
NOT FAA POLICY OR GUIDANCE
LIMITED RELEASE DOCUMENT

18 October 2013

NOT FAA POLICY OR GUIDANCE
LIMITED RELEASE DOCUMENT

18 October 2013

DOT/FAA/A
R-XX/XX

Office of Aviation
Research
and Development
Washington, DC
20591

Advanced Verification Methods for
Safety-Critical Airborne Electronic
Hardware

DISCLAIMER
This draft document is being made available as a “Limited
Release” document by the FAA Software and Digital Systems (SDS)
Program and does not constitute FAA policy or guidance. This
document is being distributed by permission by the Contracting
Officer’s Representative (COR). The research information in this
document represents only the viewpoint of its subject matter expert
authors.

The FAA is concerned that its research is not released to the public
before full editorial review is completed. However, a Limited Release
distribution does allow exchange of research knowledge in a way
that will benefit the parties receiving the documentation and, at the
same time, not damage perceptions about the quality of FAA
research.

ii

 Technical Report Documentation Page
1. Report No.
DOT/FAA/(AR)-xx/xx

2. Government Accession No. 3. Recipient's Catalog No.

 4. Title and Subtitle
Qualification of Tools for Airborne Electronic Hardware

5. Report Date
July. 1, 2013

 6. Performing Organization Code

7. Author(s)
Brian Butka

8. Performing Organization Report No.

9. Performing Organization Name and Address
1 Embry Riddle Aeronautical University
 600 S. Clyde Morris Blvd.
 Daytona Beach, FL 32114

10. Work Unit No. (TRAIS)

 11. Contract or Grant No.
 DTFACT-11-C-00007

12. Sponsoring Agency Name and Address
U.S. Department of Transportation
Federal Aviation Administration
Office of Aviation Research and Development
Washington, DC 20591

13. Type of Report and Period Covered

Final Report

Aug.. 2011 – Aug. 2013

 14. Sponsoring Agency Code

15. Supplementary Notes
The Federal Aviation Administration Aviation Research Division COR was Srini Mandalapu, and the Alternate COR
was Charles Kilgore.

16. Abstract
The purpose of this research is to provide safety input to the FAA for developing policy and guidance for the
verification coverage analysis of complex airborne electronic hardware (AEH), such as field programmable gate
arrays (FPGAs), programmable logic devices (PLDs), and application specific integrated circuits (ASICs). The
recommended verification process is below.

All designs go through a design review where the design strategy is analyzed and discussed and the ability of the
design to meet all of the requirements is documented. In addition to the design review process, constrained random
verification is used to generate large numbers of random test cases that can detect problems with the requirements and
remove human biases from the verification effort. Assertions are used throughout the design hierarchy to detect if any
violations of the requirements or the designer’s intent occur at any time during the verification process.

The requirements based verification required for DO-254 needs to be extended to a more robust functional
verification that considers the combinations of inputs and system state. Robustness testing should explore negative
compliance issues to enable the hardware to gracefully recover from unexpected conditions.

The verification process recommended in this report includes three coverage metrics: code coverage, assertions and
functional. Using these coverage metrics, coverage targets are proposed for DAL A, B and C hardware.

In parallel to the simulation based verification, formal methods should be applied. If assertions are used, formal
verification of the assertions should be performed. Formal techniques such as sequential equivalence checking and
model checking should be applied on hardware that is suitable for these analysis techniques.
17. Key Words

Programmable Logic, Tools, Coverage Metrics, Airborne
Electronic Hardware

18. Distribution Statement

19. Security Classif. (of this report)
 Unclassified

20. Security Classif. (of this page)
 Unclassified

21. No. of Pages

22. Price

Form DOT F 1700.7 (8-72) Reproduction of completed page authorized

iii

TABLE OF CONTENTS

LIST OF ACRONYMS vii

EXECUTIVE SUMMARY viii

1. INTRODUCTION. 1

 Objectives. 1 1.1
 Research Method. 1 1.2
 Audience. 2 1.3
 Document Structure. 2 1.4

2. IDENTIFY CURRENT INDUSTRY PRACTICES FOR VERIFICATION COVERAGE
ANALYSIS OF CEH 3

 Verification Process Overview 4 2.1
 Coverage Metrics: 6 2.2
 Functional coverage 8 2.3
 Assertions 9 2.4
 Constrained Random Verification 11 2.5
 Formal verification 12 2.6

2.6.1 Sequential Equivalence Checking 12
2.6.2 Model Checking 13
2.6.3 When Are Formal Methods Effective? 14
2.6.4 Formal Verification in Practice 15

 Verification Process Details 16 2.7
 Robustness testing 19 2.8
 Verification Methodologies 20 2.9
 Hardware Based Verification 20 2.10

3. INDUSTRY SURVEYS 22

 Design and Verification Language 22 3.1
 Verification Methodology 22 3.2
 Assertions 23 3.3
 Formal Methods 23 3.4
 Safety-Critical Verification 23 3.5

4. IDENTIFY KNOWN AND EMERGING OBSTACLES, PROBLEMS, OR ISSUES 23

 Issues with Coverage metrics 24 4.1
 Issues with Functional coverage 25 4.2
 Issues with formal verification 25 4.3
 Issues with Assertions 26 4.4
 Issues with COTS IP 26 4.5

5. IDENTIFY POTENTIAL APPROACHES AND CRITERIA TO DEMONSTRATE
SUFFICIENCY OF VERIFICATION COVERAGE ANALYSIS OF CEH LEVELS A,
B, AND C 26

iv

 Hardware verification Plan 27 5.1
 Simulation Based Verification Plan 28 5.2

5.2.1 Create the Functional Coverage Specification 28
5.2.2 Writing and Running the Testbench 28
5.2.3 Coverage Analysis 28

 Formal Verification Plan 29 5.3
6. RECOMMENDATIONS 29

7. CONCLUSIONS 30

8. REFERENCES. 30

v

LIST OF FIGURES

Figure Page
Figure 1. AEH Stakeholders. 2
Figure 2. Coverage closure vs the number of tests generated. 12
Figure 3. A typical hardware verification flow. 17
Figure 4. Cadence Inc’s recommended verification process. 18
Figure 5. .How hardware verification is used in industry. 21
Figure 6. Author’s survey question #1. “Which of the following tools/techniques are used in your

verification flow? (Check all that apply.)” 32
Figure 7. Results of an Aldec survey question asking what verification language the respondents

will use on their next design. 33
Figure 8. Results of an Aldec survey asking respondents what verification methodologies were

being used. 34
Figure 9. Authors survey question #2. “How do you identify where to insert assertions?” 35
Figure 10. Author's survey question #3. “Who puts assertions into the RTL code?” 35
Figure 11. Author's Survey question #4. “Where are assertions used? (Check all that apply)” 36
Figure 12. Author's survey question #5. “Which code coverage metrics do you use? (Check all

that apply.)” 36
Figure 13. Author’s survey question #6. “How often are code coverage checks run?” 37
Figure 14. Author's survey question #7. “Do you use constrained random verification?” 37
Figure 15. Author's survey question #9. "Do you use formal methods in your verification

process?” 38
Figure 16. Author's survey question # 10. “How critical/essential are formal methods in your

verification process?” 38
Figure 17. Testbench output of Implementation 1. 42
Figure 18. Testbench output for implementation 2. 43
Figure 19. The state machine implemented in the COTS IP. 45
Figure 20. Testbench showing that the light outputs of the COTS IP meets the requirements. 45
Figure 21. Testbench demonstrating that the crosswalk module is correct. 46
Figure 22. Testbench of the crosswalk system with integrated COTS IP showing glitches on the

crosswalk output signals. 47
Figure 23. Comparison of the output glitches to intesignal next_state. 47
Figure 24. Detailed simulation of the COTS IP showing the cause of the next_state glitches. 48

vi

LIST OF TABLES

Table Page

Table 1. The top two areas needing advancement in the design and verification process. 23
Table 2. Top 3 challenges in managing IP. 24
Table 3 Table documenting the logic for the reverse_thruster_control_signal in terms of the

deploy-reverse-thrusters-switch and in_air_sensor inputs. 43
Table 4 Crosswalk signal requirements 46

vii

LIST OF ACRONYMS

ACO Aircraft Certification Office
AEH Airborne Electronic Hardware
ARP Aerospace Recommended Practice
ASIC Application Specific IC
CDC Clock Domain Crossing
CRC Cyclic Redundancy Check
CRV Constrained Random Verification
COTS Commercial Off-The-Shelf
CPLD Complex PLD
DAL Design Assurance Level
DER Designated Engineering Representative
FAA Federal Aviation Administration
FPGA Field-Programmable Gate Array
FSM Finite State Machine
FTA Fault Tree Analysis
FVI Formal Verification Interface
GAL Generic Array Logic
GCLK Global Clock Resource
HDL Hardware Description Language
IP Intellectual Property
PAL Programmable Array Logic
PLD Programmable Logic Device
RBV Requirements Based Verification
RTCA RTCA, Inc., (formerly Radio Technical Commission for Aeronautics)
RTL Register Transfer Language
VHDL VHSIC HDL

viii

EXECUTIVE SUMMARY

The purpose of this research is to provide safety input to the FAA for developing policy and
guidance for the verification coverage analysis of complex airborne electronic hardware, such as
field programmable gate arrays, programmable logic devices, and application specific integrated
circuits.

RTCA/DO-254 [1] defines the verification process used to assure that the designed hardware
meets the requirements and identifies additional verification processes that should be performed
for design assurance level A and B systems. While RTCA/DO-254 identifies potential
verification methods for Level A and B systems, it does not define any criteria to determine
when the verification process is sufficient or complete. This research investigates advanced
verification coverage methods suitable for safety-critical AEH, identifies applicable coverage
metrics, and proposes verification methods and coverage targets for design assurance level A, B,
and C level hardware. In addition, the need for the qualification of verification tools and the use
of commercial off-the-shelf intellectual property are investigated for potential safety issues. It
should be noted that, while a wide variety of COTS solutions exist for aviation systems, this
research is focused on AEH, which is certified using DO-254.

RTCA/DO-254 requires that all of the functional requirements are verified. This verification
process is called requirements based verification. The effectiveness of requirements based
verification is limited by the quality and precision of the requirements. Automated tools, such as
constrained random verification, can be used to help identify vague or weak requirements early
in the design and verification process. Although the verification process can identify weaknesses
in the hardware requirements, the verification process must be independent of the requirements
specification process. When using requirements based verification, how much testing and
analysis is required to claim that a functional requirement been verified? This research suggests
defining a verification plan that exercises the device for all possible input signals and all possible
device configurations is required and that multiple tests should be run for each combination.

To fully verify hardware, human biases in interpreting the requirements must be eliminated. The
constrained random verification process randomly generates conditions that are allowed by the
requirements, and often generates unusual combinations that can cause the hardware to fail the
requirements. The constraints used by the constrained random verification process can be
adjusted or tuned to fill in the gaps in the coverage metrics. The verification process needs to
incorporate both human written directed test and random testing.

Assertions are used to document the correct operation of signals and to also document the
designer’s intent for how the register transfer language code should be used. Assertions at the
interfaces of modules assure that all of the module’s inputs and outputs meet all of the
requirements and also meet the designer’s assumptions. Knowing the designer’s assumptions
helps identify problems when the hardware is integrated into the overall system. Assertions are
especially useful with commercial off-the-shelf intellectual property, assuring that the
intellectual property meets the requirements without requiring detailed knowledge of what is
contained within the intellectual property. The verification of commercial off-the-shelf
intellectual property is very similar to the verification process used in model-based design.

ix

In parallel to the simulation based verification, formal methods should be also be utilized. This
report also recommends that assertions are used in all hardware designs and formal verification
of the assertions should be performed. Formal techniques such as sequential equivalence
checking and model checking should be applied on hardware that is suitable for these analysis
techniques. The results of these formal techniques should be independently verified with
simulation.

Three coverage metrics are used to assess the completion of the verification process: functional
coverage, code coverage, and assertion coverage. When all three of these coverage metrics
achieve their targets, verification is determined to be complete. This research proposes that the
verification processes used for design assurance level A, B, and C hardware are quite similar.
The difference between level C and level B is the coverage targets for level C will be lower.
Level A takes level B and adds additional robustness testing including negative compliance
testing.

1

1. INTRODUCTION.

Modern aviation systems, both airborne (e.g. avionics, engine control) and ground (e.g. radar, air
traffic control consoles), exemplify safety and mission critical dependable systems. These
systems continue to become more complex and they often operate in uncertain environments. In
addition to being correct, the hardware needs to be robust handling any unusual conditions
allowed by the requirements as well as gracefully recovering if conditions outside of the
requirements occur.

This report, produced under a contract sponsored by the Federal Aviation Administration (FAA),
describes research focusing on the verification process and verification tools used for airborne
electronic hardware (AEH) devices such as programmable logic devices (PLD) and application
specific integrated circuits (ASICs). The scope of this research has been limited to the
verification process and focuses on both simulation based and formal verification processes and
coverage metrics. This research does not address such as requirements tracing, bug tracking and
version management.

OBJECTIVES. 1.1

The main objective of this study is to provide the sponsor, the FAA, input on what verification
process should be used and what criteria to use to determine completeness of the verification
process for DAL A, B, and C hardware. The following questions will be addressed:

1. What approaches are being used to demonstrate sufficiency of verification coverage of
CEH? That is, how can it be shown that the embedded logic on the chip has been fully
exercised and tested?

2. What are appropriate verification criteria applicable to CEH levels A, B, and C?
3. What are the safety issues with current and emerging industry practices and approaches

to verification coverage analysis to CEH? How can these safety issues be mitigated?
4. What verification coverage approaches and criteria applicable to CEH will provide a

level of confidence similar to DO-178B requirements-based test coverage and structural
coverage analysis of software?

5. What are the obstacles that Industry is currently experiencing in their efforts to
demonstrate verification coverage of CEH (e.g., lack of mature tools, complexity of the
CEH, embedded COTS Intellectual Properties (IP) within application specific CEH
devices, etc.)? What is Industry doing to overcome these obstacles?

