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EXECUTIVE SUMMARY 

 
The purpose of this research is to provide safety input to the FAA for developing policy and 
guidance for the verification coverage analysis of complex airborne electronic hardware, such as 
field programmable gate arrays, programmable logic devices, and application specific integrated 
circuits. 
 
RTCA/DO-254 [1] defines the verification process used to assure that the designed hardware 
meets the requirements and identifies additional verification processes that should be performed 
for design assurance level A and B systems. While RTCA/DO-254 identifies potential 
verification methods for Level A and B systems, it does not define any criteria to determine 
when the verification process is sufficient or complete. This research investigates advanced 
verification coverage methods suitable for safety-critical AEH, identifies applicable coverage 
metrics, and proposes verification methods and coverage targets for design assurance level A, B, 
and C level hardware. In addition, the need for the qualification of verification tools and the use 
of commercial off-the-shelf intellectual property are investigated for potential safety issues. It 
should be noted that, while a wide variety of COTS solutions exist for aviation systems, this 
research is focused on AEH, which is certified using DO-254.  
 
RTCA/DO-254 requires that all of the functional requirements are verified. This verification 
process is called requirements based verification. The effectiveness of requirements based 
verification is limited by the quality and precision of the requirements. Automated tools, such as 
constrained random verification, can be used to help identify vague or weak requirements early 
in the design and verification process. Although the verification process can identify weaknesses 
in the hardware requirements, the verification process must be independent of the requirements 
specification process. When using requirements based verification, how much testing and 
analysis is required to claim that a functional requirement been verified?  This research suggests 
defining a verification plan that exercises the device for all possible input signals and all possible 
device configurations is required and that multiple tests should be run for each combination. 
 
To fully verify hardware, human biases in interpreting the requirements must be eliminated. The 
constrained random verification process randomly generates conditions that are allowed by the 
requirements, and often generates unusual combinations that can cause the hardware to fail the 
requirements. The constraints used by the constrained random verification process can be 
adjusted or tuned to fill in the gaps in the coverage metrics. The verification process needs to 
incorporate both human written directed test and random testing.    
 
Assertions are used to document the correct operation of signals and to also document the 
designer’s intent for how the register transfer language code should be used. Assertions at the 
interfaces of modules assure that all of the module’s inputs and outputs meet all of the 
requirements and also meet the designer’s assumptions. Knowing the designer’s assumptions 
helps identify problems when the hardware is integrated into the overall system. Assertions are 
especially useful with commercial off-the-shelf intellectual property, assuring that the 
intellectual property meets the requirements without requiring detailed knowledge of what is 
contained within the intellectual property.  The verification of commercial off-the-shelf 
intellectual property is very similar to the verification process used in model-based design. 
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In parallel to the simulation based verification, formal methods should be also be utilized. This 
report also recommends that assertions are used in all hardware designs and formal verification 
of the assertions should be performed. Formal techniques such as sequential equivalence 
checking and model checking should be applied on hardware that is suitable for these analysis 
techniques. The results of these formal techniques should be independently verified with 
simulation. 
 
Three coverage metrics are used to assess the completion of the verification process: functional 
coverage, code coverage, and assertion coverage. When all three of these coverage metrics 
achieve their targets, verification is determined to be complete. This research proposes that the 
verification processes used for design assurance level A, B, and C hardware are quite similar. 
The difference between level C and level B is the coverage targets for level C will be lower. 
Level A takes level B and adds additional robustness testing including negative compliance 
testing.  
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1.  INTRODUCTION. 

Modern aviation systems, both airborne (e.g. avionics, engine control) and ground (e.g. radar, air 
traffic control consoles), exemplify safety and mission critical dependable systems. These 
systems continue to become more complex and they often operate in uncertain environments. In 
addition to being correct, the hardware needs to be robust handling any unusual conditions 
allowed by the requirements as well as gracefully recovering if conditions outside of the 
requirements occur.    
 
This report, produced under a contract sponsored by the Federal Aviation Administration (FAA), 
describes research focusing on the verification process and verification tools used for airborne 
electronic hardware (AEH) devices such as programmable logic devices (PLD) and application 
specific integrated circuits (ASICs). The scope of this research has been limited to the 
verification process and focuses on both simulation based and formal verification processes and 
coverage metrics. This research does not address such as requirements tracing, bug tracking and 
version management. 
 

OBJECTIVES. 1.1  
 
The main objective of this study is to provide the sponsor, the FAA, input on what verification 
process should be used and what criteria to use to determine completeness of the verification 
process for DAL A, B, and C hardware.  The following questions will be addressed: 
 

1. What approaches are being used to demonstrate sufficiency of verification coverage of 
CEH? That is, how can it be shown that the embedded logic on the chip has been fully 
exercised and tested? 

2. What are appropriate verification criteria applicable to CEH levels A, B, and C? 
3. What are the safety issues with current and emerging industry practices and approaches 

to verification coverage analysis to CEH?  How can these safety issues be mitigated? 
4. What verification coverage approaches and criteria applicable to CEH will provide a 

level of confidence similar to DO-178B requirements-based test coverage and structural 
coverage analysis of software?  

5. What are the obstacles that Industry is currently experiencing in their efforts to 
demonstrate verification coverage of CEH (e.g., lack of mature tools, complexity of the 
CEH, embedded COTS Intellectual Properties (IP) within application specific CEH 
devices, etc.)?  What is Industry doing to overcome these obstacles? 

 
RESEARCH METHOD. 1.2  

 
As specified by the statement of work this research will have four major components.  
 

1. Conduct literature search and industry survey, as appropriate, and document reference 
resources for the overall effort to include both phases. 

2. Identify current industry practices for verification coverage analysis of CEH. 
3. Identify known and emerging obstacles, problems, or issues that industry faces when 

attempting to perform verification coverage analysis of CEH, as well as industry’s 
recommendations for addressing these obstacles. 
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4. Identify potential approaches and criteria to demonstrate sufficiency of verification 
coverage analysis of CEH levels A, B, and C and provide a model checking similar to 
DO-178B requirements-based test coverage and structural coverage analysis of software.  

 
AUDIENCE. 1.3  

 
The report is primarily intended for use by certification authorities in the development of policy 
and guidance.  The designated engineering representatives (DER) and aircraft certification office 
(ACO) engineers directly involved in the certification process are also part of the target 
audience. The research outcome will likely also be of interest to program and procurement 
managers, to project leaders, to system, hardware, and software engineers, and to all others 
directly involved in DO-254 compliant AEH projects. Figure 1 identifies the stakeholders 
involved in the presented investigation. It must be noted that several industry representatives 
shared their valuable comments and opinions with the research team through e-mails, phone 
interviews, and personal contacts; their names cannot be listed for reasons of confidentiality.  
 

 
Figure 1. AEH Stakeholders.  

 
 

 
 

DOCUMENT STRUCTURE. 1.4  
 
This report consists of eight main sections. 
 

• Section 1 provides introductory material, including the purpose and scope, objective, and 
audience, 
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• Section 2 describes verification practices used for complex electronic hardware. Major 
verification tools and techniques are identified and multiple coverage metrics are 
discussed.  

• Section 3 describes the results of the literature search and industry survey. 
• Section 4 examines safety issues and problems in the verification process 
• Section 5 proposes verification processes and coverage metrics for DAL A, B, and C 

hardware. 
• Section 6 presents the recommendations and identifies areas to be addressed in the 

remaining work.  
• Section 7 presents the conclusions of the research. 
• Section 8 provides the references. 

 
There are three appendices accompanying the body of the report. 
  

• Appendix A contains the results of the industry survey 
• Appendix B contains the results of the ambiguous requirements and COTS IP  test cases 
• Appendix C contains the VHDL code used for the test case implementations.   

 
 

2.  IDENTIFY CURRENT INDUSTRY PRACTICES FOR VERIFICATION COVERAGE 
ANALYSIS OF CEH 

RTCA/DO-254 details the verification processes to be used in the certification of complex 
electronic hardware in the aviation industry. Since this document was written in 2000, airborne 
electronic hardware designs that are verified using the RTCA/ DO-254 process have been 
constantly increasing in complexity and integration.  Although the safety record of the 
RTCA/DO-254 process is very good, the increase in hardware complexity dramatically increases 
the risk of an error slipping through the verification process. The RTCA/DO-254 process is 
known for describing what needs to be done but providing limited guidance on how it should be 
done. This section focuses on how the verification process is done in industry and begins by 
surveying the relevant verification processes and examining how they are applied. This material 
is based on the results of the literature search and industry survey which is summarized in section 
3. 
 
Although the goals of this research focus on the use of coverage metrics to determine when the 
verification process is complete, the entire verification process must be examined as a whole. 
Coverage metrics should only be used to assess the completion of the verification process.  If 
coverage metrics become the driver of the verification process, engineers may write tests that 
improve the coverage metrics but do not improve the verification of the hardware. Unfortunately, 
100% coverage on any coverage metric cannot assure that the design is correct.  
 
In 2006, Gluska [2] reported that only 4% of all of the bugs on a major microprocessor design 
were found using code coverage metrics. Gluska noted that there were also bugs that were caught 
due to indirect reasons such as improvements to the verification process that were required to use 
the code coverage metrics. Including both direct and indirect components, the total number of 
bugs found by code coverage metrics was 8%. It must be recognized that code coverage metrics 
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are most useful for identifying obscure design errors. The majority of design errors will be found 
using other methods, such as requirements based and functional verification.  
 

VERIFICATION PROCESS OVERVIEW 2.1  
 
In addition to the author’s industry survey summarized in section 3, information from much 
larger surveys of the verification process has been published by Synopsys [3], Aldec [4] and the 
National Microelectronics Institute of the United Kingdom [5]. Including the verification process 
descriptions from published sources [2] [6] [7] leads to the following very broad conclusions: 
  

• Semiconductor companies building diverse products utilize a similar verification flow. 
o There are company-to-company variations in the rigor of any given process. 
o Formal methods are used by roughly half of the companies 

• Aviation related companies follow the verification process specified by RTCA/DO-254 
with some additional verification work performed but usually not claimed for 
certification credit. 

• The verification flow used by the semiconductor industry contains elements that are not 
required in the RTCA/DO-254 verification flow.   

In a highly abstracted view, a typical RTCA/DO-254 verification flow for DAL A hardware 
consists of verifying that the designed hardware meets all of the requirements. This is referred to 
as requirements based verification (RBV). In addition to RBV analyses such as elemental 
analysis, formal analysis, and safety specific analysis are performed. Given the fact that there 
exist automated tools to assist with elemental analysis, this is the most common method of 
additional verification. It is usually performed as a structural coverage analysis. In many 
respects, this process is a parallel to RTCA/DO-178’s [8] verification requirement for software. 
 
Focusing on just the verification process, the RTCA/DO-254 verification flow for a DAL A 
design can be summarized as follows: 
 

• Requirements based verification – Use directed test vectors to verify all requirements. 
• Elemental analysis – Several metrics may be used but statement coverage best matches 

the requirements of elemental analysis. 
• Formal analysis is suggested for hardware with concurrency or fault tolerance. 
• Robustness testing is added to assure the device functions correctly in all legal 

conditions.  

 The semiconductor industry verification flow for any hardware (rarely safety-critical) can be 
summarized as: 
 

• Requirements based verification – Use directed test vectors to verify all of the 
requirements. The requirements are verified for all input types and device configurations. 

• Assertions are used as a debug tool and also as a coverage metric 
• Multiple coverage metrics are used including: 
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o Statement coverage 
o Branch coverage 
o Expression coverage 
o Path coverage 
o Finite State Machine (FSM)  coverage 
o Toggle coverage 
o Assertion coverage  
o Functional coverage 

• Constrained random verification (CRV) is used to identify corner cases and problems in 
the manufacturer’s requirements. (Corner cases are conditions that push one or more 
input variables to their minimum or maximum values to explore a “corner” in the multi-
dimensional test space.)  

• Formal Methods – typically targets interfaces, control and data hardware and other 
hardware that is difficult to verify with simulation. 

• Robustness testing is used to assure the device functions correctly in all legal conditions.  
• Additional robustness testing is performed to assure that the device handles illegal 

conditions gracefully.  Note that how a system handles illegal conditions is often not 
specified.  

• A public verification methodology is used. The methodology provides standard 
verification tools and constructs as well as standard verification code for known 
interfaces. Common methodologies are: 

o Verification Methodology Manual 
o Open Verification Methodology 
o Universal Verification Methodology 

These methodologies will be elaborated on and discussed in later in this section. 

