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1. INTRODUCTION 

1.1. BACKGROUND 

For a multitude of domains, safety-related or not, the user demand for significantly increased 
performance in reinforced size, weight and power constrained environments, results in an 
increased share of multicore processors (MCP) in the current market of highly complex 
semiconductor devices. On the other hand, legacy embedded avionics systems are based on 
single core processors and may suffer from an obsolescence of these components. 
 
Aircraft software applications themselves expand in capabilities that require increased 
computational performance (e.g., advanced signal processing, manipulation of large quantities of 
stored information) while achieving gains in size and power (e.g., integrated modular avionics). 
MCPs address this need, so that their usage is foreseen to steadily increase. MCPs are currently 
used in airborne electronic hardware, although the technology is conservatively targeting MCP 
with no more than two cores. 
 
The capabilities of multicore processors stretch the current assurance processes for both software 
and hardware. The supporting design and verification tools may not be adapted either. Since 
these processors were not initially design with aircraft applications in mind, a preemptive 
investigation of the potential safety concerns is warranted [1]. If the MCP technology driven by 
the overall market shows a faster growth than the aerospace domain is able to address assurance 
concerns, the potential for a long-standing ‘catch-up’ situation is possible. The investigation 
therefore needs to be not only preemptive but also prognosticative. 
 
One specific safety-related concern is associated with the demonstration of deterministic 
behavior. The need for determinism is requested at aircraft level and depends on the aircraft 
function considered. These functions may develop several types of dysfunctional behaviors 
potentially linked to non-determinism issues. 
 
1.2. PURPOSE 

This White Paper is an intermediate research document focusing on issues related to 
interferences within multicore processors. The very design of MCPs could cause interferences 
between software applications hosted on the separate cores and lead to non-deterministic 
behavior that could be unacceptable in safety-critical systems [2].  
 
The purpose of this White Paper is to explore new methods and tools of MCP verification in 
order to address certification issues related to the use of MCP in hard real time avionics systems. 
It focuses on: 
 

• The introduction of interference in MCP and the associated safety process; 
• The provision of examples of interference analysis techniques; 
• The provision of examples of internal mitigation techniques within a MCP: reduction 

techniques, bounded interferences solutions and some interference free solutions. 
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The structure of this White Paper follows the above topics. Section 2 describes interference in 
MCPs and how they could be taken into account from a safety point of view. Section 3 
introduces interference analysis technique for black-box components. Section 4 explains possible 
internal mitigation techniques. Finally, section 5 highlights some points that must be taken into 
account when dealing with interferences in MCP. 
 
1.3. CONTEXT 

This White Paper focuses on interferences that bring jitters in the transactions’ processing time. 
Interferences linked to hardware or software failures are not addressed. 
 
Most safety-critical avionics systems are defined as “hard real-time,” i.e. they must perform their 
function within pre-defined deadlines. Missing a single deadline at system level is considered a 
failure condition (see reference [1] §1309) that may be classified as catastrophic. 
 
The main concern related to the use of commercial off-the-shelf (COTS) multicore processors, in 
the safety-critical domain, is their lack of predictability. This issue is mostly due to the difficulty 
in foreseeing and managing inter-core interferences stemming from the sharing of common 
resources (memory, system-level caches, interconnect and input/output) among multiple cores. 
Various applications are executed on different cores within the same time slot, which means that 
they must compete to access shared hardware resources. Accesses are managed by hardware 
arbitration mechanisms that allow one of the tasks to access the resource while delaying the 
others, resulting in a contention as shown in figure 1 (excerpted from reference [3]). 
 
From the delayed tasks’ point of view, these additional delays, introduced because of the other 
concurrent tasks’ unpredictable behavior, are interferences that break the time isolation principle 
required by avionics standards. From the component manufacturer’s standpoint, this behavior is 
not dysfunctional, but it is rather a performance bottleneck. For the avionics equipment provider, 
however, the behavior is considered dysfunctional. 
 
Multicore processors have dedicated hardware for spatial partitioning [2], including memory 
management unit (MMU) and input/output memory management unit (IOMMU), so that 
enforcing spatial isolation is considered today as a resolved issue. That is not the case for the 
timing aspects. To enable the usage of multicore processors on safety critical systems, 
interferences need to be controlled and techniques need to be developed to exploit multicore 
performance benefits. 
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Figure 1. Interferences Due to Concurrent Access on Shared Resources 

To achieve this objective, new concepts have to be introduced, potentially relying on hardware 
specificities, as long as they are supported by COTS processor manufacturers. That may impact 
processor selection processes. 
 
1.4.DEFINITIONS 

The following definitions are applicable to this White Paper, in addition to the glossary of terms 
that was updated in the White Paper #2 appendix A: 
 
Initiator A component of the processor capable to initiate proactively operations within 

shared resources. Examples of initiators are core processing unit (CPU), direct 
memory access (DMA) engines, master input/output (I/O). 

Interference An interference is an alteration of the processor’s behavior seen by software 
running on one core, due to activities ordered by software running on other 
cores. 
A statement developed in this White Paper considers that the impact of 
interferences is firstly a problem of performance assessment and timing 
determinism enforcement. Interferences are undesired phenomena that are 
considered by the manufacturer as belonging to the functional domain of the 
processor. Interferences are however seen as dysfunctional behaviors by the 
avionic equipment provider, as explained by Bieth and Brindejonc in 
reference [4]. 

Interference 
analysis 

An interference analysis is a process that considers interference paths and their 
usage according to the processor’s usage domain. The analysis determines 
which paths are acceptable (from a performance’s and safety’s points of view) 
and which are not. The latter are called “interference channels” (see definition 
below). 
The objectives of an interference analysis are detailed in section  2.5. 
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Interference 
channel 

An interference channel is an interference path for which interferences have 
actually been observed and do not cope with the equipment’s functional 
domain. 

Interference 
path 

An interference path is a configuration wherein a given set of initiators (e.g., 
cores, DMA engines, master I/O) are allowed to communicate with a given set 
of targets (e.g., main memory, shared caches, slave I/O) without restriction. 
Having an interference path does not necessarily mean interferences will 
actually occur. It only represents a configuration for which there is a risk of 
interference. Hence, interference paths can be seen as test cases wherein given 
initiators are allowed to request given targets (e.g., core #0 targets the main 
memory while core #1 targets the controller of the peripheral component 
interconnect express or PCIe). Furthermore, the processor’s behavior can be 
stated under each of these test cases. Interference paths aspects are developed 
in section  2.4. 
In other words: having an interference path does not necessarily mean 
interferences will actually occur, while having an interference channel means 
undesirable interference occurs. 

Interference 
source 

An interference source is a component on the processor whose simultaneous 
use by several cores or other initiators may entail interferences. Examples of 
interference sources are shared caches, peripherals, and interconnects. 

Target A component of the processor that can be requested by initiators, and either 
absorbs this activity (e.g., for write operations), or emits its own activity as an 
answer (e.g., for read operations) to the initiator’s requests. Examples of 
targets are memories and slave I/O. 

 
1.5.EXAMPLE 

To illustrate the effect of interferences on software, consider a quad-core P5040 processor from 
Freescale. That processor embeds four PowerPC e5500 cores and belongs to the QorIQ™ series, 
which is considered by several equipment providers and organizations such as Multicore For 
Avionics. 
 
In this example, the focus is on a small piece of code that performs sequential loads of 4K 
contiguous memory on a dynamic random access memory (DRAM) while the backward cache 
has been disabled, and on a piece of software within an application performing data fusion within 
the cockpit’s software. This application is single-threaded and therefore will not benefit from 
intra-partition parallelism, such as symmetrical multi-processing (SMP) execution. For both 
cases, we collect memory access time and application’s execution time while one core executes 
the benchmark and others execute a stressing benchmark over the same DRAM controller. At the 
lower level represented in figure 2, the impact of interferences between a single-core and a quad-
core configuration rises to a factor of three. 
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Figure 2. Example of Impact of Interferences on 4K Memory Load Operations (1 vs. 4 cores) 

As represented in figure 3, within the same time, interferences impact the execution of the 
application with a factor close to four, i.e. the number of cores. In the literature, worse situations 
have been even observed. For instance, Nowotsch et al. [5] have observed a slow-down of the 
processor’s activity with a factor of 20 on a P4080, which is an octo-core processor in the same 
series as the P5040. 
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Figure 3. Impact of Interferences on a Piece of Application vs. Number of Active Cores 

These experiments show that interferences are phenomena that significantly impact the 
embedded software’s performances, and make the whole equipment prone to timing failures. 
Therefore, their impact must be assessed with trusted methods, and when this impact is too 
significant or unbounded, the appropriate mitigation has to be implemented in close relationship 
with the safety analyses performed at a higher level. 