RESEARCH METHOD. 1.2

As specified by the statement of work this research will have four major components.

1. Conduct literature search and industry survey, as appropriate, and document reference
resources for the overall effort to include both phases.

2. Identify current industry practices for verification coverage analysis of CEH.
3. Identify known and emerging obstacles, problems, or issues that industry faces when

attempting to perform verification coverage analysis of CEH, as well as industry’s
recommendations for addressing these obstacles.

2

4. Identify potential approaches and criteria to demonstrate sufficiency of verification
coverage analysis of CEH levels A, B, and C and provide a model checking similar to
DO-178B requirements-based test coverage and structural coverage analysis of software.

AUDIENCE. 1.3

The report is primarily intended for use by certification authorities in the development of policy
and guidance. The designated engineering representatives (DER) and aircraft certification office
(ACO) engineers directly involved in the certification process are also part of the target
audience. The research outcome will likely also be of interest to program and procurement
managers, to project leaders, to system, hardware, and software engineers, and to all others
directly involved in DO-254 compliant AEH projects. Figure 1 identifies the stakeholders
involved in the presented investigation. It must be noted that several industry representatives
shared their valuable comments and opinions with the research team through e-mails, phone
interviews, and personal contacts; their names cannot be listed for reasons of confidentiality.

Figure 1. AEH Stakeholders.

DOCUMENT STRUCTURE. 1.4

This report consists of eight main sections.

• Section 1 provides introductory material, including the purpose and scope, objective, and
audience,

Complex Electronic Hardware
Certification Stakeholders

FAA
ISO
IEEE
RTCA

Universities
Research
Institutes

Chip
Manufacturers

Tool
Developers

DO - 254 Compliant
Projects Applicants

Certifying
Authorities
& DER

Industry

Board
Manufacturers

FAA: Federal Aviation
Administration

ISO: International
Organization for
Standardization

IEEE: Institute of
Electrical and
Electronics Engineers

RTCA: Radio Technical
Commission for
Aeronautics

DER: Designated
Engineering
Representative

3

• Section 2 describes verification practices used for complex electronic hardware. Major
verification tools and techniques are identified and multiple coverage metrics are
discussed.

• Section 3 describes the results of the literature search and industry survey.
• Section 4 examines safety issues and problems in the verification process
• Section 5 proposes verification processes and coverage metrics for DAL A, B, and C

hardware.
• Section 6 presents the recommendations and identifies areas to be addressed in the

remaining work.
• Section 7 presents the conclusions of the research.
• Section 8 provides the references.

There are three appendices accompanying the body of the report.

• Appendix A contains the results of the industry survey
• Appendix B contains the results of the ambiguous requirements and COTS IP test cases
• Appendix C contains the VHDL code used for the test case implementations.

2. IDENTIFY CURRENT INDUSTRY PRACTICES FOR VERIFICATION COVERAGE
ANALYSIS OF CEH

RTCA/DO-254 details the verification processes to be used in the certification of complex
electronic hardware in the aviation industry. Since this document was written in 2000, airborne
electronic hardware designs that are verified using the RTCA/ DO-254 process have been
constantly increasing in complexity and integration. Although the safety record of the
RTCA/DO-254 process is very good, the increase in hardware complexity dramatically increases
the risk of an error slipping through the verification process. The RTCA/DO-254 process is
known for describing what needs to be done but providing limited guidance on how it should be
done. This section focuses on how the verification process is done in industry and begins by
surveying the relevant verification processes and examining how they are applied. This material
is based on the results of the literature search and industry survey which is summarized in section
3.

Although the goals of this research focus on the use of coverage metrics to determine when the
verification process is complete, the entire verification process must be examined as a whole.
Coverage metrics should only be used to assess the completion of the verification process. If
coverage metrics become the driver of the verification process, engineers may write tests that
improve the coverage metrics but do not improve the verification of the hardware. Unfortunately,
100% coverage on any coverage metric cannot assure that the design is correct.

In 2006, Gluska [2] reported that only 4% of all of the bugs on a major microprocessor design
were found using code coverage metrics. Gluska noted that there were also bugs that were caught
due to indirect reasons such as improvements to the verification process that were required to use
the code coverage metrics. Including both direct and indirect components, the total number of
bugs found by code coverage metrics was 8%. It must be recognized that code coverage metrics

4

are most useful for identifying obscure design errors. The majority of design errors will be found
using other methods, such as requirements based and functional verification.

VERIFICATION PROCESS OVERVIEW 2.1

In addition to the author’s industry survey summarized in section 3, information from much
larger surveys of the verification process has been published by Synopsys [3], Aldec [4] and the
National Microelectronics Institute of the United Kingdom [5]. Including the verification process
descriptions from published sources [2] [6] [7] leads to the following very broad conclusions:

• Semiconductor companies building diverse products utilize a similar verification flow.
o There are company-to-company variations in the rigor of any given process.
o Formal methods are used by roughly half of the companies

• Aviation related companies follow the verification process specified by RTCA/DO-254
with some additional verification work performed but usually not claimed for
certification credit.

• The verification flow used by the semiconductor industry contains elements that are not
required in the RTCA/DO-254 verification flow.

In a highly abstracted view, a typical RTCA/DO-254 verification flow for DAL A hardware
consists of verifying that the designed hardware meets all of the requirements. This is referred to
as requirements based verification (RBV). In addition to RBV analyses such as elemental
analysis, formal analysis, and safety specific analysis are performed. Given the fact that there
exist automated tools to assist with elemental analysis, this is the most common method of
additional verification. It is usually performed as a structural coverage analysis. In many
respects, this process is a parallel to RTCA/DO-178’s [8] verification requirement for software.

Focusing on just the verification process, the RTCA/DO-254 verification flow for a DAL A
design can be summarized as follows:

• Requirements based verification – Use directed test vectors to verify all requirements.
• Elemental analysis – Several metrics may be used but statement coverage best matches

the requirements of elemental analysis.
• Formal analysis is suggested for hardware with concurrency or fault tolerance.
• Robustness testing is added to assure the device functions correctly in all legal

conditions.

 The semiconductor industry verification flow for any hardware (rarely safety-critical) can be
summarized as:

• Requirements based verification – Use directed test vectors to verify all of the
requirements. The requirements are verified for all input types and device configurations.

• Assertions are used as a debug tool and also as a coverage metric
• Multiple coverage metrics are used including:

5

o Statement coverage
o Branch coverage
o Expression coverage
o Path coverage
o Finite State Machine (FSM) coverage
o Toggle coverage
o Assertion coverage
o Functional coverage

• Constrained random verification (CRV) is used to identify corner cases and problems in
the manufacturer’s requirements. (Corner cases are conditions that push one or more
input variables to their minimum or maximum values to explore a “corner” in the multi-
dimensional test space.)

• Formal Methods – typically targets interfaces, control and data hardware and other
hardware that is difficult to verify with simulation.

• Robustness testing is used to assure the device functions correctly in all legal conditions.
• Additional robustness testing is performed to assure that the device handles illegal

conditions gracefully. Note that how a system handles illegal conditions is often not
specified.

• A public verification methodology is used. The methodology provides standard
verification tools and constructs as well as standard verification code for known
interfaces. Common methodologies are:

o Verification Methodology Manual
o Open Verification Methodology
o Universal Verification Methodology

These methodologies will be elaborated on and discussed in later in this section.

From the above summaries, we can see that a non-safety critical hardware device in the
semiconductor industry is verified using a process that contains tools and techniques beyond
what is required to certify DAL A hardware within the aviation industry. This does not mean that
aviation hardware is not verified as well as semiconductor parts. Aviation related companies can
and do use verification processes similar to the semiconductor industry; however, these
processes may not be used for verification credit in the certification process. For example, an in-
house developed verification tool may prove valuable in practice, but the tool may be unable to
meet the tool qualification requirements necessary to use this tool for certification credit.

The semiconductor industry’s verification process is driven by the fact that a mask set is needed
to produce a part. With mask sets now costing over six million dollars, design errors can cost
millions of dollars. There is a huge financial incentive to get the design correct on the first
attempt. The high cost of mask sets drives semiconductor companies to use a comprehensive
verification process. The semiconductor industry seeks to assure design correctness to avoid the
financial costs of an error. The aviation industry strives to assure design correctness to provide
the safest hardware possible. Although the motivations are different, the goal of assuring a
correct design is common for the two industries.

6

The number of companies in the semiconductor industry dwarfs the number of companies in the
aviation electronics industry. In addition, while design cycles can approach decades in the
aviation industry, the semiconductor industry product design, verification, and test cycles are
short; often less than 18 months from the start of a design to shipping the product. This means
that in any year the semiconductor industry produces many times the number of designs
produced by the aviation industry. If there are weaknesses in the verification tools or the
verification process, the semiconductor industry will encounter them and find solutions first. The
aviation industry can use verification trends from the semiconductor industry as a guide in
determining the most effective verification processes.

When a semiconductor company is considering using a new design tool or verification tool, the
tool is typically evaluated using known problems from previous designs to see if the new tool
solves the old problems. Because there is a large worldwide user base, most tools have a
substantial service history that can be used to assess the correctness of the tool. Unless a design
requires absolute state of the art tools, most companies run a revision or more behind the latest
tool releases to minimize the probability of a hidden tool bug. In the semiconductor verification
process, the verification tools check the output of the design tools on a daily basis. This frequent
cross checking of the design and verification tools provides confidence in the correctness of both
tools.

COVERAGE METRICS: 2.2

The key to improving any process is the ability to measure it. For years verification engineers
have used code coverage metrics as a measure the completeness of the verification effort. We
will begin the discussion of coverage metrics by starting with structural coverage metrics
identified in RTCA/DO-178 and mapping them to their hardware equivalents.

RTCA/DO-178B [8] identifies three primary structural coverage metrics:

• SC: Statement Coverage. Every statement in the program has been invoked or used at
least once.

• DC: Decision Coverage. Every entry and exit point in the program has been invoked
at least once. In addition, each decision in the program has been taken on all possible
outcomes (True/False) at least once.

• MCDC: Modified Condition Decision Coverage. Every entry and exit point in the
program has been invoked at least once. Every condition in a decision in the program
has taken on all possible outcomes at least once. In addition, to avoid conditions
masking one another, each condition is varied individually while holding all other
conditions fixed.

Hardware verification contains a set of metrics for measuring coverage. Metrics that measure
coverage of the Register Transfer Language (RTL) code are referred to as code coverage metrics.
The statement coverage metric used for hardware is equivalent to statement coverage in
RTCA/DO-178. The branch coverage metric used for hardware is equivalent to decision
coverage in RTCA/DO-178. The expression coverage metric used in hardware is equivalent to
MCDC in RTCA/DO-178.

7

Beyond the three metrics described above, additional metrics are often used to assess hardware
verification completeness. [9] Path coverage is an abstract RTL metric that requires that every
leg of the coverage flow graph be traversed at least once. There are also coverage metrics unique
to a hardware implementation. Toggle coverage requires every signal in the device to toggle
(transition from a 0 to 1 and from a 1 to 0) at least once during the testbench. Finite-state
machine (FSM) coverage requires every reachable state of every finite-state machine to be
reached and every transition between states to have been executed at least once. The need for
these additional metrics will be discussed when issues and safety issues are discussed.

The RTCA/DO-254 document requires verification of all of the device requirements. This style
of verification is known as requirements based verification or RBV. Hardware verification often
includes a high-level metric called functional coverage which is a measure of how many of the
device functions have been verified. It should be noted that device functions can be tested with
differing levels of rigor. For example, a statement coverage point of view of functional
verification might declare a function tested if it is verified once. A MCDC point of view might
require that all possible combinations of inputs and outputs have been tested. The same hardware
testbench might achieve 100% functional coverage from a statement coverage point of view
while achieving less than 10% coverage from a MCDC point of view. In the semiconductor
industry, functional coverage embraces a rigorous DC or MCDC interpretation of the
requirements.

Functional coverage and code coverage are complementary metrics with neither sufficient to
assure design correctness. Functional coverage is concerned with testing the device performance
at the transaction and function level while code coverage is concerned with the detailed
implementation of the RTL. If a design neglects to implement a function, it is possible to have
100% code coverage of the RTL but still have design functions that have not been exercised. On
the other hand, it is possible to have 100% functional coverage but have poor code coverage
because there are many ways that each function can be invoked and only a few of the
possibilities may have been exercised. In this process, the verification effort is complete when
the coverage goal has been achieved for both code coverage and functional coverage.

Not every hardware design can use the same code coverage metrics. It makes no sense to apply
FSM coverage to a design with no finite state machines. Conversely, in a predominantly
synchronous design containing many finite-state machines, coverage based metrics like branch
and expression coverage offer little insight into how well the testbench has verified the hardware.
There are wide variations in design implementations and it is impossible to create an a-priori
solution that will work for all designs.

Complementary to the simulation based verification methods discussed above, formal
verification techniques can be applied. Formal verification is often used to prove that certain
properties (or requirements) are true for the hardware. Integrating formal techniques into the
verification flow is difficult because assessing how well a block has been analyzed by a formal
tool is difficult. Independent verification of the formal analysis results using simulations is
typically performed.

8

In summary, statement coverage is the most commonly used coverage metric. It is simple to
measure and is good at identifying unreachable code, but it is a weak indicator of verification
completeness. Complete expression coverage is a good indicator of logical coverage
completeness for many designs, but complex designs can generate enormous quantities of data
that must be analyzed. Depending on the hardware architecture these designs may be suitable for
verification via formal methods. Toggle coverage is heavily focused on the hardware
implementation and should be applied late in the design process when the hardware is believed
to be correct. Any signals that did not toggle indicate either an incomplete testbench or unused
hardware. Designs containing finite state machines need to use the FSM coverage metric to
assess the completeness of coverage. Finally functional testing based on the requirements is
already required by RTCA/DO-254. The functional coverage metric allows the user to assess the
completeness of the testbench with respect to the requirements.