From the above summaries, we can see that a non-safety critical hardware device in the 
semiconductor industry is verified using a process that contains tools and techniques beyond 
what is required to certify DAL A hardware within the aviation industry. This does not mean that 
aviation hardware is not verified as well as semiconductor parts. Aviation related companies can 
and do use verification processes similar to the semiconductor industry; however, these 
processes may not be used for verification credit in the certification process. For example, an in-
house developed verification tool may prove valuable in practice, but the tool may be unable to 
meet the tool qualification requirements necessary to use this tool for certification credit. 
 
The semiconductor industry’s verification process is driven by the fact that a mask set is needed 
to produce a part. With mask sets now costing over six million dollars, design errors can cost 
millions of dollars. There is a huge financial incentive to get the design correct on the first 
attempt. The high cost of mask sets drives semiconductor companies to use a comprehensive 
verification process. The semiconductor industry seeks to assure design correctness to avoid the 
financial costs of an error. The aviation industry strives to assure design correctness to provide 
the safest hardware possible. Although the motivations are different, the goal of assuring a 
correct design is common for the two industries. 
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The number of companies in the semiconductor industry dwarfs the number of companies in the 
aviation electronics industry. In addition, while design cycles can approach decades in the 
aviation industry, the semiconductor industry product design, verification, and test cycles are 
short; often less than 18 months from the start of a design to shipping the product. This means 
that in any year the semiconductor industry produces many times the number of designs 
produced by the aviation industry. If there are weaknesses in the verification tools or the 
verification process, the semiconductor industry will encounter them and find solutions first. The 
aviation industry can use verification trends from the semiconductor industry as a guide in 
determining the most effective verification processes.  
 
When a semiconductor company is considering using a new design tool or verification tool, the 
tool is typically evaluated using known problems from previous designs to see if the new tool 
solves the old problems. Because there is a large worldwide user base, most tools have a 
substantial service history that can be used to assess the correctness of the tool.  Unless a design 
requires absolute state of the art tools, most companies run a revision or more behind the latest 
tool releases to minimize the probability of a hidden tool bug. In the semiconductor verification 
process, the verification tools check the output of the design tools on a daily basis. This frequent 
cross checking of the design and verification tools provides confidence in the correctness of both 
tools.  
 

COVERAGE METRICS: 2.2  
 
The key to improving any process is the ability to measure it. For years verification engineers 
have used code coverage metrics as a measure the completeness of the verification effort. We 
will begin the discussion of coverage metrics by starting with structural coverage metrics 
identified in RTCA/DO-178 and mapping them to their hardware equivalents.  
 
RTCA/DO-178B [8] identifies three primary structural coverage metrics: 

• SC: Statement Coverage. Every statement in the program has been invoked or used at 
least once.    

• DC: Decision Coverage. Every entry and exit point in the program has been invoked 
at least once. In addition, each decision in the program has been taken on all possible 
outcomes (True/False) at least once.  

• MCDC: Modified Condition Decision Coverage. Every entry and exit point in the 
program has been invoked at least once. Every condition in a decision in the program 
has taken on all possible outcomes at least once. In addition, to avoid conditions 
masking one another, each condition is varied individually while holding all other 
conditions fixed. 

 
Hardware verification contains a set of metrics for measuring coverage. Metrics that measure 
coverage of the Register Transfer Language (RTL) code are referred to as code coverage metrics. 
The statement coverage metric used for hardware is equivalent to statement coverage in 
RTCA/DO-178. The branch coverage metric used for hardware is equivalent to decision 
coverage in RTCA/DO-178.  The expression coverage metric used in hardware is equivalent to 
MCDC in RTCA/DO-178.  
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Beyond the three metrics described above, additional metrics are often used to assess hardware 
verification completeness. [9] Path coverage is an abstract RTL metric that requires that every 
leg of the coverage flow graph be traversed at least once. There are also coverage metrics unique 
to a hardware implementation. Toggle coverage requires every signal in the device to toggle 
(transition from a 0 to 1 and from a 1 to 0) at least once during the testbench. Finite-state 
machine (FSM) coverage requires every reachable state of every finite-state machine to be 
reached and every transition between states to have been executed at least once.  The need for 
these additional metrics will be discussed when issues and safety issues are discussed. 
 
The RTCA/DO-254 document requires verification of all of the device requirements. This style 
of verification is known as requirements based verification or RBV. Hardware verification often 
includes a high-level metric called functional coverage which is a measure of how many of the 
device functions have been verified. It should be noted that device functions can be tested with 
differing levels of rigor.  For example, a statement coverage point of view of functional 
verification might declare a function tested if it is verified once. A MCDC point of view might 
require that all possible combinations of inputs and outputs have been tested. The same hardware 
testbench might achieve 100% functional coverage from a statement coverage point of view 
while achieving less than 10% coverage from a MCDC point of view.  In the semiconductor 
industry, functional coverage embraces a rigorous DC or MCDC interpretation of the 
requirements.  

 
Functional coverage and code coverage are complementary metrics with neither sufficient to 
assure design correctness. Functional coverage is concerned with testing the device performance 
at the transaction and function level while code coverage is concerned with the detailed 
implementation of the RTL. If a design neglects to implement a function, it is possible to have 
100% code coverage of the RTL but still have design functions that have not been exercised. On 
the other hand, it is possible to have 100% functional coverage but have poor code coverage 
because there are many ways that each function can be invoked and only a few of the 
possibilities may have been exercised. In this process, the verification effort is complete when 
the coverage goal has been achieved for both code coverage and functional coverage.  

 
Not every hardware design can use the same code coverage metrics. It makes no sense to apply 
FSM coverage to a design with no finite state machines. Conversely, in a predominantly 
synchronous design containing many finite-state machines, coverage based metrics like branch 
and expression coverage offer little insight into how well the testbench has verified the hardware. 
There are wide variations in design implementations and it is impossible to create an a-priori 
solution that will work for all designs.  

 
Complementary to the simulation based verification methods discussed above, formal 
verification techniques can be applied. Formal verification is often used to prove that certain 
properties (or requirements) are true for the hardware. Integrating formal techniques into the 
verification flow is difficult because assessing how well a block has been analyzed by a formal 
tool is difficult. Independent verification of the formal analysis results using simulations is 
typically performed.  
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In summary, statement coverage is the most commonly used coverage metric. It is simple to 
measure and is good at identifying unreachable code, but it is a weak indicator of verification 
completeness. Complete expression coverage is a good indicator of logical coverage 
completeness for many designs, but complex designs can generate enormous quantities of data 
that must be analyzed. Depending on the hardware architecture these designs may be suitable for 
verification via formal methods. Toggle coverage is heavily focused on the hardware 
implementation and should be applied late in the design process when the hardware is believed 
to be correct. Any signals that did not toggle indicate either an incomplete testbench or unused 
hardware. Designs containing finite state machines need to use the FSM coverage metric to 
assess the completeness of coverage. Finally functional testing based on the requirements is 
already required by RTCA/DO-254. The functional coverage metric allows the user to assess the 
completeness of the testbench with respect to the requirements.  
 

FUNCTIONAL COVERAGE 2.3  
 

Although functional coverage has been discussed as a coverage metric, defining the functional 
coverage points is a key element in writing the verification plan. Both which device functions 
need to be tested and under which conditions the functions are tested are written into the 
verification plan. The functional coverage metric is then used to measure how many of the 
identified device functions have been tested. [2] [10] [11] When defining the functional coverage 
points, all of the functional requirements must be addressed, as well as higher level completeness 
concerns such as: 
  

• Were all possible input stimuli variations injected?  
• Were all possible output conditions achieved?  
• Did all possible internal state transitions take place?  
• Did all the interesting events occur? 

  
The last question “Did all the interesting events occur?” is the hardest to quantify, and often the 
most important question of all. Which events are interesting is determined by the function and 
implementation of the device. Interesting events are often concurrent conditions with multiple 
input conditions occurring simultaneously. Other interesting events often concern timing 
variations and signals crossing clock domains. Another interesting event is looking at conditions 
that caused failures in previous designs. Although technically not a functional test, negative 
compliance tests are often added to assure not only design correctness but design robustness. 
Negative compliance testing concerns itself with how the hardware operates when conditions 
outside of the requirements are applied. 

 
For example, a packet based interface functional verification would address questions such as 
these: 
 

• Have all the packets lengths been used? 
• Have packets with good and bad cyclic redundancy check (CRC) results been used? 
• Were the buffers tested in the full and empty states? 
• Can the buffer full bug that we saw two years ago occur in this design? 
• Did the buffer status signals occur on the correct clock edges? 
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Consider a system where packets can be from one to ten bytes in length. The packets can be sent 
to two addresses and every packet has CRC data. Basic functional coverage would require 
packets with lengths one to ten bytes to be generated and sent to one of two addresses with good 
or bad CRC data. By using cross parameters, functional coverage can require that packets of all 
sizes containing both good and bad CRC data have been sent to both addresses. It should be 
noted that this type of hardware is well suited to formal analysis, and formal proofs of the 
hardware correctness should also be performed. 
  
Functional coverage is a superset of requirements based testing, since it considers not only that a 
requirement has been tested but also under what conditions that the requirement has been tested. 
[12] [13] The device state is also an important parameter. For example, the state the hardware is 
in when an interrupt occurs is critical to determining how the interrupt is handled   
 
To summarize, functional coverage is used to create a verification plan containing all possible 
input combinations and device configurations. When the hardware is suitable, formal methods 
should be used to prove the correctness of the hardware. Formal methods prove the correctness 
of hardware with respect to the rigorous mathematical properties and constraints that have been 
applied. However, the translation of human written requirements to the precise mathematical 
properties and constraints was not verified. Therefore, the outputs of formal methods must be 
independently assessed and sanity checked. All other hardware needs to be fully verified by 
simulation. For simulation based verification, a combination of randomly generated tests and 
directed tests are performed, and the completeness of the functional testing is assessed as the 
percentage of functional tests that are complete in the functional coverage plan. 
  

ASSERTIONS 2.4  
 
Assertions are comments that are put into the RTL code that are continuously checked during 
simulation. Most assertions are derived from the requirements such as “The Ready signal must 
go high 3 clock cycles after the Reset signal transitions from low to high.”  Without assertions, 
an error is only detected if it affects an output signal that is being monitored. When assertions are 
placed throughout the hierarchy of a system, errors can be observed even if they do not affect an 
output or other monitored signal.  
 
Most assertions are generated from the requirements as the RTL code is being written. The 
designers can also capture low-level indirect requirements and assumptions by writing 
appropriate assertions. These assertions document the designer’s intent on how the elements, 
interfaces, and control logic are intended to function.  A simple example would be an assertion 
that the maximum value of an internal counter is 10. Because this counter is not directly visible 
to the outside world, errors in the counter may occur without impacting a signal that is 
monitored. With assertions, if the counter ever exceeds ten in any simulation, the assertion will 
fire making this error visible.  If any assertion fires, either the hardware requirements or the 
designer’s intentions have been violated. Further analysis may reveal that the underlying cause 
was a hidden error, or it may turn out that the there is no issue and the assertion needs to be 
adjusted. In either case, the assertion was the key to identifying a potential error. 
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Assertions written by the designers tend to occur at low-level blocks in the system. Top-level 
assertions are often included in standard interface IP or are written by the verification engineers. 
Higher-level assertions are typically not focused on the RTL code within a block but with the 
interface and control of the block. Examples of high-level assertions would be assertions to 
assure that packets are correctly acknowledged and that signals that indicate when data is valid 
occur according to the specification.  
 
Writing assertions at the interfaces between RTL blocks is critical. [14] Both the sending and 
receiving blocks need to follow the same interface protocol. When using standard verification 
methodologies, common interface protocols have existing verification IP that can be used for this 
purpose. This IP not only contains assertions that assure correctness of the interface protocol 
implementation, they also contain scoreboards which allow the user to assess the completeness 
of the test suite.  
 
The ability of assertions to increase the observability of the design can also dramatically reduce 
debug time. Consider a case where formal analysis or hardware testing has identified a bug. In 
the hardware, a bug is only observable when the error reaches an output. The root cause of the 
error could have occurred long before the error propagates to an output. This means that 
debugging the errors detected in the hardware testing is often quite difficult and can lead to 
solutions that address the observed symptom but fail to address the underlying root cause.  When 
assertions are used, a simulation of the testbench will generate a list of violated assertions. The 
list provides a map of how the error was generated and how it propagated through the design. 
This allows all impacted modules to be identified and this dramatically speeds the debug process.  
Reducing the time spent debugging increases the time that can be spent searching for new bugs.  
 
