called glitching, which is always undesirable since it can 
generate signals that do not meet the timing requirements of other circuitry in the device.  From a 
safety-critical point of view, any glitching at all is a failure of the system.  If the signal glitches 
when the input is above the VIH level or below the VIL level, then a violation of the LVTTL 
standard has occurred. 
 
E.5.1  TEST CASE 1—IMPLEMENTATION DETAILS. 

Project AEH_Case1a was used to examine potential simultaneous switching output limitations. 
The project consisted of 19 Bank 0 I/Os (signal toggle_out) on the FPGA simultaneously 
switching at a frequency of approximately 48 Hz. To monitor the FPGA for possible noise 
problems, the remaining Bank 0 I/O was configured as an input, dc_in. Input dc_in will be driven 
at the LVTTL specification limits of VIL = 0.8 V for a logic 0 and VIH = 2.0 V for a logic 1. 
 
The project also contained logic to perform a latching function in the event of a high or low 
signal being detected on dc_in. Signal latch_low_transition will turn on a light-emitting diode 
(LED) if a logic low is detected on dc_in. Signal latch_high_transition will turn on an LED if a 
logic high is detected on dc_in. 
 
The state of dc_in was echoed to an output signal, test_out, which used an output on Bank 1 of 
the FPGA.  The value of signal test_out should always be constant, as signal dc_in does not 
change.  However, SSN could cause the logic level of dc_in to be misread.  This type of error 
will be recognized as a logical transition on the test_out signal. The SSN experiments will be 
performed first with I/O loads of 130 Ω, then with loads of 50 pF. The load board must be 
populated as required by the individual experiments.  Additionally, to examine the difference 
between low-to-high and high-to-low transitions with respect to SSN, the experiments may be 
performed with Vterm = GND and Vterm = VDD by changing the jumper settings of Vterm1 and 
Vterm2. 
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E.5.2  TEST CASE 1—SSN RESULTS. 
 
SSN experiments were performed with the following load conditions on signals toggle_out: 
 
• Resistive load RL = 130 Ω, Vterm = 0 V 
• Resistive load RL = 130 Ω, Vterm = VDD (3.3 V) 
• Capacitive load CL = 47 pF, Vterm = 0 V 
• Capacitive load CL = 47 pF, Vterm = VDD (3.3 V) 
 
For each of these conditions, the voltage on test input dc_in was stepped from 0 to 3.3 V in 0.1 V 
steps; the logic level of test_out was monitored using the Xilinx Chipscope Integrated Logic 
Analyzer (ILA) logic core.  Using the ILA, test_out was monitored to look for logical errors due 
to SSN.  Screen captures from the ILA are shown in this report.  The following three signals were 
monitored with ILA, and are shown in the ILA screen captures in figures E-11 through E-13.  
 
• slw_clk—A transition on this signal indicates a transition on the toggle_out load signals. 
 
• test_out—DC output. A transition on this signal indicates SSN. 
 
• counter<0>—Shown for reference, this is the LSB of the counter used to generate 

slw_clk.  This signal transitions on each rising edge of the system clock, and the resistive 
load R L = 130 Ω. 

 
The performance of the output during glitching conditions was examined more closely.  Figure 
E-11 shows the output glitching once for the case where Vin dc = 1.1 V.  Figure E-12 shows the 
output glitching many times at Vin dc = 1.4 V. 
 

 

Figure E-11.  Capacitive Loads With Vterm = GND and Vin dc = 1.1 V (a single glitch due to 
SSN was observed.) 
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Figure E-12.  Capacitive Loads With Vterm = GND and Vin_dc = 1.4 V (Many glitches due to 
SSN were observed.) 

Glitching was also observed for Vterm=VDD.  Figure 30 shows a glitch when Vin dc = 2.3 V. 
 

 

Figure E-13.  Capacitive Loads With Vterm = VDD and Vin dc = 2.3 V (a Single glitch due to 
SSN was observed) 

When testing with a resistive load, with Vterm = 0 V and Vterm = VDD, no SSN specification 
violations were observed.  Table E-2 indicates the logic level reported on test_out across the 
various input voltage test levels.  The decision boundary between a logical 1 and a logical 0 was 
between 1.4 and 1.5 V, which is well within specifications for both VIL and VIH. 
 

Table E-2.  Logical Output Voltages as a Function of Input Voltage of the Nonswitching Input 
for Resitive Loads 

 

Vin_dc 
(Volts) 

test_out 
Logic Level 

(binary) 

Expected 
Logic Level 

(binary) 
0.0 0 0 
0.2 0 0 
0.4 0 0 
0.6 0 0 
0.8 0 0 
1.0 0  
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Table E-2.  Logical Output Voltages as a Function of Input Voltage of the Nonswitching Input 
for Resitive Loads (Continued) 

 

Vin_dc 
(Volts) 

test_out 
Logic Level 

(binary) 

Expected 
Logic Level 

(binary) 
1.2 0  
1.4 0  
1.6 1  
1.8 1  
2.0 1 1 
2.2 1 1 
2.4 1 1 
2.6 1 1 
2. 1 1 
3.0 1 1 
3.2 1 1 

 
Note:  The data is valid for resistive loads 
terminated to both VDD and GND.  Blank values 
in the expected logic level column indicate 
illegal conditions. 

 
The loads were then reconfigured to be capacitive loads terminated to ground, and the tests were 
run again.  The results are shown in table E-3.  The observed signal glitching is an unexpected 
and unsafe outcome.  For input voltages between 2.0 and 2.4 V, the outputs changed, even 
though the signal met or exceeded the VIH requirement.  This indicates the LVTTL standard has 
been violated.  Clearly, capacitive loads can produce an erroneous circuit operation.  
 

Table E-3.  Logical Output Voltages as a Function of Input Voltage of the Nonswitching Input 
for Capacitive Loads 

Vin_dc 
(Volts) 

test_out 
Logic Level 

(binary) 

Expected 
Logic Level 

(binary) 
0.0 0 0 
0.2 0 0 
0.4 0 0 
0.6 0 0 
0.8 0 0 
1.0 0  
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Table E-3.  Logical Output Voltages as a Function of Input Voltage of the Nonswitching Input 
for Capacitive Loads (Continued) 

Vin_dc 
(Volts) 

test_out 
Logic Level 

(binary) 

Expected 
Logic Level 

(binary) 
1.2 0, with 

glitches 
 

1.4 Severe 
Glitching 

 

1.6 Severe 
Glitching 

 

1.8 1, with 
glitching 

 

2.0 1, with 
glitching 

1 

2.2 1, with 
glitching 

1 

2.4 1, with 
glitching 

1 

2.6 1 1 
2.8 1 1 
3.0 1 1 
3.2 1 1 

 
Note:  Data valid for capacitive loads terminated 
to both VDD and GND. 

 
E.5.3  TEST CASE 1 EXTENSION—USING THE ILA TO VERIFY DESIGN 
FUNCTIONALITY. 
 
The Xilinx Chipscope ILA was used to perform the SSN experiments.  To ensure that the SSN 
errors reported by the ILA were real, a hardware failure indication method was implemented in 
the FPGA.  This hardware included two latches: one latch would turn on an LED, LED1, when a 
high signal was detected on signal dc_in, and the other latch would turn on an LED, LED2, when 
a low signal was detected on signal dc_in. 
 
To perform this experiment, the S3 load board was configured with 47-pF loads and Vterm = 
GND.  Dc_in was set to 0 V, and the latches were cleared.  The voltage on dc_in was increased 
until LED1 turned on, indicating a logical high on signal dc_in.  This occurred at Vdc_in = 0.84 
V, indicating an error due to SSN.  The ILA did not detect any errors for this test condition until 
Vdc_in = 1.1 V.  This experiment was then performed starting with Vdc_in = VDD, and 
decreasing Vdc_in until LED2 turned on.  A transition was observed at Vdc_in = 2.93 V, 
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indicating an SSN error.  The ILA did not detect any errors for this test condition until Vdc_in = 
1.5 V.  
 
The above experiment confirms that the errors found by the ILA were real errors.  This 
experiment also presents another potential safety issue regarding the use of AEH tools, integrated 
hardware debugging tools, such as ILA, logically probe the internal FPGA signals.  There is a 
possibility that measurements provided by the tool may not match the actual results observed on 
the external signals. 
 
E.5.4  TEST CASE 1 ANALYSIS. 
 