FUNCTIONAL COVERAGE 2.3

Although functional coverage has been discussed as a coverage metric, defining the functional
coverage points is a key element in writing the verification plan. Both which device functions
need to be tested and under which conditions the functions are tested are written into the
verification plan. The functional coverage metric is then used to measure how many of the
identified device functions have been tested. [2] [10] [11] When defining the functional coverage
points, all of the functional requirements must be addressed, as well as higher level completeness
concerns such as:

• Were all possible input stimuli variations injected?
• Were all possible output conditions achieved?
• Did all possible internal state transitions take place?
• Did all the interesting events occur?

The last question “Did all the interesting events occur?” is the hardest to quantify, and often the
most important question of all. Which events are interesting is determined by the function and
implementation of the device. Interesting events are often concurrent conditions with multiple
input conditions occurring simultaneously. Other interesting events often concern timing
variations and signals crossing clock domains. Another interesting event is looking at conditions
that caused failures in previous designs. Although technically not a functional test, negative
compliance tests are often added to assure not only design correctness but design robustness.
Negative compliance testing concerns itself with how the hardware operates when conditions
outside of the requirements are applied.

For example, a packet based interface functional verification would address questions such as
these:

• Have all the packets lengths been used?
• Have packets with good and bad cyclic redundancy check (CRC) results been used?
• Were the buffers tested in the full and empty states?
• Can the buffer full bug that we saw two years ago occur in this design?
• Did the buffer status signals occur on the correct clock edges?

9

Consider a system where packets can be from one to ten bytes in length. The packets can be sent
to two addresses and every packet has CRC data. Basic functional coverage would require
packets with lengths one to ten bytes to be generated and sent to one of two addresses with good
or bad CRC data. By using cross parameters, functional coverage can require that packets of all
sizes containing both good and bad CRC data have been sent to both addresses. It should be
noted that this type of hardware is well suited to formal analysis, and formal proofs of the
hardware correctness should also be performed.

Functional coverage is a superset of requirements based testing, since it considers not only that a
requirement has been tested but also under what conditions that the requirement has been tested.
[12] [13] The device state is also an important parameter. For example, the state the hardware is
in when an interrupt occurs is critical to determining how the interrupt is handled

To summarize, functional coverage is used to create a verification plan containing all possible
input combinations and device configurations. When the hardware is suitable, formal methods
should be used to prove the correctness of the hardware. Formal methods prove the correctness
of hardware with respect to the rigorous mathematical properties and constraints that have been
applied. However, the translation of human written requirements to the precise mathematical
properties and constraints was not verified. Therefore, the outputs of formal methods must be
independently assessed and sanity checked. All other hardware needs to be fully verified by
simulation. For simulation based verification, a combination of randomly generated tests and
directed tests are performed, and the completeness of the functional testing is assessed as the
percentage of functional tests that are complete in the functional coverage plan.

ASSERTIONS 2.4

Assertions are comments that are put into the RTL code that are continuously checked during
simulation. Most assertions are derived from the requirements such as “The Ready signal must
go high 3 clock cycles after the Reset signal transitions from low to high.” Without assertions,
an error is only detected if it affects an output signal that is being monitored. When assertions are
placed throughout the hierarchy of a system, errors can be observed even if they do not affect an
output or other monitored signal.

Most assertions are generated from the requirements as the RTL code is being written. The
designers can also capture low-level indirect requirements and assumptions by writing
appropriate assertions. These assertions document the designer’s intent on how the elements,
interfaces, and control logic are intended to function. A simple example would be an assertion
that the maximum value of an internal counter is 10. Because this counter is not directly visible
to the outside world, errors in the counter may occur without impacting a signal that is
monitored. With assertions, if the counter ever exceeds ten in any simulation, the assertion will
fire making this error visible. If any assertion fires, either the hardware requirements or the
designer’s intentions have been violated. Further analysis may reveal that the underlying cause
was a hidden error, or it may turn out that the there is no issue and the assertion needs to be
adjusted. In either case, the assertion was the key to identifying a potential error.

10

Assertions written by the designers tend to occur at low-level blocks in the system. Top-level
assertions are often included in standard interface IP or are written by the verification engineers.
Higher-level assertions are typically not focused on the RTL code within a block but with the
interface and control of the block. Examples of high-level assertions would be assertions to
assure that packets are correctly acknowledged and that signals that indicate when data is valid
occur according to the specification.

Writing assertions at the interfaces between RTL blocks is critical. [14] Both the sending and
receiving blocks need to follow the same interface protocol. When using standard verification
methodologies, common interface protocols have existing verification IP that can be used for this
purpose. This IP not only contains assertions that assure correctness of the interface protocol
implementation, they also contain scoreboards which allow the user to assess the completeness
of the test suite.

The ability of assertions to increase the observability of the design can also dramatically reduce
debug time. Consider a case where formal analysis or hardware testing has identified a bug. In
the hardware, a bug is only observable when the error reaches an output. The root cause of the
error could have occurred long before the error propagates to an output. This means that
debugging the errors detected in the hardware testing is often quite difficult and can lead to
solutions that address the observed symptom but fail to address the underlying root cause. When
assertions are used, a simulation of the testbench will generate a list of violated assertions. The
list provides a map of how the error was generated and how it propagated through the design.
This allows all impacted modules to be identified and this dramatically speeds the debug process.
Reducing the time spent debugging increases the time that can be spent searching for new bugs.

While the original purpose of assertions was to document the requirements and the designer’s
assumptions, assertions can also be used as a coverage metric. [15] Because assertions are
written throughout all levels of the hierarchy, assertions provide information about how well the
hardware has been tested at all levels. To use assertions as a coverage metric we need to assure
that there is an adequate density of assertions throughout the design. There are tools that measure
the logical distance of hardware from the nearest assertion and can highlight areas with limited
coverage from assertions.

The verification process can assess not only if an assertion has fired but also whether an assertion
has ever been evaluated. Since assertions reflect both the requirements and the designer’s intent,
an unevaluated assertion indicates a gap in the testbench coverage. An example might be an
assertion indicating correct operation of a dual port memory under the condition of both ports
simultaneously attempting to write to the same address. If this assertion has not been evaluated,
then the testbench has not attempted to write to the same address on both ports at the same time.
It may be possible that this system implementation can never write to both ports simultaneously,
if so this should be noted in the documentation. However, if this condition can occur, a test case
for this condition should be generated. Modern tools are automating both the process of writing
assertions [16] and the use of assertions as a coverage metric. Assertions allow hard-to-reach and
hard-to-verify logic or critical functionality to be identified as coverage goals.

11

CONSTRAINED RANDOM VERIFICATION 2.5

Regardless of the metric, coverage metrics are a way to count interesting events that occur in the
verification process. This list of events that occurred is compared to the list of events that were
specified in the verification plan and a measure of verification completeness is produced.
Although it is possible to hand code directed tests and achieve 100% code coverage, it is known
that humans impose biases into their interpretations of the requirements. Ambiguous
requirements may not be seen as ambiguous until after the design is complete. This means that
legal but unanticipated combinations of the inputs and the system state can produce errors that
slip through the testbench. To remove human biases from the verification process, constrained
random stimulus generation is used. Constrained random verification tools assume that any
condition that is not specifically disallowed by the requirements is valid and then randomly
generates test cases using these rules. If a requirement is vague, the constrained random process
can generate test conditions that highlight this problem.

Consider a device that receives data in packets over a serial communication bus. The size of the
packets depends on which device is sending the packet, as well as the type of data contained
within the packet. In addition, the packets can arrive at arbitrary times. With a system of this
complexity, even the designer with full knowledge of the hardware implementation may be
unable to determine the worst case scenarios. The worst case for the hardware could be several
small packets followed by a large packet, or it could be a large packet immediately following a
packet with a transmission error. The device operation depends on not only the input packet but
when the input packet arrived and the history of previous packets. In the absence of the ability to
identify all of the possible problem conditions, it is best to test as much of the input space as
possible. Automated constrained random verification was developed to address this issue.

Constrained random verification’s lack of human biases allows it to excel at finding unusual
conditions that escape analysis by humans. For instance, most components have a reset signal
and testing the functionality of this signal is a requirement. The author has seen hardware that
functioned correctly when reset was applied, but malfunctioned if a reset was immediately
followed by another reset. There was no reason in the normal operation of the hardware that
multiple sequential resets could not occur. Although neither the designers nor the verification
team identified this condition as being a problem, constrained random testing generated the
condition that identified this failure.

Because constrained random test case generation is automated, large numbers of test cases can
easily be generated. This allows the device functions and RTL code to be exercised repeatedly in
varying conditions. The randomness that is constrained random verification’s strength is also its
Achilles heel. For most coverage metrics, constrained random verification rapidly achieves 80%
coverage and then asymptotically approaches 100% as shown in figure 2 below. What is
happening is the new randomly generated test cases begin to overlap previously tested
conditions. The slow convergence of random conditions to complete coverage is well known and
referred to as the “coupon collector problem” [17]. Consider a scenario where there are 1000
possible test conditions. Initially every test case generated is unique and the coverage increases
rapidly. However each new test case increases the probability that the next test case generated

12

will be the same as one already covered. For the example of 1000 possible test conditions, on
average over 7000 cases will need to be generated to achieve 100% coverage.

Figure 2. Coverage closure vs the number of tests generated.

An improvement to constrained random testing is to add coverage based metrics to the test case
generation process. The coverage metrics are then used to steer the parameter constraints to
target untested conditions. Modern tools such as Mentor Graphics InFact tool, can automate the
parameter adjustment process to significantly speed the coverage closure process.

FORMAL VERIFICATION 2.6

Formal verification verifies the correctness of a design with respect to a specified behavior by
checking whether the labeled state-transition graph that models the design satisfies the specified
behavior. Formal methods offer the ability to prove that hardware is correct for all possible
combinations of the inputs and system state. A key feature of formal verification is that if a
design is found to violate a requirement, an example demonstrating how the violation can occur
is produced. Examples of areas where formal verification has proven its value include proving
the correctness of design interfaces, clock domain crossing circuits, and finite state machine
implementations.

Formal verification proves that a design property holds for every point of the search space. There
are two major formal verification approaches. These approaches are sequential equivalence
checking and model checking. These are complementary approaches, one checks that two
models are equivalent and the other proves that certain properties are true for the model.

2.6.1 Sequential Equivalence Checking

Sequential equivalence checking is used to formally compare two models. These models can be
quite different in structure. For instance, one model could be a reference model for the design,
and the other the RTL implementation of the model. The reference model could be written using

13

un-synthesizable behavioral RTL constructs or could even be written in a different language such
as C.

Sequential equivalence checking can prove that the two models are equivalent with respect to
defined properties such as the behavior of the output signals. The analysis needs to be
constrained to prevent degenerate cases from interfering with the proof. Simple constraints that
might be needed could be a constraint that the clock signal will always toggle and that the enable
signal must change.

In hardware design there are often multiple ways to implement the same logical function. These
implementations offer trade-offs that vary with respect to performance, power dissipation, and
area. As the design nears completion it is common for the hardware implementation to shift in
order to meet timing or power requirements. If the previous design was known to be logically
correct, it is much faster to prove that the new implementation is equivalent to the old
implementation using sequential equivalence checking than it is to prove that the new design is
logically correct.

Common models that are compared include:

• A behavioral model vs. the RTL implementation
• The RTL implementation vs. the pre-routing netlist
• The pre-routing netlist vs. the post routing netlist
• The post routing netlist vs. a new revision of the post routing netlist

Equivalence checking methods can prove that two models are equivalent, but the methods
provide no guidance towards whether the model is correct. Model checking techniques are used
to prove the correctness of a model.

2.6.2 Model Checking

Formal verification tools can be used to verify the correct operation of many control and
datapath blocks by proving that the designs meet a set of formally defined properties. These tools
are known as model checkers and perform an exhaustive state-space search to prove that the
properties are true under all conditions. They explore the state space for all possible corner cases
and provide examples that demonstrate how a violation can occur. The output of a model checker
is one of three possible results:

1. The properties have been proven to hold.
2. There is a known failure and a counterexample is given.
3. The system could neither prove nor disprove the properties.

The third result is problematic since it provides no information.

14

2.6.3 When Are Formal Methods Effective?

Formal methods are best suited to more abstract high-level models. As the complexity of the
model increases, the formal methods lose their ability to exhaustively search the state space. The
primary limitation of these models is the amount of memory available to the processor and the
amount of CPU time that can be devoted to the analysis.

DO-254 Appendix B 3.3.3 states “Formal methods may be applied to the whole design or they
may be targeted to specific components.” The document goes on to suggest “Protocols dealing
with complex concurrent communication and hardware implementing fault-tolerant functions
may be effectively analyzed with formal methods.”

In the current state of the art it is rare that formal methods are successfully applied to the whole
design. It may be possible to apply formal methods to a high-level model of the design, but low-
level hardware is usually analyzed in smaller blocks.

Concurrent hardware is characterized by hardware where multiple inputs streams of data arrive
at arbitrary times and can collide with each other. An example of this type of hardware would be
an Ethernet router. The input data arrives at arbitrary times and is transferred to the correct
output without modification. This type of hardware is difficult to analyze in simulation due to the
arbitrary data timings, but is well suited to formal verification.

As opposed to concurrent hardware, sequential hardware manipulates the input data through a
sequence of hardware operations. Because nearly every register in the device is involved in
processing the data, the state space grows exponentially large. Sequential hardware such a digital
signal processing circuit is usually best analyzed via simulation and proves difficult to verify
using formal methods.

Fault-tolerant hardware requires a hardware failure to occur in order to test if fault tolerance is
operating correctly. This makes it difficult/impossible to validate fault-tolerant hardware in the
final system and it is also difficult to verify in simulation. Proving the correctness of the
hardware using formal methods is an excellent approach to this problem.

Control circuits that do not directly modify data but control the operation of the hardware are
well suited to formal verification. Examples of control circuits are memory controllers and
interrupt controllers.