While the original purpose of assertions was to document the requirements and the designer’s 
assumptions, assertions can also be used as a coverage metric. [15] Because assertions are 
written throughout all levels of the hierarchy, assertions provide information about how well the 
hardware has been tested at all levels. To use assertions as a coverage metric we need to assure 
that there is an adequate density of assertions throughout the design. There are tools that measure 
the logical distance of hardware from the nearest assertion and can highlight areas with limited 
coverage from assertions.  
 
The verification process can assess not only if an assertion has fired but also whether an assertion 
has ever been evaluated. Since assertions reflect both the requirements and the designer’s intent, 
an unevaluated assertion indicates a gap in the testbench coverage. An example might be an 
assertion indicating correct operation of a dual port memory under the condition of both ports 
simultaneously attempting to write to the same address. If this assertion has not been evaluated, 
then the testbench has not attempted to write to the same address on both ports at the same time. 
It may be possible that this system implementation can never write to both ports simultaneously, 
if so this should be noted in the documentation. However, if this condition can occur, a test case 
for this condition should be generated. Modern tools are automating both the process of writing 
assertions [16] and the use of assertions as a coverage metric. Assertions allow hard-to-reach and 
hard-to-verify logic or critical functionality to be identified as coverage goals. 
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CONSTRAINED RANDOM VERIFICATION 2.5  
 
Regardless of the metric, coverage metrics are a way to count interesting events that occur in the 
verification process. This list of events that occurred is compared to the list of events that were 
specified in the verification plan and a measure of verification completeness is produced.  
Although it is possible to hand code directed tests and achieve 100% code coverage, it is known 
that humans impose biases into their interpretations of the requirements. Ambiguous 
requirements may not be seen as ambiguous until after the design is complete. This means that 
legal but unanticipated combinations of the inputs and the system state can produce errors that 
slip through the testbench. To remove human biases from the verification process, constrained 
random stimulus generation is used. Constrained random verification tools assume that any 
condition that is not specifically disallowed by the requirements is valid and then randomly 
generates test cases using these rules. If a requirement is vague, the constrained random process 
can generate test conditions that highlight this problem. 
  
Consider a device that receives data in packets over a serial communication bus. The size of the 
packets depends on which device is sending the packet, as well as the type of data contained 
within the packet. In addition, the packets can arrive at arbitrary times. With a system of this 
complexity, even the designer with full knowledge of the hardware implementation may be 
unable to determine the worst case scenarios. The worst case for the hardware could be several 
small packets followed by a large packet, or it could be a large packet immediately following a 
packet with a transmission error.  The device operation depends on not only the input packet but 
when the input packet arrived and the history of previous packets. In the absence of the ability to 
identify all of the possible problem conditions, it is best to test as much of the input space as 
possible. Automated constrained random verification was developed to address this issue.   
 
Constrained random verification’s lack of human biases allows it to excel at finding unusual 
conditions that escape analysis by humans. For instance, most components have a reset signal 
and testing the functionality of this signal is a requirement. The author has seen hardware that 
functioned correctly when reset was applied, but malfunctioned if a reset was immediately 
followed by another reset. There was no reason in the normal operation of the hardware that 
multiple sequential resets could not occur. Although neither the designers nor the verification 
team identified this condition as being a problem, constrained random testing generated the 
condition that identified this failure.   
 
Because constrained random test case generation is automated, large numbers of test cases can 
easily be generated. This allows the device functions and RTL code to be exercised repeatedly in 
varying conditions. The randomness that is constrained random verification’s strength is also its 
Achilles heel. For most coverage metrics, constrained random verification rapidly achieves 80% 
coverage and then asymptotically approaches 100% as shown in figure 2 below. What is 
happening is the new randomly generated test cases begin to overlap previously tested 
conditions. The slow convergence of random conditions to complete coverage is well known and 
referred to as the “coupon collector problem” [17]. Consider a scenario where there are 1000 
possible test conditions. Initially every test case generated is unique and the coverage increases 
rapidly. However each new test case increases the probability that the next test case generated 
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will be the same as one already covered. For the example of 1000 possible test conditions, on 
average over 7000 cases will need to be generated to achieve 100% coverage.   

 
Figure 2. Coverage closure vs the number of tests generated.  

 
An improvement to constrained random testing is to add coverage based metrics to the test case 
generation process. The coverage metrics are then used to steer the parameter constraints to 
target untested conditions.  Modern tools such as Mentor Graphics InFact tool, can automate the 
parameter adjustment process to significantly speed the coverage closure process. 
  

FORMAL VERIFICATION 2.6  
 
Formal verification verifies the correctness of a design with respect to a specified behavior by 
checking whether the labeled state-transition graph that models the design satisfies the specified 
behavior. Formal methods offer the ability to prove that hardware is correct for all possible 
combinations of the inputs and system state. A key feature of formal verification is that if a 
design is found to violate a requirement, an example demonstrating how the violation can occur 
is produced. Examples of areas where formal verification has proven its value include proving 
the correctness of design interfaces, clock domain crossing circuits, and finite state machine 
implementations.  

Formal verification proves that a design property holds for every point of the search space. There 
are two major formal verification approaches. These approaches are sequential equivalence 
checking and model checking. These are complementary approaches, one checks that two 
models are equivalent and the other proves that certain properties are true for the model. 

2.6.1  Sequential Equivalence Checking  

Sequential equivalence checking is used to formally compare two models. These models can be 
quite different in structure. For instance, one model could be a reference model for the design, 
and the other the RTL implementation of the model.  The reference model could be written using 
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un-synthesizable behavioral RTL constructs or could even be written in a different language such 
as C.  

Sequential equivalence checking can prove that the two models are equivalent with respect to 
defined properties such as the behavior of the output signals. The analysis needs to be 
constrained to prevent degenerate cases from interfering with the proof. Simple constraints that 
might be needed could be a constraint that the clock signal will always toggle and that the enable 
signal must change. 

In hardware design there are often multiple ways to implement the same logical function. These 
implementations offer trade-offs that vary with respect to performance, power dissipation, and 
area. As the design nears completion it is common for the hardware implementation to shift in 
order to meet timing or power requirements. If the previous design was known to be logically 
correct, it is much faster to prove that the new implementation is equivalent to the old 
implementation using sequential equivalence checking than it is to prove that the new design is 
logically correct.  

Common models that are compared include: 

• A behavioral model vs. the RTL implementation 
• The RTL implementation vs. the pre-routing netlist  
• The pre-routing netlist vs. the post routing netlist 
• The post routing netlist vs. a new revision of the post routing netlist 

Equivalence checking methods can prove that two models are equivalent, but the methods 
provide no guidance towards whether the model is correct. Model checking techniques are used 
to prove the correctness of a model. 

2.6.2  Model Checking 

Formal verification tools can be used to verify the correct operation of many control and 
datapath blocks by proving that the designs meet a set of formally defined properties. These tools 
are known as model checkers and perform an exhaustive state-space search to prove that the 
properties are true under all conditions. They explore the state space for all possible corner cases 
and provide examples that demonstrate how a violation can occur. The output of a model checker 
is one of three possible results: 

1. The properties have been proven to hold.  
2. There is a known failure and a counterexample is given. 
3. The system could neither prove nor disprove the properties. 

The third result is problematic since it provides no information.  
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2.6.3  When Are Formal Methods Effective? 

Formal methods are best suited to more abstract high-level models. As the complexity of the 
model increases, the formal methods lose their ability to exhaustively search the state space. The 
primary limitation of these models is the amount of memory available to the processor and the 
amount of CPU time that can be devoted to the analysis. 

DO-254 Appendix B 3.3.3 states “Formal methods may be applied to the whole design or they 
may be targeted to specific components.” The document goes on to suggest “Protocols dealing 
with complex concurrent communication and hardware implementing fault-tolerant functions 
may be effectively analyzed with formal methods.”  

In the current state of the art it is rare that formal methods are successfully applied to the whole 
design. It may be possible to apply formal methods to a high-level model of the design, but low-
level hardware is usually analyzed in smaller blocks.  

Concurrent hardware is characterized by hardware where multiple inputs streams of data arrive 
at arbitrary times and can collide with each other. An example of this type of hardware would be 
an Ethernet router. The input data arrives at arbitrary times and is transferred to the correct 
output without modification. This type of hardware is difficult to analyze in simulation due to the 
arbitrary data timings, but is well suited to formal verification.  

As opposed to concurrent hardware, sequential hardware manipulates the input data through a 
sequence of hardware operations. Because nearly every register in the device is involved in 
processing the data, the state space grows exponentially large. Sequential hardware such a digital 
signal processing circuit is usually best analyzed via simulation and proves difficult to verify 
using formal methods.  

Fault-tolerant hardware requires a hardware failure to occur in order to test if fault tolerance is 
operating correctly. This makes it difficult/impossible to validate fault-tolerant hardware in the 
final system and it is also difficult to verify in simulation.  Proving the correctness of the 
hardware using formal methods is an excellent approach to this problem.  

Control circuits that do not directly modify data but control the operation of the hardware are 
well suited to formal verification. Examples of control circuits are memory controllers and 
interrupt controllers. 

Data transport circuits that move data without performing mathematical operations on the data 
are also suited to formal verification. Data transformation circuits that perform mathematical 
operations on the data are less suited to formal verification.  

Foster’s DVCon paper in 2006 [18] provides guidance on the types of hardware that is suitable to 
for analysis with formal methods. Examples of hardware that are suitable for formal verification 
include: 

• I/O Interfaces especially standard interfaces 
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• Arbiters  
• Bus bridges 
• Power management units 
• DMA controllers 
• Host bus interface units 
• Scheduler controllers 
• Clock gating 
• Interrupt controllers 
• Memory controller 

Examples of hardware that is not well suited for formal verification [18]: 

• Floating point units 
• Graphics processors 
• Convolution unit in a signal processor 
• MPEG decoders 

2.6.4  Formal Verification in Practice 

Formal methods can be applied at varying levels of intensity depending on the experience of the 
verification team. The method requiring the least expertise in formal methods is proving that the 
assertions are never violated [19]. Assuming the design is instrumented with well written 
assertions, most verification tools with formal capabilities automatically attempt to prove all of 
the assertions. Because most assertions have a very local scope, they are well suited to formal 
analysis. Proving assertions may require the application of constraints for the proofs to complete.  
 
Another common use of formal verification is the formal analysis of the interfaces. This focuses 
on the interface requirements and not on the data passing through the interface. Interface 
verification is usually done at a high level of abstraction and is well suited to formal analysis. For 
many common commercial interfaces the verification tool vendor can provide the properties and 
constraints needed to perform this formal analysis.   
 
The most common use of formal verification tools is the use of model checking tools to prove 
properties in support of bug hunting. Rather than attempting to prove that hardware is correct for 
all properties at all times, this technique attempts to prove limited properties under restricted 
conditions. These limitations can include limiting the depth of the state-space search or using 
simulation to reach a particular state and then exploring the state space from there using formal 
methods. Any bugs that are identified are real and this technique offers additional assurance that 
the hardware is correct, but it does not prove that the hardware is correct.  
 
The properties to be proven using formal methods are chosen based on a ranking given in the 
verification plan. Properties that would have a high rank for formal verification might include: 
 

• A previous project had a bug in this area. 
• The property is difficult to cover using simulation. 
• The hardware is conducive to proving this type of property i.e. control hardware 
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It should be noted that properly constraining the model for proving properties using model 
checking can require knowledge that can only be provided by the designer and can be impossible 
of COTS IP is used. The exchange of information needed to constrain the model can require a 
communication path between the design and verification teams that must be structured to limit 
the possible loss of independence between the two efforts.  
 
For applications where the hardware is suitable for formal verification and sufficient expertise 
with formal verification exists, it is possible to do a full proof of the correctness of the hardware. 
This ultimate goal of formal verification has proven difficult to achieve in practice.  
 
 

VERIFICATION PROCESS DETAILS 2.7  
 
The verification process begins with defining the verification plan. The planning process begins 
by determining the goals of the verification process. These goals will include verification of all 
of the requirements as well as coverage targets for multiple metrics. Given that it is not possible 
to fully verify a complex design, these goals are prioritized in terms of their impact on system 
safety, whether the relevant hardware is proven or a new design, the  complexity of the difficulty 
hardware, and many more criteria.   
 
A typical verification process is shown in figure 3. The verification methods are divided between 
methods based on simulations of testbenches and formal methods.  Simulation based verification 
includes directed tests coming directly from the requirements, random tests to cover corner cases 
and assertions to assure the design meets the designer’s intent. Formal verification methods 
include sequential equivalence checking to prove model equivalance and model checking to 
prove properites.  
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Figure 3. A typical hardware verification flow. 