1.6. APPROACH 

The use of MCP must be integrated in a system safety approach. This statement justifies the use 
of a top-down method as the primary approach, completed by a bottom-up approach. Both 
methodologies are presented in this White Paper. 
 
The top-down approach (see White Paper #2) first allocates safety objectives to the MCP in 
accordance with the top level safety requirements’ criticality. Functional failure paths are then 
identified. A bottom-up interference analysis on the MCP allows for identifying sources of 
interference not linked to microprocessor failures, and their effect on the system. Mitigations can 
then be implemented and justified in accordance with the identified failure effects.  
 
The safety analysis is then completed to determine if the level of exhaustiveness and the 
specified sanctions are appropriate to ensure the compliance with the safety requirements. The 
tolerance to interferences depends on the criticality of the implemented functions. 
 
Note that sources of interferences linked to processor failure were not considered in the scope of 
this White Paper. These interferences are addressed through the performance of existing failure 
mode and effect analysis as they are consequences of known failure modes. 
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2. INTERFERENCES IN MULTICORE PROCESSORS 

 
2.1. STATE OF GUIDANCE WITH RESPECT TO INTERFERENCES 

The objective of this section is to illustrate the point of view of existing guidance on the question 
of interferences in MCP. In some cases, the guidance has been interpreted to cover the case of 
interferences, while it did not intend to. 
 
2.1.1 Multicore Certification Review Item  

The multicore Certification Review Item (CRI) [5] or CAST Position Paper #32 [6] has been 
released in 2012 to tackle multicore-related issues.  This document defines EASA’s requirements 
regarding the use of MCP that host safety critical applications. The CRI is currently being 
revised by certification authorities. While the CAST Position Paper #32 scope is limited to dual 
core, the future CRI/IP goes beyond two active cores. 
 
The main requirements in this document can be summarized as follows: 
 

• Identify shared resources used in MCP; 
• Identify configuration settings and define Usage Domain of MCP; 
• Identify interference channels and associated mitigations; 
• Define relevant integration scheme depending on interference channel analysis; 
• Define relevant monitoring of MCP. 

 
Compliance to these requirements must be demonstrated. 
 
2.1.2 Certification Memorandum SWCEH-001 

This currently published EASA Certification Memorandum (CM) [7] provides non-binding 
guidance material on COTS in general and on highly-complex COTS, which, per such guidance, 
includes MCPs. In addition to recommending activities to be performed and data to be collected 
depending on COTS complexity and criticality while taking into account relevant product service 
experience, the CM calls for quite a few additional expectations related more specifically to 
MCPs: 
 

• The complexity of MCPs and the proprietary nature of their design call for more in-depth 
design data. Furthermore, it is assumed that these data are not readily available to users 
without specific agreements with the COTS supplier; 

• The validation of the MCP usage domain is emphasized due to numerous built-in 
functionalities featured by MCPs that are potentially affecting the intended functions 
ultimately performed by such COTS; 

• Partitioning analysis is an expected practice whenever a COTS is involved in 
mechanisms implemented to ensure robust partitioning between independent software 
portions, which is the case for MCPs hosting multiple software functions. 
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2.1.3 RTCA DO-297 

DO-297’s [8] objective is to provide guidance for integrating hosted applications on an 
integrated modular avionics (IMA) platform. As hosted application in an IMA context may 
request independence for system-level safety reason (e.g., hypothesis taken in the functional 
hazard assessment), it is necessary to provide an adequate partitioning solution on an IMA 
platform. Robust partitioning is the answer. The overall approach is based on the identification of 
interference channels and relevant means to mitigate their effects with regards to the safety 
objectives. 
 
MCP-related challenges are not necessarily relative to IMA, but there is a similarity (considering 
the CRI’s objectives) since interference channels’ identification and mitigation is also the 
approach to obtain assurance for MCP usage. 
 
2.2.SAFETY PROCESS OBJECTIVES 

The increase in integration level of safety-critical avionics functions induces a more widespread 
use of multicore processors. As a consequence, avionics computers can host more and more 
safety-critical functions and are subjected to real-time constraints according to the criticality of 
these embedded functions. In addition to classical safety analysis on mono-core processor, 
special attention is required when MCPs are used, as some of the MCP additional features could 
cause specific failure modes. 
 
As depicted in figure 4, the Functional Hazard Assessment (FHA) identifies and classifies the 
failure conditions associated with the basic functions of the aircraft. A criticality level is then 
assigned to every function and a Development Assurance Level (DAL) is allocated depending on 
the severity of failure conditions. Several functions with different DALs can then be 
implemented on a multicore processor that can execute several software applications at the same 
time. 
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Figure 4. Overview of Generic Safety Process 

According to ARP4754A/ED-79A [9], DALs are allocated to hardware and software items. 
Considering software applications, an item DAL (IDAL) is affected to each software application 
according to the identified criticality level. The implementation must be such that a lower-level 
DAL application does not jeopardize an application developed with a higher DAL to guarantee 
the required level of safety in terms of availability and integrity.  
 
Interferences between applications executing simultaneously on separate cores of a MCP may 
contribute to these feared events. The problem does not come from the interferences themselves 
but rather from their consequences. The failure modes related to interferences and their effects in 
term of loss of integrity, loss of availability, or non-deterministic behavior of hosted applications 
must be identified. Depending on these defects and the safety objectives, mitigations may be 
required. The coverage of these mechanisms and their sanctions, i.e. corrective actions taken at 
processor or system level, are then analyzed and validated by safety analysis for compliance with 
the system’s behavior. 
 
The implementation of every appropriate mitigation must be planned, developed, documented, 
and verified to ensure its efficiency. 
 
2.3. INTERFERENCE-AWARE SAFETY PROCESS 

The contribution of interferences to feared events can embody several aspects. 
 
First, interferences are a bottleneck with regards to the performance assessment on a piece of 
equipment. Intuitively, software running on one core is slowed-down by software running 
concurrently on other cores because of interferences. It is called an interference penalty. 
Quantifying an interference penalty from exhaustive testing is impossible in many cases as the 
number of test scenarios grows exponentially. Hence, a major challenge is to estimate an 
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interference penalty from non-exhaustive test campaigns and to provide a defendable rationale 
that this estimated penalty is trustworthy. 
 
Second, the situations in which interferences occur are numerous. A chip manufacturer faces the 
same limits of exhaustiveness in testing as an equipment provider. Therefore, one or more 
configurations might trigger failure modes on the processor that were not covered by the 
manufacturer’s tests. That case is no longer a matter of performance but it impacts the system’s 
integrity. 
 
This White Paper describes a generic process, represented in figure 5, that covers several 
analyses performed on the processor (regardless of embedded software) or on the whole 
platform.  

 
 
The proposed philosophy is close to partitioning analyses, described in DO-297 [8]. Its process 
takes the following inputs: 

• A top-down analysis (see White Paper #2) that allocated IDALs to all software items, and 
refined their needs in terms of real-time requirements. Additionally, this analysis 
allocated software items to execution platforms and defined a usage domain, both for the 
platform (e.g., scheduling rules, software development restrictions) and the processor 
(i.e., resources actually being used). All this information allows for having restrictions on 
the use of shared resources within the processor. Additionally, the top-down analysis will 
fix acceptability conditions for the different stages of this process, according to safety 
criteria; 

• For federated systems, embedded software can be known with a high-level of details at 
an early stage of the equipment’s development. That is not the case for integrated 
systems, such as IMA, wherein usage domain and representative applications compensate 
for the lack of knowledge on the final embedded software. 