Data transport circuits that move data without performing mathematical operations on the data
are also suited to formal verification. Data transformation circuits that perform mathematical
operations on the data are less suited to formal verification.

Foster’s DVCon paper in 2006 [18] provides guidance on the types of hardware that is suitable to
for analysis with formal methods. Examples of hardware that are suitable for formal verification
include:

• I/O Interfaces especially standard interfaces

15

• Arbiters
• Bus bridges
• Power management units
• DMA controllers
• Host bus interface units
• Scheduler controllers
• Clock gating
• Interrupt controllers
• Memory controller

Examples of hardware that is not well suited for formal verification [18]:

• Floating point units
• Graphics processors
• Convolution unit in a signal processor
• MPEG decoders

2.6.4 Formal Verification in Practice

Formal methods can be applied at varying levels of intensity depending on the experience of the
verification team. The method requiring the least expertise in formal methods is proving that the
assertions are never violated [19]. Assuming the design is instrumented with well written
assertions, most verification tools with formal capabilities automatically attempt to prove all of
the assertions. Because most assertions have a very local scope, they are well suited to formal
analysis. Proving assertions may require the application of constraints for the proofs to complete.

Another common use of formal verification is the formal analysis of the interfaces. This focuses
on the interface requirements and not on the data passing through the interface. Interface
verification is usually done at a high level of abstraction and is well suited to formal analysis. For
many common commercial interfaces the verification tool vendor can provide the properties and
constraints needed to perform this formal analysis.

The most common use of formal verification tools is the use of model checking tools to prove
properties in support of bug hunting. Rather than attempting to prove that hardware is correct for
all properties at all times, this technique attempts to prove limited properties under restricted
conditions. These limitations can include limiting the depth of the state-space search or using
simulation to reach a particular state and then exploring the state space from there using formal
methods. Any bugs that are identified are real and this technique offers additional assurance that
the hardware is correct, but it does not prove that the hardware is correct.

The properties to be proven using formal methods are chosen based on a ranking given in the
verification plan. Properties that would have a high rank for formal verification might include:

• A previous project had a bug in this area.
• The property is difficult to cover using simulation.
• The hardware is conducive to proving this type of property i.e. control hardware

16

It should be noted that properly constraining the model for proving properties using model
checking can require knowledge that can only be provided by the designer and can be impossible
of COTS IP is used. The exchange of information needed to constrain the model can require a
communication path between the design and verification teams that must be structured to limit
the possible loss of independence between the two efforts.

For applications where the hardware is suitable for formal verification and sufficient expertise
with formal verification exists, it is possible to do a full proof of the correctness of the hardware.
This ultimate goal of formal verification has proven difficult to achieve in practice.

VERIFICATION PROCESS DETAILS 2.7

The verification process begins with defining the verification plan. The planning process begins
by determining the goals of the verification process. These goals will include verification of all
of the requirements as well as coverage targets for multiple metrics. Given that it is not possible
to fully verify a complex design, these goals are prioritized in terms of their impact on system
safety, whether the relevant hardware is proven or a new design, the complexity of the difficulty
hardware, and many more criteria.

A typical verification process is shown in figure 3. The verification methods are divided between
methods based on simulations of testbenches and formal methods. Simulation based verification
includes directed tests coming directly from the requirements, random tests to cover corner cases
and assertions to assure the design meets the designer’s intent. Formal verification methods
include sequential equivalence checking to prove model equivalance and model checking to
prove properites.

17

Figure 3. A typical hardware verification flow.

The verification goals identified in the verification plan are analyzed to determine which
verification method will best achieve this goal. The distinction between verification by
simulation and formal methods is significant. The tools and expertise required to perform formal
analysis are quite distinct from those used for simulation and these tasks will be assigned to
separate teams. The verification plan is not fixed, If a goal assigned to formal verification proves
unsuited to formal techniques, it can be covered with simulation. Conversely, if simulation is
finding it difficult to achieve its coverage metrics, a goal may be added to the formal verification
plan.

Assertions are used in both the simulation based and the formal method based verification flows.
The assertions may come from high level requirements and are written by the verification team
or they can also be written by the designers to document low-level design assumptions.

Common industry practice for the simulation based verification process and verification
coverage analysis is shown in figure 4 on the following page. The figure comes from a recent
Cadence Design Systems webinar on state of the art verification processes. Although not a major
supplier of tools to the aviation industry, Cadence is the world’s largest design and verification
tool supplier.

To begin, examine the arrows at the top of the figure. The first thing to notice is that the
testbench development begins at the same time as the RTL design. Also note the verification
testbench development moves up through the hierarchy in parallel with the RTL development.
There are several major events on the timeline. “Feature finished” means the RTL designers
believe the block is complete. Bug rate leveled indicates the rate of bug discovery is
asymptotically approaching 0.

Hardware
Verification

Methods

Simulation

Directed Tests
(Requirements

Driven)

Random Tests
(Coverage

Metric Driven)
Assertions

Formal Methods

Sequential
Equivalence

Checking
Model Checking

Assertions Properties

18

Figure 4. Cadence Inc’s recommended verification process.

Notice that unlike RTCA/DO-254 where there are RBV and code coverage requirements, there
are three distinct coverage regimes identified: code coverage, assertion coverage, and functional
coverage. Before the verification team has written the testbench, verification is still occurring
with the tests that the designer writes for his purposes. Since the designer’s testbenches lack
independence, they are not counted toward verification completion and are shown within a
dotted line labeled “smoke tests”. Once the testbench is written, functional verification begins
and constrained random testing is begun ambiguous or poorly written requirements are often
identified as part of the verification process.

Once the RTL designer believes a feature is complete, code coverage metrics are run. In this
case, block coverage (which is another name for statement coverage), FSM and expression
coverage are used. As the major features are completed and meet the coverage goals, final
integration begins. At this time the design is mature enough to apply toggle coverage. Any holes
in the toggle coverage or the functional coverage are addressed with directed tests.

Determining when the verification process is complete is determined by the coverage metric
completeness. Ideally a part would require 100% coverage of the code coverage, assertion
coverage and functional coverage metrics. Other coverage metrics are monitored but may or may
not be used to determine verification completeness. Because time to market is critical in the
semiconductor industry, parts may be shipped with less than 100% coverage on all metrics. A
typical verification completeness criteria would be 95-97% code and assertion coverage and as
much functional coverage as the schedule will allow.

Verification engineers and managers were asked in a survey and in personal interviews about
how their verification flow would differ between a non-safety critical part and a safety-critical
part. The overwhelming response was that the two verification processes would be identical

19

differing only in the coverage targets and the rigor applied to the robustness testing. A non-safety
critical part could ship with less than 100% coverage. This was viewed as a business decision
where the risk of a design error requiring a new mask set is balanced against the cost of being
late to the market. A safety critical part would target 100% coverage on all metrics used. It
should be noted that 100% coverage in any of the metrics can be impossible to achieve in certain
implementations. In this case an analysis explaining why 100% coverage cannot be achieved is
required.

ROBUSTNESS TESTING 2.8

Robustness testing has two major thrusts. The first is to assure that the product operates correctly
under all legal operating conditions. This includes voltage and temperature variations as well as
variations in other operational parameters such as clock speed and throughput. The second thrust
is often referred to as negative compliance verification. This thrust concerns itself with how the
system operates when subjected to conditions that are outside of the requirements. Most protocol
documents are very precise on what constitutes valid inputs and valid configurations. However,
the documents often do not address at all how the system should respond to conditions outside of
the system requirements. For instance serial protocols such as Arinc-429, RS-232, and I2C
define special signals known as start and stop bits to delimit the beginning and ends of a data
transmission. The requirements state that the system will begin a transmission with a start bit
followed by the data and the transmission is terminated with a stop bit. But how should a system
handle the case where a start bits and data are received without a stop bit? The protocol
requirements do not have knowledge of how the system is using the data and are unable to
determine the correct way to handle this case. It may make sense to ignore all of the received
data bits, accept the data bits when a start bit arrives, set an error flag, stop receiving data or
many other possibilities. There are a large number of cases dealing with input conditions that are
not covered by the requirements such as: missing start bits, missing stop bits, too few data bits,
too many data bits, too many stop bits, stop bits in the middle of the data, and so on. Given the
large test space and unknown interactions with the hardware, negative compliance testing is
usually accomplished using CRV to randomly generate non-compliant inputs and system states.
Including negative compliance testing in the verification process greatly expands the verification
test space and increases the verification time. Formal methods can also prove useful in assessing
negative compliance by assuring that certain failure conditions cannot occur.

The reason negative compliance robustness testing is performed is to assure that the system
handles out of requirements conditions gracefully and recovers so that when valid conditions
return the system returns to correct operation. Consider the case of a data transmission with a
missing stop bit. When this condition occurs, a straightforward implementation of the protocol
would cause the system to wait indefinitely for the stop bit. Although waiting forever is highly
undesirable, this is a valid implementation of the protocol. If reception of this data transmission
was handled with an interrupt, the missing stop bit could prevent the interrupt from clearing. If
the only way to receive a stop bit or a new start bit was required for the interrupt to clear, the
entire system would be locked up; waiting indefinitely for the missing stop bit that could never
arrive. Although this condition is technically allowed by the requirements, it should not be
allowed to occur in practice.

20

VERIFICATION METHODOLOGIES 2.9

The aviation and military industry predominantly use VHDL as the design and verification
languages. The verification process in the semiconductor industry uses a combination of System
Verilog with the native design language of either Verilog or VHDL. System Verilog is a popular
Verilog extension that offers object-oriented programming tools to speed development and
improve verification IP reuse. Several verification methodology standards are in current usage,
as listed below.

The Verification Methodology Manual (VMM) was developed by Synopsys and was the first
successful and widely implemented set of best practices for creation of reusable verification
environments in System Verilog. VMM embraces the object-oriented capabilities of System
Verilog and allows constrained random and functional coverage verification.

The Universal Verification Methodology (UVM) is an open source System Verilog focused
library of reusable verification components which include assertions. UVM attempts to take the
best of the VMM and OVM worlds. The goals are testbench reuse and the development of
reusable verification intellectual property.

The Open Verification Methodology (OVM) is a tool agnostic library of objects and procedures
covering the fundamental processes in verification such as stimulus generation, data collection
and control of verification process. OVM focuses on higher-level transaction-level verification.
OVM is attempting to develop object-oriented capabilities for the VHDL language.

Although UVM is popular at the moment, all three of the above methodologies are in current use
in industry. The need for standardized verification methodologies is clear.

HARDWARE BASED VERIFICATION 2.10

1. Hardware based verification is typically performed by building a hardware system to apply

test vectors to the component under test and to store and analyze the outputs of the device. A
common hardware verification test is to apply the hardware’s RTL test suite using full speed
clocks and data signals. From a RTCA/DO-254 point of view, this hardware test provides a
critical independent assessment of the design tool’s output and therefore can be used to avoid
the need to qualify the design tool. This test can detect timing problems within the
component as well as problems due to power quality and signal integrity issues related to the
component. Major tool manufactures endorse the use of hardware based verification. For
example, “Aldec provides DO-254/CTS (Compliance Tool Set) which allows testing of
designs in a wide range of test combinations and compares outputs generated by RTL
simulator with the target FPGA device outputs.” [20]

Synopsys conducted a survey of 1912 users on how they used hardware based verification. The
results are shown in figure 5 on the following page.

21

Figure 5. .How hardware verification is used in industry.

The data is interesting in that the hardware verification system is being used for both verification
and validation. Testing the component in an environment similar to its final application is grey
area that is not quite validation and also not quite verification. The most popular answer was that
hardware based verification was used to locate bugs in the HDL code that escaped the normal
verification process.

There is always a tradeoff between simulation speed and accuracy. Analyzing high-level
transaction based conditions such as maximum throughput is usually handled by creating a
software model of the hardware. However, system level models are rarely cycle accurate and
signals that need cycle-level accuracy such as FIFO full and empty signals are always a problem.
Hardware based verification offers a system level model that is both cycle-level accurate and
high-speed. Hardware based verification allows timing problems to be identified and also allows
longer and more thorough simulations to be run in the same time period. In addition, the system
can be subjected to robustness testing by verifying that the system not only meets, but exceeds,
the requirements. For instance, this could be achieved by applying input signals at a rate in
excess of that specified by the requirements. Negative compliance testing can also be performed
to ensure that the system handles out of requirement conditions gracefully.

However, not everything is improved with at-speed hardware based verification; consider a case
where a bug is found while running the same test bench that was used for verification. Since the
hardware can only be observed at the outputs, the ability to find the cause of the bug is limited.
Simulating the testbench that produced the bug can take days. So while the hardware based

http://blogs.synopsys.com/breakingthethreelaws/files/2012/02/FPMM-survey-use-modes.jpg

22

verification speeds up detecting that there is a bug, it does not accelerate the debugging process.
There are debugging tools that allow the user to observe internal signals within the FPGA, but
these tools often degrade the system timing.

3. INDUSTRY SURVEYS

The author conducted a detailed survey with 12 verification engineers and managers representing
5 semiconductor companies and one aviation related company. The small number of samples
allowed the author to interact with each respondent and clarify ambiguous responses. The results
of the author’s survey are representative of conditions in the semiconductor industry.

Aldec Corporation published selected results from a survey of their customers which had over
2400 respondents. Aldec design and verification tools are not widely used in the semiconductor
industry and are more common in military and aviation applications. The Aldec survey should be
representative of military and aerospace users.

The results of both surveys are presented in detail in Appendix A. A summary of the surveys is
presented below.

DESIGN AND VERIFICATION LANGUAGE 3.1
There are two major RTL languages used for the design and verification of hardware: VHDL and
Verilog. VHDL is a strongly typed language derived from the ADA language and is widely used
in military applications. Verilog is a language modeled on the C language and is widely used in
the semiconductor industry. The Verilog language has been extended to include object oriented
structures in a language called System Verilog. System Verilog has built-in constructs to aid in
the verification process such as scoreboards to assess verification coverage and constrained
random testing modules. There are some efforts to develop a similar extension to the VHDL
language, but these efforts have had limited success. Although at least one company develops the
design using VHDL and verifies using a combination of VHDL and System Verilog, the design
flow is much cleaner if all of the tools are based on the same language.