 
The verification goals identified in the verification plan are analyzed to determine which 
verification method will best achieve this goal. The distinction between verification by 
simulation and formal methods is significant.  The tools and expertise required to perform formal 
analysis are quite distinct from those used for simulation and these tasks will be assigned to 
separate teams.  The verification plan is not fixed, If a goal assigned to formal verification proves 
unsuited to formal techniques, it can be covered with simulation. Conversely, if simulation is 
finding it difficult to achieve its coverage metrics, a goal may be added to the formal verification 
plan.  
 
Assertions are used in both the simulation based and the formal method based verification flows. 
The assertions may come from high level requirements and are written by the verification team  
or they can also be written by the designers to document low-level design assumptions.   
 
Common industry practice for the simulation based verification process and verification 
coverage analysis is shown in figure 4 on the following page. The figure comes from a recent 
Cadence Design Systems webinar on state of the art verification processes. Although not a major 
supplier of tools to the aviation industry, Cadence is the world’s largest design and verification 
tool supplier.  
 
To begin, examine the arrows at the top of the figure. The first thing to notice is that the 
testbench development begins at the same time as the RTL design. Also note the verification 
testbench development moves up through the hierarchy in parallel with the RTL development. 
There are several major events on the timeline. “Feature finished” means the RTL designers 
believe the block is complete. Bug rate leveled indicates the rate of bug discovery is 
asymptotically approaching 0. 
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Figure 4. Cadence Inc’s recommended verification process. 

 
Notice that unlike RTCA/DO-254 where there are RBV and code coverage requirements, there 
are three distinct coverage regimes identified: code coverage, assertion coverage, and functional 
coverage. Before the verification team has written the testbench, verification is still occurring 
with the tests that the designer writes for his purposes. Since the designer’s testbenches lack 
independence, they are not counted toward verification completion and are shown within a 
dotted line labeled “smoke tests”. Once the testbench is written, functional verification begins 
and constrained random testing is begun ambiguous or poorly written requirements are often 
identified as part of the verification process. 
 
Once the RTL designer believes a feature is complete, code coverage metrics are run. In this 
case, block coverage (which is another name for statement coverage), FSM and expression 
coverage are used. As the major features are completed and meet the coverage goals, final 
integration begins. At this time the design is mature enough to apply toggle coverage. Any holes 
in the toggle coverage or the functional coverage are addressed with directed tests.  
 
Determining when the verification process is complete is determined by the coverage metric 
completeness.  Ideally a part would require 100% coverage of the code coverage, assertion 
coverage and functional coverage metrics. Other coverage metrics are monitored but may or may 
not be used to determine verification completeness. Because time to market is critical in the 
semiconductor industry, parts may be shipped with less than 100% coverage on all metrics. A 
typical verification completeness criteria would be 95-97% code and assertion coverage and as 
much functional coverage as the schedule will allow.   
 
Verification engineers and managers were asked in a survey and in personal interviews about 
how their verification flow would differ between a non-safety critical part and a safety-critical 
part. The overwhelming response was that the two verification processes would be identical 
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differing only in the coverage targets and the rigor applied to the robustness testing. A non-safety 
critical part could ship with less than 100% coverage. This was viewed as a business decision 
where the risk of a design error requiring a new mask set is balanced against the cost of being 
late to the market. A safety critical part would target 100% coverage on all metrics used. It 
should be noted that 100% coverage in any of the metrics can be impossible to achieve in certain 
implementations. In this case an analysis explaining why 100% coverage cannot be achieved is 
required.  
 
 

ROBUSTNESS TESTING 2.8  
 
Robustness testing has two major thrusts. The first is to assure that the product operates correctly 
under all legal operating conditions. This includes voltage and temperature variations as well as 
variations in other operational parameters such as clock speed and throughput. The second thrust 
is often referred to as negative compliance verification. This thrust concerns itself with how the 
system operates when subjected to conditions that are outside of the requirements. Most protocol 
documents are very precise on what constitutes valid inputs and valid configurations. However, 
the documents often do not address at all how the system should respond to conditions outside of 
the system requirements. For instance serial protocols such as Arinc-429, RS-232, and I2C 
define special signals known as start and stop bits to delimit the beginning and ends of a data 
transmission. The requirements state that the system will begin a transmission with a start bit 
followed by the data and the transmission is terminated with a stop bit. But how should a system 
handle the case where a start bits and data are received without a stop bit?  The protocol 
requirements do not have knowledge of how the system is using the data and are unable to 
determine the correct way to handle this case. It may make sense to ignore all of the received 
data bits, accept the data bits when a start bit arrives, set an error flag, stop receiving data or 
many other possibilities.  There are a large number of cases dealing with input conditions that are 
not covered by the requirements such as: missing start bits, missing stop bits, too few data bits, 
too many data bits, too many stop bits, stop bits in the middle of the data, and so on. Given the 
large test space and unknown interactions with the hardware, negative compliance testing is 
usually accomplished using CRV to randomly generate non-compliant inputs and system states. 
Including negative compliance testing in the verification process greatly expands the verification 
test space and increases the verification time. Formal methods can also prove useful in assessing 
negative compliance by assuring that certain failure conditions cannot occur.  
 
The reason negative compliance robustness testing is performed is to assure that the system 
handles out of requirements conditions gracefully and recovers so that when valid conditions 
return the system returns to correct operation. Consider the case of a data transmission with a 
missing stop bit. When this condition occurs, a straightforward implementation of the protocol 
would cause the system to wait indefinitely for the stop bit. Although waiting forever is highly 
undesirable, this is a valid implementation of the protocol.  If reception of this data transmission 
was handled with an interrupt, the missing stop bit could prevent the interrupt from clearing. If 
the only way to receive a stop bit or a new start bit was required for the interrupt to clear, the 
entire system would be locked up; waiting indefinitely for the missing stop bit that could never 
arrive. Although this condition is technically allowed by the requirements, it should not be 
allowed to occur in practice. 
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VERIFICATION METHODOLOGIES 2.9  

 
The aviation and military industry predominantly use VHDL as the design and verification 
languages. The verification process in the semiconductor industry uses a combination of System 
Verilog with the native design language of either Verilog or VHDL. System Verilog is a popular 
Verilog extension that offers object-oriented programming tools to speed development and 
improve verification IP reuse. Several verification methodology standards are in current usage, 
as listed below. 
 
The Verification Methodology Manual (VMM) was developed by Synopsys and was the first 
successful and widely implemented set of best practices for creation of reusable verification 
environments in System Verilog. VMM embraces the object-oriented capabilities of System 
Verilog and allows constrained random and functional coverage verification.  
 
The Universal Verification Methodology (UVM) is an open source System Verilog focused 
library of reusable verification components which include assertions. UVM attempts to take the 
best of the VMM and OVM worlds. The goals are testbench reuse and the development of 
reusable verification intellectual property.  
 
The Open Verification Methodology (OVM) is a tool agnostic library of objects and procedures 
covering the fundamental processes in verification such as stimulus generation, data collection 
and control of verification process. OVM focuses on higher-level transaction-level verification. 
OVM is attempting to develop object-oriented capabilities for the VHDL language.  
 
Although UVM is popular at the moment, all three of the above methodologies are in current use 
in industry. The need for standardized verification methodologies is clear.  
 

HARDWARE BASED VERIFICATION 2.10  
 
1. Hardware based verification is typically performed by building a hardware system to apply 

test vectors to the component under test and to store and analyze the outputs of the device. A 
common hardware verification test is to apply the hardware’s RTL test suite using full speed 
clocks and data signals. From a RTCA/DO-254 point of view, this hardware test provides a 
critical independent assessment of the design tool’s output and therefore can be used to avoid 
the need to qualify the design tool. This test can detect timing problems within the 
component as well as problems due to power quality and signal integrity issues related to the 
component. Major tool manufactures endorse the use of hardware based verification. For 
example, “Aldec provides DO-254/CTS (Compliance Tool Set) which allows testing of 
designs in a wide range of test combinations and compares outputs generated by RTL 
simulator with the target FPGA device outputs.” [20] 

 
Synopsys conducted a survey of 1912 users on how they used hardware based verification. The 
results are shown in figure 5 on the following page.  
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Figure 5. .How hardware verification is used in industry. 
 
The data is interesting in that the hardware verification system is being used for both verification 
and validation. Testing the component in an environment similar to its final application is grey 
area that is not quite validation and also not quite verification. The most popular answer was that 
hardware based verification was used to locate bugs in the HDL code that escaped the normal 
verification process. 

There is always a tradeoff between simulation speed and accuracy. Analyzing high-level 
transaction based conditions such as maximum throughput is usually handled by creating a 
software model of the hardware. However, system level models are rarely cycle accurate and 
signals that need cycle-level accuracy such as FIFO full and empty signals are always a problem. 
Hardware based verification offers a system level model that is both cycle-level accurate and 
high-speed. Hardware based verification allows timing problems to be identified and also allows 
longer and more thorough simulations to be run in the same time period. In addition, the system 
can be subjected to robustness testing by verifying that the system not only meets, but exceeds, 
the requirements. For instance, this could be achieved by applying input signals at a rate in 
excess of that specified by the requirements. Negative compliance testing can also be performed 
to ensure that the system handles out of requirement conditions gracefully. 

However, not everything is improved with at-speed hardware based verification; consider a case 
where a bug is found while running the same test bench that was used for verification. Since the 
hardware can only be observed at the outputs, the ability to find the cause of the bug is limited.  
Simulating the testbench that produced the bug can take days. So while the hardware based 

http://blogs.synopsys.com/breakingthethreelaws/files/2012/02/FPMM-survey-use-modes.jpg
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verification speeds up detecting that there is a bug, it does not accelerate the debugging process. 
There are debugging tools that allow the user to observe internal signals within the FPGA, but 
these tools often degrade the system timing. 

3.  INDUSTRY SURVEYS  

The author conducted a detailed survey with 12 verification engineers and managers representing 
5 semiconductor companies and one aviation related company. The small number of samples 
allowed the author to interact with each respondent and clarify ambiguous responses. The results 
of the author’s survey are representative of conditions in the semiconductor industry.  
 
Aldec Corporation published selected results from a survey of their customers which had over 
2400 respondents. Aldec design and verification tools are not widely used in the semiconductor 
industry and are more common in military and aviation applications. The Aldec survey should be 
representative of military and aerospace users.  
 
The results of both surveys are presented in detail in Appendix A. A summary of the surveys is 
presented below.  
 

DESIGN AND VERIFICATION LANGUAGE 3.1  
There are two major RTL languages used for the design and verification of hardware: VHDL and 
Verilog. VHDL is a strongly typed language derived from the ADA language and is widely used 
in military applications. Verilog is a language modeled on the C language and is widely used in 
the semiconductor industry. The Verilog language has been extended to include object oriented 
structures in a language called System Verilog. System Verilog has built-in constructs to aid in 
the verification process such as scoreboards to assess verification coverage and constrained 
random testing modules. There are some efforts to develop a similar extension to the VHDL 
language, but these efforts have had limited success. Although at least one company develops the 
design using VHDL and verifies using a combination of VHDL and System Verilog, the design 
flow is much cleaner if all of the tools are based on the same language.   
 
The Aldec survey notes that for its military and aerospace centric user base “System Verilog is 
growing in popularity” and that with respect to training courses “it is only recently that we’ve 
seen System Verilog overtake VHDL.”  This indicates that a shift from VHDL to Verilog is 
occurring in the military and aerospace industries.  
 
The Aldec survey shows for new designs that Verilog will be used by 31% of the respondents 
and System Verilog will be used by 32% of the respondents.  This probably indicates that all of 
the System Verilog Users are using Verilog as their design language. The author’s survey 
indicated a much higher System Verilog usage of 66% in the semiconductor industry.  
 

VERIFICATION METHODOLOGY 3.2  
 
The Aldec survey found that the majority of the respondents used no particular verification 
methodology or an in-house developed verification methodology. Standardized verification 
methodologies such as VMM and OVM/UVM were used by 24% of the respondents compared 
to 60% of the respondents in the author’s survey. This difference in the adoption of standardized 
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verification methodologies is probably due to the fact that semiconductor companies are free to 
embrace new verification technologies, while the certification processes of the military and 
aviation industries slows the adoption of new methodologies. 
 

ASSERTIONS 3.3  
The author’s survey found that assertions were used by over 80% of the respondents. The 
assertions were written at all levels of the design hierarchy with all respondents using low-level 
assertions and most respondents using higher level assertions. Although there are automatic tools 
to help identify assertions and assess assertion density, assertions were overwhelmingly written 
by hand. Assertions are a key element of the verification process. 
 