  

Figure 5. Overview of the Interference Aware Process 



 

11 

The proposed interference-aware safety process contains the following steps that are developed 
in the following sections: 
 

1. Identification of interference paths  
 
Thanks to a bottom-up approach, sources of interferences are listed, with a level of details 
that depends on the presence of black-box components within the processor. Confidence 
about the coverage can be obtained by coupling the result of this bottom-up analysis with 
a top-down analysis that evaluates which components are used when embedded software 
triggers operations to shared resources. 
 
The output of this step is a set of interference paths (see figure 6), as defined in 
section  2.4.   
 
2. Interference analysis 
 
This stage takes as input a set of restrictions that is driven by the usage domain over the 
platform, the processor, and its configuration. These restrictions apply at two levels: 
 

o On the overall set of interference paths. Some of these paths may be unused and 
do not need to be covered; 

o On specific interference paths. Specific configurations within these interference 
paths may be stated as unreachable (with the appropriate mitigation) and thus do 
not need to be covered for the interference analysis. 

 
When interferences are actually observed on a given interference path, it is called an 
interference channel. The interference analysis will tag each interference channel as: 
 

o Acceptable. The interference channel has a bounded impact, so that an 
interference penalty can be assessed. Moreover, this interference penalty copes 
with the equipment’s functional domain; 

o Unacceptable. The interference channel has a bounded impact. However, the 
interferences penalty that was assessed is too high; 

o Unbounded. No interference penalty could be assessed on this interference 
channel. Its impact on software execution time is not properly known. Mitigation 
is required to meet performance requirements only; 

o Faulty. The interference channel has triggered a failure mode within the 
processor. Further investigation in collaboration with the manufacturer is 
required, and formalized through a safety analysis. That stage may be followed by 
a mitigation. 

 
An interference analysis is, at first, a matter of performance assessment. Assuming that, 
ideally, the processor has no failure mode triggered by interference channels, some 
interference channels will have a bounded and acceptable impact on software execution 
time. Others will not be bounded or the bound will be unacceptable. They will be 
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considered as dysfunctional, i.e., out of the functional domain for an equipment 
provider’s viewpoint but not from a processor manufacturer’s. 
 
Even if this is not the primary objective, an interference analysis may also find failure 
modes within the processor that were not discovered by the manufacturer. Hence, the 
equipment provider performing the analysis should be aware of these potential failure 
modes and, in case one is observed, should retain as much information as possible to 
allow for further investigations in collaboration with the manufacturer. 
 
As developed in section ‎2.5, a major challenge of conducting the interference analysis 
is to reach a compromise between the complexity (in time and cost) of the test 
campaigns, and the need to have a trustworthy coverage of interference situations. 
 
3. Interference mitigation 

 
This step takes as input the set of tagged interference channels. For unbounded, 
unacceptable and faulty interference channels, mitigation is required. Mitigations can 
either be internal or external to the processor. As shown in Figure 5, an internal 
mitigation is a restriction (e.g., configuration setting, usage domain). For example, an 
internal mitigation can be placed on the way shared resources are used concurrently by 
requiring that no more than two CPUs can request the main memory at the same time. 
When mitigations are internal, they may alter the processor’s usage domain and influence 
configuration trade-offs. In this case, the process described above is incremental. Indeed, 
the interference analysis should take into account these additional restrictions, and re-
evaluate the interference channels that are impacted. 
External mitigations mainly deal with the monitoring aspects and sanction strategy, in 
accordance with the safety objectives. Monitoring may be performed with a low-level 
granularity, for instance by tracing hardware events on the processor, or at a higher level, 
for instance by sanctioning deadline misses on software. 
 
Finally, collecting statistics on interference may be used to fill a knowledge base that 
may be reused for other certified contexts, for instance with a higher level of criticality. 
 

This proposed process should be instantiated on a case-by-case basis, depending on the 
equipment being considered, its criticality level, the selected processor and the level of detail of 
its internal components. The level of criticality of the equipment directly impacts the depth of 
analyses that will be performed. 
 
Acceptability criteria can be proposed as early as possible, for instance during the safe design 
phase of the V cycle (see section 2.2) and discussed with the processor’s manufacturer. 
Trustworthiness in the interference analysis is obtained after the safety assessment phase. 
 
2.4. IDENTIFICATION OF INTERFERENCE PATHS 

The identification of interference paths is the first step of the proposed process. 
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As represented in figure 6, an interference path is a configuration wherein several initiators (e.g., 
CPUs) use various targets (e.g., memories, I/O) at the same time, while the electronic activity 
they create crosses one or more interference sources. For example, the core in the center of figure 
6 uses the memory in the center along the path highlighted in pink through the right-most arbiter. 
That same arbiter is used by the DMA in the top-right corner to use the slave I/O in the lower 
right corner along the path highlighted in green. Thus the pink path and the green path may 
interfere. 
 
This section proposes a classification of interference sources. 
 
As depicted within the overall process in figure 5, the identification of interference paths is 
composed of: 
 

• A bottom-up analysis that lists the interference sources encountered on the processor; 
• A top-down analysis that identifies, for given initiators, which targets are concerned by 

the operations. For instance, a common side effect of I/O operations is to request a 
memory to fetch IOMMU configuration that will be cached. Potential sources of 
interferences affected by this side activity have to be taken into account. 

 
The combination of these top-down and bottom-up analyses allows for building the set of 
interference paths. 
 
 

 

Figure 6. Example of Interference Path 

 
2.4.1. Bottom-up Analysis to Identify Interferences Sources 

Sources of interferences can be identified from a bottom-up analysis on the processor’s shared 
resources being actually used and on the embedded operating system, if any. This analysis 
depends on the restrictions imposed by a usage domain over the shared resources. 
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Interference sources are tightly coupled with sources of non-determinism investigated in the 
White Paper #2. Therefore, we propose the following classification, which is close to the one 
presented in White Paper #2. 
 

1. Physical sources 
  

These sources are linked to hardware components and mechanisms. 
 

• Internal sources: components that may process concurrent activities. Examples of such 
components include the main memory, the interconnects, and the high-speed busses. In 
the White Paper #2, we proposed an abstraction of this kind of resources in the cache and 
buffer paradigms. Hardware interferences are being considered according to these 
paradigms. 

 
o Cache interferences. The cache paradigm was defined as the combination of a set 

of data that could be requested, and a replacement logic that maintained this set of 
data according to the incoming requests. It is not limited to the usual cache 
hierarchy that is encountered in almost all processors, but also extends to features 
such as open pages table in double data rate (DDR) controllers. 
 
Caches were associated with a source of non-determinism dealing with 
uncertainty on their content. The same applies to interferences. This source of 
interferences deals with non-simultaneous operations. Intuitively, an incoming 
operation will alter the cache’s content by triggering the replacement logic. When 
another operation arrives in the cache, requested data may have been removed by 
the replacement logic, thus entailing a cache miss. Even if operations occurred at 
different dates, they interfered. 
 

o Buffer interferences. The buffer paradigm was defined in the White Paper #2 as a 
set of requests that is fed by incoming flow, combined with an arbitration logic 
that selects the requests to be emitted. It refers, for instance, to arbitration 
mechanisms in the interconnect, but can also apply to request queues located in 
high-speed busses, and in DDR controllers. 

 
Buffers generate interference when their arbitration logic depends on the presence 
of requests from different cores. In other words, it is a source of interferences 
between simultaneous operations. 

 
• External sources. On a MCP, I/Os are often shared between several applications running 

on several cores. Some I/O controllers, e.g., PCIe, are capable of managing multiplexing 
on their own, both for incoming and outgoing flows. That multiplexing can be described 
with cache and buffer paradigms. However, the processor has no fine view or control on 
incoming flows received by several remote peripherals. That is why they are refined as a 
distinct source of interferences. 
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2. Logical sources 
 

These sources are linked to software mechanisms that are implemented within the 
platform software (e.g., real-time operating system or RTOS). 