The Aldec survey notes that for its military and aerospace centric user base “System Verilog is
growing in popularity” and that with respect to training courses “it is only recently that we’ve
seen System Verilog overtake VHDL.” This indicates that a shift from VHDL to Verilog is
occurring in the military and aerospace industries.

The Aldec survey shows for new designs that Verilog will be used by 31% of the respondents
and System Verilog will be used by 32% of the respondents. This probably indicates that all of
the System Verilog Users are using Verilog as their design language. The author’s survey
indicated a much higher System Verilog usage of 66% in the semiconductor industry.

VERIFICATION METHODOLOGY 3.2

The Aldec survey found that the majority of the respondents used no particular verification
methodology or an in-house developed verification methodology. Standardized verification
methodologies such as VMM and OVM/UVM were used by 24% of the respondents compared
to 60% of the respondents in the author’s survey. This difference in the adoption of standardized

23

verification methodologies is probably due to the fact that semiconductor companies are free to
embrace new verification technologies, while the certification processes of the military and
aviation industries slows the adoption of new methodologies.

ASSERTIONS 3.3
The author’s survey found that assertions were used by over 80% of the respondents. The
assertions were written at all levels of the design hierarchy with all respondents using low-level
assertions and most respondents using higher level assertions. Although there are automatic tools
to help identify assertions and assess assertion density, assertions were overwhelmingly written
by hand. Assertions are a key element of the verification process.

FORMAL METHODS 3.4
The author’s survey investigated the use of formal methods in the verification process. Half of
the respondents used formal methods and a majority of the respondents considered formal
methods to be essential to the verification process. Those respondents that did consider formal
method to be essential to the verification process were quite adamant that formal methods must
be utilized.

SAFETY-CRITICAL VERIFICATION 3.5
The survey asked the respondents to consider a safety-critical component and a component that
is not safety-critical and identify how the verification process would differ for these components.
The responses were unanimous that the verification processes would be the same. The difference
would be that safety-critical components would have higher coverage targets and that more effort
would be expended on formal verification effort.

4. IDENTIFY KNOWN AND EMERGING OBSTACLES, PROBLEMS, OR ISSUES

A Deepchip survey [21] in 2011 asked "What two areas of the system on a chip and integrated
circuit design process need the most advancement over the next 2 years?" The results are shown
in table 1 below. As can be seen, verification tools are viewed as the greatest weakness. The
second highest response was IP collaboration and IP reuse tools. The high ranking of the
verification and reuse of IP indicates concerns about the widespread use of COTS and in-house
developed IP throughout the industry.

Table 1. The top two areas needing advancement in the design and verification process.

 EDA verification tools 63%
 IP collaboration tools (selection-integration-reuse) 50%
 EDA design tools 42%
 Embedded software tools 26%
 Other 2%

The same survey asked a second question focusing on IP. "What are your top 3 challenges for
managing semiconductor IP?" The responses are shown in table 2 below.

24

Table 2. Top 3 challenges in managing IP.

 Verifying IP 62%
 Integrating IP in design 53%
 Making internal IP reusable 50%
 Managing IP updates/bug fixes 48%
 Finding/Selecting optimal IP 39%
 Tracking IP usage 21%
 Other 2%

Verification of the IP topped the list of challenges. Whether the IP is produced in-house or is
COTS, verifying IP without a detailed understanding of the implementation is a major concern.
Problems integrating IP into the designs was second while making internal IP reusable ranks a
close third. This indicates that even when companies have developed the IP source code in their
own design flow, IP reuse is still a major issue. The reasons for this vary. IP reuse problems due
to coding styles and documenting designer intent are among the most common.

These surveys indicate that verification of significant blocks of IP is one of the industries
greatest challenges. The fact that finding and selecting optimal IP and tracking IP usage were
also among the top challenges shows that COTS IP is widely used in modern products.

ISSUES WITH COVERAGE METRICS 4.1

For DAL A hardware, RTCA/DO-254 requires the verification process to test all of the
requirements (Requirements Based Verification) and perform an analysis to assure that all design
elements have been tested. This analysis is often accomplished by assuring that every line of
code has executed. If there are lines of code that have not executed then either the code is
unnecessary and should be removed or there is a missing requirement.

There are safety issues with this methodology. By definition, complex airborne hardware cannot
be exhaustively tested. All that code coverage can assure is that each line of code has been
executed at least once. For instance, a line of code calculates the aircraft altitude from the
barometric pressure sensors. Consider a situation where an incorrect altitude calculation occurs
when the system is only using altitude data from the satellite navigation system. Even though the
line executes and an error occurs, the error has not affected the system outputs and therefore this
error remains hidden. The code coverage metric now indicates that this section of code has been
executed and therefore does not need further verification. This could allow this error to escape
detection.

Consider the VHDL code below.

if (a= '1' and b = '1') then
 c <= '0'; Statement 1
 else
 c <= ‘1’; Statement 2
 end if;

25

This code checks to see if the variables a and b are both equal to 1. If a test case of where the
variables are both equal to 1, then statement 1 will execute and c will equal 0. If a test case with
a equal to 1 and b equal to 0 is applied, then statement 2 will execute and c will equal 1. These
two test cases achieve 100% statement coverage of the code but leave two untested combinations
of the inputs. In this simple case using expression coverage would solve the problem by
requiring test cases for all of the input combinations. But coverage metrics do not have
knowledge of when signals are valid or being observed. For instance when a system is reset all of
the outputs are set to known values. But the input circuits can react to the inputs applied during a
reset and the coverage metrics such as expression coverage will indicate that features have been
tested when their output could not be observed to see if an error occurred. To avoid the
possibility of an error escaping the verification process, assertions can be used to check to
correctness of signals even when they do not affect observable pins.

ISSUES WITH FUNCTIONAL COVERAGE 4.2

Defining a functional test plan requires elaborating possible input combinations and system
states. Although there are tools that can help elaborating the test plan, determining what
constitutes a function of the device requires human input. As mentioned previously interesting
events need to be identified. Although there are tools to assess the functional coverage metrics,
there are currently no tools to assess the completeness of the functional test plan.

ISSUES WITH FORMAL VERIFICATION 4.3

A formal verification tool can produce the following outputs:

• The property has been proven to hold
• The property has been shown to not hold and a counterexample is provided.
• The property could not be proven to hold or proven not to hold. The result is

inconclusive.

Regardless of the output, there are always concerns about the quality of the result.

If the tool proves a property to hold, the hardware could be still be incorrect for several reasons
including:

• The property did not accurately describe the requirement.
• The analysis was unrealistically over constrained.
• The analysis found a solution using degenerate/illegal states due to a lack of constraints.

If the tool proves the property not to hold and gives a counterexample, the result may be of
limited value for several reasons including:

• The property did not accurately describe the requirement.
• The counter example is so complex that it provides no insight into the root cause of the

failure.

26

• The analysis found a counterexample using degenerate/illegal states due to a lack of
constraints.

If the tool gives an inconclusive result, there is little feedback to indicate how close or far a
solution might be. Would more simulation time help? Are more constraints needed? Is this
hardware better verified using simulation?

Unlike simulation tools that have standard coverage metrics, there are limited tools to assess
what code was actually used in the formal proof. There are currently no indications if there is
unused hardware in the system. If the unused hardware does not interfere with the correct
operation of the hardware needed to prove the properties, there is no way of identifying it. There
has been some research into developing coverage metrics for formal tools [22], but this is a
current area of research.

ISSUES WITH ASSERTIONS 4.4

There are tools that assess the density of assertions and can identify areas where additional
assertions are needed. These tools merely count assertions and cannot distinguish between well-
written and poorly-written assertions. There are also tools that automatically generate assertions
based on the RTL code, but these assertions can never completely document indirect
requirements or the designer’s intent. [23]

ISSUES WITH COTS IP 4.5

Both COTS IP and in-house developed IP present challenges to the verification process because
the implementation is either unknown or too complex to easily analyze. Because the IP is a
black-box, the primary verification method is to write a functional coverage plan for the IP.
Assertions can then be written to describe the interface for all inputs and outputs. A formal
analysis of the interface can be performed if the hardware is suited to formal analysis. Human
written and random tests are then performed until the functional and assertion coverage goals are
met.

5. IDENTIFY POTENTIAL APPROACHES AND CRITERIA TO DEMONSTRATE
SUFFICIENCY OF VERIFICATION COVERAGE ANALYSIS OF CEH LEVELS A, B, AND
C

Given how well the coverage metrics from RTCA/DO-178 map to hardware metrics, it would
seem that implementing similar coverage metrics for hardware should produce a confidence
levels similar to that achieved in RTCA/DO-178 designs. However, industry practice has shown
that the combination functional coverage and code coverage is insufficient to fully verify a
hardware device.

It has been demonstrated that requirements based verification/functional coverage, code
coverage, and formal methods are complementary verification techniques and the using one
without the other risks letting errors escape. It is proposed that DAL C hardware utilize the
existing DO-254 process of verifying all requirements and use elemental analysis or statement

27

coverage to determine verification completeness. Formal methods cannot be universally applied,
so one can only encourage but not require their use. The verification plan needs to balance how
well formal methods can be used to verify the hardware with the expertise within the verification
team. In some applications formal methods can offer a substantial reduction in the time required
to verify the product and it is expected that verification teams will introduce formal methods to
reduce the cost of verification.

DAL B
In addition to the verification performed for DAL C, DAL B hardware is required to document
all module interfaces with assertions and use constrained random verification. Verification
completeness will be determined by meeting the coverage goals for RBV/functional coverage,
assertion coverage, and statement and branch coverage.

DAL A
In addition to the verification performed for DAL B, DAL A hardware will use toggle coverage
and implement robustness testing and negative compliance testing as part of functional testing.
Verification completeness will be determined by meeting the coverage goals for RBV/functional
coverage, assertion coverage, and statement, branch, and expression coverage.

Given that a wide spectrum of hardware designs are covered by RTCA/ DO-254 and that there
are times when 100% code coverage cannot be achieved, the author is hesitant to recommend
coverage level targets. It must be emphasized that the numbers below are targets and that there
may designs where meeting the targets will be either impossible or require inordinate effort. The
targets should not be viewed as cast in stone numbers or the testing will focus on meeting the
coverage metrics rather than assuring the correctness of the design. A reasonable coverage
metric for a DAL B design would be 97% branch coverage, 95% assertion coverage and 95%
functional coverage. For a DAL A design, a reasonable target would be 100% expression
coverage, 97% assertion coverage, 97 % functional coverage, and 95% toggle coverage.

Formal methods should be applied to hardware of DAL B or A. DAL B hardware will be using
assertions and these assertions should be verified with formal tools. DAL A hardware should be
using sequential equivalence checking and model checking tools on all hardware suitable to
formal methods.

The following verification flow should be used for hardware of all DAL.

HARDWARE VERIFICATION PLAN 5.1

The verification plan will verify all requirements. The plan will develop coverage goals and then
assess which goals are best achieved via simulation and formal methods. This plan will have two
sub-plans the simulation based verification plan and the formal verification plan. If formal plans
are used the type of formal verification and the goals of the verification will be explicitly traced
to the requirements. Because formal methods prove that the hardware meets the specified
properties it is critical that the properties be carefully traced to the requirements.

28

The hardware verification plan will assess how well each of the verification goals has been
achieved on a scoreboard. The results of formal verifications will be checked with simulations to
provide independent verification of the formal tool results. If the simulations and the formal
methods disagree, one or both of the analyses are incorrect. A careful investigation of any
discrepancies must be performed.

SIMULATION BASED VERIFICATION PLAN 5.2

Those verification goals assigned to simulation in the verification plan should include all
possible hardware configurations and all variations of the inputs.

DAL B hardware will also include constrained random testing and assertion based coverage. The
verification plan will identify sequences of interest for all input signals and identify significant
corner cases, concurrency issues and error conditions.

DAL A hardware includes all of DAL B criteria plus toggle coverage and robustness testing with
negative compliance conditions.

5.2.1 Create the Functional Coverage Specification

Define what functions should be covered. Decide on the interesting inputs as well as internal
states. For all inputs identify the legal values, illegal values, and boundary values. Examine the
interfaces and internal state machines to identify the important state machines and key
transitions. Identify key relations between the input data and system state.

For DAL B and A, write assertions at all levels of the hierarchy. The assertions should cover all
inputs, outputs and important internal signals. Use known verification IP for standard interfaces.

5.2.2 Writing and Running the Testbench

Write the testbench using parameters to enable constrained random testing. As soon as there is
RTL code to verify, begin verification runs to debug the verification suite and identify vague
and/or incomplete requirements. Any problems found with the requirements should be addressed
as they are identified.

5.2.3 Coverage Analysis

As the RTL code becomes nearly complete begin coverage analysis. Starting at the module level
and moving up in the hierarchy, look for unreachable code. Identify holes in the verification
testbench and focus additional tests in these areas. The goal is 100% code coverage. If this is not
possible, document why this is so.

For DAL B, assure that all of the states in all state machines have been reached. Achieve 95%
coverage for assertion and functional coverage.

29

For DAL A, run toggle coverage looking for gaps in the testbench coverage. Assure that all of
the transitions between state machine states have been traversed. Insure that all assertions have
been evaluated at least once (100% assertion coverage) and that all device functions have been
verified (100% functional coverage). If 100% coverage cannot be achieved, analyze why and
document the reason. An example of where 100% coverage might not be achieved could be
circuits that only operate when a radiation induced failure occurs. These circuits may not be fully
exercised in simulation and therefore prevent 100% coverage. These circuits would be analyzed
independently to assure design correctness.