A standard FPGA was examined to observe if simultaneously switching outputs would introduce 
errors in FPGA operation.  The number of I/Os that were switched simultaneously were chosen 
to be within the manufacturer’s recommendation.  These I/Os were then connected to resistive 
loads consistent with the LVTTL specification. Measurements of the FPGA under resistive load 
conditions did not find any undesirable circuit operation.  The I/Os were then connected to 
capacitive loads consistent with the LVTTL specification and the measurements were repeated. 
In this case, glitching was observed for inputs between 1.2 and 2.4 V.  Since glitching signals can 
cause errors in other circuits, this circuit was unsuitable for safety-critical operation.  In addition, 
glitching occurred at conditions that met the LVTTL standard; therefore, the FPGA was 
operating in violation of the standard. 
 
SSN effects were observed to be large enough to produce an erroneous circuit operation for 
capacitive loads but not for resistive loads.  This happened despite the fact that the magnitude of 
the currents drawn in the resistive and capacitive load cases were similar.  At first glance, one 
would expect similar circuit performance for similar current loads.  However, SSN was 
proportional to the derivative of the current and not the magnitude of the current.  When 
switching initially occurred, the capacitor appeared to the output as a short, and this caused a 
high, instantaneous current and a correspondingly high di/dt.  Because of this effect, capacitive 
loads were far more likely to produce SSN-related circuit errors. 
 
E.5.5  CONCLUSIONS. 
 
Erroneous circuit operation occurred when the outputs were connected to capacitive loads and 
switched simultaneously.  The circuit itself operated entirely as intended.  It is unlikely that the 
additional design verification processes identified in appendix B of DO-254 would identify this 
failure mechanism.  The erroneous glitching depends on the current data pattern that is presented 
to the circuit as well as on previous data patterns.  The root cause of the error is parasitic 
inductances and resistances that are normally not considered in complex hardware. SSN 
introduces noise which varies much slower than the data rate.  Whether or not the noise produces 
errors depends on the timing of the noise peaks and the data.  This timing is highly dependent on 
the sizes of the parasitic elements in the package and in the layout of the printed circuit board the 
component is connected to.  Simulating and analyzing a full design while considering all of the 
parasitic elements is computationally infeasible at this time.  
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Although errors were observed when switching the maximum capacitive load, additional 
research is needed to determine the maximum capacitive load that can be safely switched.  
Because glitching can introduce errors in other parts of the circuit, SSN can be a concern for 
safety-critical hardware when driving purely capacitive loads, even if a violation of the LVTTL 
standard does not occur.  It may be possible to alleviate the problems occurring when driving 
capacitive loads by adding resistive terminations to the loads, but this research was unable to 
analyze this condition. 
 
E.6  TEST CASE 2—UNDEFINED I/O STATES. 
 
Unused FPGA I/O pins could have residual logic, be grounded, be active, or be floating. 
Ultimately, the tool determines what happened to the pins left undefined in a design.  The 
method by which a tool chooses to handle these unused pins is a safety concern.  
 
The code shall be written so that a signal of variable frequency from zero to the maximum 
frequency of the FPGA gate logic can be routed through a significant portion of the components 
of the FPGA, and then connected to a significant portion of the I/O pins.  At least a single path 
shall be coded with a known logic outputting to the I/O pins.  Figure E-10 is an adequate 
representation for this purpose; except in this case, the solid lines represent previously 
programmed logic.  The design shall be programmed into the FPGA following an 
implementation that used a vast majority of gate count, such as in the power integrity case. 
 
Two signal sources are required.  The constant signal path shall be a fixed square wave of known 
input and output.  The frequency input shall be a 100-Hz signal; the output can be determined by 
the design of the ripple counter.  The controllable signal path shall be a sweep from 0 to 2 kHz.   
 
A significant amount of previously assigned I/O pins shall be analyzed with an oscilloscope to 
determine if they are floating or fixed by probing I/O pins.  A 10k-Ω resistor is used to pull the 
solid pins first to VDD and then to GND to measure and record the pin voltage.  The previously 
programmed paths shall be monitored with a logic analyzer while sweeping the frequency.  
Simultaneously, all the known logic paths shall be monitored.  
 
E.6.1  TEST CASE 2—TEST PROCEDURE. 
 
The undefined I/O test case is used to determine if previously loaded programs can affect the 
undefined I/O pins.  The test will begin by loading a known hardware implementation (the SSN 
test case) that uses pins that are unused in the test implementation.  Then the test implementation 
is loaded, and the undefined I/O pins are examined to see if there is any residual logic connected 
to these pins.  
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The state of the unused I/O will be determined by observing the I/O behavior using an 
oscilloscope under the following conditions: 
 
• The I/O will be pulled to VDD through a 10k-Ω resistor.  If the I/O voltage measured is 

equal to ground, the I/O is being actively driven low.  If the I/O voltage is equal to VDD, 
the I/O is either being actively driven high or it is in a high impedance state. 
 

• The I/O will be pulled to ground through a 10k-Ω resistor.  If the I/O voltage measured is 
equal to VDD, the I/O is being actively driven high.  If the I/O voltage is equal to GND, 
the I/O is either being actively driven low or it is in a high impedance state. 

 
If the I/O toggles, the signal is being driven by logic in the FPGA.  For this experiment, the load 
board is populated with 10k-Ω loads on the unused I/O.  Jumpers Vterm1 and Vterm2 can then 
be used to pull the unused I/O to VDD or GND. 
 
E.6.2  TEST CASE 2—UNDEFINED I/O TEST RESULTS. 
 
Two variations of the test were run. In the first variation the signal toggle_out was removed from 
both the user constraint file and the top-level Verilog module. The behavior of the unused I/O 
was then examined with the loads terminated to both VDD and GND.  The results from this 
experiment are shown in table E-4. 
 

Table E-4.  Unused I/O Voltage Levels 
 
FPGA Pin 
Number 

VIO FPGA Pin 
Number 

VIO 
Vterm = VDD Vterm = GND Vterm = VDD Vterm = GND 

D5 0.312 V 0 V E6  0.306 V 0 V 
D6 0.307 V 0 V C5  0.307 V 0 V 
E7 0.311 V 0 V C6  0.311 V 0 V 
D7 0.306 V 0 V C8  0.311 V 0 V 
D8 0.312 V 0 V A3  0.310 V 0 V 
B4 0.306 V 0 V A4  0.310 V 0 V 
B5 0.309 V 0 V A5  0.309 V 0 V 
B6 0.312 V 0 V B7  0.310 V 0 V 
A7 0.312 V 0 V B8  Toggle output Toggle output 
A8  0.309 V 0 V B13 Echo DC in Echo DC in 
 
The results of this experiment indicate that strong internal pull-down resistors are implemented 
on the FPGA on all unused I/Os.  The Spartan-3E family datasheet states that the default 
configuration for unused I/O is an internal pull-down resistance, confirming the results of this 
experiment.  The unused I/O can be optionally configured with internal pull-up resistance or with 
no internal resistors (high impedance). 
 
In the second variation, the signal toggle_out was removed from the UCF, but the top-level 
Verilog module was left unchanged.  When building this test design, the AEH tool considered 
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these signals to be external signals.  Since these signals were not specified in the design 
constraints, the AEH tool automatically selected which FPGA I/O pins these signals would be 
connected to.  This presents a potential risk to FPGA designs. If an FPGA hardware description 
language design contains ports that are not actually used by hardware, the AEH tool may still 
connect these ports to external FPGA pins.  These pins would be unexpectedly driven by logic in 
the FPGA. 
 
In the above test, the AEH tool did generate a warning about this problem in the place-and-route 
report.  The warning stated that a partially locked I/O bus was found in the design.  By viewing 
the pad report (the report the tool produces), which contains information on how the FPGA I/Os 
are implemented, the pins to which the unspecified I/Os were connected can be found. 
 
E.6.3  TEST CASE 2—UNDEFINED I/O TEST  CONCLUSIONS. 
 
The first test found that unused pins are connected to a default pull-down resistor. No residual 
logic was found.  The second test showed that there is a risk of unknowingly driving external 
FPGA I/Os with internal FPGA logic.  However, these problems can be avoided by constraining 
all I/O signals in an FPGA project to known pin locations.  Furthermore, any I/O pins that are 
intended to be unconnected in an FPGA design can be constrained as prohibited locations.  In a 
Xilinx design, “CONFIG PROHIBIT=location;” is the prohibit constraint.  This constraint 
prevents the accidental use of the specified pin. 
 
E.7  TEST CASE 3—TIMING CONSTRAINTS. 
 
The purpose of this case study is to determine if a circuit meets the real-time constraints that the 
tool displays in the design report and that any designer-imposed timing margins are maintained.  
The tools have the ability to specify the time that it will take a given operation to complete.  If 
the bounds of the speed of the gates are pushed close to their extremes, the tool will redesign the 
circuit so that the delay is smaller.  The following subjects are of interest:  Where are these 
bounds?  How close does the tool allow the design to get to the bounds?  Is there a safety margin 
with actual delay and estimated delay? 
 