 
The notion of buffer and cache paradigms also applies to logical sources of interferences, 
even if this kind of source is traditionally addressed in partitioning analyses. Examples of 
logical sources of interference that do not refer to cache nor buffer paradigms are locks 
and semaphores. They can be requested at the same time by different tasks on each core, 
while, at most, one of them is granted the resources (and sometimes all tasks may fail). 

 
2.4.2. Top-Down Analysis for Identification of Interference Paths 

The set of interference paths can be built from a top-down analysis performed on initiators. 
Depending on the operations they can initiate, various components can be attained, even when 
they are not the main targets of these operations. For instance, a COTS processor often contains 
internal cache memories, such as IOMMUs that are loaded at runtime from a global 
configuration within the main memory. Thus, operations on I/Os may also interfere with 
concurrent operations on the main memory. 
 
These targets and the resulting data paths (the components that are impacted) should be listed to 
determine what sources of interference they reach. Interference paths can be obtained by 
combining data paths from several initiators that share some interference sources.  
  
2.5. OBJECTIVES OF THE INTERFERENCE ANALYSIS 

As shown in figure 5, an interference analysis takes as input a set of interference paths (see 
figure 6), filters it according to the usage domain restrictions (platform and processor), identifies 
interference channels, and tags each of them as: 
 

• Acceptable: interferences occur, but a bound has been found on the interference penalty, 
and this penalty meets the performance objectives for the equipment; 

• Unacceptable: the interference penalty could be determined (i.e., a bound can be found) 
but it does not meet the performance requirements; 

• Unbounded: the interference penalty could not be determined;  
• Faulty: tests on the interference path have triggered a failure mode that was not 

discovered or documented by the manufacturer. Further investigation is required. 
 
There can be up to one interference penalty per interference channel, but a same interference 
penalty may apply to several interference channels. In the first three cases, the interference 
channels are not associated with a failure mode, and thus are only considered from the 
performance standpoint. In the fourth case, the interference channel has triggered a failure mode 
and must be analyzed more in-depth from a safety standpoint. Even if the failure modes are a 
concern for the equipment safety, they are addressed by several analyses that apply to complex 
COTS. Interference analysis can simply be aware of this eventuality and report them, if any are 
found.  
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The main objective of the interference analysis is to provide a trustworthy performance 
assessment on the processor. The main challenges are: 
 

• Dealing with a high number of interference paths. In many cases, it will not be possible 
to identify all of them. Hence a sufficient subset may be covered, as long as a rationale 
can be provided to justify that the reduced coverage is sufficient. For instance, it can be 
shown that the gathered interference penalties apply to uncovered interferences paths; 
 

• Obtaining a trustworthy interference penalty on a given interference path, in spite of: 
o The high complexity of hardware mechanisms; 
o The eventuality of black-box and/or partially documented components within the 

processor; 
o The limits of testing capacities, e.g., the impossibility of reaching heavy stress 

levels with given initiators. Defining tests space and clarifying its limits in terms 
of which situations are reachable and which ones are not may be helpful. 

 
For both challenges, termination criteria can be proposed to limit the complexity of the 
interference analysis. Meeting these criteria can be a sufficient condition to ensure the 
trustworthiness of interference penalties. 
 
Various approaches and termination criteria can be proposed; they can be more or less 
formalized, and more or less computational. For instance, human-in-the-loop processes can be 
introduced, including experts’ reviews, collaboration with the manufacturer, and collected in-
service experience. The in-service experience can cover the processor itself or similar ones, such 
as the processors in the same series or using the same Intellectual Properties (IPs). These 
approaches may be developed alongside formal analyses performed on the whole processor, or 
specific components – some of them are detailed in section  3. The worst-case behavior of some 
components, such as a static random access memories (SRAM), can be found, which is 
supporting the trustworthiness of interference penalty. However, the equipment provider 
performing the interference analysis should be aware that this may not always be the case. What 
is important is to know and document the limitations of the interference analysis, so that the 
rationale associated with the interference penalty is properly justified. 
 
A specific concern points to processors that contain black-box components. Methods have been 
proposed to tackle black-box components to find failure modes in reference [10]. From a 
performance's point of view, the following events can be feared: 
 

• Unbounded behavior within the limits of the test’s exploration space: For instance, it can 
be necessary to consider an infinite test space when its bounds are not clearly defined. 
Hence, asymptotic behaviors can be considered for test configurations that are not 
reached, but do not seem unreachable. These asymptotic behaviors may not be bounded, 
thus the interference channel becomes unbounded; 
 

• Hidden mode changes and/or subcomponents’ activation within the black-box 
component: These events introduce discontinuities in the processor’s behavior, i.e. 
situations wherein adjacent tests entail non-adjacent behavior. Having discontinuities is 
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not a problem in itself, as long as their impact is covered. What is important is to secure 
the absence of singularities, i.e. finite discontinuities while the interval between them 
remains uncovered, so that the component’s behavior is unknown. One of the results of 
the interference analysis dealing with black-box components can be the absence of 
singularities within a given limit, according to metrics defined over the test space. 

 
The interference analysis mainly brings obligations in terms of results, i.e. to have a sufficient 
coverage of interference paths, to identify interference channels and to provide trustworthy 
interference penalties for each of them. Exhaustiveness is probably not reachable using any one 
method, because of the “black-box” situation when using COTS. Nevertheless, trustworthiness 
should be reached by combining a semi-formalized approach, knowledge of the device from the 
MCP supplier, test campaigns, or any other method. 
 
Finally, with this approach, the equipment provider is left the opportunity to propose and argue 
the methods, together with their level of formalization, automation and human intervention. This 
plan can be proposed and defended in front of certification authorities at an early stage of the 
certification process, and then be refined during the safe design phase of the V cycle. 
 
As an output, the interference analysis produces the set of tagged interference channels. The 
unacceptable and unbounded channels can be studied with a mitigation objective in mind. Faulty 
channels are analyzed from a safety standpoint first, before being considered for mitigation. 
 
2.6.INTERFERENCES MITIGATIONS 

Interferences mitigation comes at the end of the process and applies to interference channels. As 
an extension, we consider that mitigation techniques can also be injected in the initial definition 
of the usage domain, before performing the interference analysis, with the goal to make the 
analysis simpler. 
 
As represented on figure 5 the mitigation can be internal, and thus be reported, as additional 
restrictions within the usage domain and/or specific configuration tradeoffs; or the mitigation can 
be external, i.e. hosted by a third-party hardware. 
 
The case of an internal mitigation is the richest, as it implies new iterations with the interference 
analysis. In the first iteration, an ‘internal mitigation’ will take care of the specificities of the 
hardware and software architectures to influence the definition of usage domain. Additionally, it 
may orient the equipment’s development toward one of the following paradigms: 
 

• Apply interference reduction techniques, use specific hardware features (if any), but do 
not try to bound interferences with software; 

• Ensure that interferences are bounded within the interference channel by internal means; 
• Ensure that interferences are eliminated by construction.  

 
Each of the three paradigms above has their advantages and drawbacks. Selecting one of them 
has a strong impact on the rest of equipment’s lifespan, as it is significantly complex to recover 
from such a choice. 
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The case of external mitigation is more straightforward. Indeed, an external mitigation for an 
interference channel consists of a detection means and a sanction strategy, in accordance with 
safety objectives. Detection is the bottleneck of an external mitigation strategy and detecting that 
an interference channel has ‘too much’ interferences is not well defined. A proactive detection 
strategy can be proposed and simply deployed. For instance, hardware events can be monitored 
at runtime, and unexpected events, or usage domain violations can entail errors that are handled 
by health monitors, either internal or external. However, it becomes difficult to give a rationale 
about the coverage of situations with unintended interferences. 
 
Another approach consists in addressing detection means at a higher level, for instance by 
monitoring deadline misses. However, it becomes arguable to assimilate this detection as a 
consequence of interferences.  
 
Finally, a long-term mitigation could also consist in collecting statistics on the processor’s 
behavior, both at hardware and software levels. These statistics feed a database maintained by 
the equipment provider, who can reuse such information in other equipment’s projects. Hence, 
unintended events such as deadline misses could be documented with a snapshot as precise as 
possible of the hardware and software conditions in which the problem occurred, so that the 
equipment provider could investigate. 
 