FORMAL VERIFICATION PLAN 5.3

Formal verification methods are suitable for all design assurance levels, however the methods
used can vary. DAL C hardware would be encouraged but not required to use formal methods.
DAL B hardware would be expected to use formal methods to prove the assertions and to
formally verify all interfaces. DAL A hardware that is suitable to the application of formal
methods would be expected to use equivalence checking and/or model checking techniques to
improve the assurance that the design is correct.

The integration of formal methods into the coverage analysis is problematic, formal analysis can
assess whether the desired functional properties are correct, but the formal results need to be
independently verified with simulations to assure that the properties proven to hold are the
correct properties. When a formal proof fails to be proven correct, an example is given to
illustrate the failure. These examples are routinely analyzed and debugged using simulation
tools.

6. RECOMMENDATIONS

The existing RTCA/DO-254 verification process works well. One of the goals of this research
was to determine coverage criteria that would yield assurance levels comparable to RTCA/DO-
178. Published research and semiconductor industry practice indicate that the process of
requirements based verification combined with code coverage metrics is insufficient to
adequately verify complex hardware. Several improvements to the existing process are
suggested. Use constrained random verification to generate large numbers of random test cases
to detect problems with the requirements and remove human biases from the verification effort.
Use assertions throughout the hierarchy to detect any violations of the requirements or the
designer’s intent occur at any time during all simulations. The author believes that incorporating
these additions into the RTCA/DO-254 verification processes will best improve the design
assurance quality.

The requirements based verification required for RTCA/DO-254 needs to be extended to a more
robust functional verification that considers all combinations of inputs and system state.
Robustness testing should also explore negative compliance issues to enable the hardware to
gracefully recover from unexpected conditions such as loss of communications, signals stuck at
levels, and transmission errors. The hardware is not expected to operate correctly when subjected
to unexpected conditions, but once the unexpected conditions have been removed the hardware
should resume normal operation as quickly as possible. Unexpected conditions should not cause
the hardware to lock-up or enter unknown states or conditions.

30

As given by Foster [18], formal methods can provide substantial benefits to the verification
process, but formal methods are best applied to hardware architectures that are concurrent, data
transfer, control functions or fault tolerant devices. Hardware that does significant processing to
the data is not well suited to formal methods. Because a particular design may or may not be
suitable for formal methods, it is difficult to provide regulatory guidance on when and how
formal methods should be applied.

The verification process includes three coverage metrics: code coverage, assertions and
functional. Using these coverage metrics, coverage targets are proposed for DAL A, B, and C
hardware.

7. CONCLUSIONS

Preventing errors from reaching a complex hardware final product is a difficult goal to achieve.
Even design and verification tools that are known to be correct can introduce errors if the tools
are applied incorrectly or the requirements are incomplete or incorrect. The goal of the
verification process is to verify the hardware using multiple orthogonal techniques to minimize
the possibilities of an error escaping the verification process. Coverage metrics by themselves
cannot assure design correctness. The overlapping verification processes of constrained random
testing, code coverage, assertion coverage, functional coverage and formal methods represent the
best known methods of assuring design correctness.

8. REFERENCES.

[1] I. RTCA, "Design Assurance Guidance for Airborne Electronic Hardware," Wahington,
DC, 2000.

[2] A. Gluska, "Practical methods in coverage-oriented verification of the Merom
microprocessor," in 43rd ACM/IEEE, pp. 332-337, 2006.

[3] Synopsys, Inc., "Verification or Validation what do you think?," [Online]. Available:
http://blogs.synopsys.com/breakingthethreelaws/2012/02/%E2%80%9Cverification-or-
validation-what-do-you-think%E2%80%9D/.

[4] Aldec Inc., "Verified: the need for continued VHDL support," May 2012. [Online].
Available: http://www.aldec.com/en/company/news/2012-05-09/114.

[5] National Microelectronics Institute, "Verification Roadmapping," Feb 2010. [Online].
Available:
http://www.nmi.org.uk/assets/files/networks/verification/NMI%20VerificationRoadmapRe
port%20Final.pdf.

[6] A. Sherer, "A new approach to FPGA verification," Electronics Weekly, p. 18, Oct 12-Oct
18, 2011.

[7] P. Keithen, D. Landoll, P. Marriott and B. Logan, "The Use of Advanced Verification
Methods to Address DO-254 Design Assurance," IEEE Aerospace Conference, pp. 1-11,
2008.

31

[8] D.-1. (. ED-12B), ""Software Considerations in Airborne Systems and Equipment
Certification"," RTCA Inc., Washington, DC, 2001.

[9] K. Rameni, Coverag metrics for hierarchical validation of complex behavioral hardware
designs, Ph.D. thesis: University of California, Irvine, 2007.

[10] A. Piziali, Functional Verification Coverage Measurement and Analysis, Kluwer
Academic Publishers, 2004.

[11] A. Rajan, Coverage metrics for requirements-based testing, University of Minnesota, 2009.
[12] S. Tasiran and K. Keutzer, "Coverage metrics for functional validation of hardware

designs," Design & Test of Computers, IEEE, vol. 18, no. 4, pp. 36-45, Jul/Aug 2001.
[13] V. Jerinic, J. Langer, U. Heinkel and D. Miller, "New Methods and Coverage Metrics for

Functional Verification," Proceedings of Design, Automation and Test in Europe, 2006
DATE '06, vol. 1, pp. 1-6, 6-10 March 2006.

[14] Mentor Graphics, "Assertion-Based Verification for ARM-Based SoC Design,"
www.mentor.com.

[15] D. Landoll and S. Beland, "Using assertions to satisfy DO-254 Elemental Analysis,"
Digital Avionics Systems Conference (DASC) 2011 IEEE/AIAA 30th, pp. 7C4-1-7C4-19,
16-20 Oct 2011.

[16] L. Lingyi, O. Sheridan, W. Tuohy and S. Vasudevan, "A Technique for Test Coverage
Closure Usign GoldMine," IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 31, no. 5, pp. 790-803, May 2012.

[17] G. Blom, L. Holst and D. Sandell, "7.5 Coupon Collecting I, 7.6 Coupon Collecting II, and
15.4 Coupon collecting III," in Problems and Snapshots from the World of Probability,
vol. 191, New York, Springer-Verlag, 2004, pp. 85-87.

[18] H. Foster, L. Loh, B. Rabii and V. Singhal, "Guidelines for Creating a Formal Verification
Test Plan," in Proceedings of DVCon, San Jose, CA, 2006.

[19] P. Yeung, "Applying Assertion-Based Formal Verification to Verification Hot Spots,"
[Online]. Available: www.mentor.com.

[20] Aldec Inc., "Superior Approach to DO-254 Hardware Verification," [Online]. Available:
http://www.aldec.com.

[21] Deepchip, "ESNUG 491 Item 9," May 2011. [Online]. Available:
http://www.deepchip.com/items/0491-09.html.

[22] H. Chockler, O. Kupferman and V. M, "Coverage metrics for formal verification,"
International Journal on Software Tools for Technology Transfer, vol. 8, no. 4-5, pp. 373-
386, 2006.

[23] E. Litvinova, A. Hahanova, A. Gorobets and A. Priymak, "Verification system for SoC
HDL-code," International Conference on Modern Problems of Radio Engineering
Telecommunications and Computer Science (TCSET), p. 348, 21-24 Feb 2012.

32

APPENDIX A SURVEY OF VERIFICATION TOOLS AND COVERAGE METRICS
Most semiconductor companies view their verification processes as proprietary information.
Through an anonymous survey and personal interviews the author was able to survey 12
verification engineers and managers representing 5 semiconductor companies and one aviation
related company. The author acknowledges that the survey results have a bias towards the
semiconductor industry.

Question 1 of the author’s survey was “Which of the following tools/techniques are used in your
verification flow? (Check all that apply.)”

Figure 6. Author’s survey question #1. “Which of the following tools/techniques are used in your
verification flow? (Check all that apply.)”

Analysis of the responses indicates that assertions are widely used. The verification coverage
metrics of code coverage and functional coverage are used by nearly all of the respondents. This
is consistent with a verification process using three coverage metrics: code coverage, assertion
coverage, and functional coverage. The high-level verification language System Verilog is used
by roughly 66% of the respondents. Verification methodologies such as VMM and OVM/UVM
are utilized by roughly 66% of the respondents.

A similar survey was conducted by Aldec Corporation with over 2400 respondents. Aldec design
and verification tools are not widely used in the semiconductor industry and are more common in
military and aviation applications. So the Aldec survey is biased towards military and aerospace
users. Aldec asked what design verification languages the respondents would use for their next
design. A project that used multiple languages would indicate all of them, meaning that the totals
exceed the 2400 respondents.

0% 20% 40% 60% 80% 100%

Other

OVM/UVM

VMM

System C

System Verilog

Functional Coverage

Code Coverage

Formal Methods

Assertions

Utilization

Utilization

33

Figure 7. Results of an Aldec survey question asking what verification language the respondents
will use on their next design.

The survey shows that 51% of the respondents would use VHDL as their verification language.
However the CTO of Aldec noted that “System Verilog is growing in popularity” and that with
respect to training courses “it is only recently that we’ve seen System Verilog overtake VHDL.”
The Aldec survey shows that Verilog will be used by 31% of the respondents and System
Verilog will be used by 32% of the respondents. Because the VHDL, Verilog, and System
Verilog percentages exceed 100%, some users are likely using System Verilog and VHDL at the
same time. The author’s survey indicated a System Verilog usage of 66%, but the author’s
survey did not break out Verilog and System Verilog individually. Given that System Verilog is
a super-set of Verilog the results appear to be consistent between the two surveys and indicate a
trend of using System Verilog for all industries.

Aldec also surveyed users on the verification methodology they used on their most recent
project.

34

Figure 8. Results of an Aldec survey asking respondents what verification methodologies were
being used.

The Aldec survey found that 41% of respondents used no particular verification methodology
and 45% used an in-house developed verification methodology. Published verification
methodologies such as VMM and OVM/UVM were used by 24% of the respondents compared
to 60% of the respondents in the author’s survey. This is a real difference between the industries
that is probably due to the fact that semiconductor companies are free to embrace new
verification technologies, while the certification processes of the military and aviation industries
slows the adoption of new methodologies.

Next the author’s survey investigated the use of assertions Note that from question #1 we know
that the majority of respondents are using assertions. The value of the assertion process hinges on
quality assertions being present at all levels of the design hierarchy. There are automated tools to
identify where assertions are needed. Question 2 asked whether these automated tools were being
used. Only 17% of the respondents have adopted automatic tools and even these supplement the
automated tools with manual techniques to identify where to insert assertions.

35

Figure 9. Authors survey question #2. “How do you identify where to insert assertions?”

Assertions should be applied throughout the design hierarchy and it was expected that the RTL
designers would implement low level assertions and the verification team would write high-level
assertions. Question 3 queried who inserted the assertions into the RTL. The data from question
3 shows that in general both the design and verification write assertions, but there are some
respondents where only the RTL designers write assertions.

Figure 10. Author's survey question #3. “Who puts assertions into the RTL code?”

Question 4 addressed the issue of at what hierarchical level were the assertions used. It was
expected to see 100% for all levels of hierarchy and the data confirmed this. There are some
respondents who did not use top-level assertions. Follow up investigation revealed that these

How do you identify where to insert
assertions?

Manual inspection

An automated tool

Both manual and
automatic identification

Other

Who puts the assertions into the RTL
code?

RTL Team

Verification Team

Both RTL and Verification
Teams

Other

36

respondents produce modules that are integrated by another group and do not work at the top-
level..

Figure 11. Author's Survey question #4. “Where are assertions used? (Check all that apply)”

The next questions related to the coverage metrics. Question 5 asked which coverage metrics
were used to assess verification completeness.

Figure 12. Author's survey question #5. “Which code coverage metrics do you use? (Check all
that apply.)”

Statement coverage was used by all respondents as expected. Only 33% of the respondents
utilized expression coverage. This is probably a reflection of the high cost of expression
coverage. This question did not breakout which metrics were used to determine when
verification was complete. Some respondents monitor nearly all of the coverage metrics.

0% 20% 40% 60% 80% 100%

Low-level blocks

Major Blocks

Bus-Level (Protocol checking)

Top-level

Where are assertions used?

0% 20% 40% 60% 80% 100%

Statement/Line

FSM

Branch

Functional

Conditional/Expression

Path

Toggle

Which coverage metrics do you use
to assess verification completeness?

37

Question 6 considered how often code coverage checks were run.

Figure 13. Author’s survey question #6. “How often are code coverage checks run?”

It was expected that the code coverage checks would be run at major system integration events.
The fact that code coverage checks were run weekly indicates that the coverage percentage is
part of determining when verification is complete and weekly runs are being used to monitor
verification progress.

Question 7 asked if the respondent used constrained random verification.

Figure 14. Author's survey question #7. “Do you use constrained random verification?”

It is clear that constrained random verification is widely used. Question 8 asked “How do you
know when the constrained random verification process is complete?” The responses can be
summarized as follows: constrained random verification is run until the code coverage goals are

How often are code coverage checks
run?

Daily

Weekly

Major system integration
events

At the end of the project

Do you use constrained random
verification?

Yes

No

38

met. If there is still time remaining in the project due to tapeout or other reasons, continue
running constrained random verification until the project is complete.

Question 9 asked whether formal methods were part of the verification process.

Figure 15. Author's survey question #9. "Do you use formal methods in your verification
process?”

The results indicated that formal methods have been adopted by half of the respondents.
Question 10 asked those respondents who used formal methods how essential it is to the overall
verification process.

Figure 16. Author's survey question # 10. “How critical/essential are formal methods in your
verification process?”

Do you use formal methods in your
verification process?

Yes

No

How essential are formal methods to
your verification process?

Essential

Not Essential

39

From questions 9 and 10 we see that verification flows where formal methods are essential
component of the verification process do exist but they are not widely used. This is a bit of a
surprise since the tool vendors trumpet the value of formal tools in the verification process.
Formal methods are being used to supplement other verification processes.

