
 

DOT/FAA/TC-19/22 
 
Federal Aviation Administration 
William J. Hughes Technical Center 
Aviation Research Division 
Atlantic City International Airport 
New Jersey 08405 

Use of Virtual Machines in 
Avionics Systems and  
Assurance Concerns 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
October 2019 
 
Final Report 
 
 
This document is available to the U.S. public 
through the National Technical Information 
Services (NTIS), Springfield, Virginia 22161. 
 
This document is also available from the 
Federal Aviation Administration William J. Hughes 
Technical Center at actlibrary.tc.faa.gov. 
 
 

 
 
U.S. Department of Transportation 
Federal Aviation Administration 



 

 

NOTICE 
 

This document is disseminated under the sponsorship of the U.S. 
Department of Transportation in the interest of information exchange. The 
U.S. Government assumes no liability for the contents or use thereof. The 
U.S. Government does not endorse products or manufacturers. Trade or 
manufacturers’ names appear herein solely because they are considered 
essential to the objective of this report. The findings and conclusions in this 
report are those of the author(s) and do not necessarily represent the views 
of the funding agency. This document does not constitute FAA policy. 
Consult the FAA sponsoring organization listed on the Technical 
Documentation page as to its use. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This report is available at the Federal Aviation Administration William J. 
Hughes Technical Center’s Full-Text Technical Reports page:  
actlibrary.tc.faa.gov in Adobe Acrobat portable document format (PDF). 



 

 

  Technical Report Documentation Page 
1. Report No. 
 
DOT/FAA/TC-19/22 

2. Government Accession No. 3. Recipient's Catalog No. 

 4. Title and Subtitle 
 
USE OF VIRTUAL MACHINES IN AVIONICS SYSTEMS AND ASSURANCE 
CONCERNS 

5. Report Date 
 
October 2019 
6. Performing Organization Code 
 
 

7. Author(s) 
 
Bjorn Andersson, Sagar Chaki, Dionisio de Niz 

8. Performing Organization Report No. 
 
    

9. Performing Organization Name and Address 
 
Software Solutions Division 
Software Engineering Institute  
Carnegie Mellon University 
Pittsburgh, PA  15213 

10. Work Unit No. (TRAIS) 
 
 

11. Contract or Grant No. 
 
DFACT-14-X-00010 

12. Sponsoring Agency Name and Address 
 
Federal Aviation Administration  
950 L'Enfant Plaza 
Washington, DC 20024 

13. Type of Report and Period Covered 
 
Final Report 

14. Sponsoring Agency Code 
 
   AIR-6B4 

15. Supplementary Notes 
 
The FAA William J. Hughes Technical Center Aviation Research Division Technical Monitor was Srini Mandalapu.  
16. Abstract 
 
Virtual Machine (VM) technology uses a hypervisor that creates multiple virtual copies of a computer, each to be used by a single 
application as if it was the only one running. This virtual copy, known as a VM, must be isolated from the other VMs. The industry 
is considering VMs and hypervisors for efficiency and flexibility of computing resources. For the certification of avionics systems, 
this isolation is a valuable asset that potentially allows modularity of certification and recertification. As a result, this study evaluated 
current VM technology and similar technologies as they relate to the assurance of avionics systems. 
The research was focused on assurance issues, verification in particular, in which virtualization technologies are implemented in 
avionics systems. Verification of new technologies is challenging to certification authorities. To investigate this aspect of VM, the 
research studied verification technologies for VMs. This study was divided into timing verification and logical verification. From 
the timing perspective, multiple verification techniques were proposed that are generic enough to model virtualization; the tradeoffs 
among them were documented. From the logical verification side, different techniques that require different degrees of human 
involvement, from fully automated (e.g., model checking) to more interactive (e.g., theorem provers), were documented. The 
research also highlighted the assurance data that can be affected by the porting of an application from single to multicore processors 
and the use of hardware emulation to try to preserve the behavior of the original hardware. 
Virtualization in software architecture is an increasingly common practice in the software industry, and it is not surprising there is 
interest for airborne systems. This research provided several recommendations and conclusions on the use of VMs in airborne 
systems. The research results will be used in developing guidance and training material for the certification engineers. The research 
also recommends additional research on isolation and verification techniques for improved modular recertification and fostering 
corresponding standards, solutions for the impact of multicore on virtualization technology, and verification schemes for 
virtualization implementations.  
17. Key Words 
 
Avionics systems, Virtual machines, Virtualization, Safety 
assurance, Hypervisor, Verification technologies, Worst-case 
timing  
 
 

18. Distribution Statement 
 
This document is available to the U.S. public through the 
National Technical Information Service (NTIS), Springfield, 
Virginia 22161. This document is also available from the Federal 
Aviation Administration William J. Hughes Technical Center at 
actlibrary.tc.faa.gov. 

19. Security Classif. (of this report) 
 
     Unclassified  

20. Security Classif. (of this page) 
 
     Unclassified 

21. No. of Pages 
 
     206 

22. Price 

 
Form DOT F 1700.7  (8-72) Reproduction of completed page authorize 



 

iii 

ACKNOWLEDGEMENTS 

The SEI team thanks the FAA team, in particular Srini Mandalapu, for feedback on this report. 

 



iv 

TABLE OF CONTENTS 

Page 

EXECUTIVE SUMMARY vii 

1. SURVEY OF LITERATURE RELATED TO VIRTUAL MACHINES 1 

2. ASSURANCE ISSUES ON VIRTUAL MACHINES IN AVIONICS SYSTEMS 1 

3. EVALUATION OF VERIFICATION TECHNOLOGIES FOR VIRTUAL
MACHINES 2 

4. COMPOSITIONAL VERIFICATION FOR VIRTUAL MACHINES 3 

5. SINGLE-TO-MULTICORE PORTABILITY OF ASSURANCE DATA 3 

APPENDICES 

A—SURVEY OF LITERATURE RELATED TO VIRTUAL MACHINES 
B—ASSURANCE ISSUES ON VIRTUAL MACHINES IN AVIONICS 
SYSTEMS 
C—EVALUATION OF VERIFICATION TECHNOLOGIES FOR VIRTUAL 
MACHINES 
D—COMPOSITIONAL VERIFICATION FOR VIRTUAL MACHINES 
E—SINGLE-TO-MULTICORE PORTABILITY OF ASSURANCE DATA 
F—IDENTIFICATION OF ASSURANCE ISSUES ON EMULATION OF 
CERTIFIED HARDWARE 
G—FUTURE WORK AND RECOMMENDATIONS 



 

v 

LIST OF ACRONYMS 

API Application programming interface 
BVT Borrowed-Virtual-Time 
CARTS Compositional Analysis of Real-Time Systems 
CFG Control flow graph 
CMAS Certifiable Multicore Avionics Systems 
COTS Commercial off-the-shelf 
CPU Central Processing Unit 
CRPD Cache-related preemption delay 
CS Critical section 
DAG Directed acyclic graph 
DM Deadline monotonic 
DMA Direct memory access 
DMS Deadline monotonic scheduling 
DRAM Dynamic random-access memory 
DTM Dynamic thermal management 
EDF Earliest-Deadline First 
EVM Embedded virtual machine 
EVT Extreme value theory 
EX Execution 
FIFO First-in, first-out 
FPS Frame per second 
FR-FCFS First-ready, first-come, first-served 
ID Instruction Decoding 
IF Instruction Fetch 
IMA Integrated modular avionics 
I/O Input/output 
IOMMU Input/output memory management unit 
IPC Instructions per cycle 
LCM Least common multiple 
MC/DC Modified condition/decision coverage 
MEM Memory Access 
MILS Multiple Independent Levels of Security/Safety 
MMU Memory management unit 
MPCP Multiprocessor Priority Ceiling Protocol 
MPSoC Multiprocessor systems on chips 
NOP No operation 
OS Operating system 
PALS Physically Asynchronous Logically Synchronous 
PCP Priority Ceiling Protocol 
PI Priority Inheritance 
PSO Partial Store Order 
QoS Quality of service 
rbf Request bound function 
RM Rate monotonic 
RMS Rate-monotonic scheduling 



 

vi 

RTES Real-time embedded systems 
RTOS Real-time operating systems 
RTV Real-time virtualization 
SAT Satisfiability 
sbf Supply-bound function 
SC Sequential consistency 
sEDF Simple Earliest-Deadline First 
SEU Single event upset 
SLA Service-level agreement 
SMT Satisfiability modulo theories 
SRAM Scratchpad RAM 
TD Time division 
TDM Time-division multiplexing 
TDM+FP Time-division multiplexing plus fixed-priority scheduling 
TLB Translation lookaside buffer 
TSO Total Store Order 
TTA Time-triggered architecture 
UDR Utility degradation resilience 
V&V Verification validation 
VC Verification condition 
VM Virtual machine 
vMCP Vector Mixed-Criticality Packing 
VMM Virtual machine monitor 
WB Result Write Back 
WCET Worst-case execution time 
WCRT Worst-case response time 
ZSRM Zero-slack rate-monotonic 
  



 

vii 

EXECUTIVE SUMMARY 

Virtual machine (VM) technology uses a hypervisor that creates multiple virtual copies of a 
computer, each to be used by a single application as if it were the only one running. This virtual 
copy, known as a VM, must be isolated from other VMs. For the certification of avionics systems, 
this isolation is an invaluable asset that can potentially allow modularity of certification and 
recertification. This report evaluates current VM technology and similar technologies as they relate 
to the assurance of avionics systems. 

This report is divided into seven sections. The first section provides a literature survey that tracks 
the origin of virtualization and explores related isolation techniques and verification technologies. 
This survey tracks the different motivations and goals of the virtualization technologies. In 
particular, the survey identifies how the initial virtualization objectives were focused on simplicity 
of development and use with a strong emphasis on throughput. Clearly, throughput has been a key 
driver of general-purpose computing but hinders the worst-case (timing) behavior needed to 
provide assurance of real-time systems. The section presents an alternative isolation mechanism 
focused on real-time behavior. 

The second section on assurance issues discusses specific issues of assurance when virtualization 
technologies are used in avionics systems. In particular, the section discusses how the goals of 
assurance of avionics systems relate to different virtualization technologies and how different 
innovations in the hardware layers interact with virtualization. It also discusses how recent 
innovations in real-time systems deal with hardware innovations to ensure predictable timing 
behavior. 

The third section focuses on verification technologies for VMs. This section is divided into timing 
and logical verification. For timing, the study presents multiple verification techniques that are 
generic enough to use to model virtualization and discuss the tradeoffs among them. For logical 
verification, it presents different techniques that require different levels of user involvement, from 
fully automated techniques, such as model checking, to more interactive techniques, such as 
theorem provers. 

The fourth section discusses compositional techniques for verification. This section enhances the 
discussion of the previous section with a more focused discussion on compositionality and 
modularity aspects. In particular, it discusses the brittleness of the modules, the interfaces that 
these techniques offer, and their effect on modular certification. 

The next two sections discuss the portability of assurance data from single to multicore, and the 
emulation of hardware. These sections are closely related. The first section highlights the assurance 
data that can be affected by porting an application from single to multicore processors; the second 
section covers the use of emulation hardware to try to preserve the behavior of the original 
hardware. 

In the final section, conclusions and recommendations are presented. The section starts by 
presenting gaps in two main research areas: 1) missed opportunities in the modularity aspects to 
improve recertification, and 2) the challenges that multicore processors present to virtualization 
given that hardware shared across cores creates delays that break current isolation techniques. For 
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spatial virtualization, one of the key missed opportunities is the lack of verified hypervisor 
implementations that can support a verifiable isolation. As a result, our main recommendations 
are: 1) additional research on more modular isolation and verification techniques, and developing 
the corresponding standards; 2) additional research on solutions for the impact of multicore in 
virtualization technology; and 3) research on additional implementation-verification schemes to 
support verified isolation for full virtualization.
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1.  SURVEY OF LITERATURE RELATED TO VIRTUAL MACHINES 

This report surveys related work on virtual machines (VMs) with the most common 
implementations present today. It complements the assurance issues document that discusses at 
length the implications of using VMs for the assurance of avionics systems (see appendix B). 

This document starts by introducing the history of VMs dating back to the 1960s and defines the 
initial principles and goals. This is followed by reviewing the resurgence of VMs in the late 1990s, 
which continues today. The document then moves into a discussion of the products and systems 
that are available today with their main characteristics. The product discussion briefly highlights 
only the differences and points out the related concepts previously introduced. A more elaborate 
discussion will be presented in the assurance issues document. 

Section 4 covers technology related to virtualization. This section discusses other technologies that 
also have the same or similar goals as virtualization: namely, to create some form of partition by 
which applications can execute in an isolated manner. In particular, two forms of virtualization are 
discussed: 1) temporal virtualization in section 4.1, and 2) spatial virtualization in section 4.2. 
Under temporal virtualization, a brief introduction on background in rate-monotonic scheduling is 
given to discuss processing servers that have recently been integrated in VMs aimed at providing 
real-time guarantees. Similarly, variations of resource reservation that are being investigated for 
mixed-criticality scheduling are presented, followed by a brief discussion of more traditional forms 
of temporal partitioning (virtualization) based on time slots. 

Under spatial virtualization, section 4.2 discusses different variations of spatial protection that are 
traditionally implemented as variants of kernels. The discussion includes the traditional monolithic 
kernel, the microkernel, and two kernels that are more specialized: the security kernel and the 
separation kernel. All of this is put into the perspective of today’s VMs in section 4.2.5. This is 
followed by a brief discussion of technologies for development partitioning that, although not 
providing full virtualization, help the developer to isolate its work and the configuration of its 
system. This is discussed in section 4.3. 

To understand the impact on certification that VMs may have, there is a section on analytic 
technologies that covers temporal analysis and logical analysis. The overview of temporal analysis 
focuses on the technology related to analysis of systems that use VMs. Each of the works in this 
section involve modifications to the mechanisms to make the timing behavior predictable and 
analyzable. The overview of logical analysis starts with testing, then moves to exhaustive 
verification with techniques like model checking and theorem proving, and discusses the related 
tools. Finally, section 5 highlights some implications related to safety standards, in particular to 
DO-178B/C. 

2.  ASSURANCE ISSUES ON VIRTUAL MACHINES IN AVIONICS SYSTEMS 

Virtualization is an old concept originating in the early days of mainframe computing to hide the 
physical details of the hardware platform from applications. It has regained popularity recently 
with the advent of cloud computing, which essentially turned mainframe computing from a 
concept of physically centralized computing to virtualized computing. The original benefits 
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remain. New benefits include relief from the maintenance and operational responsibilities 
associated with owning and managing a data center. 

Advances in virtualization technology have led to the development of efficient hypervisors and 
minimal VMs. This has led to considering VMs as vehicles for deploying services that require 
different operating environments on a single platform managed by a hypervisor. This approach can 
enable security, interoperability, evolvability, and modifiability in many types of systems. 
However, their use in safety- and timing-critical environments, such as avionics systems, has not 
been fully studied. 

Virtualization provides both a computing platform that mimics specific hardware and operating 
system (OS) platforms and isolates applications operating within a VM from affecting the VM or 
any other application under the control of the VM. The question for safety- and timing-critical 
systems is whether the isolation is strong enough that applications executing within a VM have 
suitably predictable behavior. Specifically, VMs need to allow for making strong guarantees about 
applications’ timing and spatial access correctness. 

With this in mind, this report discusses the key concepts of the structure and function of VMs and 
virtualization technology, identifies the characteristics of VMs and virtualization that support and 
are inimical to achieving timing and access correctness, and exposes the benefits and challenges 
that VMs and virtualization pose for certifying systems. 

This report is organized as follows: Section 1 introduces VMs. Section 2 discusses the goals of 
VMs and the properties they exhibit in terms of isolation and partitioning with respect to different 
hardware resources. It goes particularly deep into how different innovations at different levels of 
hardware work together to improve throughput but may hinder worst-case response time (key for 
real-time systems). It then discusses the adaptations and analysis innovations that the real-time 
community has developed to make the hardware innovations predictable and allow it to build 
temporal isolation on top. Section 3 discusses the additional certification complexity that the use 
of VMs can incur, from both the logical and the timing correctness points of view. Section 4 
compares the isolation characteristics provided by VMs with other technologies to explain VMs’ 
advantages and limitations. The development process issues are discussed in section 5, 
highlighting how the partitioned development environment can help distribute development evenly 
across organizations. Section 6 then puts all the previous discussion within the context of 
certification standards. Section 7 presents conclusions. 