As a conclusion, no external mitigation strategy dealing with interferences seems to fit optimally.  
Interference mitigation should thus combine several detection means and propose adapted 
sanctions, in accordance with the safety objectives. 
 
3.EXAMPLES OF INTERFERENCE ANALYSIS TECHNIQUES 

Section  2.5 outlined the objectives to be fulfilled by an interference analysis. As mentioned 
earlier, the interference analysis is mainly focused on assessing the performance of the platform 
to leverage potential timing failures.  
 
Many different situations can be encountered with respect to the equipment’s needs, the depth of 
knowledge on the processor’s architecture, and the openness of the system (e.g., with an IMA).  
No generic method seems relevant; instead, a combination of several methods, more or less 
formalized, can be proposed with a case-by-case evaluation for each equipment. 
 
Some methods may be formalized or semi-formalized (i.e. relying on hand-written abstractions). 
Others may rely on engineering sense and involve experts’ experience with multicore processors, 
for instance on lower-criticality equipment or with processors from the same series. In all cases, 
the support from the MCP manufacturer is beneficial to the quality of the interference analysis. 
 
This section details examples of methods that can be used within an interference analysis. These 
methods are formalized or semi-formalized. 
 
3.1. ANALYSIS OF PROCESSORS CONTAINING BLACK-BOX COMPONENTS 

Many COTS processors embed black-box components, especially when these components bring 
competitiveness advantages. This is usually the case for interconnects and IPs for I/O control. 
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Sometimes, these components embed micro-controllers and execute micro-code that is also 
proprietary. Hence, their behavior is highly complex, and exhaustiveness of testing cannot be 
reached but only approximated. Termination of the analysis should then follow predefined 
termination criteria. 
 
In this section we propose examples of such termination criteria on a method that targets 
processors embedding black-box components. 
 
3.1.1. Enumeration of Interference Paths 

As mentioned in section  2.5, the first challenge of an interference analysis is to reduce the set of 
interference paths down to one that is analyzable with an affordable complexity. 
 
The initiator-target model [10] provides (and demonstrates) a formula to enumerate test classes 
on a processor containing black-box components. The processor is composed of initiators (e.g., 
CPU, DMA engines, master I/O) and targets (e.g., memories, slave I/O). The notion of test class, 
as defined in reference [10], copes with the definition of interferences channels. Hence, it is 
possible to apply the enumeration rules developed in the referenced paper. 
 
The authors distinguish smart initiators (containing a memory, and thus capable to perform 
master-to-slave communications) from non-smart initiators (with no built-in memory, thus 
capable to initiate slave-to-slave communication). For example, DMA engines are non-smart 
initiators. Considering these classes of initiators and the number of test classes, the number of 
interferences channels is given by: 

 
 
With these notations, nsi refers to the number of smart initiators, nnsi refers to the number of non-
smart initiators, and nt refers to the number of targets. Table 1 below illustrates the exponential 
growth of the number of interference channels for given processors configurations. 
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Table 1. Example of Interference Channel Numbering 

Smart Initiators Non-smart 
Initiators Targets 

Number of 
Interference Paths 

Number 
of Cores Master I/O Number of 

DMA Slave I/O 
Number of 
Memories 

(DDR, flash) 

2 0 1 2 PCIe 2 DDR 424 

2 0 1 2 PCIe + 1 CAN 2 DDR 935 

2 1 PCIe 1 2 PCIe + 1 CAN 2 DDR 5615 

4 0 1 2 PCIe 2 DDR 10624 

4 0 1 2 PCIe + 1 CAN 2 DDR 33695 

4 1 PCIe 2 2 PCIe + 1 CAN 2 DDR 5256575 

8 0 1 2 PCIe 2 DDR 6640624 

8 0 1 4 PCIe + 1 CAN 2 DDR 838860799 

8 1 PCIe 2 4 PCIe + 1 CAN 2 DDR 335544319999 

12 0 1 2 PCIe 3 DDR 56596340735 

12 0 1 4 PCIe + 1 CAN 3 DDR 18357919871264 

12 1 PCIe 2 4 PCIe + 1 CAN 3 DDR 10739383124690000 

 
Except for very simple architectures and usage domains, the sheer number of interference paths 
makes an exhaustive coverage impossible to reach (remember that a second analysis has to be 
performed on each interference path). 
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We can first note that the usage domain usually already restricts the allocation of shared 
resources to initiators. For instance, the platform can be configured to balance the workload over 
the shared resources. Hence, the values given in table 1 represent upper bounds; nonetheless, the 
set of interference paths still grows exponentially. 
 
The following rationale can be employed to justify that an interference path is not tested: 
 

• Partial ordering: The interference path is already covered by a larger interference path. 
This rationale works as long as no mode change occurs between the smaller and the 
larger interference paths, e.g., dynamic voltage and frequency scaling; 

• Equivalence class: From the interference sources’ point of view, the path is equivalent to 
another interference path. To make such an argument, architectural patterns can be 
exploited such as the symmetry of the processor’s architecture, and more generally any 
information stating that an initiator is treated by the hardware in the same way as another. 

 
The last type of rationale may be used to build classes of interference paths, for which the 
interference analysis would perform a more in-depth exploration of an item in each class; in 
other words, the interference analysis would investigate a representative of each equivalence 
class at each level within the pre-defined order. 
 
3.1.2. Analysis of an Interference Path 

The second challenge of the interference analysis is to get a correct coverage of the possible 
interference situations within a given interference channel. 
 
The first point of note is that the state space is significantly large. Examples of parameters that 
can be explored include: 
 

• Types of operations available for each initiator (e.g., read/write with different width); 
• Length of transactional sequences, and stress level that can be reached by the embedded 

software; 
• Memory area targeted (in case a transaction targets a memory). 

 
These parameters allow for defining metrics on test scenarios, i.e. by how much several scenarios 
differ from each other. We consider that the whole state space cannot be covered, so that some 
situations will remain unexplored. As long as the processor’s behavior is continuous, exploring 
close configurations can be sufficient. However, one issue related to processors that embed 
black-box components is the difficulty to predict mode changes, i.e. discontinuities in the 
processor’s behavior due to specific inputs. 
 
The intuition behind the evaluation of an interference channel is to observe the presence or 
absence of singularities, for example, the explosion of transactions’ propagation time outside of 
acceptable ranges. When a singularity is discovered, the interference channel is tagged as 
unbounded. Otherwise, the interference channel can be tagged as bounded. 
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This analysis makes the following assumptions on the processor: 
 

• The processor’s behavior is piecewise-continuous, i.e. adjacent tests lead to close 
interferences impact, except when a mode change leads to discontinuity; 

• A limit exists on test metrics under which, for any pair of tests beyond this limit, at most 
one discontinuity is possible on the processor. 

 
This method guarantees that no singularity is found while the test space is covered through a 
mesh which granularity is lower than a given limit. In other words, the equipment provider 
defines metrics and mesh for the test space (i.e., the parameters that can be varied), wherein the 
mesh’s granularity is predicated on the selected metrics. The test results would then state that no 
singularity has been observed over a mesh of granularity ‘X’. The equipment provider proposes 
such a limit. The limit proposed by the equipment provider can vary per the criticality of the 
equipment. This limit sizes the number of tests to be performed, and thus the complexity and cost 
of the interference analysis. The assumption that the microprocessor’s interference level is 
piecewise continuous can be used to state that such evaluation of interference over a specified 
mesh provides evidence; however, the demonstration is not complete. This approach allows for 
providing an answer tied to a non-exhaustive test campaign that is identified as such. 
 
Finding singularities, i.e. determining whether the interference channel is bounded or not, is one 
objective of this step. Another goal is to propose a trustworthy interference penalty derived from 
measurements. One of the problems is to deal with the imperfection of measurement methods, 
especially those using instrumented code. First, these measurement methods are biased by the 
intrinsic timing variability of the processor’s behavior. For instance, several clock domains that 
are not synchronized can be encountered and introduce a random synchronization delay. Second, 
measurements are in many cases end-to-end. For read operations, this is a go-and-back-again 
operation. For write operations, the end-to-end measurement is more straightforward, but may be 
harder to collect. For instance, it is hard to get the arrival date of a write transaction within a 
memory. Finally, measurements by code instrumentation may limit the range of parameters that 
can be explored. For instance, non-instrumented code may reach a higher level of stress on an 
interference channel than instrumented code. 
 