The case study shall be implemented with an asynchronous ripple counter.  As shown in figure 
E-14, an asynchronous ripple counter is a series of N flip-flops cascaded together so that the 
output of a flip-flop is the clock input of the next one.  The input to the ripple counter shall be an 
external pin that is connected to a high-frequency source.  The final output of the counter shall be 
connected to an output pin.  The expected output signal frequency shall be the input signal 
frequency divided by 2N.  During the initial implementation, a report is generated by the tool to 
establish the maximum input frequency and the signal path delay.  All signals shall be 
transistor/transistor logic. 
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Figure E-14.  Ripple Counter 

Timing constraints will be set for the ripple counters, and a timing report will be generated by the 
tool.  The design shall be synthesized and then tested to observe if the timing constraints were 
accurate and provided adequate margin. 
 
During the sweep, both the input and output wave of the component shall be scoped for accuracy 
and phase differences.  The input frequency shall be increased until either the signal path time 
does not meet requirements or the output wave is not correct.  The phase differences will yield 
the signal path time; the point of failure will determine the safety margins applied.  All data and 
settings shall be recorded accurately for analysis. 
 
E.7.1  TEST CASE 3—IMPLEMENTATION DETAILS. 
 
Test Case 3 was used to evaluate the accuracy of timing constraints in an FPGA design.  Project 
AEH_case3a is the Verilog implementation of this test case.  The AEH_case3a design consists of 
an input clock signal, clk_in, a frequency generator that provides signal fast_clk, and an 80-bit 
counter that is incremented by signal fast_clk.  The size of the counter was chosen because it 
allowed for a maximum operating frequency in the range of 125 MHz. 
 
Counter bits 15 and 0 are connected to FPGA I/O C6 and B12, respectively, so that they can be 
monitored on an oscilloscope through the load board SMA connections.  Counter bit 79 is 
connected to FPGA I/O E6.  This signal, the most significant bit of the counter, is connected to 
an output simply because if it were not used, the AEH tool would recognize and remove the 
unused logic associated with this signal. 
 
An 8-ns period (125-MHz) timing constraint was specified for this design, meaning that the 
counter should be able to properly function at up to 125 MHz.  The post place-and-route timing 
analysis of the design indicates a maximum allowable frequency of 125.5 MHz, which slightly 
exceeds the timing constraint. 
 
The counter outputs will be monitored using ILA to detect errors, while the frequency of 
fast_clock is set to various frequencies.  The clock frequency should first be set at 100 MHz, and 
the design performance should be evaluated.  The clock frequency should then be incrementally 
increased until the point at which errors are observed on the counter outputs.  Of primary interest 
is the operation of the FPGA system at or near the frequency limit specified by the FPGA design 
tool; the presence of any errors at or below this frequency will be considered a timing constraint 
failure.  If no errors are observed at or below the maximum specified clock frequency, the clock 
frequency should be increased until errors are observed.  This will demonstrate the amount of 
margin included in the design by the AEH tool. 
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E.7.2  TEST CASE 3—RESULTS. 
 
The purpose of Test Case 3 was to evaluate the accuracy of timing constraints in an FPGA 
design.  This was examined by implementing an 80-bit counter in an FPGA and operating the 
counter at various frequencies.  The least significant 20 bits of the counter were captured for 
8192 samples using ILA (figure E-15), and the output data were analyzed for errors using a 
spreadsheet (figure E-16).  The output data were checked for errors using the following formula: 
Error = Σ (abs((an – an-1) – (an-1 – an-2))), n=2 to n=8191, where Error ≠ 0 indicates an error. 
 

 

Figure E-15.  An ILA Capture of the Counter Outputs 

 

Figure E-16.  Error Tabulation Spreadsheet Showing no Errors Found 
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Table E-5 shows the frequencies that were tested and the maximum operational frequency 
specified by the AEH tool for the particular FPGA build.  Because an internal FPGA clock 
multiplier was used, each test frequency required a new FPGA build, which is why different 
maximum operational frequencies are shown for the different builds. 

Table E-5.  Test Frequencies and the Associated Timing Constraints From the AEH Design Tool 

Test 
Frequency 

(MHz) 

Max Guaranteed 
Frequency 

(MHz) Comments Results 
75 122 Design meets timing No errors detected 
100 117 Design meets timing  No errors detected 
115 119 Design meets timing  No errors detected 
120 123 Design meets timing  No errors detected 
125 126 Design meets timing  No errors detected 
130 127 Design does not meet timing  No errors detected 
135 126 Timing impossible warning. 

Set AEH tool to ignore timing 
constraints. 

No errors detected 

140 126 Timing impossible warning. 
Set AEH tool to ignore timing 
constraints. 

No errors detected 

150 126 Timing impossible warning. 
Set AEH tool to ignore timing 
constraints. 

No errors detected 

175 126 Timing impossible warning. 
Set AEH tool to ignore timing 
constraints. 

No errors detected 

 
The AEH tool indicated that designs for test frequencies 75 to 125 MHz met the specified timing 
constraints.  The AEH tool indicated a timing constraint failure occurred for test frequency 130 
MHz. At frequencies above 130 MHz, the AEH tool indicated that it was impossible for the 
design to meet the specified timing constraints.  To generate these higher-frequency FPGA 
builds, the AEH tool had to be configured to ignore timing constraints.  At all of the test 
frequencies, no operational failures were detected in these experiments.  At 175 MHz, the 
maximum frequency tested, the ILA was reconfigured to examine the 20 most significant bits of 
the counter.  For this variant, no errors were detected. 
 
E.7.3  TEST CASE 3—TIMING CONSTRAINT ACCURACY CONCLUSIONS. 
 
The timing constraint accuracy experiments did not detect any timing-related failures in the 
FPGA.  Although the AEH tool indicated that the design speed was limited to approximately 125 
MHz, the counter operated successfully at much higher speeds.  Although this design operated 
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well above the specified frequency limit, the timing constraints specified by the AEH tool should 
be followed.  The AEH tool may allow for some timing margin beyond the specified constraints, 
but this margin will vary based on the specific application. 
 
E.8  EXPERIMENT CONCLUSIONS. 
 
Test case 1 examined simultaneous switching noise (SSN) effects, which could potentially cause 
hardware failures when numerous field-programmable gate array (FPGA) input/output (I/O) 
switch at the same time.  This experiment was performed when switching multiple outputs into 
both resistive and capacitive loads.  The experiments did not indicate any failures when driving 
resistive loads, indicating that the FPGA can meet the simultaneous switching I/O specifications, 
even when driving the maximum specified direct current output current. 
 
When driving capacitive loads, a large I/O current is produced during switching.  Under this 
condition, failures were observed due to SSN.  When driving numerous I/O into capacitive loads, 
SSN can present a serious risk to systems using FPGAs. 
 
As an extension to test case 1, an experiment was performed to determine whether or not the 
FPGA Internal Logic Analyzer (ILA) reported the same hardware performance as external 
hardware measurements.  It was found that hardware errors can occur external to the FPGA and 
not be reported by the ILA.  This presents an additional airborne electronic hardware (AEH) risk 
for designs using the FPGA internal hardware debugging tools. 
 
Test case 2 examined the behavior of unconnected I/O in an FPGA, which could potentially be 
configured in an unknown or unpredictable way.  Of particular concern was whether or not 
unused I/O may contain residual logic or be actively driven.  The experiments showed that 
unused I/Os are configured in a known manner, and risks associated with unused I/O can be 
avoided.  Although unused I/Os are configured in a known manner, this configuration can consist 
of either internal pull-up resistors, internal pull-down resistors, or no internal terminations.  For 
external hardware that is connected to an FPGA but not implemented in the FPGA, the chosen 
configuration mode could potentially cause the external hardware to behave in an unexpected 
way.  The FPGA design engineer must consider the state of unused I/O and chose a configuration 
option that is compatible with all external hardware connected to these pins.  If the designer is 
unaware of what to do with these pins, then the hardware requirements are incomplete.  An 
additional potential risk identified in test case 2 is that when a design contains external ports 
without specific I/O constraints, the AEH tool may automatically route these signals to I/O pins.  
This could cause an I/O pin to unexpectedly be driven with internal FPGA logic.  This problem 
can be avoided by ensuring that all I/O signals in an FPGA project are constrained to specific I/O 
pins. 
 
Test case 3 examined the accuracy of timing constraints in FPGA designs. The AEH 
development tools perform timing analysis on FPGA designs.  The purpose of this experiment 
was to determine the accuracy of this timing analysis, specifically, can the design operate up to 
the specified frequency limit, and if so, how much operational margin is provided beyond the 
specified frequency limit?  The timing constraint accuracy experiments did not detect any timing-
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related failures in the FPGA.  Additionally, the experiments showed that the design could operate 
at speeds well above the limit specified by the AEH tool.  It is likely that this is implementation-
specific, and that the amount of operational margin beyond the specified maximum frequency 
will depend on the particular application. 
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APPENDIX F—EVALUATION REPORT FOR HARDWARE DESIGN TOOLS 

F.1  PRODUCT DESCRIPTIONS. 
 