3.  EVALUATION OF VERIFICATION TECHNOLOGIES FOR VIRTUAL MACHINES 

In this report, we evaluate verification technologies for VMs. These technologies cover both timing 
and logical verification. This report complements the “Assurance Issues on VMs in Avionics 
Systems” report (appendix B). As such, it does not include technologies already included in that 
report, such as rate-monotonic scheduling, but instead focuses on technology not previously 
discussed. Because only a few of the current verification technologies have been tailored to VMs, 
we take a wider approach, discuss general techniques, and highlight adaptations or potential uses 
for VMs where appropriate. 
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This report is divided into sections: “Timing Verification” and “Logical Verification.” The timing 
verification section covers real-time calculus, timed automata-based analysis, and worst-case 
execution time (WCET) analysis. The WCET analysis subsection is further subdivided into 
measurement-based analysis and model-based analysis to present methods suited for different 
confidence levels, like the ones related to DO-178B/C Software Levels. 

The logical verification section starts with techniques that require more user involvement, such as 
testing and theorem proving, and moves into techniques that are fully automated, like model 
checking. A subsection of abstract interpretation is included in both the timing and logical 
verification sections, but the former is tailored to bound WCET, whereas the latter is tailored to 
verifying logical properties. 

For each of the techniques covered in this report, we discuss their benefits, limitations, and 
applicability using examples where deemed helpful. 

4.  COMPOSITIONAL VERIFICATION FOR VIRTUAL MACHINES 

Virtualization offers the possibility of isolating components and potentially verifying them 
independently from one another. Certification standards, like DO-178C, require such an isolation 
to allow the verification of an individual component without the need to recertify all components. 
However, the isolation among components offered by virtualization is not absolute, either because 
they need to interact with each other or because they share hardware resources. This means that 
users of these techniques for verification must be aware of the interactions across components. The 
research community calls this type of verification compositional verification. 

Compositional verification defines components whose behavior can both be affected by other 
components and affect other components only through an interface. With this definition, the 
verification process is decomposed into two parts. First, components are verified by taking into 
account their interactions with other components observable through the interface. Second, the 
whole system is verified as a collection of components connected through their interfaces, whose 
behavior is limited to what is observable through the interface. These interfaces are influenced by 
both the verification technology and the mechanisms that restrict the behavior, such as a VM and 
its hypervisor. 

In this report, we study the compositional technologies that support the use of different types of 
virtualization to enable independent component verification both from the timing and logical 
perspectives. Section 2 discusses virtualization interfaces from both the perspective of timing and 
functional correctness. Because timing is changed as a result of virtualization, we emphasize 
timing in our discussion. Section 3 presents mitigation strategies. Section 4 gives 
recommendations. 

5.  SINGLE-TO-MULTICORE PORTABILITY OF ASSURANCE DATA 

The use of multicore processors in avionics has received increasing interest. There are two reasons 
for this: 1) commercial availability and 2) performance. With respect to commercial availability, 
single-core chips are simply not available from many chip vendors; if buying processor chips from 
such a vendor, then a multicore chip is the only option. With respect to performance, multicore 
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processors offer advantages over single-core processors. These advantages include: 1) the potential 
for parallel execution of threads in multicore processors, and 2) lower power consumption and 
lower thermal dissipation, therefore reducing the need for advanced cooling and power generation. 
The potential for parallel execution is particularly helpful for software systems that are already 
multithreaded; this is typically the case for avionics. Reducing the needs for advanced cooling and 
power generation are important for application domains in which size, weight, and power 
requirements are important; this is also typically the case for avionics. 

This increasing interest in using multicore processors in avionics raises a question: How do we 
certify aircraft that use multicore processors? This report discusses this question—particularly, 
what can go wrong when porting software originally developed for a single-core processor now 
must execute on a multicore processor?
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APPENDIX A—SURVEY OF LITERATURE RELATED TO VIRTUAL MACHINES 

A.1  INTRODUCTION 

Virtualization is a broad term for software used to create, from one resource, software entities so 
that each software entity behaves like the resource. Different types of resources can be virtualized, 
such as processors, memory spaces, network interface cards, communications links, or entire 
networks. In this report, we focus mostly on virtualization of one or more processors. Virtualization 
offers the following benefits: 

• Lower hardware cost: Virtualization allows for creating multiple machines from one 
physical machine. 

• Support for multiple machines with slight differences: If many virtual machines (VMs) 
have many instructions in common, then they can execute natively, and only a small 
number (but different for each VM) of instructions needs to be simulated. 

• Support for legacy hardware: In some cases, software has been developed in the past for 
old hardware that is no longer commercially available. It may be, however, that new 
hardware supports most of the instructions from the old hardware, and therefore a virtual 
machine monitor (VMM)1 can be used running on the new hardware to create a VM of the 
old hardware. 

• Security2: If malware infects one operating system (OS), other OSs for other VMs are 
unaffected (assuming that the VMM is not affected). For example, if you want to download 
some code from the web or visit a website that you are suspicious of, then you can do so 
in a VM. If the VM gets infected, it does not affect other VMs. You just kill your VM, and 
the malware will have no lasting effect on your machine (assuming that it does not write 
to a durable medium). 

• Privacy: Because VMs have non-overlapping address spaces, it holds (under certain 
assumptions3) that execution within one VM cannot infer behavior of another VM. 

In the next section, we will discuss the history of VMs. 

A.2  HISTORY 

The history of VMs can be traced back to the 1960s. In this section, we focus on three seminal 
papers that capture the historic roots of this technology. 

  

                                                 
1  Also called a hypervisor. 

2  There is a known defect in some dynamic random-access memories (DRAM), known as row hammer. The defect allows a 
program to access one memory location and thereby modify other memory accesses. In this way, one VM could modify memory 
used by another VM or the VMM. See [A-1]. 

3  So-called timing attacks are possible. Specifically, VMs execute instructions that read from and write to memory; when they do 
so (for most processors), they attempt to read from or write to a so-called cache memory (a small, fast memory that stores 
frequently accessed data items). A memory access from VM A may bring its data into the cache so that it can access this memory 
address again. In the meantime, it may happen that VM B accesses a memory address in a way that evicts the data that VM A 
brought. Therefore, VM A can detect the existence of another VM; it can even infer that a memory access to a certain subset of 
memory addresses has been made.  
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A.2.1  POPEK AND GOLDBERG 

One of the most authoritative works on virtualization is the article by Popek and Goldberg [A-2]. This work aims 
to state conditions for virtualization, but it also provides a tutorial and a survey. It states, “a virtual machine is 
taken to be an efficient, isolated duplicate of the real machine.” Because the VM must be efficient, it 
follows that using one processor to simulate two or more processors will lead to a large slowdown, 
and therefore it is not virtualization. The authors point out that most of the instructions must be 
executed natively on the physical processor; for virtualization to take place, software is allowed to 
simulate only a few instructions. They state explicitly that: 

The second characteristic of a virtual machine monitor is efficiency. It demands that a 
statistically dominant subset of the virtual processor’s instructions be executed directly 
by the real processor, with no software intervention by the VMM. This statement rules 
out traditional emulators and complete software interpreters (simulators) from the virtual 
machine umbrella. 

The authors describe virtualization with the following concepts: 1) a VMM is a piece of software 
that provides an environment for programs that is essentially identical with the original machine, 
2) programs executing on this VM show at worst only minor decreases in speed, and 3) the VMM 
is in complete control of system resources. 

Popek and Goldberg [A-2] point out that a VM will be slower because: 1) the VMM requires time, 
and 2) other VMs consume system resources. Popek and Goldberg [A-2] provide us with the 
following definition of a VM: 

Definition: A virtual machine is the environment created by the virtual machine monitor. 

Later they provide another definition of a VM: 

Definition: Then functionally, the environment which any program sees when running 
under the control of a virtual machine monitor present is called a virtual machine. 

From this definition, the article by Popek and Goldberg [A-2] points out that: 

… a VMM as defined is not necessarily a time-sharing system, although it may be. 

Note that isolation is not mentioned as one of the three properties of a virtual machine. It 
is because it is implied; we state that it provides an environment for execution; it executes 
on the virtual machine as if it were on a real machine and this implies isolation. 

The focus of the work by Popek and Goldberg [A-2] was on so-called third-generation machines. 
This term is not used today, but it may be instructive to know what it means. First-generation 
machines used vacuum tubes; the second generation used transistors. Third-generation machines 
are characterized by the use of integrated circuits, and they have linear addressable memory. 
Examples are the IBM 360, Honeywell 6000, or DEC PDP-10. The fourth generation uses 
microprocessors, and the fifth generation provides artificial intelligence. Today, we have fourth-
generation computers, but the work by Popek and Goldberg [A-2] on third-generation computers 
is still relevant to our discussion. 
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Popek and Goldberg [A-2] assumed that processors have two modes of operation: 1) supervisor 
mode and 2) user mode. The former has access to all instructions of the machine, but the latter 
does not necessarily have that. The authors also assumed that the computer has a memory-
relocation register and that the instruction set consists of the usual operations: arithmetic, testing, 
branching, and moving data in memory. Computers today use multilevel paging and sometimes 
segmentation rather than relocation registers, but today’s paging mechanism can function in a 
similar way as relocation registers. The authors assume that the VMM consists of three modules: 
1) a dispatcher, 2) an allocator, and 3) an interpreter. The dispatcher “catches” traps. The allocator 
decides which memory addresses to allocate a VM. The interpreter executes so-called sensitive 
instructions (these are instructions that the hardware cannot execute directly). The authors specify 
how a sensitive instruction can be performed. The idea is that a machine can be modeled as having 
a state, and the instruction can be modeled as transitioning from one state to another. The authors 
state that we can describe a sensitive instruction with a set of pairs of states (from state, to state). 
The implementation of a sensitive instruction can be done with a table lookup. This method is not 
supposed to be used (because it is not efficient with respect to memory), but it is presented to show 
that sensitive instructions can be simulated. 

The article by Popek and Goldberg [A-2] points out that a VM differs from a real machine in only 
two ways: timing and resource control. Therefore, later parts of this document will describe 
methods for virtualization while satisfying timing requirements. 

The main result of Popek and Goldberg’s work [A-2] is a sufficient condition for virtualization on 
third-generation computers. The condition is that if each sensitive instruction is a privileged 
instruction, then virtualization is possible. This is a sufficient condition, but it is not necessary. 

Popek and Goldberg [A-2] end the paper by defining a “hybrid virtual machine.” This is a VM in 
which all virtual-supervisor mode instructions are interpreted. This results in lower efficiency 
(lower execution speed), but it has the advantage of allowing virtualization on architectures in 
which the Popek and Goldberg sufficient condition is false. 

A.2.2  BUZEN AND GAGLIARDI 

Buzen and Gagliardi [A-3] provide a tutorial and survey the evolution of VMs in the 1960s and 
1970s. They argue that one should build the system software as one small part that is assumed 
correct and another part that is everything else. They stress that a VM behaves as a real machine, 
but its timing may be different because 1) the VMM has overhead and 2) other VMs may be 
running concurrently. They also point out that the VMM does not perform instruction-by-
instruction interpretation of programs. They emphasize that reliability is an important aspect of 
VMs; an operating system can be tested in one VM, and if it crashes then it does not crash other 
VMs. They stress isolation as one goodness property. They mention that in virtualization, VMM 
intervention of input/output (I/O) devices can make it possible to create I/O devices that have no 
physical analog, such as a tape that behaves like a disk. Buzen and Gagliardi [A-3] defined a VM 
as: 

A basic machine interface which is not supported directly on a bare machine but is instead 
supported in a manner similar to an extended machine interface is known as a virtual 
machine. 
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This definition is similar to the definition by Popek and Goldberg [A-2], but it emphasizes the 
interface rather than the environment. 

Buzen and Gagliardi [A-3] discuss early VMs from the perspectives of 1) processor state mapping, 
2) memory mapping, and 3) I/O mapping. With respect to 1), they mention that the VMM has a 
virtual status indicator so that when the VM executes an instruction that reads the status indicator, 
it traps and the VMM reads the virtual status indicator in the VMM and returns the value. Writes 
to the virtual status indicator are handled analogously. With respect to 2), they mention that the 
VMM maps pages for processes running under VMs. They point out that for interrupt service 
routines, it is often the case that the address where instructions of interrupt service routines start 
must be stored at a fixed location in memory, and a VM should not be allowed to change that. 
Therefore, the VMM must set up the virtual-to-physical address translation of the VM. With 
respect to 3), they mention a situation in which a program executing on a VM initiates the 
execution of a channel program. This is implemented by the VMM copying this program to certain 
fixed addresses and then executing this program; after getting the result, it copies it back to the 
VM. It is noteworthy that Buzen and Gagliardi [A-3] point out that paging systems are not 
necessary for virtualization; they state that any memory relocation mechanism that can be made 
invisible for nonprivileged execution is enough. They stress (as did Popek and Goldberg [A-2]) 
that trapping of sensitive instructions is an absolute requirement for virtualization. 

Buzen and Gagliardi [A-3] mention that later generations of VMs ran on computers that supported 
paging. This made it possible to have recursive virtualization; that is, one VM can provide multiple 
VMs. Buzen and Gagliardi [A-3] point out that, in later systems that support paging, it may be 
necessary to perform address translation twice: from application processes’ virtual address to the 
perceived physical address of the operating system to the actual physical address. To perform this 
double mapping efficiently, the VMM computes a composed table. Buzen and Gagliardi [A-3] 
discuss Type-2 virtualization, in which a VM is created on top of a normal operating system. When 
a new VM is created, the VMM informs the underlying operating system that traps should be 
directed to the VMM. 

A.2.3  GOLDBERG 

Goldberg [A-4] presents two taxonomies about virtualization: Type-1 virtualization and Type-2 
virtualization. In the former, the VMM runs directly on the hardware. In the latter, the VMM runs 
on top of a privileged software nucleus. For the latter, when the VMM starts a new VM, M, the 
VMM needs to notify the privileged software nucleus that when a trap is generated from within 
M, it should not be dealt with by the privileged software nucleus; instead, it should be directed to 
the VMM. 

The term emulation is often used if the virtual machine is very different from the machine 
executing the VMM. 

Goldberg [A-4] does not define a simulator, but this term is typically used to mean the same thing 
as an emulator except that the system is not simulated with as high fidelity. The separation kernel 
is a related concept, but it focuses more on security and confidentiality (see sections 4.2.3 and 
4.2.4). 
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A.3  PRODUCTS AND SYSTEMS 

The concept of VMs dates back to the 1960s, but had a revival in the late 1990s and early 2000s 
because of the increasing use of data centers and data warehouses, particularly for server 
processing of Internet applications. In this era, software developers wanted to offer applications 
accessible through a web browser and run the applications on a web server. This could be achieved 
if the software developer ran his or her web server. However, many software developers preferred 
to outsource server administration to focus on developing more and better software functionalities. 
Therefore, a new breed of companies for hosted service emerged. These companies found VMs 
useful because they could run multiple VMs, each for different clients, on a single physical 
machine. This approach saved hardware costs and cooling costs and allowed migrating one VM to 
another VM in case of overload (or hardware failure) of one physical machine. 

From this era, two products are noteworthy: VMWare™ [A-5] and Xen™ [A-6]. They differ in 
how they deal with sensitive instructions. VMWare uses binary translation, and Xen uses para-
virtualization. These products are discussed in section A.3.1.  

A.3.1  VMWARE 

VMWare is a private corporation in Palo Alto, CA, that sells VMMs and related products. It was 
founded in 1998 and later acquired. It claims to be the first company to virtualize x86 processors, 
which are hard to virtualize. 