As a conclusion, a trustworthy analysis of interference paths on processors containing black-box 
components may be practicable using a systematic enumeration method such as initiator-target 
when: 
 

• The usage domain is sufficiently restrictive on use-cases so that the number of 
interference paths remains manageable. Eventually, classes of interference paths may be 
built so that the analysis is performed on the whole classes; 

• Granularity of evaluation has been established and is sufficiently high with regard to the 
safety objectives. 

 
3.2. GLOBAL INTERFERENCE PENALTIES 

Approaches dealing with global interference penalties aim at jointly considering the task-set and 
the platform during the interference analysis. These techniques can be applied on the equipment 
for which one stakeholder has visibility on both the platform and the embedded software. They 
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rely on an in-depth analysis of each task to rebuild a detailed view of its use of shared resources. 
An interference penalty applied onto each task can then be computed from that view. 
 
The following methods have been proposed: 
 

• IsWCET (Interference Sensitive WCET) is proposed by Nowotsch et al. [11]. The 
authors use aiT, a static analyzer developed by AbsInt. They consider a given number of 
time windows, and for each one, they explore all execution paths of each task, and 
compute a bound on shared resources usage during that time window. The global 
interference penalty is obtained by adding interference penalties computed for each time 
window; 
 

• Application’s signature is proposed by Bin et al.[12] [13]. The authors associate a 
signature to each component of the processor, i.e. an evaluation of the component’s 
response or traversal time depending on its workload. The signature of a task is defined 
as the workload generated by this task on each component (e.g., interconnect, caches, 
memory). Hence it is possible to combine the signature of several tasks, and compare 
them with the signature of components to compute a global interference penalty; 
 

• A computational method is proposed by Pellizzoni et al. [14]. The method uses network 
calculus theory. The authors compute arrival curves that correspond to the workload sent 
by each task to shared resources. They define a service model for the processor and a set 
of equations that determine delays in arrival curves. By adding these delays they obtain 
an interference penalty. 

 
Global interference penalties have the advantage to perform an end-to-end analysis of 
interferences’ impact. Their use in closed equipment, i.e. wherein the whole software is known, 
would be profitable to the quality of the interference analysis. Their main drawback is the 
difficulty in applying them early in the safe design process. 
 
3.3. LOCAL ANALYSES 

A couple of techniques have been developed to perform fine-grain analysis on specific 
components that are usual sources of interferences. These techniques mainly focus on 
interconnects and shared caches. Since they are applied locally, they must be combined with 
other methods to constitute the interference analysis.  
 
3.3.1. Shared Cache Analysis 

Cache analyses techniques for shared caches extend existing methods developed for private 
caches, and rely on static analyzers.  
 
Historical methods consider the Control Flow Graph (CFG) of a software task, and simulate the 
cache content during the execution, for all possible executions [15]. A reference (instruction or 
data) may be classified as “always miss”, “always hit”, “first miss”, or “unknown”, depending on 
its presence in the cache with regards to the past executions of the sole task. Cache analyses have 
the following limitations: 
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• Data caches are hard to analyze because data references are often determined at runtime, 

and vary among software execution. Approaches based on value analysis using abstract 
interpretation techniques have been proposed [16], and WCET evaluation tools such as 
aiT have a good support for data caches analyses; 

• Cache analyses only support well-defined policies, such as least recently used (LRU) or 
pseudo-LRU (PLRU) [17]. Caches embedded on COTS processors have sometimes-
proprietary replacement policies, for example, streaming PLRU for Freescale processors. 

 
For shared caches, the difficulty is to take into account conflicts between concurrent tasks 
without being too pessimistic. Yan and Zhang [18] represent such conflicts by annotating 
“always hit” and “always miss” states with a tag “except one”, meaning that a concurrent task 
will alter this reference only once during its execution. This applies to structures such as loops 
that may conflict with sequential code. However, this approach still remains pessimistic. To 
improve on it, Hardy et al. [19] propose a concept named “bypass”. Intuitively, the authors state 
that many conflicts in shared cache are due to evictions from lower-level caches. A significant 
part of these evictions deals with cache lines that are used only once, and thus have become 
useless. Hardy’s approach consists in identifying such lines, also called “static single-usage 
blocks”, and forces the hardware to bypass the shared cache. Hence, conflicts within the shared 
cache are significantly reduced. 
 
The problem of shared cache analysis has solutions in specific cases, for instance, considering 
only data or instruction shared caches [20]. In the general case, especially with unified (data and 
instructions) caches, it remains an active research field.  
 
3.3.2. Memory Analysis 

The problem of memory’s response time can be raised both for SRAM and DRAM technologies, 
both of them being supported by COTS processors (SRAM technologies are used in most 
caches). Nevertheless, on SRAM, the problem is considered as solved except for highly complex 
SRAM controllers [21]. 
 
An overview of a DRAM system (controller and memory) is done by Drepper [22]. DRAM 
analysis has been studied by Paolieri et al. [23]. In this paper, the authors model an entire 
synchronous DRAM (SDRAM), including the controller and the memory system. They provide 
static upper bounds for read and write operations. This approach yields promising results, but its 
limitation lays in its applicability to COTS processors that often have proprietary interleaving 
protocols. 
 
3.3.3. Interconnects Analysis 

Interconnects analysis have tackled the following problems: 
 

• Worst-case behaviors of interconnects arbitration policies;  
• Worst-case situations regarding the interconnect protocol. 
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Regarding the first problem, Bourgade et al. proposed a study of several policies [24]. The 
authors highlighted the case of some protocols not giving bounds on the arbitration time. That is 
the case for instance for fixed-priority, and some classes of First-In-First-Out (FIFO) protocols. 
Like other families of local analyses, the limitations of this study is the lack of knowledge of 
COTS interconnects’ arbitration protocols. Nevertheless, some interconnects IP such as 
Corelink™ from ARM [25] and TeraNet™ from Texas Instruments [26] have their protocol and 
arbitration policy documented. 
 
Regarding the second problem, corner cases with interconnect protocols have been studied by 
Shah et al. on the AMBA™ protocol, which is widespread in ARM processors [27]. They have 
shown that bus-locking phenomena may slow down successive transactions during arbitration 
phases. That result also covers interference situations. 
 
4. EXAMPLES OF INTERNAL MITIGATIONS 

In this section, a couple of state-of-the-art solutions are developed that can be used to provide 
internal mitigation for interferences.  
 
Internal mitigations consisting in restrictions on the usage domain are enticing. For instance, it 
can be stated that some targets cannot be used by a more than a given number of initiators, or 
cannot be used beyond a given rate; the challenge is then on the way to enforce such a restricted 
usage domain. Several techniques detailed in this section define mechanisms to implement such 
restrictions.  
 
Additionally, several surveys, referenced in table 2, have been proposed in the literature.  

Table 2. Surveys of Interference Mitigation Techniques 

Ref. Mitigations Covered Comment 

[28] 
Interference reduction 
Interference bounding 
Interference elimination 

This survey is more general than mitigation of interferences, 
as it also covers global methods for interference analysis. 

[29] Interference bounding 
Interference elimination 

This survey only covers software implementations on COTS 
multicore processors. The solutions presented in the survey 
are grouped under the name of “deterministic platform 
software”, i.e. software components that do not bring new 
functionalities to payload software (e.g., applications) but 
provide interference mitigation. 

[30] 
Interference reduction 
Interference bounding 
Interference elimination 
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The following sections respectively detail: 
 

• Techniques for interference reduction that do not remove nor bound interferences by 
themselves, but enhance the bounds on interferences, when they exist; 

• Techniques for interference bounding. These techniques are implemented in regulation 
software solutions. The main idea consists in granting budgets that are periodically 
refilled (e.g., execution time, use of shared resources) to embedded software, and let them 
execute until they have consumed their budget;  

• Techniques for interference elimination. These techniques implement a control paradigm, 
which means that the use of shared resources is controlled by an external software, 
according to a global policy. 