The following section provides a short description of the three leading hardware design tools. 
 
F.1.1  QUARTUS® II. 
 
Quartus II design software delivers the highest productivity and performance for Altera® field-
programmable gate arrays (FPGA), complex programmable logic devices, and HardCopy® 
application-specific integrated circuits, and offers numerous design features to accelerate the 
design process: 
 
• Design entry  
• Scripting support  
• Incremental compilation:  initial setup  
• System on a programmable chip builder  
• MegaWizard® Plug-In Manager  
• I/O Pin Assignment Analysis  
• Quartus II Integrated Synthesis  
• Third-party design entry and synthesis  
• Basic compilation flow  
 
The version of software tested was Quartus II Version 7.0 by Altera Corporation, 101 Innovation 
Drive, San Jose, CA 95134.  It is used for the Altera DE2 Development and Education Board. 
 
F.1.2  XILINX® ISE™. 
 
Xilinx offers the ISE Design Suite with SmartCompile Technology for faster programmable logic 
device timing closure and maximum performance, as well as a range of optional products that 
deliver unprecedented designer productivity. Xilinx ISE features include: 
 
• Breakthrough performance with ISE Fmax Technology 
• Faster, easier timing closure with SmartCompile Technology 
• SmartXplorer to provide distributed processing for more turns-per-day 
• Advanced verification and power analysis 
• PinAhead technology to simplify the complexities of FPGA pin assignment 
• An integrated, front-to-back design environment 
 
The version of software tested was Xilinx ISE Design Suite 10.1 by Xilinx Inc., 2100 Logic 
Drive, San Jose, CA 95124-3400. It is used for the Digilent Spartan-3E Starter Board. 
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F.1.3  LabVIEW 8.5. 
 
LabVIEW is a graphical programming environment used to develop sophisticated measurement, 
test, and control systems using graphical icons and wires that resemble elements of a flow chart. 
LabVIEW offers integration with thousands of hardware devices and provides hundreds of built-
in libraries for advanced analysis and data visualization.  The LabVIEW platform is scalable 
across multiple targets and operating systems and, since its introduction in 1986, has become an 
industry leader in applications such as data acquisition, instrument control, measuring and 
controlling industrial systems, and embedded systems design.  More recently, LabVIEW has been 
equipped with a capability for FPGA design.  This feature provides an interesting alternative to 
traditional text-based design languages, such as VHDL and Verilog, since it used a completely 
new graphical approach to programming. 
 
The version of software tested was LabVIEW 8.5 by National Instruments Corp, 11500 N Mopac 
Expwy, Austin, TX 78759-3504.  It is used for the National Instruments (NI) Compact 
Reconfigurable I/O (cRIO) 9074 integrated system. 
 
F.2  EVALUATION PLAN. 
 
This evaluation used a variation of the process described in reference F-1.  Three software tools, 
used for FPGA development, were evaluated: 
 
• Quartus II by Altera 
• ISE by Xilinx  
• LabVIEW FPGA module by NI 

 
The Quartus II software was used to compile VHDL code and upload this code to an Altera DE2 
Development and Education Board for execution on an Altera Cyclone II FPGA.  The Xilinx ISE 
was used to compile VHDL code and upload this code to a Digilent Spartan-3E Starter Board for 
execution on a Xilinx Spartan-3E FPGA.  The LabVIEW FPGA module was used to develop and 
upload LabVIEW Virtual Instruments (VI) to the reconfigurable FPGA within the NI cRIO-9074 
integrated system. 
 
Experiments performed on these software tools were conducted in two phases.  The first phase 
was to facilitate learning and familiarization of the tools by using a simple “Hello World” type 
program, executed on the development boards.  The second phase was to design an up-down 
counter using the tools, also executed on the development boards. 
 
This report summarizes the test effort.  Any variance from the test plan and the reason for the 
variance is recorded.  Abnormal termination and any unresolved test incidents are recorded in the 
summary of results section of the test summary report. Differences between the manufacturer’s 
specifications and the test results for Quartus II and the Xilinx ISE Design Suite are recorded.  
The final product of this evaluation is a test summary report.  
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F.2.1  EVALUATION TEAMS AND CHARTER. 
 
The evaluation team was composed of the following members: 
 
• Joseph Voelmle, student—responsible for designing and conducting all tests, compiling 

test results, and writing evaluation report. 
 

• Dr. Janusz Zalewski, faculty member—supervised the evaluation, comments on the 
report, defined the experiments, and interpreted the results.  
 

Both team members derive evaluation criteria.  Before the evaluation began, the following 
questions were posed:  
 
• What is the evaluation expected to achieve?  Determine the functionality, usability, and 

efficiency of Altera Quartus II, Xilinx ISE, and NI LabVIEW FPGA module.  
 

• What are the responsibilities of each member of the team? Joseph Voelmle will be 
responsible for conducting all tests, and Dr. Zalewski will provide supervision and 
technical advice.  Both team members will derive evaluation criteria. 
 

• How will success be measured?  What tasks are to be performed to measure desired 
metrics. 
 

• What is an exit criterion for evaluation?  When all desired tasks are measured. 
 

• What constraints must the evaluation team adhere to?  The team must use the same exact 
procedures to evaluate all tools.  
 

• Goals of the evaluation—What are the criteria and their usefulness for evaluating 
hardware design tools applied in safety-critical systems? 
 

• What is the scope of the evaluation? 
 
F.2.2  APPROACH TO EVALUATION. 
 
There are a number of factors that may affect system safety.  For instance, Dahll, et al.  [F-2 
through F-4], list the following: system quality, complexity, user experience, fault tolerance, 
producers pedigree, documentation, testing, quality assurance policies, etc.  This is shown in 
figure F-1 with tool quality as one of the factors.  
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Figure F-1.  Factors Affecting System Safety 

 
To evaluate tool quality completely, one would need to look at it from three different 
perspectives, and collect data accordingly: 
 
• How the tool itself was developed. 
• How the tool is operating. 
• How high a quality is the product developed with this tool. 

 
To quote the previous work on tool evaluation [F-1]: 

 
“The framework for this process, based on the context of tool use, is shown in 
{figure F-2}.  The central part of this model is the macroevaluation based on the 
use of the tool during the design phase.  However, much information on tool 
quality can be derived from the development of the tool itself, considered as a 
metaevaluation: evaluating the process to develop a tool.  The tool vendor can 
provide the data for evaluation of this stage.  In addition to the macro- and 
metaevaluation, the product developed with a particular tool can be included in 
the evaluation.  This is called microevaluation, and it focuses on the level lower 
than the tool itself.  Such a product evaluation can be based both on static code 
analysis and code execution.  Consequently, to have the entire picture of the tool’s 
quality, one needs to do the evaluation at three different levels.” 
 

 
 

Figure F-2.  Model of the Tool Evaluation Process 

Other Factors 
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However, for various reasons, it is next to impossible to obtain data on tool development from 
the tool vendors.  This is mainly due to the vendor’s reluctance to release proprietary information 
to the public where it could possibly be used by competitors.  For this reason, performing the 
meta-evaluation is normally not done.  Therefore, this work focuses on macro- and 
microevaluation. 
 
To evaluate tool quality as a system safety factor, the following three criteria were chosen: 
functionality, usability, and efficiency, according to a previous work [F-1].  These evaluation 
criteria were used to measure the quality of the Altera Quartus II Design Suite, Xilinx ISE Design 
Suite, and NI LabVIEW FPGA hardware design tools.  This was approached in two steps for 
each tool.  The first step was to become familiar with the tools and learn their capabilities.  The 
second step was to use the knowledge gained from the first step to design a simple VHDL circuit 
to evaluate the tools from a designer’s perspective.  The evaluations were performed in the 
following four steps, referred to as tasks in previous work related to software development tool 
evaluations [F-1]: 
 
1. Project preparation and tool familiarization 
2. Model development and code generation 
3. Measurement and data collection 
4. Postmortem, including data analysis and report generation 
 
Two sample problems were used to evaluate model development and code generation.  The first 
was a “Hello World” type program to cause an LED on the evaluation board to blink at a 
specified rate. The VHDL code is presented in section F.8.  This program was derived from a 
tutorial by Martin Schoeberl [F-6].  The second problem was a simple up-down counter program. 
Its VHDL code is shown in section F.9.  Its purpose was to gauge the user’s level of 
comprehension and familiarity of the tools once basic mastery was accomplished with the “Hello 
World” program.  The approach was to use identical code for all three software tools, so that a 
useful comparison could be made. 