FORMAL METHODS 3.4  
The author’s survey investigated the use of formal methods in the verification process. Half of 
the respondents used formal methods and a majority of the respondents considered formal 
methods to be essential to the verification process. Those respondents that did consider formal 
method to be essential to the verification process were quite adamant that formal methods must 
be utilized. 
 

SAFETY-CRITICAL VERIFICATION 3.5  
The survey asked the respondents to consider a safety-critical component and a component that 
is not safety-critical and identify how the verification process would differ for these components. 
The responses were unanimous that the verification processes would be the same. The difference 
would be that safety-critical components would have higher coverage targets and that more effort 
would be expended on formal verification effort.  
 
4.  IDENTIFY KNOWN AND EMERGING OBSTACLES, PROBLEMS, OR ISSUES 

A Deepchip survey [21] in 2011 asked "What two areas of the system on a chip and integrated 
circuit design process need the most advancement over the next 2 years?" The results are shown 
in table 1 below. As can be seen, verification tools are viewed as the greatest weakness. The 
second highest response was IP collaboration and IP reuse tools. The high ranking of the 
verification and reuse of IP indicates concerns about the widespread use of COTS and in-house 
developed IP throughout the industry.  
      
Table 1. The top two areas needing advancement in the design and verification process. 
 
     EDA verification tools            63% 
     IP collaboration tools (selection-integration-reuse) 50% 
     EDA design tools                  42% 
     Embedded software tools           26% 
     Other                             2% 
 
The same survey asked a second question focusing on IP. "What are your top 3 challenges for 
managing semiconductor IP?" The responses are shown in table 2 below.  
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Table 2. Top 3 challenges in managing IP.  
 

     Verifying IP                      62% 
     Integrating IP in design          53% 
     Making internal IP reusable       50% 
     Managing IP updates/bug fixes     48% 
     Finding/Selecting optimal IP      39% 
     Tracking IP usage                 21% 
     Other                             2% 

 
Verification of the IP topped the list of challenges. Whether the IP is produced in-house or is 
COTS, verifying IP without a detailed understanding of the implementation is a major concern. 
Problems integrating IP into the designs was second while making internal IP reusable ranks a 
close third. This indicates that even when companies have developed the IP source code in their 
own design flow, IP reuse is still a major issue. The reasons for this vary.  IP reuse problems due 
to coding styles and documenting designer intent are among the most common.  
 
These surveys indicate that verification of significant blocks of IP is one of the industries 
greatest challenges. The fact that finding and selecting optimal IP and tracking IP usage were 
also among the top challenges shows that COTS IP is widely used in modern products.  
 

ISSUES WITH COVERAGE METRICS 4.1  
 
For DAL A hardware, RTCA/DO-254 requires the verification process to test all of the 
requirements (Requirements Based Verification) and perform an analysis to assure that all design 
elements have been tested. This analysis is often accomplished by assuring that every line of 
code has executed. If there are lines of code that have not executed then either the code is 
unnecessary and should be removed or there is a missing requirement. 
 
There are safety issues with this methodology. By definition, complex airborne hardware cannot 
be exhaustively tested. All that code coverage can assure is that each line of code has been 
executed at least once. For instance, a line of code calculates the aircraft altitude from the 
barometric pressure sensors. Consider a situation where an incorrect altitude calculation occurs 
when the system is only using altitude data from the satellite navigation system. Even though the 
line executes and an error occurs, the error has not affected the system outputs and therefore this 
error remains hidden. The code coverage metric now indicates that this section of code has been 
executed and therefore does not need further verification. This could allow this error to escape 
detection.   
 
Consider the VHDL code below.  
 
if (a= '1' and b = '1') then 
  c <= '0';  Statement 1 
 else 
  c <= ‘1’;  Statement 2 
 end if; 
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This code checks to see if the variables a and b are both equal to 1. If a test case of where the 
variables are both equal to 1, then statement 1 will execute and c will equal 0. If a test case with 
a equal to 1 and b equal to 0 is applied, then statement 2 will execute and c will equal 1. These 
two test cases achieve 100% statement coverage of the code but leave two untested combinations 
of the inputs. In this simple case using expression coverage would solve the problem by 
requiring test cases for all of the input combinations. But coverage metrics do not have 
knowledge of when signals are valid or being observed. For instance when a system is reset all of 
the outputs are set to known values. But the input circuits can react to the inputs applied during a 
reset and the coverage metrics such as expression coverage will indicate that features have been 
tested when their output could not be observed to see if an error occurred.  To avoid the 
possibility of an error escaping the verification process, assertions can be used to check to 
correctness of signals even when they do not affect observable pins.  
 

ISSUES WITH FUNCTIONAL COVERAGE 4.2  
 
Defining a functional test plan requires elaborating possible input combinations and system 
states. Although there are tools that can help elaborating the test plan, determining what 
constitutes a function of the device requires human input. As mentioned previously interesting 
events need to be identified. Although there are tools to assess the functional coverage metrics, 
there are currently no tools to assess the completeness of the functional test plan.  
 

ISSUES WITH FORMAL VERIFICATION 4.3  
 
A formal verification tool can produce the following outputs: 
 

• The property has been proven to hold 
• The property has been shown to not hold and a counterexample is provided. 
• The property could not be proven to hold or proven not to hold. The result is 

inconclusive. 
 
Regardless of the output, there are always concerns about the quality of the result.  

 
If the tool proves a property to hold, the hardware could be still be incorrect for several reasons 
including: 
 

• The property did not accurately describe the requirement. 
• The analysis was unrealistically over constrained. 
• The analysis found a solution using degenerate/illegal states due to a lack of constraints. 

 
If the tool proves the property not to hold and gives a counterexample, the result may be of 
limited value for several reasons including: 
 

• The property did not accurately describe the requirement. 
• The counter example is so complex that it provides no insight into the root cause of the 

failure. 
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• The analysis found a counterexample using degenerate/illegal states due to a lack of 
constraints. 
 

If the tool gives an inconclusive result, there is little feedback to indicate how close or far a 
solution might be. Would more simulation time help? Are more constraints needed? Is this 
hardware better verified using simulation?  
 
Unlike simulation tools that have standard coverage metrics, there are limited tools to assess 
what code was actually used in the formal proof. There are currently no indications if there is 
unused hardware in the system. If the unused hardware does not interfere with the correct 
operation of the hardware needed to prove the properties, there is no way of identifying it. There 
has been some research into developing coverage metrics for formal tools [22], but this is a 
current area of research.   
 
 

ISSUES WITH ASSERTIONS 4.4  
 
There are tools that assess the density of assertions and can identify areas where additional 
assertions are needed. These tools merely count assertions and cannot distinguish between well-
written and poorly-written assertions. There are also tools that automatically generate assertions 
based on the RTL code, but these assertions can never completely document indirect 
requirements or the designer’s intent. [23] 
 

ISSUES WITH COTS IP 4.5  
 
Both COTS IP and in-house developed IP present challenges to the verification process because 
the implementation is either unknown or too complex to easily analyze. Because the IP is a 
black-box, the primary verification method is to write a functional coverage plan for the IP. 
Assertions can then be written to describe the interface for all inputs and outputs. A formal 
analysis of the interface can be performed if the hardware is suited to formal analysis. Human 
written and random tests are then performed until the functional and assertion coverage goals are 
met.  
 
5.  IDENTIFY POTENTIAL APPROACHES AND CRITERIA TO DEMONSTRATE 
SUFFICIENCY OF VERIFICATION COVERAGE ANALYSIS OF CEH LEVELS A, B, AND 
C 

Given how well the coverage metrics from RTCA/DO-178 map to hardware metrics, it would 
seem that implementing similar coverage metrics for hardware should produce a confidence 
levels similar to that achieved in RTCA/DO-178 designs. However, industry practice has shown 
that the combination functional coverage and code coverage is insufficient to fully verify a 
hardware device.  
 
It has been demonstrated that requirements based verification/functional coverage, code 
coverage, and formal methods are complementary verification techniques and the using one 
without the other risks letting errors escape.  It is proposed that DAL C hardware utilize the 
existing DO-254 process of verifying all requirements and use elemental analysis or statement 
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coverage to determine verification completeness. Formal methods cannot be universally applied, 
so one can only encourage but not require their use. The verification plan needs to balance how 
well formal methods can be used to verify the hardware with the expertise within the verification 
team. In some applications formal methods can offer a substantial reduction in the time required 
to verify the product and it is expected that verification teams will introduce formal methods to 
reduce the cost of verification.  
 
DAL B  
In addition to the verification performed for DAL C, DAL B hardware is required to document 
all module interfaces with assertions and use constrained random verification. Verification 
completeness will be determined by meeting the coverage goals for RBV/functional coverage, 
assertion coverage, and statement and branch coverage.    
  
DAL A 
In addition to the verification performed for DAL B, DAL A hardware will use toggle coverage 
and implement robustness testing and negative compliance testing as part of functional testing. 
Verification completeness will be determined by meeting the coverage goals for RBV/functional 
coverage, assertion coverage, and statement, branch, and expression coverage.    
 
Given that a wide spectrum of hardware designs are covered by RTCA/ DO-254 and that there 
are times when 100% code coverage cannot be achieved, the author is hesitant to recommend 
coverage level targets. It must be emphasized that the numbers below are targets and that there 
may designs where meeting the targets will be either impossible or require inordinate effort. The 
targets should not be viewed as cast in stone numbers or the testing will focus on meeting the 
coverage metrics rather than assuring the correctness of the design.  A reasonable coverage 
metric for a DAL B design would be 97% branch coverage, 95% assertion coverage and 95% 
functional coverage. For a DAL A design, a reasonable target would be 100% expression 
coverage, 97% assertion coverage, 97 % functional coverage, and 95% toggle coverage.  
 
Formal methods should be applied to hardware of DAL B or A. DAL B hardware will be using 
assertions and these assertions should be verified with formal tools. DAL A hardware should be 
using sequential equivalence checking and model checking tools on all hardware suitable to 
formal methods. 
 
The following verification flow should be used for hardware of all DAL.  
 

HARDWARE VERIFICATION PLAN 5.1  
 
The verification plan will verify all requirements. The plan will develop coverage goals and then 
assess which goals are best achieved via simulation and formal methods. This plan will have two 
sub-plans the simulation based verification plan and the formal verification plan. If formal plans 
are used the type of formal verification and the goals of the verification will be explicitly traced 
to the requirements. Because formal methods prove that the hardware meets the specified 
properties it is critical that the properties be carefully traced to the requirements.    
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The hardware verification plan will assess how well each of the verification goals has been 
achieved on a scoreboard. The results of formal verifications will be checked with simulations to 
provide independent verification of the formal tool results. If the simulations and the formal 
methods disagree, one or both of the analyses are incorrect. A careful investigation of any 
discrepancies must be performed.  

SIMULATION BASED VERIFICATION PLAN 5.2  

Those verification goals assigned to simulation in the verification plan should include all 
possible hardware configurations and all variations of the inputs.  

DAL B hardware will also include constrained random testing and assertion based coverage. The 
verification plan will identify sequences of interest for all input signals and identify significant 
corner cases, concurrency issues and error conditions. 

DAL A hardware includes all of DAL B criteria plus toggle coverage and robustness testing with 
negative compliance conditions. 

5.2.1   Create the Functional Coverage Specification 

Define what functions should be covered. Decide on the interesting inputs as well as internal 
states. For all inputs identify the legal values, illegal values, and boundary values. Examine the 
interfaces and internal state machines to identify the important state machines and key 
transitions. Identify key relations between the input data and system state.  

For DAL B and A, write assertions at all levels of the hierarchy. The assertions should cover all 
inputs, outputs and important internal signals. Use known verification IP for standard interfaces.  

5.2.2   Writing and Running the Testbench 

 
Write the testbench using parameters to enable constrained random testing. As soon as there is 
RTL code to verify, begin verification runs to debug the verification suite and identify vague 
and/or incomplete requirements. Any problems found with the requirements should be addressed 
as they are identified. 
 
5.2.3   Coverage Analysis 

As the RTL code becomes nearly complete begin coverage analysis. Starting at the module level 
and moving up in the hierarchy, look for unreachable code. Identify holes in the verification 
testbench and focus additional tests in these areas. The goal is 100% code coverage. If this is not 
possible, document why this is so.  