The final question of the survey was an open ended question asking the respondents to consider a
non-safety critical part and a safety-critical part and to describe how the verification process
would differ between the two parts. A summary of the answers is that there would be no
difference in the verification process between the two parts. Both parts would be assessed for
completeness using appropriate code coverage metrics, assertion coverage, and functional
coverage, but for the safety critical part there would be more effort to reach 100% coverage on
all of the metrics. There would also be a greater effort to prove the correctness of the device
using formal proofs. In addition, the safety-critical part would also be subjected to a more
rigorous robustness testing regime.

40

APPENDIX B TESTCASES
To demonstrate how errors might creep into a design, two simple testcase scenarios were
developed. The first investigates how ambiguity in the requirements can result in conflicting
implementations. These ambiguities can be identified by constrained random testing, the use of
assertions, or the use of formal methods. The second testcase investigates the use of COTS IP
and how using assertions to document the interface to the COTS IP can prevent similar errors.
An alternative is to use formal methods to prove the correctness of the COTS IP interface.

B-1 Testcase #1 - Requirements Ambiguity

The requirements should capture the intent of the system designer, but any ambiguity in the
requirements may be unintentionally misinterpreted by the hardware designer. This test case will
explore two implementations of a system and will demonstrate that although both
implementations meet the same system requirements, the implementations produce different
results for key output signals.

This example describes a highly simplified control system for an aircraft’s braking and reverse
thruster system.

System inputs:

1. in_air_sensor – Indicates that the aircraft is in flight. When this sensor is active (logic
level 1) the reverse thrusters should not deploy.

2. deploy_reverse_thrusters_switch – Cockpit switch controlling deployment of the reverse
thrusters. When this switch is active (logic level 1), the reverse thrusters should deploy.

3. apply_brakes_switch – Cockpit switch controlling activation of the aircraft’s braking
system.

System outputs:

1. reverse_thruster_control_signal – signal output that enables/disables the aircraft’s reverse
thrusters

2. brake_control_signal – signal output that enables/disables the aircraft’s brakes.

Output behavior:

1. The reverse_thruster_control_signal will be active when deploy_reverse_thrusters_switch
is active, unless the in_air_sensor is active.

2. The brake_control_signal will be active when the apply_brakes_switch is active.

41

The aircraft braking and reverse thruster control system described above was implemented in
VHDL. The system was implemented using two different methods, both of which meet the
system requirements, yet produce different behavior on the system outputs.

B.1.1. System Implementation 1

The following VHDL code is a system implementation based on the provided system
requirements.

process (deploy_reverse_thrusters_switch, apply_brakes_switch, in_air_sensor)
begin
 brake_control_signal <= apply_brakes_switch;
 reverse_thruster_control_signal <= (deploy_reverse_thrusters_switch and not
in_air_sensor);
end process;

Let’s analyze the RTL code by tracing the first requirement to the RTL.

The requirement “System Outputs 1: The reverse_thruster_control_signal will be active when
deploy_reverse_thrusters_switch is active, unless the in_air_sensor is active.”

 is met by the VHDL statement

reverse_thruster_control_signal <= (deploy_reverse_thrusters_switch and not in_air_sensor);
1.
The reverse_thruster_control_signal will be active only when deploy_reverse_thrusters_switch
is active and in_air_sensor is inactive; otherwise, reverse_thruster_control_signal will be
inactive. Now trace the second requirement to the RTL.

The requirement “System Outputs 2: The brake_control_signal will be active when the
apply_brakes_switch is active.”

is met by the VHDL statement

 brake_control_signal <= apply_brakes_switch

The brake_control_signal will be active when the apply_brakes_switch is active; otherwise, the
brake_control_signal will be inactive.

The output of a testbench for this system is shown in figure 16 below. The testbench achieves
100% code coverage and 100% functional coverage. Examination of the system output
waveform for this implementation demonstrates that this system operates as intended. The
brake_control_signal is active only when the apply_brakes_switch is active. The
reverse_thruster_control_signal is only active when the deploy_reverse_thrusters_switch is
active and the in_air_sensor is inactive.
.

42

Figure 17. Testbench output of Implementation 1.

B.1.2. System Implementation 2

The following HDL code is an alternative implementation of the aircraft braking and reverse
thruster system.

process (deploy_reverse_thrusters_switch, apply_brakes_switch, in_air_sensor)
begin
brake_control_signal <= '1';
 if (deploy_reverse_thrusters_switch = '1' and in_air_sensor = '1') then
 reverse_thruster_control_signal <= '0';
 else
 reverse_thruster_control_signal <= ‘1’;
 end if;
end process;

Tracing the requirements to the VHDL again we see that the requirement

System Outputs 1: The reverse_thruster_control_signal will be active when the
deploy_reverse_thrusters_switch is active, unless the in_air_sensor is active. “

is met by the VHDL statement

if (deploy_reverse_thrusters_switch = '1' and in_air_sensor = '1') then
 reverse_thruster_control_signal <= '0';
 else
 reverse_thruster_control_signal <= ‘1’;
 end if; .

The reverse_thruster_control_signal will be active unless the deploy_reverse_thrusters_switch
and the in_air_sensor are active simultaneously. Now trace the second requirement to the RTL.

The requirement “System Outputs 2: The brake_control_signal will be active when the
apply_brakes_switch is active.”

is met by the VHDL statement

43

brake_control_signal <= '1'; .

The brake_control_signal will always be active, so it will inherently be active when the
apply_brakes_switch is active.

The results of executing the test bench on the system are shown in figure 17. Once again the test
bench achieves 100% code coverage and 100% functional coverage. The brake_control_signal is
active regardless of input behavior. This behavior meets the requirement that
brake_control_signal will be active when the apply_brakes_switch is active, but this is probably
not the intent of the system designer. By not including what to do when the brake_control_signal
is not active, the system specification contains a vague requirement. Most humans will read the
requirements in a manner consistent with implementation #1, but this error in the requirements
needs to be identified. Writing assertions written for the interface between this block and others
would quickly reveal the error in the requirements and prevent this from escaping detection until
late in the design process.

Figure 18. Testbench output for implementation 2.

The identified ambiguity can be avoided through the use of fully defined requirements. Any
requirement of system behavior must define the behavior for all possible input conditions.
Updating the aircraft braking and reverse thruster requirements to remove ambiguity produces
the following requirements:

System Outputs 1: The reverse_thruster_control_signal will be active when
deploy_reverse_thrusters_switch is active, unless the in_air_sensor is active.

This requirement contains two inputs and one output which means that there are 4 possible
combinations of the inputs. This requirement does not define what to do when
deploy_reverse_thrusters_switch is inactive and the word “unless” can often be interpreted
multiple ways.

System Outputs 1 corrected: Often a table such as table 3 is the simplest way to fully describe a
requirement.

Table 3 Table documenting the logic for the reverse_thruster_control_signal in terms of the
deploy-reverse-thrusters-switch and in_air_sensor inputs.

reverse_thruster_control_signal deploy_reverse_thrusters_switch in_air_sensor

Inactive Inactive Inactive

44

Inactive Inactive Active
Active Active Inactive

Inactive Active Active

Original Requirement 2: The brake_control_signal will be active when the apply_brakes_switch
is active.

Requirement 2 corrected: The brake_control_signal will be active when the apply_brakes_switch
is active, otherwise the brake_control_signal will be inactive.

There are two ways to alleviate problems due to flawed requirements. The first is to document all
interfaces from both inside the module and outside the module. Differences between the interface
documentation can be identified through manual inspection or the use of formal method tools. A
second method is to use random tests to generate test cases which highlight the problem. In this
case the hardware is control based and a formal proof of the correctness of the hardware could be
performed. This would force the ambiguity to be resolved so that the formal properties could be
written

B-2 Test Case #2 – COTS IP Example

This test case will examine a design scenario, in which purchased COTS IP is used as part of a
larger design. This example will focus on the design process and not the complexity of the
design. The hardware examined in this test case is a basic traffic light and crosswalk signal. To
allow us to identify the root cause of the problems we will have full access to the COTS IP
source code. We will begin by detailing the design and verification of the COTS IP traffic light.
We will then integrate this IP with a separately designed and verified crosswalk light module.
The modules were verified separately based on the requirements and were found to meet all
requirements, however the combined system produced errors. This test case will investigate the
use of assertions to identify the problem before system integration.

B.2.1. The COTS IP – Basic Traffic Light System Design

The COTS IP in this test case is the design of a simple traffic light. The traffic light controls
traffic at the intersection of two streets, continuously cycling with fixed timing for both the green
light duration and the yellow light duration. The system produces six traffic output signals,
which are green, yellow, and red light control signals for each road. The traffic light system is
implemented by defining and designing a state machine to control the system outputs. The
system also outputs the signals state and next_state for use with other modules. In the VHDL
source code (Appendix A), the output signals are r0, y0, g0, r1, y1, g1, state and next_state.

45

Figure 19. The state machine implemented in the COTS IP.

The state machine VHDL code was verified through simulation by examining the 6 state
machine output signals using a waveform viewer. Additionally, the following assertions were
used to ensure design safety criteria were never violated:

Assertion one: Green 0 and Green 1 are never simultaneously active
Assertion two: If Green 1 or Yellow 1 is active then Red 0 must always be active
Assertion three: If Green 0 or Yellow 0 are active then Red 1 must always be active

Figure 19 shows the waveform simulation indicating that the state machine was functioning
without error, as the outputs cycled properly with appropriate timings. The assertions also
verified that the system was not violating the design criteria.

Figure 20. Testbench showing that the light outputs of the COTS IP meets the requirements.

46

Examining system output performance is a commonly accepted method for performance CEH
verification. However, it is possible that problems exist within the design, even if these
problems don’t immediately produce system output failure. In this traffic light example, the
traffic light was accepted as error free from the output based verification process.

Using the COTS IP– Crosswalk Signal Module Design

The product we are designing is a traffic light with the addition of a crosswalk signal to control
the flow of pedestrian traffic crossing road 1. The COTS traffic light IP has a good service
history. The crosswalk module has an input signal of the traffic light state and three crosswalk
output signals (walk, hurry, no_walk). The crosswalk control signal was intended to be based on
the next traffic light state, in which the crosswalk outputs would have the characteristics given by
table 4 below.

Table 4 Crosswalk signal requirements

Control
signal

Condition (traffic light
state) Walk hurry no_walk

000 system reset 0 0 1
001 road 0 green, road 1 red 1 0 0
010 road 0 yellow, road 1 red 0 1 0
011 road 0 red, road 1 green 0 0 1
100 road 0 red, road 1 yellow 0 0 1

After designing the crosswalk module, the testbench was run. Figure 20 below shows the output
waveform analysis which indicates that the crosswalk functions as expected. Design assertions
were also used to verify the crosswalk system, and did not indicate any errors with the system.
The assertions covered the following rules:

Assertion 1: walk and hurry are never active at the same time
Assertion 2: walk and no_walk are never active at the same time
Assertion 3: no_walk and hurry are never active at the same time

Figure 21. Testbench demonstrating that the crosswalk module is correct.

Part 3 – IP Integration

47

The working crosswalk module was added to the basic traffic light design. However, the
crosswalk exhibited significant problems. The crosswalk signals were behaving erratically,
creating a dangerous situation for the pedestrians crossing Road 1. Figure 21 shows a more
detailed simulation of the integrated system where it can be seen that the crosswalk signals are
changing at times when the traffic light signals were not changing.

Figure 22. Testbench of the crosswalk system with integrated COTS IP showing glitches on the
crosswalk output signals.

Figure 22 shows the results of simulating the entire traffic light system in more detail. The
glitches in the walk signal are due to glitches in the next_state signal coming from the COTS IP.
As shown in in figure 23, further analysis demonstrates that next_state from the COTS IP
glitches frequently. This error has always been present in the traffic light IP but because the
next_state signal did not create any observable error in the traffic light system, the error lay
dormant until the crosswalk IP used the signal

Figure 23. Comparison of the output glitches to intesignal next_state.

48

Figure 24. Detailed simulation of the COTS IP showing the cause of the next_state glitches.

An error of this nature occurred due to the traffic light designer assuming the glitches in the
next_state signal were irrelevant to his design, while the crosswalk designer assumed that the
next_state signal did not glitch. If either designer had fully documented their assumptions this
error could have been identified before system integration.

B.2.2. Assertions to the rescue
The COTS IP vendor can avoid this problem by writing assertions to document how the interface
signals should work. The customer can detect problems in the COTS IP by using assertions to
document how the interface signals should operate. Assertions should not be limited to testing
individual system modules; assertions should also cover the interfaces between different
modules. An example of an interface assertion that would have addressed the traffic light
problem in this system is shown below.

Assertion: The signal next_state should only have one transition when the signal state transitions.

The verification of COTS IP is always a concern because of the inability to observe the module
internals. Documenting the interface to with the COTS IP using assertions ensures that if the IP
violates its requirements at any time, the errors will be detected by the assertions. This provides
assurance that the COTS IP is performing as required.