 
The ultimate goal of this approach to software tool evaluation was to determine if the results 
could be used in the next stage, or project, for a more extensive evaluation on a real-life project. 
 
F.3  EVALUATION CRITERIA. 
 
F.3.1  DEFINITIONS. 
 
The following definitions of basic measurement concepts were adopted from engineering 
publications such as in reference F-7. 
 
• Efficiency—A property determining a degree to which a system or component performs 

its designated functions with minimum consumption of resources [F-7].  In particular, 
this can be applied to execution efficiency and storage efficiency, which would be the 
speed and size of the code produced by the software. 
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• Functionality—The capacity of a computer program or application to provide a useful 
function.  Functionality relates to “what” the user wants from the system.  Only the user 
can evaluate this property of the software, and these attributes are very dependent on the 
nature of the project that the tool is helping to develop. 

 
• Measure—A physical or abstract device that is used to apply a metric, i.e., ruler. 

 
• Measurement—The act or process of assigning a number or category to an entity to 

describe quantitatively a property of that entity.  A figure, extent, or amount is obtained 
by a measurement. 

 
• Metric—A scale, with a defined unit, that quantitatively characterizes a certain property.  

Example:  an inch or centimeter to measure distance, thickness, etc. 
 

• Software Quality Metric—A function whose inputs are software data and whose output is 
a single numerical value that can be interpreted as the degree to which software possesses 
a given attribute that affects its quality. 

 
• Usability—A property determining an ease with which a user can learn to operate, 

prepares inputs for, and interpret outputs of a system or component [F-7].  Usability is 
also a measure of interface quality that refers to the effectiveness, efficiency, and 
satisfaction with which users can perform tasks with a tool.  There are multiple ways that 
usability can be measured.  One would be the ease of use or user-friendliness. Another 
would be concerned with the features, such as the presence or absence of certain features 
in the user interface such as windows, icons, menus, etc.  A third measure of usability 
would be the operational feature of the software, i.e., the capability, in human functional 
terms, to be used easily, effectively, and satisfactorily by specific users, performing 
specific tasks, in specific environments where usability is at the level of interaction 
between users and the artifact.  

 
Figure F-3 shows the relationship between a specific property, that is evaluation criterion, a 
metric used for its evaluation, and a measure that is used as an evaluation device to quantify the 
metric.  Figure F-4 shows how these concepts are applied to the tool evaluation, whose quality is 
one of the many factors that affect system safety as shown in figure F-1. 
 

 

Figure F-3.  Relationship Between a Property, its Metric, and a Measure From the Point of View 
of Measurement Theory 
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Figure F-4.  Illustration of Tool Evaluation Concepts 
 
F.3.2  GENERAL METHODOLOGY. 
 
The application of a measure to evaluate software properties has to be supported by a 
measurement method.  A measurement method is a means for assessing and assigning a value to 
the product property, characterizing it quantitatively.  This value can be obtained using a 
software quality metric, a unit of measure which is the standard of measurement that can be 
applied either by direct measurement or decomposition.  For this evaluation, the following four 
steps (tasks) are used in decomposition:  
 
1. Project preparation and tool familiarization  
2. Model development and code generation  
3. Measurement and data collection  
4. Postmortem, including data analysis and report generation 
 
In this evaluation, the properties measured—usability, functionality, and efficiency—can be 
determined only by decomposition steps.  For example, one such metric for usability can be the 
ease of learning how to operate Quartus II or Xilinx® ISE measured in hours spent learning the 
tools.  
 
The data can be gathered on various scales, for example: 
 
• Qualitative—bad, fair, good (e.g., bad is unacceptable, fair is marginally acceptable, and 

good is fully acceptable) 
 

• Quantitative—hours spent 
 

• Rating scale—a scale of 0 to 5, with 5 being best, used as a subjective assessment. 
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Quantitative data were collected for the properties mentioned in the experiments described in 
section F.4.  The functionality of the tools is measured using a rating scale of 0 to 5 for tutorial, 
user manuals, readability, and flexibility.  In this report, only one developer (the tester) provided 
these ratings.  Having such a small sample to provide ratings, bias will obviously play a large role 
in a subjective measurement.  However, it should be remembered that this evaluation is the basis 
for a larger, more extensive evaluation where there would be a much larger number of developers 
to provide ratings.  Usability is measured as effort (in hours) spent on the four tasks listed in 
section F.2.2.  Efficiency is measured in the code size generated by the tools for the sample code 
used.  
 
F.4  METHODOLOGY APPLIED IN THIS RESEARCH. 
 
The methodology used in this research was taken from reference F-1.  As outlined in reference 
F-1, the following four tasks were performed to evaluate each tool:  
 
• Project preparation and tool familiarization  
• Model development and code generation  
• Measurement and data collection 
• Postmortem, including data analysis and report generation  

 
Two experiments are performed to design a Hello World-type program and an up-down counter, 
as described in section F.4.  The four tasks are performed on each experiment for each tool.  
Quantitative data is then collected for three criteria: efficiency, usability, and functionality. 
Efficiency is measured in code size generated by each tool.  Usability is measured as time spent 
on the four tasks.  Functionality is measured as a subjective assessment on a rating scale of 0 
to 5. 
 
F.5  DATA COLLECTION. 
 
This section contains the actual results of measurements for both tools, the Altera Quartus II and 
the Xilinx ISE.  The four tasks performed were those listed in section F.4. 
 
The data were collected for the Hello World VHDL program and measured for usability, 
functionality, and efficiency for the Altera Quartus II.  Once this data was collected, the next step 
of the evaluation, using the Altera Quartus II to design an up-down counter, began.  In this step, 
the Quartus II was measured with respect to usability, functionality, and efficiency performing 
the four tasks.  Once these tasks were performed and data collected for Quartus II, they were 
repeated for the Xilinx ISE, again using the same Hello World and up-down counter programs to 
measure the criteria and collect data. 
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F.5.1  QUARTUS II. 
 

The Altera Quartus II design software provides a design environment that includes sample 
solutions for all phases of FPGA design.  The Quartus II software consists of: 
 
• Quartus II Design Suite 
• MegaCore IP Library 
• Nios II Embedded Design Suite 
• ModelSim—Altera 6.1-g Web Edition 
 
Once installed, the Quartus II software’s graphical user interface (GUI) is used to perform all 
stages of the design flow.  Figure F-5 shows the Quartus II GUI as it appears when you first start 
the software. 

 

 
 

Figure F-5.  Quartus II Graphical User Interface [F-5] 
 

The principle documentation for the novice Quartus II software user is the “Introduction to the 
Quartus® II Software”.  As stated by Altera, the first two chapters give an overview of the major 
GUI, electronic design automation tool, and command-line interface design flows, with 
subsequent chapters leading the user through an overview of each task flow in the FPGA design.  
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As such, the documentation does not state the intended audience for whom it is written or the 
level of expertise assumed for the user in the use of, and design for, FPGAs.  The principle tester 
in this study had no previous experience with FPGAs.  It was found that a tutorial with an 
example providing VHDL code was needed as a starting point.  As there seemed to be no entry-
level tutorial available from Altera, the tutorial from Martin Schoeberl [F-6] was used as a 
starting point.  Problems soon occurred because it was discovered that the tutorial was written for 
a different version of the Cyclone II FPGA.  The tutorial uses pin assignments that are different 
than the pin assignments needed for the Altera board.  After further research, the correct pin 
assignments were located and substituted for the assignments in the tutorial.  According to the 
tutorial, the files necessary to up load to the Altera board should be created, and the desired light-
emitting diode (LED) should blink.  However, further problems were encountered as the desired 
files for FPGA were not created.  This deviation from the tutorial is most likely due to the fact 
that a different FPGA is being used.  A further search of the manufacturer’s website uncovered 
the instructions needed to create the required file and to have the desired LED blink. 
 
F.5.1.1  Hello World. 
 
For the Hello World program, the results of measuring the criteria are discussed in the following 
sections. 
 
F.5.1.1.1  Usability. 
 
The overall usability for Quartus II was measured at 90 hours.  The usability for project 
preparation and tool familiarization took almost 60 hours.  Much of this time was spent 
becoming familiar with the Quartus II software, including installing the Altera development 
board and learning about FPGAs in general. Also, time was spent becoming familiar with VHDL 
programming.  A lot of time was spent consulting different sources to make the trivial Hello 
World program work.  The manufacturer provides many manuals for the system, but they assume 
a level of sophistication that not all novice users may possess.  It is the author’s opinion that time 
could have been saved if a basic, entry-level tutorial, specifically for this board, was available in 
one document. Since a program written by someone else was used, no time was spent developing 
it.  However, approximately 16 hours were spent generating the code itself.  Approximately 2 
hours were spent measuring the tasks, which was done by logging all hours spent.  Finally, the 
postmortem, where the data were collected and analyzed, took 12 hours. 
 