The cofounders of VMware wrote an article describing their first product VMware workstation 
[A-5]. This product was based on two ideas: 1) the VMM identifies basic blocks in a VM and 
detects whether, in a basic block, there is a sensitive instruction (if so, it calls a subroutine in the 
VMM); and 2) the product used software emulation of I/O devices. The former implies that it can 
run unmodified operating systems. The latter implies that all VMs experience the same hardware; 
this brings the benefit that if a VM named V is hosted by a real computer R1, then one can stop V 
and restart it on another computer, R2, even if R1 and R2 have different I/O devices. This facilitates 
load balancing. 

Today, VMWare offers a wide range of products: both Type-1 and Type-2 VMMs and products for 
both desktops and servers. Among the products from VMWare, ESX/ESX is perhaps the best 
known. 

A.3.2  XEN 

Xen was developed in Cambridge, UK, in the early 2000s. It was developed as an open-source 
VMM of Type 1 (i.e., the VMM executes directly on the processor), and it changed certain 
operating systems (Windows® XP, Linux® kernel, and NetBSD) to operate together with this 
VMM. The changes to these operating systems were made to improve performance; the authors of 
[A-6] mention that their VMM can support 100 VMs. This idea of modifying an operating system 
running in a VM so that it performs well when running under a VMM is called para-virtualization; 
it is an old idea that had a revival in the early 2000s. Xen was originally developed for the x86 
processor architecture, and its creators [A-6] list the difficulties in virtualizing x86. Some of the 
difficulties include the following: 1) Like most processors, some instructions are intended to be 
used only in privileged mode; 2) normally, such an instruction is executed in non-privileged mode, 
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then it generates a trap, but in x86 they fail silently; and 3) because these sensitive instructions fail 
silently, the VMM cannot intercept them. The paper [A-6] mentions that VMWare ESX can handle 
this, but at the expense of lower performance, and VMWare ESX modifies the code in the guest 
operating system if there are instructions that exhibit this silent failure4. 

The authors of the paper [A-6] refer to their VMM as a hypervisor because it executes at a higher 
privilege than the normal operating system in a VMM (which can be thought of as supervisor 
mode). Xen took the following design decisions:  

• Each guest operating system is responsible for memory management.  

• The VMM is copied in the address space of each VMM, which avoids flushing of the 
translation lookaside buffer (TLB). 

• Whenever the guest OS needs a new memory page, it allocates one from its own reservation 
and notifies the VMM. 

• On x86, there are four privilege levels. Applications run in privilege level 1, and the 
operating system runs in privilege level 4. However, with Xen, the operating system runs 
in privilege level 3, and Xen runs in privilege level 4; this ensures that Xen runs with a 
higher privilege level than respective guest operating systems. 

• When a processor invokes a system call (by generating a trap; i.e., software interrupt), then 
it yields control directly to its corresponding guest operating system (i.e., not to Xen). This 
is done because system calls are common, and it is important that they are performant. 

• When a process generates a page fault, then it transfers control to Xen, to privilege level 4; 
the reason for this is that a page fault handler needs to know the address that generated the 
page fault, and this information is only accessible in privilege level 4. 

• When a new VM is started, admission is performed, and this admission control is not 
executed in Xen; it is executed in a guest operating system (the reason for this is to keep 
the hypervisor small and to separate policy from mechanisms: mechanisms should be 
implemented in the Xen hypervisor, and policies should be implemented elsewhere). 

• A guest operating system can invoke services from Xen using a hypercall (similar to a 
system call), and Xen can notify a guest operating system using events (similar to UNIX 
signals). 

Xen refers to VMs as domains. There is one special domain called Domain0; it handles policy 
matters, I/O, and scheduling parameters. In the original version of Xen, central processing unit 
(CPU) scheduling of domains was done with the algorithm Borrowed-Virtual-Time (BVT) [A-7]. 
This algorithm works as follows: 

                                                 
4  Intel has introduced a new mode in its x86 processors to avoid this. 
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1. Each processor has an actual virtual time and an effectual virtual time. 
2. The process with the lowest effectual virtual time is selected. 
3. At each time quantum, the actual virtual time of a process is incremented by an amount 

that is equal to the elapsed time multiplied by the share proportion of the process. 
4. The effectual virtual time of a process is set to actual virtual time of the process, but the 

process can temporarily get a boost by getting this effectual virtual time decreased further.  

The BVT is claimed to be designed for low-latency applications, but there is no known 
schedulability analysis for it (i.e., there is no method for proving that processes meet real-time 
deadlines when this scheduler is used). Later versions of Xen added two new schedulers: simple 
Earliest-Deadline First (sEDF) [A-8] and credit scheduler [A-9]. The sEDF scheduler characterizes 
a process with three parameters (period, execution time, and a flag stating whether it can reclaim 
time) and schedules processes with Earliest-Deadline First (EDF). The credit scheduler operates 
with virtual timers that are updated in a similar manner as BVT. 

As mentioned, Xen was originally developed for x86, but today it supports many other 
architectures (ARM, PowerPC, MIPS). Recently, it has been claimed5 that it offers superior 
performance compared to other open-source hypervisors. 

With the popularity of virtualization, a large number of VMM products came out. Some are listed 
in sections A.3.4–A.3.7. 

A.3.3  HYPER-V™ 

Hyper-V [A-10, A-11] is a hypervisor developed by Microsoft®. It is a Type-1 hypervisor, and it 
is released as a component of Windows Server®. It supports VMs with Windows or VMs with the 
Linux kernel. Hyper-V runs on X86-64 processors and uses the VT-X x86 virtualization feature. 

A.3.4  KVM™ 

KVM [A-12] is open-source software that turns the Linux kernel into a hypervisor. It is a Type-1 
hypervisor. KVM can create VMs for a wide range of processors—x86, S/390, PowerPC, and IA-
64—and a wide range of guest operating systems—Linux, BSD, Solaris, Windows, and OS X. It 
supports para-virtualization for Ethernet cards and disk controllers. 

A.3.5  VIRTUALBOX™ 

VirtualBox [A-13] is a Type-2 hypervisor that is partially available as open source. A core package 
is open source, but support for certain I/O devices is proprietary software. VirtualBox can run on 
top of many of the common desktop operating systems, and it can create VMs with many of the 
common operating systems. 

                                                 
5  See “Ubuntu 15.10: KVM vs. Xen vs. VirtualBox Virtualization Performance,” 

http://www.phoronix.com/scan.php?page=article&item=ubuntu-1510-virt 
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Hypervisors have also been developed for real-time, safety-critical, and secure systems. Two are 
listed in sections A.3.6 and A.3.7. 

A.3.6  RT-XEN 

RT-Xen [A-14] is a project to add real-time scheduling algorithms to Xen. RT-Xen supports global 
Earliest-Deadline First and global fixed-priority preemptive scheduling. These are schedulers used 
within RT-Xen, not schedulers within guest operating systems. RT-Xen also supports four server-
based mechanisms (a polling server, periodic server, sporadic server, and deferred server); these 
are discussed in more detail in section 4.1.1.1. These mechanisms allow the attachment of a server 
period and server budget to a VM so that the VM will consume only a certain amount of processing 
power within a certain time window (how these time windows are generated depends on the 
specific server mechanism used). Today, parts of RT-Xen have been incorporated in the normal 
Xen hypervisor. 

A.3.7  XMHF 

XMHF [A-15] is a research prototype developed at Carnegie Mellon University. It is a hypervisor 
that supports a single VM. Its merit is that formal verification has been performed to prove memory 
integrity; that is, the hypervisor’s memory can be modified only by instructions that are an intended 
part of the hypervisor. 

A.4  RELATED TECHNOLOGY 

VMs have not been the only technology development that has pursued the goals of system 
partitioning, isolation, and protection. In this section, we discuss related technologies that share 
similar goals as VMs. 

A.4.1  TEMPORAL VIRTUALIZATION 

Temporal virtualization in VMs is traditionally achieved with a two-level scheduler assigning a 
time slice in a round-robin fashion to each VM and letting the scheduler inside the VM schedule 
its processes internally [A-6]. This approach is aimed at fairness, but it may cause problems in 
real-time settings because it ignores deadlines. Some versions of real-time double scheduling exist 
today [A-14, A-16]. 

In real-time systems, where meeting thread (or task) deadlines are important, temporal 
virtualization takes the form of temporal protection. More specifically, real-time tasks interact with 
physical processes in a continuous fashion (they execute forever) through some form of periodic 
interactions or reactions to physical events. The execution of each interaction/reaction is known as 
a job. The interval between job activations (also called arrivals) is known as period or minimum 
inter-arrival time. These jobs are required to finish their execution within a fixed time from its 
activation, known as a deadline. Real-time systems use real-time schedulers that determine when 
tasks execute and analysis to verify whether all tasks will always finish by their deadlines; that is, 
whether the task set is schedulable. Temporal protection in this context implies that a task’s 
misbehavior, such as executing longer than its specified worst-case execution time (WCET) or 
activating more frequently than its specified period, will not make other tasks miss their deadlines. 
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A.4.1.1  Reservations 

Resource reservation is a scheme to provide temporal guarantees and isolation of tasks that use 
time-shared resources. This applies not only to CPU time but also to other resources, such as 
network, memory bandwidth, cache, and disk bandwidth. 

Resource kernels [A-17, A-18] combine generalized rate-monotonic scheduling (RMS) theory  
[A-19] (that includes deadline monotonic scheduling, or DMS), and processing servers provide 
resource reservation and achieve temporal protection. Specifically, RMS relies on three elements. 
First, a scheduling mechanism known as fixed-priority scheduling ensures that the highest-priority 
task that is ready to execute is given the processor; if a higher-priority task becomes ready, it 
preempts6 the currently running task. Second, an offline priority assignment gives higher priority 
to tasks with smaller periods (or deadlines, if they are not at the end of the period). Third, analysis 
algorithms verify that tasks meet their deadlines. These three elements—classified here as 
mechanism, configuration, and analysis—guarantee that tasks meet their deadlines if their 
specified parameters (WCET and period) are not violated (e.g., because of misbehavior). 

For RMS, the mechanism is fixed-priority scheduling, the configuration is the assignment of higher 
priorities to tasks with shorter periods, and one of the analysis methods is the response-time test. 
The response-time test [A-20] uses the recurrence equation: 

 𝑅𝑅𝑖𝑖𝑘𝑘 = 𝐶𝐶𝑖𝑖 + ∑ �𝑅𝑅𝑖𝑖
𝑘𝑘−1

𝑇𝑇𝑗𝑗
� 𝐶𝐶𝑗𝑗𝑗𝑗<𝑖𝑖 , (A-1) 

where the N tasks (𝜏𝜏𝑖𝑖) of the system are indexed with indices 1 to N in increasing order of period 
(or deadline, if different) that matches the increasing order of priority in RMS and defined with 
the following parameters: period (𝑇𝑇𝑖𝑖), WCET (𝐶𝐶𝑖𝑖), and deadline (𝐷𝐷𝑖𝑖). The equation may need to 
be evaluated multiple times as it is defined in terms of the previous value of itself (i.e., 𝑅𝑅𝑖𝑖𝑘𝑘 is 
defined in terms of 𝑅𝑅𝑖𝑖𝑘𝑘−1). For instance, for two tasks 𝜏𝜏1 = (𝑇𝑇1 = 4,𝐷𝐷1 = 4,𝐶𝐶1 = 2), 𝜏𝜏2 =
(𝑇𝑇2 = 8,𝐷𝐷2 = 8,𝐶𝐶2 = 3), we can calculate 𝑅𝑅1 = 𝐶𝐶1 = 2, given there are no tasks with higher 
priority (smaller index) than 𝜏𝜏1. 𝑅𝑅2 can be calculated as 𝑅𝑅20 = 𝐶𝐶2 = 3,𝑅𝑅21 = (𝐶𝐶2 = 3) +
�𝑅𝑅2

0=3
𝑇𝑇1=4

� (𝐶𝐶1 = 2) = 5,𝑅𝑅22 = (𝐶𝐶2 = 3) + �𝑅𝑅2
1=5
𝑇𝑇1=4

� (𝐶𝐶1 = 2) = 7,𝑅𝑅23 = (𝐶𝐶2 = 3) + �𝑅𝑅2
2=7
𝑇𝑇1=4

� (𝐶𝐶1 =
2) = 7. In this case, multiple repetitions were necessary to make the equation converge in step 3 
(𝑅𝑅22 = 𝑅𝑅23). Given that in both cases the response time is smaller than the deadlines  
((𝑅𝑅1 = 2) ≤ (𝐷𝐷1 = 4) and (𝑅𝑅2 = 7) ≤ (𝐷𝐷3 = 8)), the tasks are schedulable. 

It is worth noting that RMS analysis does not require that the tasks activate at the same time or in 
any particular sequence of time offset between them (such as in phasing). This means that tasks 
can be added or removed while other tasks are running if the offline analysis deems the modified 
task set schedulable with the new priority configuration (priority assignment) without making the 
old tasks miss their deadlines. This assumes that there is enough idle CPU cycles to reassign 
priorities. 

                                                 
6  When a task x is preempted by a task y, the execution of x is paused until task y finishes. Then the execution of task x is resumed. 
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To understand why RMS is not sensitive to activation phases between tasks, it is useful to compare 
figures A-1 and A-2. 

 

Figure A-1. Worst-case phasing of two tasks (both tasks start at zero) 

Figure A-1 shows a Gantt chart of two tasks. The colored boxes represent the time tasks take to 
execute on the processor. In this case, both tasks are ready to execute at time 0, and the fixed-
priority scheduler chooses Task 1, which has a higher priority (assigned according to RMS). We 
can see that after Task 1 completes at time 41, Task 2 starts and finishes its WCET (59) at time 
100, just in time for the second arrival of Task 1 (after its period of 100 elapses). Task 1 finishes 
at time 141 just in time for the second arrival of Task 2 (after its period of 141 elapses). It is worth 
noting that the pattern exhibits execution of the tasks one after another without leaving any idle 
time in the processor. This means that it is not possible for any of the tasks to execute for longer 
periods or to add any other task. This was proven [A-21] to be the worst-case situation for any set 
of two tasks for any period and any WCET. Moreover, it is possible to observe that the ratio of the 
period of Task 2 to Task 1 is roughly equal to the square root of 2: 141

100
≅ 2

1
2. The sum of the 

utilizations (utilization = 𝑊𝑊𝑊𝑊𝑊𝑊𝑇𝑇
𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑃𝑃𝑃𝑃

) is roughly equal to the square root of 2 minus 1 multiplied by 2: 
59
141

+ 41
100

≅ 82
100

≅ 2 �141
100

− 1� (in the proof they are equal). This calculation gives a bound that 

can be used to perform a fast test on any task set of two tasks: 2(2
1
2 − 1). For instance, we can test 

whether the two tasks in figure A-1 are schedulable by evaluating 41
100

+ 59
141

≤ 2 �2
1
2 − 1�. This 

bound was generalized to task sets of any size N: 𝑁𝑁(2
1
𝑁𝑁 − 1). 

To complete the discussion on phasing, figure A-2 shows the same two tasks but with Task 1 
starting at time 0 and Task 2 at time 41. In this case, the idle time from 141 to 182 (and a 
preemption of Task 2 by Task 1 from 200 to 241) is shown. This means that, if we consider the 
worst-case phasing, processing time may be wasted, but there is a gain in simplicity of evaluation 
and flexibility to start the tasks at any time. That is, to take advantage of this idle time, it is 
necessary to force the phasing shown in figure A-2. 
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Figure A-2. Another phasing (Task 1 starts at 0 and Task 2 at 41) 

A.4.1.1.1  Servers 

Software defects can lead to timing misbehavior in a task by causing it to execute beyond its 
WCET or more often than anticipated. Mechanisms known as servers [A-22–A-25] were 
developed to prevent this misbehavior from affecting the timing guarantees of other tasks. Whereas 
these mechanisms are known as servers in the real-time literature, the term processing servers will 
be used in this report to avoid conflicts with other type of servers (e.g., web, database) and just 
servers when the context is clear. When processing servers are used, tasks are assigned to servers, 
and the scheduler runs the tasks assigned to the server based on the server parameters. Each server 
has a budget and a replenishment interval or period. With these parameters, the server behaves as 
a periodic task with its deadline at the end of its period (with the budget as the WCET and the 
replenishment interval as the period), allowing the use of RMS analysis to verify the schedulability 
of a set of servers. This is the behavior of the periodic server [A-25]. In this case, as a task assigned 
to a server executes, it decrements the budget. If the budget reaches zero, the task is paused. The 
budget is replenished after the replenishment interval has elapsed, and the paused task (if any) 
resumes executing.  