 
Table 3 describes the classes of interference channels that can be targeted by the different 
interference mitigation techniques. 

Table 3. Classes of Interference Mitigation Techniques and Targeted Interference Channels 

Interference Mitigation Techniques Targeted Interference Channels 

Interference reduction Unacceptable (but bounded) 

Interference bounding Unacceptable, Unbounded 

Interference elimination Unacceptable, Unbounded, Faulty 
 
4.1. INTERFERENCE REDUCTION TECHNIQUES 

Interference reduction techniques discussed in the literature apply to sources of interferences. 
They highlight specific mechanisms, at hardware or software level. 
 
More specifically, solutions that target the following sources of interference are detailed: 
 

• Shared caches. They have been identified for a long time as bottlenecks for performance 
assessment in multicore processors. Hence, several solutions are proposed to reduce 
interferences within shared caches; 

• Memory banks. The problem with memory banks is close to that for shared caches, even 
if their impact on performance is lower; 

• Kernel locks. An issue in legacy RTOS migration to multicore processors is to make 
independent operations, especially system calls, as little depending on same lock as 
possible. That may require deep modifications to the OS design. 

 
4.1.1. Cache Coloring 

A cache management concept called ‘Colored Lockdown’ has been proposed to reduce cache 
conflicts by coloring techniques [31] [32]. Coloring technique aims at making a shared cache 
behave like a private one. Interferences are then addressed by the cache paradigm as described in 
the White Paper #2. 
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Set-associative caches are often represented as arrays (see figure 7) which cells contain blocks, 
usually 64-bytes wide. A data cannot be located anywhere in the cache. As illustrated in figure 8, 
its address is split into three segments. The ‘set’ segment determines in which row a data is 
located. The ‘way’, or column, is chosen by the cache replacement policy. When a cache block is 
selected to be evicted so that a new block can be loaded, it is within the same set. 
 
Cache coloring aims at reducing interferences in caches by ensuring that data and instructions 
used by software running on different cores will be stored in different sets.  Allocation and/or 
mapping of these data is complex and may require specific allocators. In reference [31], the page 
management system of Linux has been modified to do so. When a cache is properly colored, 
interferences are almost removed: contents are independent, but access is not. Moreover, the 
equivalent private caches are efficient as they keep a high associativity level. 
 
In another approach, Ward et al. have assigned colors to tasks with an underlying support for 
cache coloration, and alter the scheduler to minimize cache conflicts while keeping some 
dynamism within their system [33]. Hence, several independent tasks may be maintained within 
the system while their conflicts are reduced over their execution. 
 

 

Figure 7. Example of Colored Cache Shared Between Two Cores 

  

 

Figure 8. Address Sections from the Cache's Point of View 

 
4.1.2. Cache Partitioning 

Cache partitioning is a more straightforward way, than with cache coloring, to simulate private 
caches from a shared cache. As represented in figure 9, cache partitioning consists in restricting 
some ways to given address ranges, usually used by software running on specific cores. This 
method is supported by hardware on several processors, for instance on the Freescale QorIQ™ 
series. It is simple to deploy because it is a matter of static configuration. 
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Figure 9. Illustration of Cache Partitioning 

The drawback of cache partitioning is the lower efficiency of the equivalent private caches, since 
they have fewer ways. 
 
4.1.3. Bank-Aware Memory Allocation 

A solution called PALLOC has been developed within the “single-core equivalent virtual 
machines” framework to reduce interferences in open bank tables that are maintained by DRAM 
controllers [34]. This table was already classified within the cache paradigm presented in the 
White Paper #2; interferences linked to memory bank conflicts may have a significant impact 
[35]. 
 
Like Colored Lockdown, PALLOC is a dynamic memory allocator that is integrated within 
Linux. It is called when the kernel allocates memory, for instance to copy process binaries to the 
main memory from persistent storage. 
 
4.1.4. Kernel Locks Refinement 

Many RTOS supporting multicore processors have inherited from the legacy support of single-
core processors. During the migration to multicore, special care must be taken to limit the 
number of conflicts on kernel locks due to simultaneous calls of kernel services by different 
cores. This problem is also called ‘lock trashing’, and is described for Linux by Kleen [36]. 
 
Solutions have been proposed to limit the effects of lock trashing. For instance, Cui et al. 
proposed an implementation of a lockless scheduler for multicore processors [37]. A common 
practice, called lock refinement, consists in multiplying locks for services that are independent. 
Two difficulties arise. First, it is hard to say on a legacy OS which services are actually 
independent from each other. Second, the number of locks is likely to significantly increase, 
making the system harder to analyze. Solutions have been proposed to manage locks, for 
instance by Zhang [38], but it remains an active research field for RTOS manufacturers. 
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4.2. BOUNDED INTERFERENCE SOLUTIONS 

Several solutions have been introduced to ensure that interferences have a bounded impact on 
software execution time. Their main idea is to monitor the execution of embedded software and 
perform regulation, i.e. reconfigure the scheduler to alleviate the workload when some tasks are 
consuming too much of shared resources. 
 
In practice, each task will be allocated a budget, usually a number of accesses, that grants it the 
right to freely access shared resources. That budget is periodically refilled and sized to fit with 
the task’s needs. If a task exceeds its budget, a regulation mechanism detects the overflow and 
delays it until its budget is renewed. 
 
From these restrictions, an interference penalty can be evaluated based on the allocated budget, 
and applied to each software tasks. 
 
4.2.1. Memguard 

The regulation paradigm has been implemented within Memguard [39], which is part of the 
single-core equivalent virtual machines framework [32]. As represented in figure 10, each core 
hosts a bandwidth regulator that shares the total bandwidth guaranteed at DRAM controller level 
(1.2GB/s in the original paper [39]) among each core. Regulation is performed with hardware 
performance counters hosted on each core. These counters can be configured to count each 
access to shared resources, and trigger an exception when that number exceeds the allocated 
budget. 
 
 

 

Figure 10. Overview of Memguard Mechanism 

The authors have extended the Memguard mechanism to improve the overall performance by 
allowing software to ‘reclaim’ bandwidth that is unused by concurrent tasks. Even if this 
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mechanism is not recommended for highly critical applications, it provides a significant 
performance improvement for equipment with lower criticality level. 
 
4.2.2. Mixed Critical Systems 

Mixed-critical paradigm consists in co-running critical and non-critical software, while the 
critical one must meet real-time criteria, while the non-critical does not and runs in a best effort 
way [40]. The objective related to interference is to ensure that low-criticality tasks do not 
interfere ‘too much’ with highly critical ones. 
 
A common view of mixed-critical systems consists in scheduling the whole task set in a nominal 
mode, wherein both critical and non-critical tasks coexist. When critical tasks have no choice but 
to use the entire processing time to meet their WCET, non-critical tasks are suspended. This kind 
of paradigm can be defended, but the problem of availability for non-critical tasks remains. 
 
A less constrained framework has been proposed by Kiritikakou under the name of distributed 
run-time WCET controller [41]. Within this framework, tasks may be instrumented to monitor 
their own execution by inserting intermediate checkpoints. When a checkpoint is reached too late 
because of interferences (or other effects causing a slow-down), the WCET controller is notified 
and suspends the execution of non-critical tasks, as shown in figure 11. A critical task may also 
take the initiative to suspend non-critical tasks. 
 

 

Figure 11. Overview of Distributed WCET Controller 

Bounded interference solutions offer the advantage of being as little intrusive as possible. 
Therefore their impact on software performance is minimized. They introduce guards on the use 
of shared resources by embedded software. However, they do not help analyzing the low-level 
behavior of the processor, which means the number of interferences will be bounded, but their 
impact remains mandatory to assess. 
 