F.5.1.1.2  Functionality. 
 
In terms of functionality, the tester rated the following:  tutorial—2, user manuals—4.5, 
readability—4.5, and flexibility—3.5.  It is the author’s opinon that time could have been saved 
if a basic, entry-level tutorial, specifically for this board, was available in one document.  The 
user manuals are high quality, providing detailed information in a logical and useful manner.  
The model development and code generation functionality was rated 2.5.  Functionality could 
have been higher if all the information needed to generate the code was in one place, and a search 
of the Internet was not needed. 
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F.5.1.1.3  Efficiency. 
 
In terms of efficiency, the code generated 310 bytes of memory. 
 
F.5.1.2  Up-Down Counter. 
 
The next step was to perform the four tasks again using Quartus II to develop a simple up-down 
counter in VHDL code, and run it on the Altera board (see section F.9).  Figure F-6 shows the 
schematic. 
 

 
 

Figure F-6. Up-Down Counter 
 

The counter has three inputs and eight outputs.  The up-down input tells the counter in which 
direction to count, high voltage to count up and low voltage to count down.  The asynch_clr input 
resets the clock counter to zero.  The counter will count up (or down) once with each clock at the 
clock (clk) input.  The outputs, Q(0) through Q(7), are the 8-bit output of the counter, so on each 
clk pulse, the counter will proceed sequentially from (or down from) 00000000, 00000001, 
00000010, 00000011, 00000100, up to 11111111 with each clock pulse.  When it reaches 
11111111, it goes to 00000000 on the next clock pulse and starts the sequence all over again. 
 
The following sections discuss the same four tasks as those performed in the Hello World 
program and the results of measuring the criteria for the up-down counter. 
 
F.5.1.2.1  Usability. 
 
The overall usability for Quartus II was measured at 50 hours.  The usability for project 
preparation and tool familiarization took almost 10 hours.  Much of this time was spent 
becoming familiar with learning the VHDL language and how to apply it to designing an up-
down counter.  About 10 hours were spent learning new features of Quartus II and the Altera 
development board that were not explored in the Hello World program.  The bulk of the time was 
spent designing and writing the VHDL code, making corrections to the code due to compile 
errors, and getting the up-down counter to run in the Altera board.  As in the Hello World 
program, approximately 2 hours were spent measuring the tasks. 
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F.5.1.2.2  Functionality. 
 
In terms of functionality, the tester rated the following:  tutorial—2, user manuals—4.5, 
readability—4.5, and flexibility—3.5.  Since the same documentation was used, the measured 
functionality was the same.  The model development and code generation functionality was rated 
3.5.  The model development and code generation functionality was rated higher for the up-down 
counter because of the experience gained in the Hello World program and the user’s confidence 
in using Quartus II. 
 
F.5.1.2.3  Efficiency. 
 
In terms of efficiency, the code generated 292 Bytes of memory. 
 
F.5.2  XILINX ISE. 

 
The Xilinx ISE software provides a design environment that includes sample solutions for all 
phases of FPGA design.  The Xilinx ISE software consists of: 
 
• ISE Webpack 10.1 
• ISE Foundation 10.1 Eval 
• EDK 10.1 Eval 
• ChipScope Pro 10.1 w/Serial I/O Toolkit License Key Eval 
• System Generator AccelDSP Synthesis Tool 10.1 Eval 
• PlanAhead Design Analysis Tool 10.1 Eval 
 
Once installed, the Xilinx ISE software GUI is used to perform all stages of the design flow.  
Figure F-7 shows the Xilinx ISE iMPACT GUI.  
 

 
 

Figure F-7. Xilinx ISE iMPACT Graphical User Interface [F-8] 
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The principle documentation for the novice Xilinx ISE software user is the “ISE 10.1 Quick Start 
Tutorial” [F-8].  In this tutorial, a counter is implemented.  The tutorial was followed as written, 
except that the VHDL code of the Hello World program is substituted for the counter program in 
the tutorial.  One thing that was noticed, which proved to be convenient, was that the pin 
numbers that need to be assigned are printed on the circuit board.  For example, to use LED 0,  
assign F12, to the led variable in the VHDL code.  This was found to save time and effort 
compared to the Quartus II evaluation. 
 
F.5.2.1  Hello World. 
 
For the Hello World program, the results of measuring the criteria are discussed in the following 
sections. 
 
F.5.2.1.1.  Usability. 
 
The overall usability for Xilinx ISE was measured at 57 hours.  The usability for project 
preparation and tool familiarization took almost 35 hours.  Much of this time was spent 
becoming familiar with the Xilinx ISE software, including installing the Spartan-3E development 
board.  Preparation time was less since general knowledge about FPGAs and VHDL 
programming was gained in the Quartus II evaluation.  As with the Quartus II evaluation, time 
was spent consulting many different sources to make the Hello World program work.  The 
manufacturer provides many manuals for the system, but they assume a level of sophistication 
that not all novice users may possess.  It is the author’s opinion that time could have been saved 
if a basic, entry-level tutorial specifically for this board was available in one document.  Since the 
authors were using a program written by someone else, no time was spent developing it.  
However, approximately 8 hours were spent in the generation of the code itself.  The time spent 
measuring the four tasks took about 2 hours, which was done by logging all hours spent.  Finally, 
the post mortem, were the data were collected and analyzed, took 12 hours. 
 
F.5.2.1.2  Functionality. 
 
In terms of functionality, the tester rated the following:  tutorial—3, user manuals—4, 
readability—4.5, and flexibility—4.  As noted before, it is the author’s opinion that time could 
have been saved if a basic, entry-level tutorial, specifically for this board, was available in one 
document.  As far as the user manuals themselves, they are high quality, providing detailed 
information in a logical and useful manner.  The model development and code generation 
functionality was rated 3.  Functionality seemed to be slightly higher because information seemed 
more readily available. 
 
F.5.2.1.3  Efficiency. 
 
In terms of efficiency, the code generated 310 bytes of memory. 
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F.5.2.2  Up-Down Counter. 
 
The next step was to perform the four tasks again using Xilinx ISE to develop a simple up-down 
counter in VHDL code and run it on the Spartan-3E board (see section F.9).  The VHDL program 
is identical to the one used for the Quartus II evaluation. 
 
The following sections discuss the same four tasks as those performed in the Hello World 
program and the results of measuring the criteria for the up-down counter. 
 
F.5.2.2.1  Usability. 
 
The overall usability for Xilinx ISE was measured at 32 hours.  The usability for project 
preparation and tool familiarization took almost 8 hours.  As with the Hello World program, 
preparation time was less in the Xilinx ISE evaluation, since general knowledge about FPGAs 
and VHDL programming was gained in the Quartus II evaluation.  Therefore, usability, as 
measured in hours, is lower for the Xilinx ISE evaluation than for the Quartus II. About 8 hours 
were spent learning new features of the Xilinx ISE and the Spartan-3E development board that 
were not explored in the Hello World program.  Since identical programs were used in the 
evaluation of both software tools, negligible time was spent designing and writing the VHDL 
code, making corrections to the code due to compile errors, and getting the up-down counter to 
run in the Spartan-3E board.  
 
F.5.2.2.2  Functionality. 
 
In terms of functionality, the tester rated the following:  tutorial—3, user manuals—4, 
readability—4.5, and flexibility—4.  Since the same documentation was used, the measured 
functionality was the same.  The model development and code generation functionality was rated 
3.5.  The model development and code generation functionality was rated higher for the up-down 
counter because of the experience gained in the Hello World program and the user’s confidence 
in using Xilinx ISE. 
 
F.5.2.2.3  Efficiency. 
 
In terms of efficiency, the code generated 282 bytes of memory.  
 
F.5.3  LabVIEW 8.5. 
 
The LabVIEW 8.5 FPGA Module allows the user to program an FPGA with a LabVIEW block 
diagram.  The module uses code-generation techniques to synthesize the graphical development 
environment to FPGA hardware.  The designer uses graphical programming to create a highly 
optimized gate array implementation of analog or digital control logic.  Normal LabVIEW 
programming techniques are used to develop FPGA applications, although when targeting FPGA 
hardware such as CompactRIO, the LabVIEW programming palette is simplified to contain only 
the functions that are designed to work on FPGAs, the primary programming difference 
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compared to traditional LabVIEW is that FPGA devices use integer math rather than floating-
point math.  
 