Servers have priorities and the same priority scheduling applies as in tasks in RMS. Tasks assigned 
to a server execute with the server’s priority. When only one task is assigned to each periodic 
server, the server replenishment interval can be synchronized with the task’s periodic activation, 
and the server budget is equal to the WCET of the task. The server guarantees the following 
properties: 1) it allows the task to execute for its WCET, but 2) prevents it from executing beyond; 
3) it allows two activations of the task to be as close as one replenishment interval apart but 4) 
prevents shorter intervals. Properties 1 and 3, combined with a successful scheduling analysis of 
the servers, guarantee the schedulability of the tasks. Properties 2 and 4 ensure that any 
misbehavior of the task is prevented from affecting the schedulability of other tasks. Given that 
servers are not required to have synchronized activations, servers can be added or removed without 
inducing deadline misses just as with the scheduling of tasks. 

When servers are used with multiple tasks, more complex schedulability analysis is required 
whether or not the tasks’ WCET and periods are synchronized with the servers’ budgets and 
periods. To understand this, how the server budget is consumed should first be discussed. 
Specifically, for the periodic server to behave as a periodic task, it needs to start consuming its 
budget as soon as it is activated if it has the highest priority among the active servers. This is an 
assumption of the RMS analysis. This means that if the task is running (highest-priority ready 
server), the budget must be decremented as time passes, even if no task is executing. This creates 
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“blackout” intervals for tasks if a task arrives just after the server’s budget was exhausted (taking 
into account the worst-case response time calculation), and the blackout will last until after the 
next replenishment and all higher-priority servers execute. These unsynchronized effects also 
apply when multiple tasks are run on a single server. New scheduling algorithms have been created 
to take this into account [A-26]. Motivated by the drawbacks of the unsynchronized periodic 
server, three other variants of servers were created: the deferrable server, the sporadic server, and 
the polling server. The deferrable server [A-22] decrements the budget only when a task is 
executing. Whereas this prevents blackouts, the server does not behave as a periodic task anymore 
because it creates a back-to-back preemption for lower-criticality servers. That is, a task running 
on a high-priority server can execute at the end of the replenishment interval, exhausting the budget 
at exactly the same time the next replenishment is due. Then, because the budget is replenished at 
that time, the same task can continue executing. This means that lower-priority tasks will 
experience a preemption equivalent to two back-to-back WCET within an interval equal to the 
period, breaking the original assumption of periodic tasks (i.e., there is only one WCET within a 
period). A modified schedulability analysis has been created to take this into account [A-22]. 

To correct back-to-back execution, the sporadic server was created [A-24]. In this case, the budget 
is again consumed only when a task executes, but the replenishment is modified. Specifically, the 
portion of the budget consumed by the execution of a task is replenished only after an interval 
equal to the server period has elapsed from the start of executing such a task. This way, if the task 
consumes the budget at the end of the replenishment interval (as in the back-to-back case of the 
deferrable server), the replenishment does not happen immediately when the budget is exhausted 
(as in the deferrable server) but instead one full server period after the task started executing. This 
mechanism recovers the behavior of the periodic task but makes the replenishment mechanism 
more complex. To reduce this complexity, the polling server was created [A-27]. The polling 
server periodically checks whether a task is ready to execute and, if so, it executes the task with 
its budget. In this case, it also creates a blackout, but it is tailored to simplify the mechanisms. 

Resource kernels [A-17, A-18] generalized processing servers into what is called resource 
reservations. A resource reservation is a reservation to use a resource. When the resource is CPU 
cycles, it maps directly to processing servers, and the reservation is described in terms of CPU 
time budgets with some periodicity, deadline, and other parameters. Resource reservations are 
implemented in resource kernels as an operating system object with a handler in the same fashion 
as a file and its file handler. A reservation handler is “attached” to a process ID for that process to 
run within the “processing server” implemented by the reservation. This means that the execution 
of the process is restricted to consume only the CPU assigned to the reservation and, therefore, the 
same scheduling analysis that we have discussed for processing servers can be applied. 

Multiple processes can be attached to a reservation, and all the processes attached to a reservation 
will share the budget allocated to this reservation. At the same time, the temporal protection offered 
by the reservation prevents processes running in one reservation from interfering with the 
processes running in another reservation. It is worth noting that when a reservation is created, the 
resource kernel runs an internal schedulability test to verify that it is possible to execute the 
reservation within the requested parameters (budget, period). This test is called an admission test, 
ensuring that any new reservation is guaranteed by the timing analysis theory. Reservations can be 
created at runtime if the timing analysis theory does not require the reservations to be 
synchronized. This simplifies updates because parts of the system that need to be added or removed 
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on the fly can be without disturbing the other parts of the system. This can be ensured by letting 
the admission test run in the idle time left by the running reservations (i.e., running this code at a 
lower priority than the reservations). 

Resource reservations go beyond CPU cycles. In particular, they allow the reservation of other 
resources, such as network [A-28], disk [A-29], cache [A-30], and even RAM memory [A-31]. 
Both cache and RAM memory are critical resources that must be properly managed in multicore 
processors. This is because a task running in one core can delay the execution of another task 
running in a different core due to access to the common cache, RAM memory, or both. This 
approach has shown increases of up to six times when compared to a task running alone in legacy 
applications and more than14 times for synthetic cases [A-31]. 

The protection of resource kernels is based on ensuring that task deadlines are always respected 
without over-constraining the execution to specific time slots. Multiple issues must be addressed 
when tasks interact with each other, such as when they use mutexes or semaphores to synchronize. 
The reserve inheritance is one of these solutions [A-32]. When multiple resources are used 
together, such as when the disk scheduler needs CPU time to process a disk request, it is necessary 
to verify the combined requirements [A-29]. 

A.4.1.2  Mixed-Criticality Isolation 

Temporal isolation typically implies protecting a task from delays imposed by other tasks to 
prevent a deadline miss. This isolation is identified as a symmetric protection, given that protecting 
Task A from Task B also implies protecting Task B from Task A. However, certification 
documents assign different criticalities to different tasks. This implies that it is necessary to verify 
that the probability of failure of a high-criticality task should be smaller than those of lower 
criticality, and the corresponding verification should be imposed. In real-time scheduling, all the 
scheduling algorithms are proven mathematically, assuming that a task cannot execute more than 
its stated WCET. Because the WCET is very difficult to calculate, it is a common engineering 
practice to obtain it through conservative experimental measurements. If variations from the 
external environment can be isolated, it is possible to use abstract interpretation [A-33] to obtain 
a better bound. In the end, a probability of not exceeding the WCET can be calculated, and different 
methods (and their probabilities) can be applied to tasks with different criticalities.  

This has given rise to a new scheduling approach in which tasks with different criticalities are 
assigned different execution times. The schedulability of tasks is then verified at their assigned 
level of criticality, assuming that their WCET and the tasks that can delay them are bound by the 
WCET at this criticality level [A-34]. This way, an asymmetric temporal protection is achieved 
(i.e., a high-criticality task is protected, assuming that only tasks with criticality levels the same or 
higher can interfere with it). This applies to each criticality level; when the schedulability of a 
lower-criticality level (e.g., Level 1) is verified, it is assumed that higher-criticality tasks (Level > 
1) execute for the WCET calculated at Criticality Level 1. 

A number of scheduling approaches have been developed [A-35, A-36]. Zero-slack rate-
monotonic (ZSRM) scheduling is one of these approaches [A-37]. ZSRM scheduling is based on 
RMS but adds a mechanism that suspends low-criticality tasks at what is called a zero-slack instant 
calculated offline. This zero-slack instant 𝑍𝑍𝑖𝑖 divides the execution of a task 𝜏𝜏𝑖𝑖 into parts or modes: 
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the normal mode and the critical mode. During the normal mode, all tasks run; in the critical mode, 
only tasks that have higher or equal criticality than 𝜏𝜏𝑖𝑖 execute. ZSRM scheduling uses the response 
time equation A-1 to calculate the zero-slack instant and to verify the schedulability of the tasks. 
However, tasks that interfere with task 𝜏𝜏𝑖𝑖 in equation A-1 also must include all lower-priority but 
higher-criticality tasks 𝜏𝜏𝑗𝑗, given that 𝜏𝜏𝑗𝑗 may enter its critical mode and suspend 𝜏𝜏𝑖𝑖. In this case, we 
need to take into account only the portion of 𝜏𝜏𝑗𝑗 that runs in critical mode. In ZSRM scheduling, 
tasks can be classified in any number of criticalities but only have two WCET parameters, known 
as nominal execution time (𝐶𝐶𝑖𝑖) and overloaded execution time (𝐶𝐶𝑖𝑖𝑃𝑃), in addition to period (𝑃𝑃𝑖𝑖), 
deadline (𝐷𝐷𝑖𝑖), and criticality (𝜁𝜁𝑖𝑖).  

To illustrate how ZSRM scheduling works, consider the following two tasks: 𝜏𝜏1 =
(𝑃𝑃1 = 𝐷𝐷1 = 4,𝐶𝐶1 = 𝐶𝐶1𝑃𝑃 = 2, 𝜁𝜁1 = 1) and  𝜏𝜏2 = (𝑃𝑃2 = 𝐷𝐷2 = 8,𝐶𝐶2 = 2.5,𝐶𝐶2𝑃𝑃 = 5, 𝜁𝜁2 = 2) with 
zero-slack instants 𝑍𝑍1 = 4,𝑍𝑍2 = 5. 7 The response-time test of 𝜏𝜏2 can then be divided in nominal 
mode 𝑅𝑅2𝑛𝑛 (before 𝑍𝑍2 = 5) and the critical mode 𝑅𝑅2𝑐𝑐 (after 𝑍𝑍2) with the execution time split into 
nominal execution time (𝐶𝐶2𝑛𝑛 = 2) and critical execution time (𝐶𝐶2𝑐𝑐 = 3) adding to its overloaded 
execution time (𝐶𝐶2𝑃𝑃 = 5). This is calculated as: 𝑅𝑅2

𝑛𝑛(0) = (𝐶𝐶2𝑛𝑛 = 2),𝑅𝑅2
𝑛𝑛(1) = (𝐶𝐶2𝑛𝑛 = 2) +

�𝑅𝑅2
𝑛𝑛(0)=2
𝑇𝑇1=4

� (𝐶𝐶1𝑃𝑃 = 2) = 4,𝑅𝑅2
𝑛𝑛(2) = (𝐶𝐶2𝑛𝑛 = 2) + �𝑅𝑅2

𝑛𝑛(1)=4
𝑇𝑇1=4

� (𝐶𝐶1𝑃𝑃 = 2) = 4 and 𝑅𝑅2
𝑐𝑐(0) = (𝐶𝐶2𝑐𝑐 =

3),𝑅𝑅2
𝑛𝑛(1) = (𝐶𝐶2𝑐𝑐 = 3) + min�𝑍𝑍2 = 5, �𝑅𝑅2

𝑐𝑐(0)=3
𝑇𝑇1=4

� (𝐶𝐶1𝑃𝑃 = 2)� = 8, 𝑅𝑅2
𝑛𝑛(2) = (𝐶𝐶2𝑐𝑐 = 3) + min�𝑍𝑍2 =

5, �𝑅𝑅2
𝑐𝑐(1)=8
𝑇𝑇1=4

� (𝐶𝐶1𝑃𝑃 = 2)� = 8. In this case, equation A-1 was modified to include the min function that 

captures the fact that after 𝑍𝑍2, 𝜏𝜏1 is suspended and does not add to the response time of task 𝜏𝜏1. By 
design 𝑍𝑍2 is calculated to make 𝜏𝜏2 finish at its deadline. Now, because there are no tasks with 
lower criticality than 𝜏𝜏1, its zero-slack instant is set to its deadline: 𝑍𝑍1 = 𝐷𝐷1 = 4. This means that 
it never executes in critical mode. However, when calculating its response time, it needs to be 
taken into account that the fraction of 𝜏𝜏2 runs in critical mode because, during that execution, 𝜏𝜏1is 
suspended. In addition, only the WCET from 𝜏𝜏2 at the criticality level of 𝜏𝜏1 is considered. In 
ZSRM, this is the nominal execution time (𝐶𝐶2 = 2.5), which applies to any criticality level lower 
than 𝜁𝜁2. Furthermore, the execution time that 𝜏𝜏2 was able to complete in its nominal mode before 
𝑍𝑍2 (𝐶𝐶2𝑛𝑛 = 2) can be discounted; that is, only (𝐶𝐶2 = 2.5) − (𝐶𝐶2𝑛𝑛 = 2) = 0.5 units of execution are 
considered. As a result, 𝑅𝑅1𝑛𝑛 can be calculated as 𝑅𝑅1

𝑛𝑛(0) = (𝐶𝐶1𝑃𝑃 = 2),𝑅𝑅1
𝑛𝑛(1) = (𝐶𝐶1𝑃𝑃 = 2) +

�𝑅𝑅1
𝑐𝑐(0)=2
𝑇𝑇2=8

� (𝐶𝐶2 − 𝐶𝐶2𝑛𝑛 = 0.5) = 2.5,𝑅𝑅1
𝑛𝑛(2) = (𝐶𝐶1𝑃𝑃 = 2) + �𝑅𝑅1

𝑐𝑐(1)=2.5
𝑇𝑇2=8

� (𝐶𝐶2 − 𝐶𝐶2𝑛𝑛 = 0.5) = 2.5. 

It is worth noting that, because only the nominal execution time of tasks with higher criticality 
than 𝜏𝜏𝑖𝑖 are considered to calculate its response time, ZSRM scheduling guarantees 𝜏𝜏𝑖𝑖’s 
schedulability only if no task 𝜏𝜏𝑗𝑗 with higher criticality than 𝜏𝜏𝑖𝑖 exceeds its nominal execution time 
𝐶𝐶𝑗𝑗. 

ZSRM scheduling has been extended for multiprocessors [A-38], multimodal systems [A-39], 
utility-based systems [A-40], and tasks that synchronize with mutexes [A-41]. 

                                                 
7  See [A-16] for the calculation of the zero-slack instant. 
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A.4.1.3  Time-Triggered Architecture 

Time-triggered architecture (TTA) [A-42, A-43] is a design methodology and supporting 
mechanism that allows the building of a distributed real-time system based on a globally 
synchronized clock completely activated (triggered) by a time-triggered bus. This synchronization 
allows some time-fault detection and recovery mechanisms based on the absence of messages 
expected to occur at specific times and the presence of unexpected messages at specific times. 
TTA is implemented with a bus guardian mechanism that follows a strict schedule of message 
receptions and transmissions that are specified at design time. The time of the bus is the global 
time to which all nodes are synchronized. The guardian prevents message transmissions or 
receptions that are not part of the schedule (of each application). This feature is what implements 
the temporal virtualization and protection. Given that perfect synchronization is not possible, a 
time granularity is selected according to the capability of the hardware implementation. For 
instance, in the implementation discussed in [A-42], this granularity is 60 ns. 

To build a system with TTA, it is necessary for each node to specify its schedule of communication 
(transmission and reception) that satisfies the requirements from the applications, such as 
periodicity, deadlines, and execution times. The node schedules are then integrated into the global 
bus schedule to ensure that all the nodes’ timing constraints are honored. The final schedule is 
typically computed with constraint-solving approaches like mixed-integer linear programming or 
satisfiability modulo theories (SMTs) [A-44]. Such methods often take a long time. Furthermore, 
modifications to the applications frequently require a global recomputation of the task schedule 
and the bus schedule, making this method very sensitive to changes. 

TTA has a number of derived technologies, mostly related to networks. Among them we can find 
the time-triggered Ethernet [A-45], the time-triggered controller area network [A-46], and—to an 
extent—FlexRay [A-47]. 