For DAL B, assure that all of the states in all state machines have been reached. Achieve 95% 
coverage for assertion and functional coverage.  
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For DAL A, run toggle coverage looking for gaps in the testbench coverage. Assure that all of 
the transitions between state machine states have been traversed. Insure that all assertions have 
been evaluated at least once (100% assertion coverage) and that all device functions have been 
verified (100% functional coverage). If 100% coverage cannot be achieved, analyze why and 
document the reason. An example of where 100% coverage might not be achieved could be 
circuits that only operate when a radiation induced failure occurs. These circuits may not be fully 
exercised in simulation and therefore prevent 100% coverage. These circuits would be analyzed 
independently to assure design correctness. 

FORMAL VERIFICATION PLAN 5.3  
 
Formal verification methods are suitable for all design assurance levels, however the methods 
used can vary. DAL C hardware would be encouraged but not required to use formal methods. 
DAL B hardware would be expected to use formal methods to prove the assertions and to 
formally verify all interfaces. DAL A hardware that is suitable to the application of formal 
methods would be expected to use equivalence checking and/or model checking techniques to 
improve the assurance that the design is correct.  
 
The integration of formal methods into the coverage analysis is problematic, formal analysis can 
assess whether the desired functional properties are correct, but the formal results need to be 
independently verified with simulations to assure that the properties proven to hold are the 
correct properties. When a formal proof fails to be proven correct, an example is given to 
illustrate the failure. These examples are routinely analyzed and debugged using simulation 
tools.  
 
6.   RECOMMENDATIONS  

The existing RTCA/DO-254 verification process works well. One of the goals of this research 
was to determine coverage criteria that would yield assurance levels comparable to RTCA/DO-
178. Published research and semiconductor industry practice indicate that the process of 
requirements based verification combined with code coverage metrics is insufficient to 
adequately verify complex hardware. Several improvements to the existing process are 
suggested. Use constrained random verification to generate large numbers of random test cases 
to detect problems with the requirements and remove human biases from the verification effort. 
Use assertions throughout the hierarchy to detect any violations of the requirements or the 
designer’s intent occur at any time during all simulations. The author believes that incorporating 
these additions into the RTCA/DO-254 verification processes will best improve the design 
assurance quality.  
 
The requirements based verification required for RTCA/DO-254 needs to be extended to a more 
robust functional verification that considers all combinations of inputs and system state. 
Robustness testing should also explore negative compliance issues to enable the hardware to 
gracefully recover from unexpected conditions such as loss of communications, signals stuck at 
levels, and transmission errors. The hardware is not expected to operate correctly when subjected 
to unexpected conditions, but once the unexpected conditions have been removed the hardware 
should resume normal operation as quickly as possible. Unexpected conditions should not cause 
the hardware to lock-up or enter unknown states or conditions. 
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As given by Foster [18], formal methods can provide substantial benefits to the verification 
process, but formal methods are best applied to hardware architectures that are concurrent, data 
transfer, control functions or fault tolerant devices. Hardware that does significant processing to 
the data is not well suited to formal methods. Because a particular design may or may not be 
suitable for formal methods, it is difficult to provide regulatory guidance on when and how 
formal methods should be applied.   
 
The verification process includes three coverage metrics: code coverage, assertions and 
functional. Using these coverage metrics, coverage targets are proposed for DAL A, B, and C 
hardware.  
 
7.  CONCLUSIONS 

Preventing errors from reaching a complex hardware final product is a difficult goal to achieve. 
Even design and verification tools that are known to be correct can introduce errors if the tools 
are applied incorrectly or the requirements are incomplete or incorrect. The goal of the 
verification process is to verify the hardware using multiple orthogonal techniques to minimize 
the possibilities of an error escaping the verification process. Coverage metrics by themselves 
cannot assure design correctness. The overlapping verification processes of constrained random 
testing, code coverage, assertion coverage, functional coverage and formal methods represent the 
best known methods of assuring design correctness. 
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APPENDIX A  SURVEY OF VERIFICATION TOOLS AND COVERAGE METRICS 
Most semiconductor companies view their verification processes as proprietary information. 
Through an anonymous survey and personal interviews the author was able to survey 12 
verification engineers and managers representing 5 semiconductor companies and one aviation 
related company. The author acknowledges that the survey results have a bias towards the 
semiconductor industry.  
 
Question 1 of the author’s survey was “Which of the following tools/techniques are used in your 
verification flow? (Check all that apply.)” 
 

 
Figure 6. Author’s survey question #1. “Which of the following tools/techniques are used in your 
verification flow? (Check all that apply.)” 
 
Analysis of the responses indicates that assertions are widely used. The verification coverage 
metrics of code coverage and functional coverage are used by nearly all of the respondents. This 
is consistent with a verification process using three coverage metrics: code coverage, assertion 
coverage, and functional coverage. The high-level verification language System Verilog is used 
by roughly 66% of the respondents. Verification methodologies such as VMM and OVM/UVM 
are utilized by roughly 66% of the respondents.     
 
A similar survey was conducted by Aldec Corporation with over 2400 respondents. Aldec design 
and verification tools are not widely used in the semiconductor industry and are more common in 
military and aviation applications. So the Aldec survey is biased towards military and aerospace 
users. Aldec asked what design verification languages the respondents would use for their next 
design. A project that used multiple languages would indicate all of them, meaning that the totals 
exceed the 2400 respondents. 
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Figure 7. Results of an Aldec survey question asking what verification language the respondents 
will use on their next design.  
 
The survey shows that 51% of the respondents would use VHDL as their verification language.  
However the CTO of Aldec noted that “System Verilog is growing in popularity” and that with 
respect to training courses “it is only recently that we’ve seen System Verilog overtake VHDL.”  
The Aldec survey shows that Verilog will be used by 31% of the respondents and System 
Verilog will be used by 32% of the respondents. Because the VHDL, Verilog, and System 
Verilog percentages exceed 100%, some users are likely using System Verilog and VHDL at the 
same time. The author’s survey indicated a System Verilog usage of 66%, but the author’s 
survey did not break out Verilog and System Verilog individually. Given that System Verilog is 
a super-set of Verilog the results appear to be consistent between the two surveys and indicate a 
trend of using System Verilog for all industries.  
 
Aldec also surveyed users on the verification methodology they used on their most recent 
project.  
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Figure 8. Results of an Aldec survey asking respondents what verification methodologies were 
being used.  
 
The Aldec survey found that 41% of respondents used no particular verification methodology 
and 45% used an in-house developed verification methodology. Published verification 
methodologies such as VMM and OVM/UVM were used by 24% of the respondents compared 
to 60% of the respondents in the author’s survey. This is a real difference between the industries 
that is probably due to the fact that semiconductor companies are free to embrace new 
verification technologies, while the certification processes of the military and aviation industries 
slows the adoption of new methodologies. 
  
Next the author’s survey investigated the use of assertions Note that from question #1 we know 
that the majority of respondents are using assertions. The value of the assertion process hinges on 
quality assertions being present at all levels of the design hierarchy. There are automated tools to 
identify where assertions are needed. Question 2 asked whether these automated tools were being 
used. Only 17% of the respondents have adopted automatic tools and even these supplement the 
automated tools with manual techniques to identify where to insert assertions.   
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Figure 9. Authors survey question #2. “How do you identify where to insert assertions?” 

 
Assertions should be applied throughout the design hierarchy and it was expected that the RTL 
designers would implement low level assertions and the verification team would write high-level 
assertions. Question 3 queried who inserted the assertions into the RTL. The data from question 
3 shows that in general both the design and verification write assertions, but there are some 
respondents where only the RTL designers write assertions. 
    

 
Figure 10. Author's survey question #3. “Who puts assertions into the RTL code?” 

 
Question 4 addressed the issue of at what hierarchical level were the assertions used. It was 
expected to see 100% for all levels of hierarchy and the data confirmed this. There are some 
respondents who did not use top-level assertions. Follow up investigation revealed that these 
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respondents produce modules that are integrated by another group and do not work at the top-
level..        

 
Figure 11. Author's Survey question #4. “Where are assertions used? (Check all that apply)” 

 
The next questions related to the coverage metrics. Question 5 asked which coverage metrics 
were used to assess verification completeness.   
 

  
Figure 12. Author's survey question #5. “Which code coverage metrics do you use? (Check all 
that apply.)” 
 
Statement coverage was used by all respondents as expected. Only 33% of the respondents 
utilized expression coverage. This is probably a reflection of the high cost of expression 
coverage. This question did not breakout which metrics were used to determine when 
verification was complete. Some respondents monitor nearly all of the coverage metrics. 
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Question 6 considered how often code coverage checks were run.  

 
Figure 13. Author’s survey question #6. “How often are code coverage checks run?” 

 
It was expected that the code coverage checks would be run at major system integration events. 
The fact that code coverage checks were run weekly indicates that the coverage percentage is 
part of determining when verification is complete and weekly runs are being used to monitor 
verification progress. 
 
Question 7 asked if the respondent used constrained random verification. 
 

 
Figure 14. Author's survey question #7. “Do you use constrained random verification?” 

 
It is clear that constrained random verification is widely used. Question 8 asked “How do you 
know when the constrained random verification process is complete?” The responses can be 
summarized as follows: constrained random verification is run until the code coverage goals are 
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met.  If there is still time remaining in the project due to tapeout or other reasons, continue 
running constrained random verification until the project is complete.  
 
Question 9 asked whether formal methods were part of the verification process.  
 

 
Figure 15. Author's survey question #9. "Do you use formal methods in your verification 
process?” 
 
The results indicated that formal methods have been adopted by half of the respondents. 
Question 10 asked those respondents who used formal methods how essential it is to the overall 
verification process. 
 

 
Figure 16. Author's survey question # 10. “How critical/essential are formal methods in your 
verification process?” 
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From questions 9 and 10 we see that verification flows where formal methods are essential 
component of the verification process do exist but they are not widely used. This is a bit of a 
surprise since the tool vendors trumpet the value of formal tools in the verification process. 
Formal methods are being used to supplement other verification processes.  
 
The final question of the survey was an open ended question asking the respondents to consider a 
non-safety critical part and a safety-critical part and to describe how the verification process 
would differ between the two parts. A summary of the answers is that there would be no 
difference in the verification process between the two parts. Both parts would be assessed for 
completeness using appropriate code coverage metrics, assertion coverage, and functional 
coverage, but for the safety critical part there would be more effort to reach 100% coverage on 
all of the metrics. There would also be a greater effort to prove the correctness of the device 
using formal proofs. In addition, the safety-critical part would also be subjected to a more 
rigorous robustness testing regime.  
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APPENDIX B  TESTCASES 
To demonstrate how errors might creep into a design, two simple testcase scenarios were 
developed. The first investigates how ambiguity in the requirements can result in conflicting 
implementations. These ambiguities can be identified by constrained random testing, the use of 
assertions, or the use of formal methods. The second testcase investigates the use of COTS IP 
and how using assertions to document the interface to the COTS IP can prevent similar errors. 
An alternative is to use formal methods to prove the correctness of the COTS IP interface.  
 

B-1 Testcase #1 - Requirements Ambiguity 
 
The requirements should capture the intent of the system designer, but any ambiguity in the 
requirements may be unintentionally misinterpreted by the hardware designer.  This test case will 
explore two implementations of a system and will demonstrate that although both 
implementations meet the same system requirements, the implementations produce different 
results for key output signals. 
 
This example describes a highly simplified control system for an aircraft’s braking and reverse 
thruster system. 
 
System inputs: 
 

1. in_air_sensor – Indicates that the aircraft is in flight.  When this sensor is active (logic 
level 1) the reverse thrusters should not deploy. 

2. deploy_reverse_thrusters_switch – Cockpit switch controlling deployment of the reverse 
thrusters.  When this switch is active (logic level 1), the reverse thrusters should deploy. 

3. apply_brakes_switch – Cockpit switch controlling activation of the aircraft’s braking 
system. 

System outputs: 
 

1. reverse_thruster_control_signal – signal output that enables/disables the aircraft’s reverse 
thrusters 

2. brake_control_signal – signal output that enables/disables the aircraft’s brakes. 

 
Output behavior: 
 

1. The reverse_thruster_control_signal will be active when deploy_reverse_thrusters_switch 
is active, unless the in_air_sensor is active. 

2. The brake_control_signal will be active when the apply_brakes_switch is active. 



 

41 
 

The aircraft braking and reverse thruster control system described above was implemented in 
VHDL. The system was implemented using two different methods, both of which meet the 
system requirements, yet produce different behavior on the system outputs. 

B.1.1. System Implementation 1 
 
The following VHDL code is a system implementation based on the provided system 
requirements. 
 
process (deploy_reverse_thrusters_switch, apply_brakes_switch, in_air_sensor) 
begin 
 brake_control_signal <= apply_brakes_switch; 
 reverse_thruster_control_signal <= (deploy_reverse_thrusters_switch and not 
in_air_sensor); 
end process; 
 
Let’s analyze the RTL code by tracing the first requirement to the RTL. 
 