The LabVIEW FPGA Module compiles a LabVIEW application to FPGA hardware using an 
automatic multistep process (see figure F-8).  First, graphical code is translated into text-based 
VHDL code.  Next, the Xilinx ISE compiler is invoked, and the VHDL code is optimized, 
reduced, and synthesized into a hardware circuit realization of the user’s LabVIEW design.  
Timing constraints are applied to the design to achieve an efficient use of FPGA resources.  
Optimization is performed during the FPGA compilation process to create an optimal 
implementation of the LabVIEW application and reduce the digital logic size.  Next, the design is 
synthesized into an optimized silicon implementation, providing parallel processing capabilities.  
The final result is a bit stream file that contains the gate array configuration information.  When 
the application is run, the bit stream is loaded into the FPGA chip and used to reconfigure the 
gate array logic [F-9].  
 

 

Figure F-8.  LabVIEW FPGA Compilation Process 
 
F.5.3.1  Hello World. 
 
Due to the graphical nature of the LabVIEW environment, the approach used for the Hello World 
and up-down counter programs was different.  A LabVIEW VI was created to implement the 
Hello World program.  To use the Hello World VHDL program in an FPGA VI, an HDL 
Interface Node was used rather than rewriting the code in LabVIEW.  All the parameters and the 
VHDL code are entered in the HDL Interface Node Properties dialog box (see figure F-9).  
 



 

F-16 

 
 

Figure F-9.  HDL Interface Node Properties Dialog Box 
 
The parameters become terminals on the HDL Interface Node.  The parameters are then wired to 
any VI or function on the block diagram.  For Hello World, it was necessary to add “led” in the 
Parameters tab (see figure F-10).  In the beginning section of the code tab, after the “led <= 
blink;” statement, add the statement “enable_out <= enable_in;”.  The HDL Interface Node uses 
an enable chain to follow the LabVIEW data flow model. The enable chain is the collection of 
signals and an associated protocol for controlling the HDL component’s input and output data 
flows.  The HDL Interface Node includes enable_in and enable_out as default ports, and they 
must be handled to meet the requirements of using the HDL Interface Node with the LabVIEW 
FPGA Module [F-9].   
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Figure F-10.  HDL Interface Node Parameters Tab 
 

Figure F-11 shows the block diagram of the Hello World VI.  It shows the HDL Interface Node 
wired to an LED from the led output.  This is enclosed within a LabVIEW while loop construct 
to allow the VI to run continuously.  Figure F-12 shows the Hello World VI front panel. 
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Figure F-11.  Hello World VI Block Diagram 
 

 
 

Figure F-12.  Hello World VI Front Panel 
 
The results of measuring the criteria are discussed in the following sections for the Hello World 
program. 
 



 

F-19 

F.5.3.1.1  Usability. 
 
The overall usability for the LabVIEW program was measured at 35 hours.  The usability for 
project preparation and tool familiarization took almost 20 hours.  Much of this time was spent 
becoming familiar with the LabVIEW HDL Interface Node.  Preparation time was less in the 
LabVIEW evaluation, since general knowledge about FPGAs and VHDL programming was 
gained in the Quartus II evaluation.  Also, the author had some previous LabVIEW experience.  
As in the Quartus II evaluation, time was spent consulting different sources to make the Hello 
World program work.  The new feature requiring the most time was the HDL Interface Node.  
All information needed to learn how to make VHDL code run in the LabVIEW software was 
gathered from National Instrument websites, no printed tutorials were found.  As before, it is the 
author’s opinion that time could have been saved if a basic, entry-level tutorial specifically for 
this board was available in one document.  Approximately 5 hours were spent in the generation 
of the code itself.  The time spent measuring the four tasks took about 2 hours, which was done 
by logging all hours spent.  Finally, the postmortem, where the data were collected and analyzed, 
took 8 hours.  
 
F.5.3.1.2  Functionality. 
 
In terms of functionality, the tester rated the following:  tutorial—2, user manuals—2.5, 
readability—4.5, and flexibility—4.  As noted before, it is the author’s opinion that time could 
have been saved if a basic, entry-level tutorial (specifically for this board) was available in one 
document or on one website.  The websites are high quality, providing detailed information in a 
logical and useful manner; however, information had to be found at several different websites to 
make Hello World work.  The disjointed nature of gathering information from multiple websites 
hindered learning how to use the LabVIEW HDL Interface Node.  The model development and 
code generation functionality was rated 2.5.  Functionality seemed to be slightly lower because 
information was not readily available.  
 
F.5.3.1.3  Efficiency. 
 
In terms of efficiency, the code generated 941 KB of memory. 
 
F.5.3.2  Up-Down Counter. 
 
The next step was to perform the four tasks again, this time using LabVIEW to develop a simple 
up-down counter.  Again, the VHDL program used for the previous evaluations was modified for 
use in LabVIEW.  Using the HDL Interface Node Properties tab, the following parameters were 
entered, as shown in figure F-13.  
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Figure F-13.  Up-Down Counter HDL Interface Node Properties Tab 
 
The code for the up-down counter is shown in figure F-14.  As in the Hello World example, 
enable_in and enable_out must be handled and are added to the VHDL code following the “Q <= 
count;” statement.  The block diagram for the up-down counter is shown in figure F-15, followed 
by the Up-Down Counter VI front panel in figure F-16. 
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Figure F-14.  Up-Down Counter HDL Interface Node Code Tab 
 

 
 

Figure F-15.  Up-Down Counter Block Diagram  
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Figure F-16.  Up-Down Counter Front Panel  
 
The following sections discuss the four tasks as those performed in the Hello World program and 
the results of measuring the criteria for the up-down counter. 
 
F.5.3.2.1  USABILITY. 
 
The overall usability for LabVIEW was measured at 60 hours.  The usability for project 
preparation and tool familiarization took almost 5 hours. As with the Hello World program, 
preparation time was less, since general knowledge about FPGAs and VHDL programming was 
gained in the previous evaluations.  The bulk of the time was spent modifying the Up-Down 
Counter VHDL code so it could be used in the HDL Interface Node.  As shown in figure F-13, 
three parameters were entered, Q, up_down, and asynch_clr.  In section F.9, Q is an eight-
element std_logic_vector, and up_down and asynch_clr are std_logic data types.  However, in 
figure F-14, note that the HDL Interface Node codes are up_down and “asynch_clr” as 
“std_logic_vector(0 downto 0)”.  After searching various websites, it was determined that 
statements in the original VHDL code had to be modified in order to compile.  First, “if 
(asynch_clr='0') then” had to be changed to “if (asynch_clr=“0”) then” and “if (up_down='1') 
then” had to be changed to “if (up_down=“1”) then”.  This is because double quotes (“ ”) are 
used for vectors and single quotes (‘ ’) are used for the one-digit scalar sdt_logic.  To date, the 
author has not uncovered the reason that one-digit scalars are coded as std_logic_vector(0 
downto 0) in LabVIEW.  These are simple changes, but the opinion was that too much time was 
spent searching various websites trying to resolve this problem when an explanation from 
National Instruments as to what needed to be modified in standard VHDL code should have been 
given.  National Instruments should list all changes that developers need to make to their existing 
VHDL code to have that code run properly in the HDL Interface Node. 
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The time spent measuring the four tasks took about 2 hours, which was done by logging all hours 
spent. Finally, the postmortem, where the data were collected and analyzed, took 8 hours. 
 
F.5.3.2.2  Functionality. 
 
In terms of functionality, the tester rated the following:  tutorial—2, user manuals—2.5, 
readability—4.5, and flexibility—4.  Since the same documentation is used, the measured 
functionality was the same.  Model development and code generation functionality was rated 3.5.  
Model development and code generation functionality was rated higher for the up-down counter 
because of the experience gained in the Hello World program and the user’s confidence in using 
Xilinx ISE. 
 
F.5.3.2.3  Efficiency. 
 
In terms of efficiency, the code generated 941 KB of memory.  
 
F.6. DISCUSSION OF RESULTS AND COMPARISON. 
 
Four experiments with the Quartus II and Xilinx tools were conducted for the Hello World and 
up-down counter, as explained in section F.4.  The criteria and methodology, as discussed in 
section F.3, were applied. 

 
F.6.1  FUNCTIONALITY. 

 
Figure F-17 shows the cumulative results of measuring functionality of all the tools:  the Altera 
Quartus, Xilinx ISE, and NI LabVIEW FPGA module. 
 

 

Figure F-17. Comparison of Functionality Measured for all Tools 
 
It appears that all the tools have poor tutorials, and there is a difference between the tutorials for 
all the systems.  The opinion was that Xilinx provided better tutorials than Altera.  The 
documentation provided by Altera was comprehensive and complete, but for the novice user, 
there seemed to be no clear starting point at which to begin.  As an example, time had to be spent 
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searching for the necessary pin assignments in order to compile the VHDL code for the Quartus 
II board.  Less time was required for the Xilinx board since the pin assignments were printed 
directly on the board.  Thus, time was saved learning how to compile VHDL code for the Xilinx 
ISE regardless of general knowledge and experience. LabVIEW was judged the least favorable in 
terms of functionality.  This was mainly due to the issues regarding the HDL Interface Node, as 
described in section F.5.3.1. 
 