A.4.1.4  Integrated Modular Avionics 

Integrated modular avionics (IMA) [A-48] is a reference architecture developed to allow the 
incremental acceptance of modules integrated into an avionics system. It uses partitions that are 
isolated in time and space. Partitions are typically implemented by dividing a global time frame 
(known as a major frame) into a sequence of time slots for the execution of a number of 
applications in a processor. These time slots are then grouped into (usually interleaved) 
subsequences that are called partitions and assigned to different applications. A runtime 
mechanism is in charge of executing these applications according to the time slot in their partitions 
(switching from one to the other). The major frame is repeated continuously, defining the 
continuous time sharing of the processor. 

As with time-triggered approaches, the use of a timeline to schedule tasks imposes important 
restrictions to both the verification of the timing behavior (meeting deadlines) and the flexibility 
to modify partitions. More specifically, it has been proven that finding the optimal schedule for 
periodic tasks when they need to be executed strictly periodically is an NP-complete problem in 
the strong sense [A-49], except for special cases in which the periods and execution times are 
divisible. As a result, finding the schedule in these cases requires constraint-solving approaches or 
suboptimal heuristics, such as in [A-50]. 
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One of the best-known standards that implement IMA is ARINC 653 [A-51]. This standard allows 
the use of fixed-priority scheduling within a time slot. This means that multiple threads from the 
same application can use a time slot, and they will be scheduled according to their priority. Using 
fixed-priority scheduling within a partition increases the complexity of verifying the schedulability 
of tasks because of hierarchical scheduling decisions (i.e., when a partition starts and when a task 
is allowed to run in a partition). Instead, hierarchical scheduling approaches can be used. An 
additional challenge is the inevitable modification of tasks within a partition, which necessitates 
more complex schemes to figure out what kind of changes (e.g., to periods, deadlines, or execution 
times) can be tolerated. Some approaches, like [A-52], investigate this issue by using linear 
programming to explore potential variations. 

It is worth highlighting that techniques based on processing servers do not exhibit the restrictions 
of the strict periodic execution of timeline-based scheduling. It is enough to run a test, like the 
response-time test in equation A-1, to verify the schedulability, and the processing server can be 
started at any time. 

A.4.2  SPATIAL VIRTUALIZATION 

In this section, virtualization techniques are examined from a logical/spatial perspective. In some 
sense, a primitive form of logical virtualization exists even in commodity operating systems. The 
concept of a process is meant to provide an abstraction so that a specific computation can use a 
shared resource (CPU, memory, file system, devices) while being logically isolated. In this setting, 
the operating system kernel acts as the VMM. Of course, this isolation is weak in traditional 
operating systems. Processes have visibility across each other. Moreover, a runaway process can 
take down the entire OS, including other active processes within it. Over the years, different types 
of OS kernels have been proposed and implemented. They are briefly surveyed next. 

A.4.2.1  Monolithic Kernel 

A monolithic kernel implements all the functionalities of a full-fledged OS. This includes memory 
management, device drivers, file systems, network stacks, threads and processes, and inter-process 
communication. Such a kernel has high performance because of fewer switches between 
components of different privilege levels. However, the kernel can be hard to maintain and modify 
because many complex pieces are tightly interconnected. Kernels are also harder to verify because 
of their complexity. Nevertheless, the vast majority of successful operating systems today, 
including Windows and Linux, are based on monolithic kernels. 

A.4.2.2  Microkernel 

A microkernel is a minimalist approach to develop an OS kernel. The microkernel provides only 
fundamental, low-level functionalities, such as managing memory and address spaces, thread 
management, and inter-thread communication. All other functionality—such as device drivers, 
network protocols, and file systems—are delegated to user-space modules. Microkernels trade off 
toward modularity and modifiability at the cost of performance. Few microkernels are actively 
developed today, and none has been commercially successful or widely adopted. This is 
unfortunate, because by isolating functionalities in well-defined modules, microkernels also make 
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verification more tractable. For example, the security of the L4 microkernel has been verified 
formally [A-53]. 

Hypervisors have much in common with microkernels. However, hypervisors are focused on 
supporting VMs and do not have minimality as a first-class goal. There are two main types of 
hypervisors: 1) native or bare metal, which run directly on the hardware, with each guest operating 
system running as a process on the hypervisor, and 2) hosted, which run on a full-fledged OS and 
abstract the guest OS from the host. In some cases, the distinction is not clear. For example, KVM 
is a Linux kernel module that effectively converts the host Linux OS into a bare-metal hypervisor. 
However, the host can have other processes running and competing for resources with the guest. 

A.4.2.3  Security Kernel 

A security kernel is an OS kernel (or component thereof) in which all security-relevant 
functionality is isolated. The idea is that if we can assure the security kernel, then all other 
components of the system become irrelevant from a security perspective. Traditionally, monolithic 
security kernels always have trusted processes that must themselves violate the security policy to 
implement it. An example is a printer spooler that must be able to read spools of different levels of 
classification. This means that to ensure security, these trusted processes must be verified as well, 
which can be difficult because they lie outside the kernel and are often unknown during the 
verification phase. It is noteworthy that a security kernel is a mechanism for isolating security-
relevant functionality only from other functionalities, whereas a VM isolates an entire OS from 
other OSs executing on the same hardware. 

A.4.2.4  Separation Kernel 

To overcome the challenge posed by security kernels, Rushby [A-54] proposed the concept of a 
separation kernel, which is a security kernel implemented as a distributed system. The idea is that 
by decomposing the security kernel into smaller pieces, some of which implement the functionality 
of trusted processes, verification becomes more manageable. However, the entire separation kernel 
can still run on a single processor. The separation kernel is essentially a component that ensures 
that the security-critical components are separated from each other in a way so that they believe 
each is running on a separate processor in a distributed system. This must be achieved from both 
logical and timing perspectives, although Rushby’s original paper was concerned mainly with the 
logical aspect. A separation kernel is a mechanism for isolating security-relevant functionality only 
from other functionalities, whereas a VM isolates an entire OS from other OSs executing on the 
same hardware. A separation kernel is one of the separation mechanisms that can be used to 
implement the Multiple Independent Levels of Security/Safety (MILS) architecture. In addition to 
a separation kernel, a MILS architecture implementation may also use a partitioning 
communication system and physical separation. MILS is, therefore, a more general concept. 

A.4.2.5  Virtual Machines 

In the early days of virtualization, there were hardware mechanisms such as relocation registers 
and segments for partitioning memory into logically isolated fragments. However, these have 
given way to page tables, which are the de facto memory fragmentation mechanisms for modern 
hardware platforms. Most modern VMs implement spatial partitioning through nested virtual 
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pages [A-55], allowing the guest OS to also manipulate the page tables of its own processes. This 
represents the most advanced form of spatial partitioning in virtualized systems. Originally, nested 
page tables were implemented in software and incurred a performance penalty, despite 
optimizations, such as delayed loading. However, many modern processors [A-56] have started to 
support nested page tables natively, so they can lower virtualization performance cost 
significantly.  

A.4.3  DEVELOPMENT PARTITIONING/ISOLATION 

New lightweight isolation mechanisms called containers allow developers to experience an 
isolated development environment. These containers also allow developers to configure the 
deployment of their applications (including databases and web servers) in an isolated manner. 
Once the application is configured within a container, this container can be moved to different 
hosts. Because different containers share the host OS and kernel, this scheme offers isolation in 
terms of space, but temporal isolation is limited. Such an isolation is enough for IT systems, but 
no efforts exist for real-time systems.  

Examples of container technologies include Docker [A-57], Linux Containers [A-58], and 
OpenVZ [A-59]. OpenVZ is the basis for VMs in a hypervisor called Virtuozzo [A-60] that offers 
full virtualization of the OS to increase protection against errors in the kernel. 

Container technology offers even less protection than regular VMs. It is unlikely they can be used 
alone to simplify the certification process. 

A.4.4  ANALYTIC TECHNOLOGY 

A.4.4.1  Temporal Analysis 

The real-time systems research domain is a scientific area studying timing of computer systems. It 
is common to describe a system as having a set of jobs in which each job arrives at a certain time 
and needs to finish a certain computation within a certain time after its arrival. Typical questions 
studied in real-time systems include:  

• What is the maximum time that a program can take to finish if it executes in isolation? 
• What is the maximum time that a piece of code can take to finish if it executes in isolation? 
• How can programs share computer resources (processors, memory) so that jobs meet 

deadlines? 
• Given descriptions of a software system and its hardware and methods for sharing, how 

does the outside environment trigger job arrivals in the system, and the deadlines of jobs? 
How can it be proven that all deadlines are met under all scenarios considered possible?  

The first two questions are typically called WCET analysis. The third question is typically called 
real-time scheduling. The fourth question is typically called schedulability analysis. 

In this section, these questions will not be discussed in general; instead, it will focus on known 
results specifically for VMs. For this scope, only a few results are known. 
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Park et al. [A-61] considered real-time systems in the automotive domain and studied the problem 
of allocating resources (e.g., putting two pieces of code into one thread or putting two message 
transfers into a single message frame and assigning software to processors) so that deadlines are 
met. Their paper mentions the concept of the virtual execution platform, but it is not a VM. It is a 
concept used by software developers to analyze software running on hardware that is not yet built. 
Therefore, this paper is not relevant for the purpose of this survey, but it is mentioned because of 
the similarity of the concepts it presents. 

Hyoseung Kim et al. [A-62] considered a system with a multi-core virtualization environment and 
multiple VMs. For each VM, there is one or multiple virtual CPUs, and each virtual CPU is mapped 
to some physical CPU. When software shares non-CPU resources (e.g., data structures or I/O 
devices), there are certain known situations in which a thread can experience a very long (and 
counterintuitively long) delay; this is known as priority inversion. There are known methods for 
countering this. Kim et al. take one of these methods and apply it on the VM setting mentioned. 

Considering the same setting mentioned above, Kim et al. [A-63] also observed that many real-
time systems are interrupt-driven; that is, a thread wakes up because of an event (e.g., a message 
is received on the computer network). Interrupt storms are problematic; this refers to situations in 
which a very large number of interrupts are received, and they consume processing resources. 
Therefore, Kim et al. present a solution that avoids interrupt storms. 

Kim and Segall [A-38] do not claim to explicitly study VMs; they study binary-to-binary 
translation techniques that maintain timing equivalence. One could imagine this being useful for 
the following setting: a software developer used to execute software S on hardware H1, but many 
years later, hardware H1 is no longer commercially available. The software developer now wants 
to execute software S and maintain the same timing, but on a new hardware H2. The developer 
might employ a VMM that uses binary translation, using the result of Kim and Segall [A-38]. 

Lee et al. [A-64] considered the Xen VMM and a set of real-time tasks in VMs using the so-called 
periodic server (see section 4.1.1.1) to analyze the timing of the real-time tasks. The work is related 
to the CARTS [A-65] toolkit. 

Danish et al. [A-66] presented a new operating system, named Quest, which is not labeled as a 
VMM but it is labeled as a separation kernel (see section 4.2.4). Quest offers virtual CPUs with 
server mechanisms. 

Pajic and Mangharam [A-67] introduced the concept of embedded virtual machines (EVMs). They 
consider a distributed computer system, specifically a wireless sensor and actuator network. The 
authors point out that wireless connectivity changes, and it is desirable to have software continuing 
delivery services. Therefore, the authors introduce the EVM, which allows code migration for the 
setting just mentioned. 

Kaldewey et al. [A-68] presented a method to virtualize a disk. This allows the creation of two 
virtual disks from one physical disk and assigns bandwidth for each virtual disk. 

Bruns et al. [A-69] evaluated the L4/Fiasco microkernel with respect to context-switching times 
and interrupt latencies. They find that the use of microkernel-based virtualization creates a need 
for larger cache memories. 
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A.4.4.2  Logical Analysis 

From the logical-analysis perspective, virtualization presents both unique opportunities and 
challenges. However, research and tool development for logical analysis of virtualized software 
and VMMs are nascent. This section is therefore organized in two parts: logical analysis techniques 
and tools for software in general, which has a rich history, and applications of these tools for 
virtualized systems, which has started recently and already produced some promising tools and 
results. Logical analysis of (general) software takes two broad forms: testing and exhaustive 
verification. Both have pros and cons, and they are discussed individually. 

A.4.4.2.1  Testing 

Testing can be done directly on executable code, with a very realistic environment. For example, 
avionics (and other safety-critical) systems are often tested via hardware-in-the-loop simulations. 
The diagnostic feedback from testing is correspondingly quite detailed. Finally, testing can be 
applied to complete systems (integration testing). However, testing suffers from poor coverage. 
Whereas various types of coverage metrics (such as modified condition/decision coverage, or 
MC/DC [A-70]) are used in practice, they are ultimately syntactic and do not provide exhaustive 
coverage in terms of the program’s semantic behavior. MC/DC testing was proposed initially by 
the FAA for Level A software, but full semantic coverage via testing is practically infeasible. For 
example, to test a C program with a single “int” input exhaustively, more than 1018 different test 
cases would be needed, assuming a 64-bit hardware platform. 

Techniques such as combinatorial testing [A-71] can reduce the number of needed test cases, under 
the assumption that most bugs are triggered by a small number of inputs (even when the software 
as a whole has a large number of inputs). However, the growth in the number of inputs needed for 
combinatorial testing is still exponential in the worst case. Moreover, even if no bugs are found 
with combinatorial testing, it does not mean that the program is bug free because combinatorial 
testing is incomplete. 

Fuzz (or random) testing [A-72] is another commonly used brute-force testing technique. The 
general idea behind fuzzing is to test the software under a randomly selected set of inputs. The big 
advantage of fuzzing is its simplicity, which means it can be applied to large-scale software with 
relatively less effort. It has been extremely effective in finding security vulnerabilities, especially 
in poorly developed or complex software with a large number of shallow bugs (i.e., those triggered 
by a single unanticipated input). However, the advantage of fuzzing diminishes as bugs become 
more complex (i.e., can be triggered by only a small number of carefully selected inputs). It is 
therefore used in combination with other testing techniques and verification and validation (V&V) 
techniques. 

The incompleteness of testing worsens for concurrent (e.g., multi-threaded) software because, in 
addition to the large number of possible inputs, testing now also has to cope with a combinatorially 
large number of possible thread/component execution interleavings. In practice, therefore, state-
of-the-art testing tools and techniques still cover only a miniscule fragment of a system’s possible 
behaviors. This is despite the fact that V&V is becoming the dominant component of a system’s 
development cost, and testing is usually done until the budget is exhausted or the deadline for 
project delivery is reached. The result is that critical bugs are often uncovered late in the V&V 
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phase (e.g., during integration testing), which leads to cost escalation. Even worse, many bugs are 
left undetected and are found only after they have led to some expensive or catastrophic failure in 
the deployed system. 

A.4.4.2.2  Testing Tools 

Testing is still by far the technique that is used the most during software V&V. Not surprisingly, 
therefore, a large number of testing tools are available, and enumerating them all is beyond the 
scope of this report. Many commercial and open-source software integrated development 
environments include some form of testing infrastructure. For example, Eclipse™ comes with the 
JUnit [A-73] testing framework for Java, and CUTE [A-74] supports testing in C++. Visual Studio 
comes packaged with Microsoft’s unit testing framework [A-75], which can be used for supported 
languages like C++ and C#. Even domain-specific languages, such as MATLAB®/Simulink, have 
their own testing infrastructures [A-76]. Finally, a number of commercial entities [A-77, A-78] 
produce testing tools. In addition, all major software vendors have custom-made testing 
infrastructures, developed either in house or outsourced to an external organization. Fuzz testing 
tools have also seen wide development, covering a number of different application domains, such 
as web services [A-79], Windows ActiveX controls [A-80], and general-purpose software [A-81]. 
This report is not endorsing any of the tools mentioned here. They are only meant to be a sample 
of what is available today. 