The requirement “System Outputs 1: The reverse_thruster_control_signal will be active when 
deploy_reverse_thrusters_switch is active, unless the in_air_sensor is active.”  
 
 is met by the VHDL  statement 
 
reverse_thruster_control_signal <= (deploy_reverse_thrusters_switch and not in_air_sensor); 
1.  
The reverse_thruster_control_signal will be active only when deploy_reverse_thrusters_switch 
is active and in_air_sensor is inactive; otherwise, reverse_thruster_control_signal will be 
inactive. Now trace the second requirement to the RTL. 
 
The requirement “System Outputs 2:  The brake_control_signal will be active when the 
apply_brakes_switch is active.” 
 
is met by the VHDL statement 
 
 brake_control_signal <= apply_brakes_switch  
 
The brake_control_signal will be active when the apply_brakes_switch is active; otherwise, the 
brake_control_signal will be inactive. 
 
The output of a testbench for this system is shown in figure 16 below. The testbench achieves 
100% code coverage and 100% functional coverage. Examination of the system output 
waveform for this implementation demonstrates that this system operates as intended.  The 
brake_control_signal is active only when the apply_brakes_switch is active. The 
reverse_thruster_control_signal is only active when the deploy_reverse_thrusters_switch is 
active and the in_air_sensor is inactive.   
. 
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Figure 17. Testbench output of Implementation 1. 

B.1.2. System Implementation 2 
 
The following HDL code is an alternative implementation of the aircraft braking and reverse 
thruster system. 
 
process (deploy_reverse_thrusters_switch, apply_brakes_switch, in_air_sensor) 
begin 
brake_control_signal <= '1'; 
 if (deploy_reverse_thrusters_switch = '1' and in_air_sensor = '1') then 
  reverse_thruster_control_signal <= '0'; 
 else 
  reverse_thruster_control_signal <= ‘1’; 
 end if; 
end process; 
 
Tracing the requirements to the VHDL again we see that the requirement 
 
 
System Outputs 1:  The reverse_thruster_control_signal will be active when the 
deploy_reverse_thrusters_switch is active, unless the in_air_sensor is active. “ 
 
is met by the VHDL statement 
 
if (deploy_reverse_thrusters_switch = '1' and in_air_sensor = '1') then 
  reverse_thruster_control_signal <= '0'; 
 else 
  reverse_thruster_control_signal <= ‘1’; 
 end if;  . 
 
The reverse_thruster_control_signal will be active unless the deploy_reverse_thrusters_switch 
and the in_air_sensor are active simultaneously. Now trace the second requirement to the RTL. 
 
The requirement “System Outputs 2: The brake_control_signal will be active when the 
apply_brakes_switch is active.” 
 
is met by the VHDL statement 
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brake_control_signal <= '1';  . 
 
The brake_control_signal will always be active, so it will inherently be active when the 
apply_brakes_switch is active. 
 
The results of executing the test bench on the system are shown in figure 17. Once again the test 
bench achieves 100% code coverage and 100% functional coverage. The brake_control_signal is 
active regardless of input behavior. This behavior meets the requirement that 
brake_control_signal will be active when the apply_brakes_switch is active, but this is probably 
not the intent of the system designer. By not including what to do when the brake_control_signal 
is not active, the system specification contains a vague requirement. Most humans will read the 
requirements in a manner consistent with implementation #1, but this error in the requirements 
needs to be identified.  Writing assertions written for the interface between this block and others 
would quickly reveal the error in the requirements and prevent this from escaping detection until 
late in the design process.  
 

 
Figure 18. Testbench output for implementation 2. 

 
The identified ambiguity can be avoided through the use of fully defined requirements.  Any 
requirement of system behavior must define the behavior for all possible input conditions.   
Updating the aircraft braking and reverse thruster requirements to remove ambiguity produces 
the following requirements: 
 
System Outputs 1:  The reverse_thruster_control_signal will be active when 
deploy_reverse_thrusters_switch is active, unless the in_air_sensor is active. 
 
This requirement contains two inputs and one output which means that there are 4 possible 
combinations of the inputs. This requirement does not define what to do when 
deploy_reverse_thrusters_switch is inactive and the word “unless” can often be interpreted 
multiple ways.  
 
System Outputs 1 corrected:  Often a table such as table 3 is the simplest way to fully describe a 
requirement.  
 
Table 3  Table documenting the logic for the reverse_thruster_control_signal in terms of the 
deploy-reverse-thrusters-switch and in_air_sensor inputs.  
 
reverse_thruster_control_signal deploy_reverse_thrusters_switch in_air_sensor 

Inactive Inactive Inactive 
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Inactive Inactive Active 
Active Active Inactive 

Inactive Active Active 
 
Original Requirement 2:  The brake_control_signal will be active when the apply_brakes_switch 
is active. 
 
Requirement 2 corrected: The brake_control_signal will be active when the apply_brakes_switch 
is active, otherwise the brake_control_signal will be inactive. 
 
There are two ways to alleviate problems due to flawed requirements. The first is to document all 
interfaces from both inside the module and outside the module. Differences between the interface 
documentation can be identified through manual inspection or the use of formal method tools. A 
second method is to use random tests to generate test cases which highlight the problem. In this 
case the hardware is control based and a formal proof of the correctness of the hardware could be 
performed. This would force the ambiguity to be resolved so that the formal properties could be 
written 
 

B-2 Test Case #2 – COTS IP Example 
 
This test case will examine a design scenario, in which purchased COTS IP is used as part of a 
larger design. This example will focus on the design process and not the complexity of the 
design. The hardware examined in this test case is a basic traffic light and crosswalk signal. To 
allow us to identify the root cause of the problems we will have full access to the COTS IP 
source code. We will begin by detailing the design and verification of the COTS IP traffic light. 
We will then integrate this IP with a separately designed and verified crosswalk light module.  
The modules were verified separately based on the requirements and were found to meet all 
requirements, however the combined system produced errors. This test case will investigate the 
use of assertions to identify the problem before system integration. 
 

B.2.1. The COTS IP – Basic Traffic Light System Design 
 
The COTS IP in this test case is the design of a simple traffic light.  The traffic light controls 
traffic at the intersection of two streets, continuously cycling with fixed timing for both the green 
light duration and the yellow light duration. The system produces six traffic output signals, 
which are green, yellow, and red light control signals for each road.  The traffic light system is 
implemented by defining and designing a state machine to control the system outputs. The 
system also outputs the signals state and next_state for use with other modules. In the VHDL 
source code (Appendix A), the output signals are r0, y0, g0, r1, y1, g1, state and next_state. 
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Figure 19. The state machine implemented in the COTS IP. 

 
The state machine VHDL code was verified through simulation by examining the 6 state 
machine output signals using a waveform viewer.  Additionally, the following assertions were 
used to ensure design safety criteria were never violated: 
 
Assertion one:  Green 0 and Green 1 are never simultaneously active 
Assertion two:  If Green 1 or Yellow 1 is active then Red 0 must always be active 
Assertion three:  If Green 0 or Yellow 0 are active then Red 1 must always be active 
 
Figure 19 shows the waveform simulation indicating that the state machine was functioning 
without error, as the outputs cycled properly with appropriate timings.  The assertions also 
verified that the system was not violating the design criteria. 
 

 
Figure 20. Testbench showing that the light outputs of the COTS IP meets the requirements.  
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Examining system output performance is a commonly accepted method for performance CEH 
verification.  However, it is possible that problems exist within the design, even if these 
problems don’t immediately produce system output failure. In this traffic light example, the 
traffic light was accepted as error free from the output based verification process. 
 
Using the COTS IP– Crosswalk Signal Module Design 
 
The product we are designing is a traffic light with the addition of a crosswalk signal to control 
the flow of pedestrian traffic crossing road 1.  The COTS traffic light IP has a good service 
history. The crosswalk module has an input signal of the traffic light state and three crosswalk 
output signals (walk, hurry, no_walk).  The crosswalk control signal was intended to be based on 
the next traffic light state, in which the crosswalk outputs would have the characteristics given by 
table 4 below. 
 

 
Table 4  Crosswalk signal requirements 

 
Control 
signal 

Condition (traffic light 
state) Walk hurry no_walk 

000 system reset 0 0 1 
001 road 0 green, road 1 red 1 0 0 
010 road 0 yellow, road 1 red 0 1 0 
011 road 0 red, road 1 green 0 0 1 
100 road 0 red, road 1 yellow 0 0 1 

 
After designing the crosswalk module, the testbench was run. Figure 20 below shows the output 
waveform analysis which indicates that the crosswalk functions as expected. Design assertions 
were also used to verify the crosswalk system, and did not indicate any errors with the system.  
The assertions covered the following rules: 
 
Assertion 1:  walk and hurry are never active at the same time 
Assertion 2:  walk and no_walk are never active at the same time 
Assertion 3:  no_walk and hurry are never active at the same time 
 

 
Figure 21. Testbench demonstrating that the crosswalk module is correct. 

 
Part 3 – IP Integration 
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The working crosswalk module was added to the basic traffic light design. However, the 
crosswalk exhibited significant problems.  The crosswalk signals were behaving erratically, 
creating a dangerous situation for the pedestrians crossing Road 1.  Figure 21 shows a more 
detailed simulation of the integrated system where it can be seen that the crosswalk signals are 
changing at times when the traffic light signals were not changing.   
 

 
Figure 22. Testbench of the crosswalk system with integrated COTS IP showing glitches on the 
crosswalk output signals. 
 
Figure 22 shows the results of simulating the entire traffic light system in more detail.  The 
glitches in the walk signal are due to glitches in the next_state signal coming from the COTS IP. 
As shown in in figure 23, further analysis demonstrates that next_state from the COTS IP 
glitches frequently.  This error has always been present in the traffic light IP but because the 
next_state signal did not create any observable error in the traffic light system, the error lay 
dormant until the crosswalk IP used the signal   
 

 
Figure 23. Comparison of the output glitches to intesignal next_state. 
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Figure 24. Detailed simulation of the COTS IP showing the cause of the next_state glitches. 
 
An error of this nature occurred due to the traffic light designer assuming the glitches in the 
next_state signal were irrelevant to his design, while the crosswalk designer assumed that the 
next_state signal did not glitch. If either designer had fully documented their assumptions this 
error could have been identified before system integration. 
  

B.2.2. Assertions to the rescue 
The COTS IP vendor can avoid this problem by writing assertions to document how the interface 
signals should work. The customer can detect problems in the COTS IP by using assertions to 
document how the interface signals should operate. Assertions should not be limited to testing 
individual system modules; assertions should also cover the interfaces between different 
modules. An example of an interface assertion that would have addressed the traffic light 
problem in this system is shown below. 
 
Assertion: The signal next_state should only have one transition when the signal state transitions. 
 