F.6.2  USABILITY. 
 
Figure F-18 shows the comparison of usability between Altera Quartus II, Xilinx ISE, and NI 
LabVIEW for the Hello World program. 
 

 
Figure F-18.  Comparison of Usability Measured for all Tools 

 
Measurement and postmortem were essentially the same, which is consistent with the fact that 
these activities are conducted regardless of the platform used.  The big difference is in 
preparation.  More time was spent in preparation with Quartus II than with the Xilinx ISE. The 
least amount of preparation time was spent with LabVIEW.  The fact that the author, being new 
to development tools for FPGAs, began this research with Quartus II would account for some of 
this difference.  If this study began with the Xilinx ISE, these numbers would obviously change, 
and the usability of the Quartus II would be higher (i.e., less hours).  Also, since the author had 
more experience and knowledge of FPGAs and their development tools when measuring the 
usability of the Xilinx ISE compared to the Quartus II, this would show how experience plays a 
factor in how usability is perceived.  But functionality also played a role.  
 
Figure F-19 compares the usability of the up-down counter for all tools.  The time preparation for 
Quartus II, Xilinx ISE, and LabVIEW was essentially the same.  The difference here was during 
code development.  Since the code for the up-down counter was written during the learning 
phase for the Quartus II software, more time was spent writing the VHDL code and debugging it.  
Again, LabVIEW was judged least usable due to documentation.  
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Figure F-19. Comparison of Usability Measured for all Tools  

 
Figures F-20 through F-22 compare the usability between Hello World and the up-down counter 
for all tools.  The time spent preparing Hello World with the tools is significantly higher than the 
of up-down counter, but that may not be significant, because Hello World was the first program 
developed with each tool so the learning curve is included in preparation time.  The code 
development time for up-down counter is slightly higher than for Hello World.  This is because 
the up-down counter’s code is more complicated. 
 

 
 

Figure F-20.  Usability Measured for Quartus II (in hours) 
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Figure F-21.  Usability Measured for Xilinx ISE (in hours) 
 

 

Figure F-22.  Usability Measured for LabVIEW (in hours) 
 

F.7  SUMMARY. 
 
The objective of this research was to measure the usefulness of the Altera Quartus II Design 
Suite, Xilinx ISE Design Suite, and National Instruments LabVIEW 8.5 FPGA module hardware 
design tools.  There were several problems encountered as to what constitutes tool quality.  Tool 
quality itself is a subjective quality, with the quality of the same tool being judged differently by 
different users.  The problem of establishing the quality of a tool then becomes how to define 
what features constitute “quality” and how to measure them, while at the same time trying to 
ensure that personal bias does not play a dominant role.  Users have different experiences and a 
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different knowledge base that they bring.  User’s views on the quality of a particular tool are 
important and must play a role.  The challenge is to balance the user’s opinions with quantitative 
data. If too much emphasis is placed on subjective opinion, then measuring the quality of 
hardware design tools becomes an exercise in product review.  To have a meaningful measure of 
tool quality, it is important that a large sample of users with diverse experience be used.   
 
At the beginning of this study, the authors had little experience using design tools for FPGAs.  
When considering the usability measurements, the fact that the authors gained knowledge and 
experience as the study progressed must be taken into consideration.  The first tool to be studied 
was the Altera Quartus II.  It was with this tool that the authors learned about FPGAs and VHDL. 
Therefore, it would not be fair to compare the usability of the Quartus II to the Xilinx ISE and the 
LabVIEW FPGA module, within the context of this study, since most of the preparation and code 
development was done for the Quartus II.  For example, the time spent learning to code, in 
VHDL, the up-down counter was done during the Quartus II phase of this study.  For the Xilinx 
ISE, the code used for the up-down counter was exactly the same.  This is reflected in the 
usability measurements where more hours were spent for the Quartus II than the Xilinx ISE.  The 
code had to be modified in order to work within the constraints of HDL Interface Node for 
LabVIEW FPGA module.  The changes needed were not that difficult to make. The difficulty 
came as a result of the user having to search how to make those changes.  For all the tools there 
seemed to be a direct correlation between usability and documentation.  It is felt from these 
experiments that better, more accessible documentation of the tools by the manufactures would 
lead to better usability ratings for these tools. 
 
These tools are used to assist the designer to upload their design to an FPGA.  They are very 
efficient in producing FPGA circuits that satisfy all the design rules of the target technology, 
such as hold times, maximum fan-out, and connection rules.  They provide many ways that the 
designer can simulate his circuit to verify the design’s behavior is logically correct at several 
levels of abstraction.  But the design tools do not guarantee the logical correctness of the design 
itself.  Designers usually have a limited amount of time to run simulations of their design to 
verify correctness. It is always possible that flaws remain in the design after testing.  This is one 
of the reasons for the popularity of FPGAs.  If bugs are found after a design is in the field, it is 
usually a simple matter of having a technician upload the corrected design to the FPGAs already 
deployed rather than replace an entire board.  
 
This study was not meant to be the definitive study of tool quality of the Quartus II, Xilinx ISE, 
and LabVIEW FPGA hardware design tools.  What was attempted was is to provide a framework 
for evaluating the quality of hardware design tools.  The term “quality” is abstract in its nature.  
This study attempted to quantify quality so it could be measured. To truly measure quality, a 
larger group of developers with various degrees of knowledge and experience would be needed 
so a true picture of the tool’s usefulness will emerge.  
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F.8  HELLO WORLD CODE. 
 
-- 
-- hello_world.vhd 
-- 
-- The ’Hello World’ example for FPGA programming. 
-- 
-- Author: Martin Schoeberl (martin@jopdesign.com) 
-- 
-- 2006-08-04 created 
-- 
library ieee; 
use ieee.std_logic_1164.all; 
use ieee.numeric_std.all; 
 
entity hello_world is 
 
port ( 
        clk : in std_logic; 
        led : out std_logic 
); 
end hello_world; 
 
architecture rtl of hello_world is 
 
         constant CLK_FREQ : integer := 20000000; 
         constant BLINK_FREQ : integer := 1; 
         constant CNT_MAX : integer := CLK_FREQ/BLINK_FREQ/2-1; 
 
         signal cnt : unsigned(24 downto 0); 
         signal blink : std_logic; 
 
begin 
         process(clk) 
         begin 
 
                   if rising_edge(clk) then 
                        if cnt=CNT_MAX then 
                              cnt <= (others => ’0’);  
                               blink <= not blink; 
                         else 
                               cnt <= cnt + 1; 
                         end if; 
                   end if; 
 
          end process; 
 
          led <= blink; 
 
end rtl; 
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F.9  UP_DOWN_COUNTER CODE. 
 
-- up_down_counter.vhd 
-- Joseph Voelmle  
-- 12-22-2008 created 
-- 
library ieee ; 
use ieee.std_logic_1164.all ; 
use ieee.std_logic_arith.all ; 
use ieee.std_logic_unsigned.all; 
 
entity up_down_counter is 
 
port (clk, up_down, asynch_clr: in std_logic; 
 Q: out std_logic_vector(7 downto 0) 
); 
end up_down_counter; 
 
architecture counter_behavior of up_down_counter is 
 
-- the following lines are used as a delay to the counter so that 
-- the output of the counter could be visible to the user  
    constant CLK_FREQ : integer := 50000000; -- use PIN_N2 for 50MHz clock    
    constant BLINK_FREQ : integer := 5; 
    constant CNT_MAX : integer := CLK_FREQ/BLINK_FREQ; 
 
    signal count: std_logic_vector(7 downto 0); 
    signal cnt : unsigned(24 downto 0); 
 
 
    begin -- count is an internal signal to this process 
 process(clk, asynch_clr) -- sensitivity list 
 begin 
     if (asynch_clr='0') then -- asynch_clr is Pushbutton[0] 
     count <= "00000000"; 
  elsif (rising_edge(clk)) then  
  -- after so many clocks, increment/decrement count 
     if cnt=CNT_MAX then  
               cnt <= (others => '0');  
     -- up_down is Toggle Switch[0], up position count up,  
     -- down count down  
         if (up_down='1') then  
      count <= count + "00000001"; 
   else  
      count <= count - "00000001"; 
   end if; 
      else 
                        cnt <= cnt + 1; 
      end if; 
      end if; 
 end process; 
 Q <= count; 
end architecture counter_behavior; 
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