A.4.4.2.3  Exhaustive Verification 

Exhaustive verification, as its name implies, aims at full semantic coverage of a program’s 
behavior. We distinguish among three classes of exhaustive verification: theorem proving, abstract 
interpretation, and software model checking. The last two techniques are often clubbed together 
into a single category known as static analysis. However, for our purposes, it makes sense to 
discuss them separately and highlight their similarities and differences. Exhaustive verification 
techniques make different tradeoffs along two dimensions: 1) precision (number of false warnings) 
versus scalability (how many lines of code can be analyzed with commodity computing resources), 
and 2) power (how rich is the set of properties that can be analyzed) versus automation (to what 
extent is the technology push-button). 

A.4.4.2.3.1  Theorem Proving 

Theorem proving is the most powerful (therefore, least automated) and most precise (therefore, 
least scalable) exhaustive verification technique. It is also the oldest form of exhaustive logical 
verification of software. In the early days, program verification was synonymous with some form 
of theorem proving [A-82]. The general approach is to model the target’s program semantics, and 
the property to be proved, as a logical formula 𝜙𝜙 and then use a theorem prover to prove the validity 
of 𝜙𝜙. 

Originally, Floyd [A-83] showed how 𝜙𝜙 can be constructed (as a verification condition) for a 
sequential program without loops. Subsequently, Hoare [A-82] generalized this approach to 
programs with loops and function calls, which require a user to provide loop invariants and 
function contracts. Owicki and Gries [A-84] generalized this approach further to concurrent shared 
memory programs, which require a user to provide thread-environment assumptions and 
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guarantees. Since then, there has been a wide body of work on applications to different types of 
programing languages (e.g., object-oriented [A-85], with dynamic memory allocation). 

Theorem proving is extremely powerful, and limited largely by the human user’s ability to supply 
invariants, contracts, and proof hints. It has even been used to prove critical properties of low-level 
system software, such as the L4 microkernel [A-53], because it allows for reasoning not just about 
the software but also the hardware environment to a high level of precision. It is also manually 
intensive and, therefore, best suited for verifying critical software components (e.g., VMMs) for 
which the high cost is justified by the benefits and gets amortized over multiple applications as the 
software is updated. This line of work is also commonly referred to as deductive verification or 
auto-active verification. 

A.4.4.2.3.2  Abstract Interpretation 

Abstract interpretation [A-86] is a form of static program analysis for which an over-
approximation of the program’s behavior is analyzed using an “abstract domain.” For example, a 
commonly used abstract domain is the interval domain [A-87]; instead of keeping track of the 
precise values of program variables, the only thing tracked for each variable 𝑣𝑣 is an interval 
[𝑚𝑚𝑚𝑚𝑚𝑚,𝑚𝑚𝑚𝑚𝑚𝑚] such that the value of 𝑣𝑣 always lies between 𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑚𝑚𝑚𝑚𝑚𝑚. By abstracting multiple 
program states into an interval, the state space explored by the analysis is reduced significantly. 
Abstract interpretation is very scalable and automated, and it has been applied to millions of lines 
of industrial code [A-88]. Conversely, abstract interpretation can lead to false warnings because, 
by definition, it analyzes an over-approximation of the target software, and is therefore imprecise. 
Careful use of application-specific abstract domains [A-89] can reduce the number of false 
warnings, but this requires more manual effort (in designing the domain) and can make the analysis 
more expensive (due to increased precision). 

A.4.4.2.3.3  Software Model Checking 

Software model checking [A-90] is a technique that combines model checking with automated 
abstraction and refinement to analyze programs. Model checking [A-91] is an automated and 
algorithmic approach to verify whether a finite-state machine (usually a Kripke structure) satisfies 
a temporal-logic (e.g., computation tree logic or linear temporal logic) formula. At a high level, a 
Kripke structure is a finite-state machine in which each state is labeled with atomic propositions 
denoting facts that are true in that state. Formally, a Kripke structure is a triple (𝑆𝑆,𝑅𝑅, 𝐿𝐿) where 𝑆𝑆 
is the set of states, 𝑅𝑅 is the transition relation between states, and 𝐿𝐿 is the labeling function. For 
example, figure A-3 shows a Kripke structure with three states 𝑆𝑆 = {𝑠𝑠1, 𝑠𝑠2, 𝑠𝑠3}. There are two 
atomic propositions, 𝑝𝑝 and 𝑞𝑞, and states are labeled with the atomic propositions true in them. Note 
that this means 𝑞𝑞 is false in 𝑠𝑠1 and 𝑝𝑝 is false in 𝑠𝑠2. Arrows denote transitions between states. A big 
advantage of model checking is its ability to return a counterexample demonstrating the failure of 
a property concretely. Counterexamples are valuable as diagnostic feedback to find and fix bugs. 



 

A-23 

 

Figure A-3. A Kripke structure 

In its original formulation, model checking was limited to verifying only finite-state systems. This 
makes its direct use for software analysis challenging because software has a large (or potentially 
infinite) number of states. In software model checking, an abstraction technique (such as predicate 
abstraction [A-92]) is first used to construct a finite conservative model of the program. This model 
is then verified with a model checker with respect to a target property. If the model has no bugs, 
then it is known that the original program is also correct (because the model is conservative). 
Otherwise, the model checker returns a counterexample. Because the counterexample was found 
by verifying the abstract model, it must be checked whether it corresponds to a real program 
behavior. If it does, a real bug has been found that can be reported to the software developers. 
Otherwise, the counterexample is spurious. It is used to refine the model, and the process is 
repeated with the improved model. This iterative procedure is called counterexample-guided 
abstraction refinement [A-93], or CEGAR, and was a crucial breakthrough that has led to the 
further development of software model-checking techniques and tools since the early 2000s. 

A.4.4.2.3.4  Concolic Testing 

Concolic testing [A-94] is a recent development that tries to bridge the gap between testing and 
exhaustive verification. The term concolic is a shortened version of “concrete + symbolic.” As its 
name implies, concolic testing combines two techniques: concrete execution (i.e., testing) and 
symbolic execution. The basic idea is to start with a random input, and execute the software on 
that input. However, also keep track of the execution of the software symbolically. In particular, 
keep track of the variable assignments and branch decisions during the execution. This requires 
treating the software as a whitebox; therefore, other names of concolic testing are whitebox fuzzing 
and directed random testing. Next, use the variable assignments and branch decisions to construct 
another input on which the program would take a slightly different path (e.g., take the opposite 
decision on the last branch). Usually this is done by constructing a logical formula, checking for 
its satisfiability, and constructing the new input from a satisfying solution. The process is repeated 
until some threshold is exceeded. Note that concolic testing also aims for branch coverage like 
MC/DC but is semantically deeper. For example, it can leverage relationships between various 
branch conditions. 
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A.4.4.2.4  Exhaustive Verification Tools 

Theorem-proving tools for software verification fall into two categories. The first is general-
purpose theorem provers, such as Coq [A-95]. These can be applied to verify any kind of software 
if its semantics can be represented in the language of the prover. The other category of tools is 
auto-active verifiers [A-96] that are tailored to specific programming languages (e.g., Esc-Java  
[A-97] for Java, Dafny [A-98], and Frama-C [A-99] for ANSI C). Auto-active verifiers automate 
the process of constructing and proving verification conditions (using satisfiability modulo theory, 
or SMT, solvers) once the user has provided sufficient information in terms of loop invariants and 
function contracts. They are somewhat easier to use than general-purpose theorem provers because 
the target language’s semantics are already encoded by the verifier. However, they are less 
generally applicable. 

One of the most widely known abstract interpretation tools is ASTREE [A-100]. A large number 
of academic and commercial static analysis tools also use abstract interpretation. Notable examples 
are CodeSonar™ [A-101], Coverity [A-102], and Klocwork [A-103]. Again, this list is a sample 
of a large number of static analysis tools in existence. These tools are very scalable and have been 
applied to millions of lines of code. Their big drawback remains false warnings. Moreover, they 
can usually analyze only sequential code. 

Software model checking is also supported by a wide range of tools. The most industrial example 
is Microsoft’s Static Driver Verifier [A-104], which was a successful technology transfer of the 
SLAM [A-105] project. The SLAM project was motivated by the realization that a vast majority 
of Windows’ “blue screens of death” were caused by bugs in device drivers over which Microsoft 
had no direct control. The success of SLAM indicates the applicability of software model checking 
to verify critical system-level code once domain-specific restrictions are used to focus the analysis. 
This is likely to be true for VM code as well. Other software model checkers include Java 
Pathfinder [A-106] from NASA. Also, a large number of academic tools have been and continue 
to be developed. Examples include BLAST [A-107], CBMC [A-108], MAGIC [A-109], and tools 
that participate in the annual Software Verification Competition [A-110]. 

Despite its recent development, concolic testing has already received considerable work in terms 
of tool development. For example, KLEE [A-111] is a concolic tester built on top of the LLVM 
[A-112] infrastructure. CUTE and JCUTE [A-113] are concolic testers for C and Java. PEX  
[A-114] is a concolic tester developed for the .NET framework at Microsoft. SAGE [A-115] is 
another concolic tester developed at Microsoft aimed at finding security vulnerabilities. 

A.4.4.2.5  Logical Analysis of Virtualization Software 

This section concludes with an overview of tools and results for logical analysis of virtualization 
software (i.e., software that implements both VMMs and guest Oss). The work in this area is 
nascent. All the tools and techniques described earlier in this section are applicable to virtualization 
software as well. Therefore, testing is applied routinely to VMM source code, and model checking 
and static analysis can be used to verify device drivers inside guest operating systems. However, 
logical analysis can also be applied to prove that VMMs implement isolation correctly. This 
requires overcoming two main challenges: 
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1.  Hardware modeling: It is no longer sufficient to treat the VMM as a regular program. 
VMMs rely on critical hardware support to implement isolation. Examples include 
dynamic root of trust, nested page tables, and I/O memory management units (MMUs) to 
control access to shared devices. To verify the VMM, these hardware primitives must be 
modeled at a sufficient level of detail. 

 
2. Guest/host concurrency: The execution of a virtualized system consists of a sequence of 

switches between guest and host modes. In each mode, certain restrictions hold in terms of 
memory and device access. Moreover, the switch can happen only when specific 
instructions are executed. This means that the guest and host cannot simply be treated as 
two threads interleaving with each other non-deterministically. Only specific points of 
context switching are allowed. 

So far, overcoming these challenges has required careful decomposition of a virtualized system 
into a number of different components, each with its own interface in terms of its interaction with 
the rest of the system, including the hardware. This is followed by selective application of 
verification tools to each component to show that its implementation satisfies its interface. The 
final piece is an argument that the individual components and their interfaces imply the overall 
isolation property required. This approach has led to successful verification of hypervisors [A-116, 
A-15]. 

A.5  SAFETY STANDARDS 

This section focuses on the literature addressing those issues that the use of VMs in avionics 
systems may have with respect to safety standards and related guidance documents. Perhaps the 
most important document to discuss is DO-178B/C [A-117]. 

A number of real-time operating systems (RTOS) compliant with ARINC 653 (e.g., Lynx [A-118]) 
implement some form of VM and address issues of test coverage as required by DO-178B Level 
A. In particular, DO-178B Level A software requires verification with MC/DC. This means that: 
1) every entry and exit point has been exercised at least once, 2) every option in every decision 
point in a program must have been taken at least once, and 3) each condition in a decision must 
had been shown to affect the decision independently. This requirement affects how VMs and their 
hypervisors are implemented and verified. It is worth mentioning that the type of VMs 
implemented by ARINC 653-compliant RTOS is different from the type implemented by general-
purpose VMs because RTOS focus on the partition implementation (temporal and spatial) 
described by the ARINC standard. 

The DO-178C standard mentions a number of issues that must be addressed by VMs to provide 
the appropriate isolation demanded by the partition concept presented in the document. In 
particular, section 2.4.1 of the document lists the following relevant requirements for a partition 
[A-117]: 

• A partitioned software component should not be allowed to contaminate another 
partitioned software component’s code, I/O, or data-storage area. 
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• A partitioned software component should be allowed to consume shared processor 
resources only during its scheduled period of execution. 
 

• Failures of hardware unique to a partitioned software component should not cause 
adverse effects on other partitioned software components. 
 

• Any software providing partitioning should have the same or higher software level as 
the highest level assigned to any of the partitioned software components. (This 
requirement in particular is what forces Level A designation on hypervisors in 
compliant RTOS that implement some form of VM.) 
 

• Any hardware providing partitioning should be assessed by the system-safety 
assessment process to ensure that it does not adversely affect safety. 

Sections 6.3 and 6.4 of DO-178C discuss the need to verify the timing characteristics of software, 
specifically its WCET and worst-case response time. It is important for a VM implementation to 
be backed up by an appropriate method and analysis that could obtain both of these figures. 
Similarly, the use of low-level requirements, such as bus loading, must also be verified. 

Of particular importance is the consideration needed for interrupts (DO-178C, section 11.7) with 
respect to their timing and interference with different partitions. In particular, VMs virtualize 
interrupts, and this may delay their timely delivery to the target partition. It is necessary to ensure 
that the implementation of virtualized interrupts does not violate the requirements of an 
application. Similarly, it is necessary to ensure that an interrupt intended for one partition does not 
interfere with another partition. 

Finally, DO-178C requires that software be checked to ensure that “the protection mechanisms for 
exceeded frame times respond correctly” [A-117]. For VM implementation, it should be clear what 
the response would be and that the partitions with higher criticality levels are not affected. 

Of particular importance is fault identification, isolation, and resolution. A fault raised in one 
partition shall not affect the error handling in another partition.  
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APPENDIX B—ASSURANCE ISSUES ON VIRTUAL MACHINES IN AVIONICS 
SYSTEMS 

B.1  INTRODUCTION 

Virtualization is a technique that enables the creation of new resources that behave mostly like real 
resources. For example, virtualization allows forming, from a single processor, one or multiple 
virtual processors. Any program can then execute directly on a virtual processor just as on a real 
processor. Typically, it is done as follows: one piece of software called a hypervisor (also known 
as a virtual machine monitor, or VMM) executes directly on the processor and forms the virtual 
processors. When a program executes a nonprivileged instruction in the virtual processor, it 
executes directly on the processor. However, if a program executes a privileged instruction, then 
it generates a trap, and the hypervisor takes over and emulates the instruction. In this way, a virtual 
machine (VM) allows the execution of an operating system (OS). Furthermore, it is also possible 
to execute different OSs on different VMs. 

The notion of virtualization was originally formed in the 1970s for mainframe computers, and it 
was revived in the late 1990s and early 2000s because of its use in server farms for Internet 
applications and data warehousing. In the mid-2000s, virtualization became more widespread in 
desktop computers. Recently, virtualization has received increasing attention in safety-critical 
systems (e.g., avionics and automotive). 

Virtualization brings a number of potential advantages: 

• Improved security: The hypervisor is typically small and is therefore more amenable to 
formal analysis or testing with high coverage. If malware is introduced in one VM, it does 
not (unless the hypervisor is also compromised) infect the other VMs. 

• Greater flexibility potentially leading to better resource usage: A program that is started in 
one VM can be stopped and checkpointed, allowing it to resume on another VM. 

• Better support for legacy hardware: Consider a program written for an old OS and for an 
old processor. Assume that this program offers functionality of great value, and the user 
would like to have this functionality in a new airplane, but this old operating system and 
old hardware are no longer available. The old program can be run by using modern 
hardware and a hypervisor to build a VM for the old processor under this hypervisor. The 
old operating system and old application are then run in this VM. 

• Potential for simpler integration: With the trend of shifting from federated architectures to 
integrated architectures, it is necessary to put multiple applications (from potentially 
different suppliers) into a single computer. However, each application may have real-time 
requirements and is designed with the assumption that it has its own processor. 
Virtualization is potentially of value in fulfilling this assumption. 

For avionics, despite these advantages, there is a potential roadblock because assurance issues are 
critical. It is not obvious how the use of virtualization affects assurance and current guidance for 
certification of airplanes and associated approval of software (e.g., DO-178C). This is the subject 
of this report. 
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The remainder of this report is organized as follows. Section 2 presents goals and properties of 
VMs. Section 3 presents additional certification complexity due to virtualization. Section 4 
discusses isolation, contrasting VMs with other technologies. Section 5 discusses development 
process issues. Section 6 discusses assurance of avionics systems. Finally, section 7 gives 
conclusions. 