4.3.INTERFERENCE FREE SOLUTIONS 

Interference ‘free’ solutions have been designed for equipment that has hard real-time 
constraints. They focus on the major sources of interferences, so that most interferences are 
actually eliminated. However, these solutions do not dispense with a proper interference 
analysis. For instance, slight jitters may remain relative to minor sources of interference; they 
must nevertheless be assessed. 
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Removal of interference on a buffer source is usually performed through timing isolation 
principles. These principles may be implemented within the scheduler (e.g., critical tasks have 
dedicated slots), or enforced between concurrent accesses from cores to shared resources. 
Historically, the second approach has been developed within dedicated hardware solutions [42] 
[43] [44]. However, these solutions have not - so far - been embraced by COTS processors 
manufacturers. Hence the solutions presented in this section are only supported by software. 
 
Interference free solutions deployed on COTS processors are grouped in the control software 
paradigm [29]. 
 
4.3.1. Interference Free Scheduling 

Interference free schedulers apply to systems that embed applications with heterogeneous levels 
of criticality. They run low-criticality applications in parallel while highly critical applications 
are executed alone on the processor, as represented on figure 12. 
 

 

Figure 12. Example of Interference-free Schedule 

This method has been published in references [45] [46]. Fundamentally, it does not solve the 
question of interferences on multicore processors; rather, it proposes a workaround that fits with 
systems embedding little critical code. 
 
4.3.2. Deterministic Execution Models 

Deterministic execution models propose execution patterns that isolate phases where software 
initiates communications to shared resources, from phases where software executes from internal 
memories (e.g., private caches). Embedded software must be implemented according to these 
patterns. 
 
When a piece of software performs an execution phase, it makes no use of shared resources and 
therefore cannot interfere with concurrent software. As illustrated in figure 13, communication 
and execution phases are scheduled, and communication phases are isolated according to time 
division multiple access (TDMA) principles. 
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Figure 13. Example of Deterministic Execution Model Schedule [47] 

The following execution models have been published in the literature: 
 

• Predictable Execution Model or PREM is proposed by Pellizzoni et al. [48]. The authors 
introduce the notion of predictable intervals, which correspond to internal execution 
phases (i.e. without communication). This model scales to multicore processors, and 
takes into account interferences relative to the master I/O. The authors use an external 
device that interfaces with the I/O, and can be programmed to cope with a TDMA policy 
and not interfere with the CPU; 

 
• Acquisition-Execution-Restitution or AER pattern has been used to decouple memory 

and I/O communications [47] [49]. The acquisition phase for a task consists in fetching 
data and instructions required for the execution phase, and also fetching data from I/O. 
During the restitution phase, the main concern is to update the I/O. An approach has been 
developed to position and optimally schedule execution phases and communication 
phases [3]. This approach consists in translating the set of tasks’ parameters in a 
constrained linear programming (CLP), and letting a third-party solver find a schedule 
while maximizing the global response time. 

 
• Flush-Fetch-Execute or FFE is an execution model that has been developed to ease the 

deployment of code generated from synchronous execution models [50]. 
 
Timing analysis and ability to schedule aspects of execution models have been developed by 
Schranzhofer et al. [51] [49]. They show that a deterministic execution model so far does not 
impact performances, and brings predictability to a multicore processor. Its main drawback is the 
difficulty to support legacy software. 
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4.3.3. Application Unaware Control Software 

One drawback of deterministic execution models is the lack of support of legacy software, which 
introduces an additional effort for redesign. An approach has been proposed to make that control 
transparent with regard to embedded software [52] [53]. This enables the reuse of legacy 
software, including RTOS, with minor porting effort. As represented in figure 14, the mechanism 
relies on a smart configuration of the CPU internal resources (e.g., the MMU and caches) to 
make fetching operations transparent from the main memory. 
 

 

Figure 14. Overview of Marthy Control Software 

This approach has been successfully deployed on a Freescale P5040. The prototype, called 
Marthy, has been included within the kernel of Topaz, which is a lightweight hypervisor 
developed by Freescale. However, Marthy’s impact on software performance is variable. As 
described in reference [53], the slow-down is limited for some applications, e.g., a 30% overhead 
for a quad-core processor. For other applications, it may be a factor 10 or even more. Even if 
optimizations are possible, the classes of applications for which this solution can be relevant are 
not properly known. 
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5. CONCLUSION 

Interferences in multicore processors are undoubtedly an undesirable behavior for usage in 
avionics equipment, regardless of the number of cores. They make the processor’s performance 
assessment complex to achieve and therefore raise safety issues. The main risk is to trigger 
timing failures on the whole equipment, even if data failure modes might also be discovered 
during the interference analysis.  
 
In this White Paper, the authors propose a safety process to address the question of interference. 
The process is inspired by partitioning analyses performed on IMA systems and described in 
DO-297 [8]. Because of the wide variety of equipment, processors being used, level of criticality, 
and needs in terms of real-time requirements, no off-the-shelf generic solution seems to be 
practicable. Therefore, such a process ought to be instantiated on a case-by-case basis, and 
presented in the certification plan as soon as possible. Its definition should contain acceptability 
and termination criteria that will be applied during the safety assessment phases. 
 
Several points need be noticed. First, no limitation on the number of core seems relevant, even if 
a processor that embeds more cores makes the interference analysis more complex. Second, 
exhaustiveness of analyses is not likely to be reachable on COTS processors containing either 
highly complex and/or black-box components. Hence, confidence should be obtained by 
combining several analysis methods, e.g., semi-formalized analyses coupled with information 
shared with the manufacturer and expert feedbacks on the processor, or similar ones in avionics. 
Safety experts must drive these methods. Similarly, the interference analysis should be 
performed with final applications, if possible. When it is not the case, representative applications 
fitting with the usage domain can be used, even if trustworthiness may be more complex to 
achieve. 
 
Finally, interference mitigations, especially interference elimination techniques, do not dispense 
with an interference analysis, which brings evidence of interference control. 
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APPENDIX A. ACTIVITIES AND DATA RECOMMENDED TO BE 
PRODUCED FOR COTS ASSURANCE 

 
The following is based on EASA CM SWCEH-001 [7] to tentatively recollect all activities and 
results expected from highly complex COTS. Activities are gathered under the main objectives 
that are generally established as part of development assurance in support to certification. 
 
• With respect to COTS AEH description of functional purpose and architecture content: 
E.g.: Criticality (e.g., allocated DAL), novelty (e.g., new technology, service history), 
functionalities (various modes of operation), internal architecture (including internal interfaces, 
safety mechanisms and level of integration), structure (e.g., hierarchal breakdown and 
interconnections), I/O, and hardware-software interfaces (HSI); 
 
• With respect to the intended function(s) (per 2X.1301) provided by COTS AEH: 
E.g.: Usage domain (UD) definition (used/unused functions, activated/deactivated, configuration 
settings, including default configuration settings), UD validation (versus system, safety & 
software requirements), UD verification (reviews, analyses and tests), errata capture & analysis 
(impacts on intended function and safety); 
 
• With respect to the technical suitability (per DO-254 11.2.1.6) of COTS AEH to application: 
E.g.: characteristics (electrical and logical), timing performance (WCET), deterministic access to 
resources (execution, I/O, data, etc.), specific usages (e.g., robust partitioning, resources 
management, communication protocols), and environmental conditions (temperature, range, 
power consumption, and reliability); 
 
• With respect to proper functioning (per 2X.1309) without anomalous behavior: 
E.g.: failure modes and effects summary (FMES) for highly complex COTS AEH for critical 
applications. Integrate failure rates within upper-level FMEA of the unit of equipment. Perform 
FFPA at device level if reduction of DAL is sought. Provide directions for common mode & 
causes analyses at system level; 
 
• With respect to operating performance” (per 2X.1309) under environmental conditions: 
E.g.: validation and verification against upper-level requirements and HSI, additional re-
verifications in case of changes in the COTS AEH, qualification to environmental conditions at 
the unit of equipment level, links with system/software architecture context for critical functions; 
 
• With respect to ensuring continued airworthiness of usage conditions: 
E.g.: document product service experience gained and lessons learned (errata workarounds, 
usage limitations, errata discovered), follow-up on stability, maturity, configuration status, and 
monitor change notices and associated change descriptions, document change impact analysis 
(CIA), manage COTS AEH obsolescence. 
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