The verification of COTS IP is always a concern because of the inability to observe the module 
internals. Documenting the interface to with the COTS IP using assertions ensures that if the IP 
violates its requirements at any time, the errors will be detected by the assertions. This provides 
assurance that the COTS IP is performing as required.   
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APPENDIX C  Testcase VHDL Source Code 
 
The COTS IP traffic light 
 
----------------------------------------------------------------------
--------- 
-- 
-- Title       : traffic_light_state 
-- Design      : basic_traffic_light 
 
----------------------------------------------------------------------
--------- 
-- 
-- Description : basic traffic light state machine 
-- 5 states: state 0:  road 0 red, road 1 red; in the event of a 
system reset 
--  state 1: road 0 green, road 1 red; 
--  state 2:  road 0 yellow, road 1 red; 
--  state 3: road 0 red, road 1 green; 
--  state 4: road 0 red, road 1 yellow; 
--  state machine cycles through states based on a long timer for 
green 
--  and a short timer for yellow.  both road get same time allocation 
per cycle 
-- 
----------------------------------------------------------------------
--------- 
 
--{{ Section below this comment is automatically maintained 
--   and may be overwritten 
--{entity {traffic_light_state} architecture 
{traffic_light_state_arch}} 
 
library IEEE; 
use IEEE.STD_LOGIC_1164.all; 
use IEEE.std_logic_arith.all;   
use IEEE.std_logic_unsigned.all; 
 
entity traffic_light_state is 
  port( 
   clk : in STD_LOGIC; 
   rst : in STD_LOGIC; 
   r0 : out STD_LOGIC; 
   y0 : out STD_LOGIC; 
   g0 : out STD_LOGIC; 
   r1 : out STD_LOGIC; 
   y1 : out STD_LOGIC; 
   g1 : out STD_LOGIC 
      ); 
end traffic_light_state; 
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--}} End of automatically maintained section 
 
architecture traffic_light_state_arch of traffic_light_state is 
type possible_states is (state_0, state_1, state_2, state_3, state_4);
 --define available states 
signal present_state, next_state: possible_states; 
 
signal yellow_count: std_logic_vector(1 downto 0); 
signal green_count: std_logic_vector(3 downto 0); 
signal leave_yellow: std_logic; 
signal leave_green: std_logic; 
signal rst_ylw, rst_grn: std_logic; 
 
begin 
 
  
 clk_next_state: process (clk, rst)--clk next_state into present 
state 
 --this is the syncronous portion of the state machine 
 begin 
  if ( rst = '1') then --Async reset 
   present_state <= state_0; 
  elsif (clk'event and clk='1') then --Rising Edge of clk 
   present_state <= next_state; --Clock Next state 
  end if; 
 end process clk_next_state; 
 
 green_counter: process (clk, rst)  
 begin 
  --if (rst = '1' or rst_grn = '1') then  
  if (rst = '1') then 
   green_count <= "0000"; 
  elsif (CLK'event and CLK='1') then 
   green_count <= green_count + 1; 
  end if; 
  if green_count = "1111" then 
   leave_green <= '1';  
   --green_count <= "0000"; 
  else  
   leave_green <= '0'; 
   --green_count <= green_count + 1; 
  end if;   
 end process green_counter;  
  
 yellow_counter: process (clk, rst)  
 begin 
  --if (rst_ylw = '1' or rst = '1') then  
  if (rst = '1') then 
   yellow_count <= "00"; 
  elsif (CLK'event and CLK='1') then 
   yellow_count <= yellow_count + 1; 
  end if; 
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  if yellow_count = "11" then 
   leave_yellow <= '1';  
  else leave_yellow <= '0'; 
  end if; 
 end process yellow_counter;   
  
 state_select: process (present_state, leave_green, leave_yellow) 
 begin 
 case present_state is 
  when state_0 => 
   --rst_ylw <= '1'; 
   --rst_grn <= '1'; 
   r0 <= '1'; 
   y0 <= '0'; 
   g0 <= '0'; 
   r1 <= '1';  
   y1 <= '0'; 
   g1 <= '0';  
    next_state <= state_1; 
   
  when state_1 => 
   --rst_ylw <= '1'; 
   --rst_grn <= '0'; 
   r0 <= '0'; 
   y0 <= '0'; 
   g0 <= '1'; 
   r1 <= '1';  
   y1 <= '0'; 
   g1 <= '0';  
   if leave_green = '1' then 
    next_state <= state_2; 
   else 
    next_state <= state_1; 
   end if; 
    
  when state_2 => 
   --rst_ylw <= '0'; 
   --rst_grn <= '1'; 
   r0 <= '0'; 
   y0 <= '1'; 
   g0 <= '0'; 
   r1 <= '1';  
   y1 <= '0'; 
   g1 <= '0'; 
   if leave_yellow = '1' then 
    next_state <= state_3; 
   else 
    next_state <= state_2; 
   end if; 
    
  when state_3 => 
   --rst_ylw <= '1'; 
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   --rst_grn <= '0'; 
   r0 <= '1'; 
   y0 <= '0'; 
   g0 <= '0'; 
   r1 <= '0';  
   y1 <= '0'; 
   g1 <= '1'; 
   if leave_green = '1' then 
    next_state <= state_4; 
   else 
    next_state <= state_3; 
   end if; 
    
  when state_4 => 
   --rst_ylw <= '0'; 
   --rst_grn <= '1'; 
   r0 <= '1'; 
   y0 <= '0'; 
   g0 <= '0'; 
   r1 <= '0';  
   y1 <= '1'; 
   g1 <= '0'; 
   if leave_yellow = '1' then 
    next_state <= state_1; 
   else 
    next_state <= state_4; 
   end if; 
    
  when others => 
   --rst_ylw <= '1'; 
   --rst_grn <= '1'; 
   r0 <= '1'; 
   y0 <= '0'; 
   g0 <= '0'; 
   r1 <= '1';  
   y1 <= '0'; 
   g1 <= '0';  
   next_state <= state_0; 
  end case; 
 end process state_select; 
   
   
end traffic_light_state_arch; 
 
 
The traffic light testbench 
 
library ieee; 
use ieee.STD_LOGIC_UNSIGNED.all; 
use ieee.std_logic_1164.all; 
use ieee.std_logic_arith.all; 
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 -- Add your library and packages declaration here ... 
 
entity traffic_light_state_tb is 
end traffic_light_state_tb; 
 
architecture TB_ARCHITECTURE of traffic_light_state_tb is 
 -- Component declaration of the tested unit 
 component traffic_light_state 
 port( 
  clk : in STD_LOGIC; 
  rst : in STD_LOGIC; 
  r0 : out STD_LOGIC; 
  y0 : out STD_LOGIC; 
  g0 : out STD_LOGIC; 
  r1 : out STD_LOGIC; 
  y1 : out STD_LOGIC; 
  g1 : out STD_LOGIC ); 
 end component; 
 
 -- Stimulus signals - signals mapped to the input and inout ports 
of tested entity 
 signal clk : STD_LOGIC := '0'; 
 signal rst : STD_LOGIC := '1'; 
 -- Observed signals - signals mapped to the output ports of 
tested entity 
 signal r0 : STD_LOGIC; 
 signal y0 : STD_LOGIC; 
 signal g0 : STD_LOGIC; 
 signal r1 : STD_LOGIC; 
 signal y1 : STD_LOGIC; 
 signal g1 : STD_LOGIC; 
 
 -- Add your code here ... 
 
begin 
 
 -- Unit Under Test port map 
 UUT : traffic_light_state 
  port map ( 
   clk => clk, 
   rst => rst, 
   r0 => r0, 
   y0 => y0, 
   g0 => g0, 
   r1 => r1, 
   y1 => y1, 
   g1 => g1 
  ); 
 
 -- Add your stimulus here ... 
--assertions 
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--make sure the we never have two greens 
--psl property two_greens  is never (g1 and g0); 
--psl as_one : assert two_greens;  
--if g1 or y1 are on then r0 must be on; 
--psl property r0_check is always ((g1 or y1) -> r0); 
--psl as_two: assert r0_check; 
--if g0 or y0 are on then r1 must be on; 
--psl property r1_check is always ((g0 or y0) -> r1); 
--psl as_three: assert r1_check; 
 
process 
begin 
 wait for 10 ns; 
 CLK <= not CLK; 
end process; 
 
process 
begin 
 wait for 50 ns; 
 rst <= '0'; 
end process;  
 
end TB_ARCHITECTURE; 
 
configuration TESTBENCH_FOR_traffic_light_state of 
traffic_light_state_tb is 
 for TB_ARCHITECTURE 
  for UUT : traffic_light_state 
   use entity 
work.traffic_light_state(traffic_light_state_arch); 
  end for; 
 end for; 
end TESTBENCH_FOR_traffic_light_state; 
 
 
The crosswalk signal code 
 
----------------------------------------------------------------------
--------- 
-- 
-- Title       : crosswalk_lights 
-- Design      : traffic_light_crosswalk 
 
-- Description : crosswalk light module will be controlled by traffic 
light state machine 
--  
-- crosswalk lights will behave as follows: 
-- will add a crosswalk light signal for pedestrians trying to cross 
road 1 
-- when road 0 light is green, the 'walk' signal will be active; 
'hurry' and 'no_walk' will be inactive 
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-- when road 0 light is yellow, the 'hurry' signal will be active; 
'walk' and 'no_walk' will be inactive 
-- when road 0 light is red, the 'no_walk' signal will be active; 
'walk' and 'hurry' will be inactive 
 
--the control signals for this module are sourced by the traffic light 
state machine "state_count" as follows 
-- 5 states:  "000":  road 0 red, road 1 red; in the event of a system 
reset:  no_walk 
--  state 1: "001":  road 0 green, road 1 red:  walk 
--  state 2:  "010":  road 0 yellow, road 1 red:  hurry 
--  state 3: "011": road 0 red, road 1 green:  no_walk 
--  state 4: "100":  road 0 red, road 1 yellow:  no_walk 
-- 
----------------------------------------------------------------------
--------- 
 
--{{ Section below this comment is automatically maintained 
--   and may be overwritten 
--{entity {crosswalk_lightss} architecture {crosswalk_lights_arch}} 
 
library IEEE; 
use IEEE.STD_LOGIC_1164.all; 
use IEEE.std_logic_arith.all;   
use IEEE.std_logic_unsigned.all; 
 
entity crosswalk_lights is 
  port( 
   rst : in STD_LOGIC; 
   control_signal : in std_logic_vector (2 downto 0); 
   walk :  out std_logic; 
   hurry :  out std_logic;  
   no_walk : out std_logic 
      ); 
end crosswalk_lights; 
 
--}} End of automatically maintained section 
 
architecture crosswalk_lights_arch of crosswalk_lights is 
 
begin 
     
 crosswalk:  process (rst, control_signal) 
 begin 
 if ( rst = '1') then --Async reset 
  walk <= '0'; 
  hurry <= '0'; 
  no_walk <= '1'; 
 else 
  case control_signal is 
   when "000" => 
    walk <= '0'; 
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    hurry <= '0'; 
    no_walk <= '1'; 
    
   when "001" => 
    walk <= '1'; 
    hurry <= '0'; 
    no_walk <= '0'; 
   
   when "010" => 
    walk <= '0'; 
    hurry <= '1'; 
    no_walk <= '0'; 
   
   when "011" => 
    walk <= '0'; 
    hurry <= '0'; 
    no_walk <= '1'; 
     
   when "100" => 
    walk <= '0'; 
    hurry <= '0'; 
    no_walk <= '1'; 
    
   when others => 
    walk <= '0'; 
    hurry <= '0'; 
    no_walk <= '1'; 
  end case;  
 end if; 
 end process crosswalk; 
end crosswalk_lights_arch; 
 
The crosswalk testbench 
 
library ieee; 
use ieee.STD_LOGIC_UNSIGNED.all; 
use ieee.std_logic_1164.all; 
use ieee.std_logic_arith.all; 
 
 -- Add your library and packages declaration here ... 
 
entity crosswalk_lights_tb is 
end crosswalk_lights_tb; 
 
architecture TB_ARCHITECTURE of crosswalk_lights_tb is 
 -- Component declaration of the tested unit 
 
 component crosswalk_lights 
 port( 
  rst : in STD_LOGIC; 
  control_signal : in std_logic_vector(2 downto 0); 
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  walk : out STD_LOGIC; 
  hurry : out STD_LOGIC; 
  no_walk : out STD_LOGIC ); 
 end component; 
 
 -- Stimulus signals - signals mapped to the input and inout ports 
of tested entity 
 signal rst : STD_LOGIC := '1'; 
 signal control_signal: std_logic_vector (2 downto 0) := "000"; 
 -- Observed signals - signals mapped to the output ports of 
tested entity 
 signal walk : STD_LOGIC; 
 signal hurry : STD_LOGIC; 
 signal no_walk : STD_LOGIC; 
 
 -- Add your code here ... 
 
begin 
 
 -- Unit Under Test port map 
 UUT : crosswalk_lights 
  port map ( 
   rst => rst, 
   control_signal => control_signal, 
   walk => walk, 
   hurry => hurry, 
   no_walk => no_walk 
  ); 
 
 -- Add your stimulus here ...  
--assertions 
--make sure two signals are never active at the same time 
--psl property one  is never (walk and hurry); 
--psl assert_one : assert one; 
--psl property two  is never (walk and no_walk); 
--psl assert_two : assert two; 
--psl property three  is never (no_walk and hurry); 
--psl assert_three : assert three; 
 
  
process 
begin 
 wait for 50 ns; 
 rst <= '0'; 
end process; 
 
process 
begin 
 wait for 100 ns; 
 control_signal <= "001"; 
 wait for 100 ns; 
 control_signal <= "010"; 
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 wait for 100 ns; 
 control_signal <= "011"; 
 wait for 100 ns; 
 control_signal <= "100"; 
 wait for 100 ns; 
 control_signal <= "001";  
end process;  
 
end TB_ARCHITECTURE; 
 
configuration TESTBENCH_FOR_crosswalk_lights of crosswalk_lights_tb is 
 for TB_ARCHITECTURE 
  for UUT : crosswalk_lights 
   use entity 
work.crosswalk_lights(crosswalk_lights_arch); 
  end for; 
 end for; 
end TESTBENCH_FOR_crosswalk_lights; 
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