B.2  GOALS AND PROPERTIES OF VIRTUAL MACHINES 

In this section, the goals of the different implementations of VMs and the properties of these 
implementations are discussed. The subtleties of these properties and to what extent they are 
achieved will also be discussed. 

B.2.1  TEMPORAL ISOLATION/PROTECTION/PARTITIONING 

Discussions of temporal isolation can be traced back to the beginning of multiprogramming 
environments. When computers were only used to execute multiple batch jobs at the same time, 
the main metric of performance was the number of jobs completed per unit of time. Once multiple 
users were connected to the same computer, response time became an issue. In particular, the 
response time experienced by a user was satisfactory if it was possible to preserve the illusion that 
he or she was the only one using the computer. In this context, temporal isolation was interpreted 
as an effective illusion of having one dedicated computer per user. 

Batch processing and interactive use are two usage types that define metrics for system utilization 
and application requirements, respectively. These two types of metrics play an important role in 
the implementation and properties of virtualization mechanisms. 

For general-purpose computing, both system utilization and application requirements are 
evaluated in an average-case fashion. Specifically, system utilization defined as the average 
number of jobs per unit of time is known as throughput. However, response time plays a role in 
the specification of service-level agreements (SLAs) used now to contract virtualized computing 
services from cloud providers. In some cases, a maximum response time is specified in an SLA 
[B-1], but it does not have the same character as the worst-case response time that real-time 
systems demand. In particular, SLAs also include language that specifies availability, how things 
are measured (e.g., by probes), and even procedures for dispute resolution. The result is that the 
response time has the character of an average case within a window of time. In the end, the fact 
that general-purpose computing workloads are never clearly defined leaves system designers with 
only the possibility to predict future workloads based on (average) history and dynamic 
mechanisms that react to that history. This is the case, for instance, of scheduling policies that 
favor interactivity by giving the processor to perform short computations and quickly return to 
wait for input (e.g., assumed to be from a user in a terminal). 

The average-case character of timing metrics in information systems has created a trend that 
permeates the design of mechanisms for sharing resources across all the layers of the computer 
infrastructure. These layers include hardware, OSs, networks, and ultimately VMs. More 
importantly, design decisions at all these levels have implications for the properties of temporal 
isolation offered by different variations of VMs, which is the main topic of this section. Given the 
large influence of general-purpose computing on the processors’ design, trends in this area and the 
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consequences for the goals and properties of temporal isolation mechanisms will first be discussed. 
This discussion will be followed with one about real-time systems. 

B.2.1.1  General-Purpose Computing 

In the hardware area, the influence of the average timing metrics can be better understood from 
the processor design point of view. In particular, the main performance metric of a processor 
architecture is the instructions per cycle (IPC) that, with its cycles per second (Hertz), define its 
processing speed. It is worth noting that IPC is measured as the average number of instructions per 
cycle. This focus has driven the processor innovations toward improving the IPC of single threads. 
Three types of innovations are important for our discussion: 1) speculative execution, 2) locality-
based memory access speedup, and 3) asynchronous I/O. 

B.2.1.1.1  Speculative Execution 

The innovations in speculative execution are aimed at keeping all the stages of the pipeline of a 
processor full. In particular, the execution of instructions in most processors today is organized in 
a pipeline that is divided into a number of stages. For instance, consider a pipeline divided into 
five stages: Instruction Fetch (IF), Instruction Decoding (ID), Execution (EX), Memory Access 
(MEM), and Result Write Back (WB) [B-2]. With this pipeline, a processor can execute a sequence 
of instructions (numbered 1 to N) from a program as follows: At Time 1, Instruction 1 executes in 
stage IF (i.e., the instruction is fetched). As soon as Instruction 1 moves to stage ID, then 
Instruction 2 can start in IF. The third instruction can start in IF as soon as Instruction 2 moves to 
stage ID and Instruction 1 moves to stage EX. Following this pattern, in steady state, the processor 
executes five instructions in parallel (at different stages) at the same time. In this case, the 
processor can finish one instruction every cycle, assuming that each stage can be executed in one 
cycle. 

Unfortunately, the pipeline execution assumes an uninterrupted sequence of instructions. This 
sequence can be interrupted by four type of events: 1) jumps to an instruction other than the next 
one (branch instructions), 2) data dependencies between instructions, 3) instruction dependencies 
from memory access, and 4) thread (context) switch. 

Branching: To deal with branch instructions, processors use branch prediction. For an 
unconditional branch, the prediction is basically certain, and it is only necessary to fetch 
instructions from the branch target address. However, conditional branches are more challenging. 
Conditional branch instructions implement programming language constructs such as if, while, 
and for. Branch prediction schemes use different heuristics to guess the next instructions to fetch. 
For instance, for a “while” implementation, a good guess is to assume that the program will remain 
in the loop and keep fetching from inside the while loop. In this way, as soon as the prediction is 
correct, the pipeline continues to complete the execution of one instruction per cycle without 
interruption. However, when the prediction is wrong, the processor needs to discard the half-
executed instructions fetched from the wrong address (e.g., the inside of the while when the while 
terminates) without causing side effects. This means that the pipeline execution is stopped in the 
middle, intermediate results are eliminated, and new instructions from the correct address are 
started. Obviously, this correction has a time penalty that must be considered. In the end, branch 
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prediction provides significant improvement to the IPC but makes it difficult to figure out the 
worst-case execution time (WCET) of a set of instructions. 

Data Dependencies: Data dependencies between two consecutive (or close) instructions also cause 
delays in the pipeline. For instance, a program has the following two instructions (one after the 
other): “ADD R1, R2, R3; MUL R5, R1, R7,” in which MUL reads register R1 that is modified 
by the ADD instruction. The MUL instruction cannot execute until the ADD instruction has written 
back its result. For our sample pipeline processor, this may mean that the MUL instruction cannot 
execute stage ID until ADD finishes stage WB. It is worth noting that, in steady state, ADD would 
arrive at stage EX at the same time that MUL arrives at stage ID. Therefore, MUL will have to 
wait for ADD to finish stages EX, MEM, and WB (three “idle” cycles) before it can continue 
executing. These waits (or delays) are known as stalls. 

Memory Access Dependencies: Memory access dependencies are more costly and have deeper 
implications for temporal isolation. To show this, consider a seven-instruction program as follows: 
“LOAD R1, [100]; INCR R1; INCR R2; LOAD R3 [200]; ADD R1,R1,R2; STORE [100],R1; 
LOAD R2,[100].” In this case, the first load cannot complete until the memory access to address 
100 is completed. This creates a stall, depending on whether the data in address 100 is loaded in 
one of the caches or main memory; that can take up to four cycles for L1 cache, tens of cycles for 
L2 and L3 caches, and hundreds of cycles for dynamic random-access memory (DRAM) access. 
This stall affects other dependent instructions like the second instruction (INCR R1). To minimize 
the effect of the stall, processors try to keep executing nondependent instructions, such as the third 
instruction (INCR R2), that do not depend on previous instructions.  

This can be done by reordering the instructions to keep non-stalled instructions executing in the 
pipeline while stalled instructions wait for the memory access to complete. Reordering has two 
effects. First, multiple reads can be issued back to back. In the seven-instruction program, this will 
happen if we move the LOAD R3 [200] instruction to the second place. This generates what is 
known as multiple pending memory operations, or multi-issues. These include not only multiple 
reads but also multiple writes. More importantly, because writes can be delayed until there is 
another instruction set that accesses the same address, it is quite common to have a write queue to 
store and defer writes. In the example, the STORE [100] R1 instruction could have been delayed 
if it was not followed by the last LOAD R2 [100] that depends on it. Write queues have a 
significant impact on temporal isolation mechanisms and their properties, as will be discussed 
further in this section. 

Context Switch: A thread context switch clearly disrupts the sequence of instructions fed into the 
pipeline. This means that the pipeline is “restarted,” clearing all the stages and creating a stall at 
least as long as the size of the pipeline. Given that context switches are relatively infrequent in 
comparison to the speed of the pipeline, they do not play a big role. However, thread contexts play 
a bigger role in a related concept. Specifically, different instructions use different processor 
functional units, like the arithmetic logic unit or the floating-point unit, and a modern processor 
will have more than one unit of each type to speed up execution. However, the number of 
instructions that can use these units simultaneously is limited by the dependencies that these 
instructions have on one another within the executing thread.  
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As a result, processors implement what is known as simultaneous multithreading (known 
commercially as hyperthreading) to have multiple sequences of instructions executing 
simultaneously. This means that a larger number of instructions (from different hyperthreads) will 
be in the EX stage and can execute in different types of functional units (e.g., one in an arithmetic 
logic unit and another in a floating point unit) or multiple instances of the same unit. 
Hyperthreading, however, basically gives the scheduling decision to the processor (what thread 
runs first), diluting the predictability of the WCET of a thread. A second issue with thread context 
switches is the fact that data loaded into the cache by a thread can be evicted by the thread that is 
replacing it in the context switch. This discussion will be deferred to the next section. 

B.2.1.1.2  Memory Access Speedup 

Some memory access speedup techniques are well known by most computer users. Cache memory 
plays a critical role in achieving the processing speed of current processors. Specifically, whereas 
processor speed doubled every 2 years some decades ago, memory speed increased only linearly. 
As a result, to keep feeding instructions to the processor fast enough to prevent it from going idle 
(memory stalls), a hierarchy of cache memory was designed to keep the most frequently used data 
in faster (but smaller) memory areas. The cache hierarchy is organized into levels known as Level 
1 (L1), Level 2 (L2), Level 3 (L3), and so on, of increasingly slower but larger memory (with L1 
running at the same speed as the processor). Automatic and transparent data replacement 
algorithms take care of loading the most frequently used data in a successive manner from memory 
into L3, L3 into L2, and L2 into L1. Cache replacement algorithms exploit the data and time 
locality of program executions that are broken whenever a thread context switch occurs. With two 
orders of magnitude difference between memory and processor speed, a context switch not only 
can be costly in terms of time but also may induce unpredictable behavior that can affect the 
temporal isolation properties if not taken into account. 

The DRAM memory system includes a number of mechanisms tailored to improve the IPC of the 
processor. The three main components of the DRAM memory system are the memory bus, the 
memory controller, and the DRAM chips, as shown in figure B-1 [B-3, B-4]. The memory 
controller schedules memory read/write requests that are sent to the DRAM chips through the 
memory bus. The DRAM chips then retrieve the data and send it back through the memory bus. 
The internal mechanisms of these components that influence timing and the effectiveness of 
temporal partitioning will be briefly discussed. 
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Figure B-1. DRAM memory system organization 

DRAM Chip: The DRAM chip is organized as a set of banks, and each bank is organized in a 
matrix of rows and columns. More specifically, when a memory location is read from DRAM, the 
bank number B, row number R, and column number C are extracted from the memory address. 
Next, a request to load the row R from the memory matrix of the bank B is sent. Then another 
command is sent to read the column C from the row buffer. This row buffer acts as another caching 
strategy to reduce the time needed to access the memory. In this way, any additional memory 
request (column) from the same row can avoid sending the load row command. Obviously, this 
strategy assumes that memory is accessed in a sequential fashion within a bank. Furthermore, 
following this strategy, the mapping of addresses to banks and rows is organized in a row-
interleaving fashion. For instance, memory address 0 would start in bank 0, row 0, and column 0. 
For instance, every 8 bytes it will move to the next column; once the columns of the row are 
exhausted, instead of moving to the next row, it moves to the next bank. This allows the creation 
of a “virtual” row that puts all the rows of all the banks back to back in a large row buffer, 
increasing the row-buffer locality. 

Memory Controller: The memory controller schedules read/write requests through a policy known 
as first-ready, first-come, first-served (FR-FCFS). FR-FCFS uses one queue per bank, in which 
the memory controller puts the requests in a particular bank as they arrive. Then, each bank queue 
is reordered by moving to the back of the queue the requests that are “not ready” or when a new 
request arrives to a row that is currently in the row buffer. A request is considered not ready if 
executing it would violate the timing restrictions of the memory system (e.g., inter-bank row-
activate). For requests to the row in the buffer, the controller is able to put these requests to the 
front of the queue but imposes a limit to prevent starvation. However, the end result is that requests 
to rows other than the loaded one can suffer significant delays. 

As expected, switching to another thread interrupts the “sequential” memory access assumed by 
the DRAM memory system. However, thanks to the cache, the effects on single-core processors 
are not significant. Unfortunately, this is not the case for multicore systems, in which the execution 
time of a program running in one core can increase up to 12 times [B-4] or more because programs 
running in other cores and the interference in the memory system. Clearly, this is a critical issue 
when temporal isolation is the key. 
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B.2.1.1.3  Asynchronous I/O 

I/O devices that transfer a large amount of data, such as video acquisition cards (e.g., camera) and 
network interfaces, use the direct memory access (DMA) mechanism to move data from their 
internal buffers directly into main memory. Unfortunately, this means that such a transfer can 
happen at any time the I/O device is ready and can interrupt or slow down the memory access of a 
program running in the processor. From the temporal isolation point of view, this means that a 
thread may be slowed down because of the DMA transfer for an I/O request from another thread. 

B.2.1.1.4  Thermal Management 

Thermal dissipation in today’s commercial off-the-shelf (COTS) processors is performed with a 
combination of passive and active mechanisms. The active mechanism is known as dynamic 
thermal management (DTM). Specifically, DTM allows the processor to run at frequencies that 
can potentially drive the temperature of the processor to unsafe levels. DTM complements this 
approach with a dynamic monitoring of the temperature. When it reaches a certain threshold, it 
reduces the speed and, therefore, the temperature of the processor to prevent it from burning out. 
This approach allows the processor to speed up on a burst of workload, increasing the average-
case performance. 

B.2.1.1.5  Operating System 

In general-purpose OSs, the same average-case metrics are considered. Research in these systems 
has produced another metric that is also applied at a lower level: fairness. A system is considered 
fair when it allocates the same proportion of resources to all clients (e.g., threads). For instance, a 
processor scheduling policy is consider fair if it allocates the same proportion of central processing 
unit (CPU) time to all the threads in a system. The objective of a round-robin scheduler is to give 
turns to all the threads in a round-robin fashion (as the name implies), giving a specific CPU time 
slice to a thread in each turn. In the ideal case, if the time slice is made as close as possible to zero, 
then it can be claimed the system is completely fair. However, a nonzero time slice will allow a 
difference of one time slice of CPU time between threads. The size of the time slice offers a 
tradeoff in system design between fairness and overhead of the processor (i.e., the smaller the time 
slice, the fairer the system), but it incurs more context switches that waste CPU time. Whereas this 
approach provides some average-case temporal isolation, it cannot distinguish different 
requirements from different tasks and cannot provide strong guarantees. 

B.2.1.1.6  Virtual Machines 

VM implementations for general-purpose computing, such as those used in cloud computing 
(VMWare, Xen, Virtual Box), focus on the fairness-overhead tradeoff, but at the level of individual 
VMs. More specifically, a hypervisor gives a time slice to a VM and, inside the VM, the host OS 
gives turns to the threads. With today’s processor speeds, this scheme provides a reasonable 
response time to users of information systems but also limits the number of VMs that can be 
supported while providing a reasonable response time. 

In the final analysis, the cumulative layers of scheduling decisions made to optimize the average-
case response time and throughput can create critical variations that in turn make the evaluation of 
the worst-case response time both very difficult and very pessimistic in a general-purpose VM. 
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For the same reason, the temporal isolation that can be achieved within a general-purpose VM can 
be expected to satisfy human interaction or average throughput but can have no reasonable 
guarantee on worst-case behavior. 