49

APPENDIX C Testcase VHDL Source Code

The COTS IP traffic light

--

--
-- Title : traffic_light_state
-- Design : basic_traffic_light

--

--
-- Description : basic traffic light state machine
-- 5 states: state 0: road 0 red, road 1 red; in the event of a
system reset
-- state 1: road 0 green, road 1 red;
-- state 2: road 0 yellow, road 1 red;
-- state 3: road 0 red, road 1 green;
-- state 4: road 0 red, road 1 yellow;
-- state machine cycles through states based on a long timer for
green
-- and a short timer for yellow. both road get same time allocation
per cycle
--
--

--{{ Section below this comment is automatically maintained
-- and may be overwritten
--{entity {traffic_light_state} architecture
{traffic_light_state_arch}}

library IEEE;
use IEEE.STD_LOGIC_1164.all;
use IEEE.std_logic_arith.all;
use IEEE.std_logic_unsigned.all;

entity traffic_light_state is
 port(
 clk : in STD_LOGIC;
 rst : in STD_LOGIC;
 r0 : out STD_LOGIC;
 y0 : out STD_LOGIC;
 g0 : out STD_LOGIC;
 r1 : out STD_LOGIC;
 y1 : out STD_LOGIC;
 g1 : out STD_LOGIC
);
end traffic_light_state;

50

--}} End of automatically maintained section

architecture traffic_light_state_arch of traffic_light_state is
type possible_states is (state_0, state_1, state_2, state_3, state_4);
 --define available states
signal present_state, next_state: possible_states;

signal yellow_count: std_logic_vector(1 downto 0);
signal green_count: std_logic_vector(3 downto 0);
signal leave_yellow: std_logic;
signal leave_green: std_logic;
signal rst_ylw, rst_grn: std_logic;

begin

 clk_next_state: process (clk, rst)--clk next_state into present
state
 --this is the syncronous portion of the state machine
 begin
 if (rst = '1') then --Async reset
 present_state <= state_0;
 elsif (clk'event and clk='1') then --Rising Edge of clk
 present_state <= next_state; --Clock Next state
 end if;
 end process clk_next_state;

 green_counter: process (clk, rst)
 begin
 --if (rst = '1' or rst_grn = '1') then
 if (rst = '1') then
 green_count <= "0000";
 elsif (CLK'event and CLK='1') then
 green_count <= green_count + 1;
 end if;
 if green_count = "1111" then
 leave_green <= '1';
 --green_count <= "0000";
 else
 leave_green <= '0';
 --green_count <= green_count + 1;
 end if;
 end process green_counter;

 yellow_counter: process (clk, rst)
 begin
 --if (rst_ylw = '1' or rst = '1') then
 if (rst = '1') then
 yellow_count <= "00";
 elsif (CLK'event and CLK='1') then
 yellow_count <= yellow_count + 1;
 end if;

51

 if yellow_count = "11" then
 leave_yellow <= '1';
 else leave_yellow <= '0';
 end if;
 end process yellow_counter;

 state_select: process (present_state, leave_green, leave_yellow)
 begin
 case present_state is
 when state_0 =>
 --rst_ylw <= '1';
 --rst_grn <= '1';
 r0 <= '1';
 y0 <= '0';
 g0 <= '0';
 r1 <= '1';
 y1 <= '0';
 g1 <= '0';
 next_state <= state_1;

 when state_1 =>
 --rst_ylw <= '1';
 --rst_grn <= '0';
 r0 <= '0';
 y0 <= '0';
 g0 <= '1';
 r1 <= '1';
 y1 <= '0';
 g1 <= '0';
 if leave_green = '1' then
 next_state <= state_2;
 else
 next_state <= state_1;
 end if;

 when state_2 =>
 --rst_ylw <= '0';
 --rst_grn <= '1';
 r0 <= '0';
 y0 <= '1';
 g0 <= '0';
 r1 <= '1';
 y1 <= '0';
 g1 <= '0';
 if leave_yellow = '1' then
 next_state <= state_3;
 else
 next_state <= state_2;
 end if;

 when state_3 =>
 --rst_ylw <= '1';

52

 --rst_grn <= '0';
 r0 <= '1';
 y0 <= '0';
 g0 <= '0';
 r1 <= '0';
 y1 <= '0';
 g1 <= '1';
 if leave_green = '1' then
 next_state <= state_4;
 else
 next_state <= state_3;
 end if;

 when state_4 =>
 --rst_ylw <= '0';
 --rst_grn <= '1';
 r0 <= '1';
 y0 <= '0';
 g0 <= '0';
 r1 <= '0';
 y1 <= '1';
 g1 <= '0';
 if leave_yellow = '1' then
 next_state <= state_1;
 else
 next_state <= state_4;
 end if;

 when others =>
 --rst_ylw <= '1';
 --rst_grn <= '1';
 r0 <= '1';
 y0 <= '0';
 g0 <= '0';
 r1 <= '1';
 y1 <= '0';
 g1 <= '0';
 next_state <= state_0;
 end case;
 end process state_select;

end traffic_light_state_arch;

The traffic light testbench

library ieee;
use ieee.STD_LOGIC_UNSIGNED.all;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;

53

 -- Add your library and packages declaration here ...

entity traffic_light_state_tb is
end traffic_light_state_tb;

architecture TB_ARCHITECTURE of traffic_light_state_tb is
 -- Component declaration of the tested unit
 component traffic_light_state
 port(
 clk : in STD_LOGIC;
 rst : in STD_LOGIC;
 r0 : out STD_LOGIC;
 y0 : out STD_LOGIC;
 g0 : out STD_LOGIC;
 r1 : out STD_LOGIC;
 y1 : out STD_LOGIC;
 g1 : out STD_LOGIC);
 end component;

 -- Stimulus signals - signals mapped to the input and inout ports
of tested entity
 signal clk : STD_LOGIC := '0';
 signal rst : STD_LOGIC := '1';
 -- Observed signals - signals mapped to the output ports of
tested entity
 signal r0 : STD_LOGIC;
 signal y0 : STD_LOGIC;
 signal g0 : STD_LOGIC;
 signal r1 : STD_LOGIC;
 signal y1 : STD_LOGIC;
 signal g1 : STD_LOGIC;

 -- Add your code here ...

begin

 -- Unit Under Test port map
 UUT : traffic_light_state
 port map (
 clk => clk,
 rst => rst,
 r0 => r0,
 y0 => y0,
 g0 => g0,
 r1 => r1,
 y1 => y1,
 g1 => g1
);

 -- Add your stimulus here ...
--assertions

54

--make sure the we never have two greens
--psl property two_greens is never (g1 and g0);
--psl as_one : assert two_greens;
--if g1 or y1 are on then r0 must be on;
--psl property r0_check is always ((g1 or y1) -> r0);
--psl as_two: assert r0_check;
--if g0 or y0 are on then r1 must be on;
--psl property r1_check is always ((g0 or y0) -> r1);
--psl as_three: assert r1_check;

process
begin
 wait for 10 ns;
 CLK <= not CLK;
end process;

process
begin
 wait for 50 ns;
 rst <= '0';
end process;

end TB_ARCHITECTURE;

configuration TESTBENCH_FOR_traffic_light_state of
traffic_light_state_tb is
 for TB_ARCHITECTURE
 for UUT : traffic_light_state
 use entity
work.traffic_light_state(traffic_light_state_arch);
 end for;
 end for;
end TESTBENCH_FOR_traffic_light_state;

The crosswalk signal code

--

--
-- Title : crosswalk_lights
-- Design : traffic_light_crosswalk

-- Description : crosswalk light module will be controlled by traffic
light state machine
--
-- crosswalk lights will behave as follows:
-- will add a crosswalk light signal for pedestrians trying to cross
road 1
-- when road 0 light is green, the 'walk' signal will be active;
'hurry' and 'no_walk' will be inactive

55

-- when road 0 light is yellow, the 'hurry' signal will be active;
'walk' and 'no_walk' will be inactive
-- when road 0 light is red, the 'no_walk' signal will be active;
'walk' and 'hurry' will be inactive

--the control signals for this module are sourced by the traffic light
state machine "state_count" as follows
-- 5 states: "000": road 0 red, road 1 red; in the event of a system
reset: no_walk
-- state 1: "001": road 0 green, road 1 red: walk
-- state 2: "010": road 0 yellow, road 1 red: hurry
-- state 3: "011": road 0 red, road 1 green: no_walk
-- state 4: "100": road 0 red, road 1 yellow: no_walk
--
--

--{{ Section below this comment is automatically maintained
-- and may be overwritten
--{entity {crosswalk_lightss} architecture {crosswalk_lights_arch}}

library IEEE;
use IEEE.STD_LOGIC_1164.all;
use IEEE.std_logic_arith.all;
use IEEE.std_logic_unsigned.all;

entity crosswalk_lights is
 port(
 rst : in STD_LOGIC;
 control_signal : in std_logic_vector (2 downto 0);
 walk : out std_logic;
 hurry : out std_logic;
 no_walk : out std_logic
);
end crosswalk_lights;

--}} End of automatically maintained section

architecture crosswalk_lights_arch of crosswalk_lights is

begin

 crosswalk: process (rst, control_signal)
 begin
 if (rst = '1') then --Async reset
 walk <= '0';
 hurry <= '0';
 no_walk <= '1';
 else
 case control_signal is
 when "000" =>
 walk <= '0';

56

 hurry <= '0';
 no_walk <= '1';

 when "001" =>
 walk <= '1';
 hurry <= '0';
 no_walk <= '0';

 when "010" =>
 walk <= '0';
 hurry <= '1';
 no_walk <= '0';

 when "011" =>
 walk <= '0';
 hurry <= '0';
 no_walk <= '1';

 when "100" =>
 walk <= '0';
 hurry <= '0';
 no_walk <= '1';

 when others =>
 walk <= '0';
 hurry <= '0';
 no_walk <= '1';
 end case;
 end if;
 end process crosswalk;
end crosswalk_lights_arch;

The crosswalk testbench

library ieee;
use ieee.STD_LOGIC_UNSIGNED.all;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;

 -- Add your library and packages declaration here ...

entity crosswalk_lights_tb is
end crosswalk_lights_tb;

architecture TB_ARCHITECTURE of crosswalk_lights_tb is
 -- Component declaration of the tested unit

 component crosswalk_lights
 port(
 rst : in STD_LOGIC;
 control_signal : in std_logic_vector(2 downto 0);

57

 walk : out STD_LOGIC;
 hurry : out STD_LOGIC;
 no_walk : out STD_LOGIC);
 end component;

 -- Stimulus signals - signals mapped to the input and inout ports
of tested entity
 signal rst : STD_LOGIC := '1';
 signal control_signal: std_logic_vector (2 downto 0) := "000";
 -- Observed signals - signals mapped to the output ports of
tested entity
 signal walk : STD_LOGIC;
 signal hurry : STD_LOGIC;
 signal no_walk : STD_LOGIC;

 -- Add your code here ...

begin

 -- Unit Under Test port map
 UUT : crosswalk_lights
 port map (
 rst => rst,
 control_signal => control_signal,
 walk => walk,
 hurry => hurry,
 no_walk => no_walk
);

 -- Add your stimulus here ...
--assertions
--make sure two signals are never active at the same time
--psl property one is never (walk and hurry);
--psl assert_one : assert one;
--psl property two is never (walk and no_walk);
--psl assert_two : assert two;
--psl property three is never (no_walk and hurry);
--psl assert_three : assert three;

process
begin
 wait for 50 ns;
 rst <= '0';
end process;

process
begin
 wait for 100 ns;
 control_signal <= "001";
 wait for 100 ns;
 control_signal <= "010";

58

 wait for 100 ns;
 control_signal <= "011";
 wait for 100 ns;
 control_signal <= "100";
 wait for 100 ns;
 control_signal <= "001";
end process;

end TB_ARCHITECTURE;

configuration TESTBENCH_FOR_crosswalk_lights of crosswalk_lights_tb is
 for TB_ARCHITECTURE
 for UUT : crosswalk_lights
 use entity
work.crosswalk_lights(crosswalk_lights_arch);
 end for;
 end for;
end TESTBENCH_FOR_crosswalk_lights;

	Programmable Logic, Tools, Coverage Metrics, Airborne Electronic Hardware
	1. INTRODUCTION.
	1.1 OBJECTIVES.
	1.2 RESEARCH METHOD.
	1.3 AUDIENCE.
	1.4 DOCUMENT STRUCTURE.

	2. IDENTIFY CURRENT INDUSTRY PRACTICES FOR VERIFICATION COVERAGE ANALYSIS OF CEH
	2.1 VERIFICATION PROCESS OVERVIEW
	2.2 COVERAGE METRICS:
	2.3 FUNCTIONAL COVERAGE
	2.5 CONSTRAINED RANDOM VERIFICATION
	2.6 FORMAL VERIFICATION
	2.6.1 Sequential Equivalence Checking
	2.6.2 Model Checking
	2.6.3 When Are Formal Methods Effective?
	2.6.4 Formal Verification in Practice

	2.7 VERIFICATION PROCESS DETAILS
	2.8 ROBUSTNESS TESTING
	2.9 VERIFICATION METHODOLOGIES
	2.10 HARDWARE BASED VERIFICATION

	3. INDUSTRY SURVEYS
	3.1 DESIGN AND VERIFICATION LANGUAGE
	3.2 VERIFICATION METHODOLOGY
	3.3 ASSERTIONS
	3.4 FORMAL METHODS
	3.5 SAFETY-CRITICAL VERIFICATION

	4. IDENTIFY KNOWN AND EMERGING OBSTACLES, PROBLEMS, OR ISSUES
	4.1 ISSUES WITH COVERAGE METRICS
	4.2 ISSUES WITH FUNCTIONAL COVERAGE
	4.3 ISSUES WITH FORMAL VERIFICATION
	4.4 ISSUES WITH ASSERTIONS
	4.5 ISSUES WITH COTS IP

	5. IDENTIFY POTENTIAL APPROACHES AND CRITERIA TO DEMONSTRATE SUFFICIENCY OF VERIFICATION COVERAGE ANALYSIS OF CEH LEVELS A, B, AND C
	5.1 HARDWARE VERIFICATION PLAN
	5.2 SIMULATION BASED VERIFICATION PLAN
	5.2.1 Create the Functional Coverage Specification
	5.2.2 Writing and Running the Testbench
	5.2.3 Coverage Analysis

	5.3 FORMAL VERIFICATION PLAN

	6. RECOMMENDATIONS
	7. CONCLUSIONS
	8. REFERENCES.
	APPENDIX A SURVEY OF VERIFICATION TOOLS AND COVERAGE METRICS
	APPENDIX B TESTCASES
	B-1 Testcase #1 - Requirements Ambiguity
	B.1.1. System Implementation 1
	B.1.2. System Implementation 2
	B-2 Test Case #2 – COTS IP Example
	B.2.1. The COTS IP – Basic Traffic Light System Design
	B.2.2. Assertions to the rescue
	APPENDIX C Testcase VHDL Source Code