B.2.1.2  Real-Time Embedded Systems 

Real-time embedded systems (RTES) are in some sense simpler systems than general-purpose 
computing systems. In particular, the workload of an RTES is well defined with a specific task set 
(set of threads) and clear parameters (such as WCET, execution rate) and timing requirements 
(deadlines). As a result, the mechanisms, metrics, and evaluation methods can be more easily 
defined. At the same time, the validation criteria is more stringent. Instead of judging whether an 
expected response time should be met most of the time, as happens in general-purpose computing, 
RTES ensures that it should be met all the time under any circumstance (i.e., tasks must always 
meet their deadlines). Because the exact timing characterization of an RTES is not always possible, 
over-approximation techniques of worst-case behavior (e.g., WCET, worst-case delays, and worst-
case response time) are used to ensure that meeting deadlines can still be guaranteed. 

As expected, the worst-case mindset has created different mechanisms at all layers of the 
computing infrastructure. These mechanisms are aimed at providing a more predictable execution 
time. However, sometimes predictability comes at the cost of a slower average execution time. As 
a result, innovations and products used to improve IPC and throughput sometimes are also used in 
RTES. In this case, it is important to develop complementary mechanisms and evaluation that 
properly over-approximate the worst-case behavior. 

B.2.1.2.1  Execution Time Predictability Versus Speedup 

In the past, and in low-end embedded processors, predictability was the driving force. As a result, 
these processors were designed as single-issue (only one memory request can be pending) with 
non-speculative execution [B-5]. However, new high-end embedded processors implement 
complex pipelines with speculative execution to reach the required execution speed demanded by 
today’s applications. This is the case, for instance, of the ARM11 MPCore processor [B-6] that 
implements an eight-stage pipeline to get close to an IPC of 1. As expected, this processor 
implements speculative execution techniques such as branch prediction. 

The use of complex mechanisms to improve a processor’s IPC can complicate obtaining the 
WCET of a task. For simple architectures (e.g., ARM Cortex-M3), formal techniques like abstract 
interpretation are capable of obtaining a tight WCET [B-7]. For complex architectures, more 
traditional measuring techniques are used. 

B.2.1.2.2  Memory Access Speedup 

Whereas embedded processors use a cache hierarchy to speed up memory access, some processors 
also implement what is known as scratchpad memory. Scratchpad memory uses the same fast 
memory technology as scratchpad RAM (SRAM), but in this case, the developer is in charge of 
loading (and replacing) the memory that is needed to run faster. 

Just as for general-purpose computing, context switching between tasks can require reloading data 
into the cache (and evicting the data from the previous task), incurring a time delay. This delay is 
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known in the literature as cache-related preemption delay (CRPD) [B-8]. CRPD can be observed 
both in single-core processors and in multicore processors. In general, this means that temporal 
isolation cannot be achieved in the presence of a shared cache because, even if a task is prevented 
from executing beyond a specified budget (or time slot), it can still evict data from the cache used 
by the other tasks imposing a CRPD on it. 

To achieve temporal isolation in the presence of a cache, a technique called cache coloring has 
been developed to partition the cache into noninterfering partitions (called colors) and give one 
partition to each task. Cache partitioning uses the internal division of the cache into sets that are 
mapped to different parts of the memory. This division is known as cache-set associativity, and it 
is designed to prevent consecutive memory locations from evicting each other. Using this division, 
cache partitioning maps the memory of different tasks to different cache sets, ensuring that they 
do not evict each other’s memory. 

The mapping of cache sets to tasks in cache partitioning is implemented using the virtual memory 
scheme in the memory management unit (MMU) of a processor (some simple processors may not 
have one). Specifically, virtual memory is implemented by translating a virtual memory address 
used by a program into a physical memory address. This translation allows a program to address 
(virtually) a large memory space that may not fit in the available physical memory by loading to 
the physical memory (typically from disk) only the parts of the virtual memory that are needed at 
any given time in a similar fashion to cache. This is accomplished by dividing the memory into 
pages and splitting the address of a location into a page number and an offset within the page for 
that location. With this division, the OS uses a page table to map virtual pages to physical pages 
and mark the virtual pages that are not loaded into the physical memory. 

Virtual memory is combined with set associativity to take advantage of the set associativity’s 
implementation. It uses a specific subset of bits of the memory address of a location to identify the 
cache set number where the location should be loaded in the cache. This enables the mapping of 
virtual pages of two (or more) tasks to physical pages that do not map to the same cache set and, 
therefore, do not evict each other. The number of bits used for the page number and the cache set 
are not typically the same (as can be seen in figure B-2), but they share enough bits to make it 
practical. 

Bit index … 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00 
 

Virtual Address Virtual Page Number Page Offset 
 

Physical Address Physical Page Number Page Offset 
 

Cache Mapping  Cache Set Index Cache Offset 
 

Bank Mapping Row Rank/Bank Column Offset 

Figure B-2. Page to cache set and bank mapping—Intel i7 2600 

Cache Partitioning: Cache partitioning is a key technique to achieve temporal isolation not only 
for single-core processors [B-9, B-10] but also for multicore processors in which the last-level 
cache is shared across processors [B-11]. Moreover, because the number of partitions that can be 
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created with this technique is not always large enough for assigning one partition per task, practical 
solutions may require two or more tasks to share a partition. In this case, the temporal isolation 
can only be achieved at the task group level (i.e., one group may be isolated from another group). 
It is then necessary to modify the timing analysis verification method to accommodate the 
interference due to the shared cache. In [B-11], the authors describe a cache partitioning scheme 
and implementation with cache sharing for rate-monotonic scheduling (RMS). 

DRAM Partitioning: The interference from the DRAM system needs to be addressed to implement 
temporal isolation in multicore processors. Specifically, memory interference can increase the 
execution time of a task more than 12 times [B-4] because of memory requests to the same memory 
bank from other cores, as mentioned in section 2.1.1.2. To prevent tasks from using the same bank, 
the cache coloring scheme can be applied to memory banks to take advantage of the fact that banks 
are addressed by a subset of address bits, as shown in figure B-2.8 In [B-4], the authors present a 
bank-partitioning approach for real-time systems with RMS. In this paper, the authors also 
recognize that partitions may need to be shared and provide a timing verification approach for 
tasks that share partitions. 

Combined Partitions: Because both cache and bank partitioning use the virtual memory 
mechanism, they may interfere with each other. Specifically, whereas figure B-2 shows a case in 
which the bank bits are a subset of the cache set bits, this is not always the case. For instance, 
consider a processor in which address bits 10 and 11 are used for the bank number and 11 and 12 
for the cache set number. This configuration may lead to the belief that four cache partitions and 
four bank partitions could be configured. Unfortunately, this is not the case. If bit 11 is changed, 
that not only changes the cache set number but also the bank number that is used for this memory 
location. In the end, there are only eight independent partitions instead of the ideal 16. This is 
shown in figure B-3. In [B-12], the authors study this problem and provide partition allocation 
algorithms for real-time systems to solve these issues. 

 Bank Bits 

C
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00 X  X  
01 X  X  
10  X  X 
11  X  X 

Figure B-3. Limited partitions due to shared bits (existing partitions are marked with an X) 

Scratchpad Memory: Scratchpad memory can also be partitioned to implement temporal isolation. 
A number of papers had been published on this topic, including [B-13, B-14]. In this case, this 
partitioning can be done independently from bank partitioning schemes. 

Translation lookaside buffer (TLB): The TLB caches virtual-to-physical page translations to speed 
up the translation and prevent a single memory access from translating into multiple memory 

                                                 
8  Ranks are sets of banks that we do not discuss here for simplicity of presentation. Refer to [B-0, B-0] for more details. 
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accesses because of the access to the page table. The TLB can also be colored with a similar 
technique to cache coloring. In [B-15], the authors show such a scheme. In this paper, the authors 
also point out the benefits of modifying the heap allocation scheme to improve the performance 
benefits of TLB coloring. 

B.2.1.2.3  Asynchronous I/O 

Asynchronous I/O requests using DMA cause interference from two main sources: 1) shared 
memory banks, and 2) memory buses. To deal with the problem of shared memory banks, bank 
partitioning can be used to achieve temporal isolation. However, dealing with memory bus 
interference can be more challenging. This was recognized by Betti et al. in [B-16]. To solve this 
problem, the authors developed an I/O bridge and peripheral scheduler that coordinates the 
memory transfer of these peripherals with the transfer requirements of the task set running in the 
processor. Without this solution, a DMA-enabled peripheral is allowed to start a memory transfer 
at any time and either completely block the bus or steal bus cycles to perform its transfer in an 
interleaved fashion with the processor memory accesses. Unfortunately, the peripheral activity 
delays the memory access from the processor, incurring memory stalls that enlarge the execution 
time of the tasks running on it. The end effect is an indirect violation of temporal isolation because 
a task that is waiting for the completion of I/O (i.e., not running) can indirectly interfere with the 
currently running task because of a DMA transfer related to the request of the former task. 

B.2.1.2.4  Thermal management 

As discussed in section 2.1.1.4, DTM allows the processor to run at frequencies that can potentially 
drive the temperature of the processor to unsafe levels and reduce its speed when the temperature 
reaches a threshold to prevent it from burning out. Unfortunately, this change of speed can enlarge 
the WCET of tasks and, therefore, invalidate the analysis performed assuming a fixed speed. 
Moreover, the temperature increase incurred in one temporal partition could induce a speed-down 
on another partition, breaking temporal isolation if DTM is not taken into account. Some initial 
work has appeared that accounts for heat when verifying schedulability in real-time systems. For 
instance, in [B-17], the authors focus on minimizing the peak temperature in a multicore processor 
while ensuring that all deadlines are met. 

B.2.1.2.5  Operating Systems 

Real-time operating systems (RTOS) are designed to ensure temporal determinism to provide 
timing guarantees. RTOS typically provide three types of scheduling policies: 1) time-division 
multiplexing (TDM), 2) priority scheduling, and 3) combinations of the two. 

Time-Division Multiplexing: An example of TDM is the time-triggered architecture (TTA) 
discussed in [B-18]. Whereas in [B-18] the properties and challenges of this policy for 
implementing temporal isolation were discussed, this section will highlight the context of the other 
shared resources. In particular, to ensure temporal isolation in a TDM RTOS, it is necessary to 
ensure that the sharing policies for 1) cache (or scratchpad memory), 2) DRAM, 3) asynchronous 
I/O, 4) thermal management, and 5) TLB are properly coordinated with the OS scheduler and its 
supporting analysis. For TDM, the research on this coordination has a stronger focus on specialized 
hardware (e.g., systems on chips) than on COTS hardware. For instance, in [B-19, B-20], the 
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authors propose a cache partitioning approach for multiprocessor systems on chips (MPSoC) with 
reconfigurable caches. In particular, their framework generates a time-triggered, non-preemptive 
schedule and a set of cache configurations for a specific task set at compile time. The use case for 
this solution is the generation of different numbers of cores and cache modules on a field-
programmable gate array. Memory partition has received less attention in TDM scheduling. One 
of the few papers on this topic is [B-21]: the authors suggest the use of memory partitions to 
provide temporal isolation. However, no discussion on the coordination of partitioning and 
scheduling is provided. 

Fixed-Priority Scheduling: In fixed-priority scheduling (including RMS), deadline monotonic 
scheduling (DMS), Earliest-Deadline-First (EDF) scheduling, a number of combined solutions 
have been explored. For instance, the work in [B-4] was implemented in the context of Linux/RK, 
a resource reservation kernel (already discussed in [B-18]) that combines multiple temporal 
partitions from different resources, including cache and memory banks, with the corresponding 
schedulability analysis. Specifically, in [B-4], the authors use the worst-case response time 
presented in equation 1 of [B-18] and modify it to include the interference that can be suffered 
from shared memory partitions. This results in the following equation: 
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Here, the minimum of two terms is added to the response time equation of a task. The first of these 
two terms is a request-driven memory interference bound composed of the number of requests that 
a job of the task under analysis (𝜏𝜏𝑖𝑖) performs (𝐻𝐻𝑖𝑖), multiplied by the worst-case delay that each 

request can impose (𝑅𝑅𝐷𝐷𝑝𝑝), plus the worst-case number of preemptions 𝜏𝜏𝑖𝑖 may suffer (∑ �𝑅𝑅𝑖𝑖
𝑘𝑘−1

𝑇𝑇𝑗𝑗
�𝑗𝑗<𝑖𝑖 ), 

multiplied by the number of memory requests per preemption (𝐻𝐻𝑗𝑗) of each task 𝜏𝜏𝑗𝑗, multiplied by 
the cost of each memory request (𝑅𝑅𝐷𝐷𝑝𝑝). The second term is a job-driven approach that takes into 
account the response time of the job being analyzed (𝑅𝑅𝑖𝑖𝑘𝑘). It obtains the maximum possible delay 
that can be caused by the worst activity within the memory system during that time interval. The 
minimum of these two terms is used to reduce pessimism given that, depending on the task and 
memory system parameters, one term may be larger than the other. Additional details of the 
calculation of each element of this equation is beyond the scope of this document; see [B-4] for 
more information. 

For I/O, [B-16] includes a scheduling framework that co-schedules tasks in the processor and 
DMA memory transfer requests. The authors propose the use of real-time calculus [B-22] to 
account for all possible delays and jitter in the system. In real-time calculus, arrival curves provide 
an upper bound (maximum possible) on the number of requests (e.g., jobs) that arrive over time. 
They are used in conjunction with service curves that provide a lower bound (minimum possible) 
on the available “computation” in a processing unit (e.g., processor, network, I/O device, data bus) 
to evaluate if there is enough computation to process the requests in a window of time. Multiple 
arrival curves (e.g., tasks) can be combined with special operations that ensure that the upper bound 
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is preserved. Similarly, multiple service curves can also be combined (e.g., processing in a CPU, 
network, I/O unit) to provide an end-to-end schedulability analysis. 

Combined TDM and Fixed-Priority Scheduling: The combination of TDM and fixed-priority 
scheduling (TDM+FP) is part of the ARINC 653 standard [B-23]. A TDM schedule is used to 
create time partitions and, within each partition, fixed priority is used to schedule the tasks assigned 
to it. To verify the schedulability of this combination, it is necessary to take into account the 
parameters selected at both levels—time slices and priorities—and the combined behavior of these 
schedulers. Some work had been done in this area in what is called compositional analysis. For 
instance, in [B-24], the authors refined the periodic server model [B-25], in which the time slice is 
modeled as a fixed amount of computation provided periodically with a fixed interval (major 
frame). This allowed the authors to build a supply-bound function (sbf) that describes the minimum 
computing resource (processor) available within an interval of time. For the periodic server (and 
ARINC 653), it takes into account what is called a “blackout” interval—the worst-case interval 
that a task will have to wait before it can get the processor (because the processor is attending other 
partitions). Intuitively, this can be defined as the period of the server (the major frame) minus the 
size of the budget of the server (time slot) given to this partition. Similarly, a request bound 
function (rbf) describes the maximum computation time requested by all the applications in a 
partition. A simplified version of this rbf for a task 𝜏𝜏𝑖𝑖 can be described as: 
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Note that equation B-2 is similar to equation B-1, except that 𝑡𝑡 is used instead of 𝑅𝑅𝑖𝑖𝑘𝑘. The 
schedulability of the task set can then be evaluated by testing whether the sbf is always larger than 
the rbf. For a more-detailed discussion and more-elaborate equations of this scheme, see [B-24]. 

Unfortunately, analysis of the TDM+FP combination that includes other resources such as cache, 
memory, and I/O has not been properly developed. However, it is possible to use a simplified 
version of cache and memory partitioning to ensure that each partition obtains its own partition 
and to extend the periodic server model analysis to include the interference of shared partitions. 
However, this needs to be carefully studied to avoid critical pitfalls. 

B.2.1.2.6  Virtual Machines 

From VMs, it is necessary to account for interference from all the different shared resources, as 
explained in section 2.1.2.5. In addition, because scheduling decisions are made both at the 
hypervisor level and at the OS level, an analysis that combines these two levels of decisions must 
be performed. This is similar to the TDM+FP combination presented in the previous section. For 
instance, in [B-26], the authors present an approach to compositional scheduling for periodic 
servers. For the RT-Xen, this approach takes into account the time quantization of the Xen 
hypervisor. 

In another work, Kim et al. [B-27] present a synchronization framework for multicore VMs 
implemented in KVM. In this case, they also provide options for hierarchical scheduling with two 
server models (periodic and deferrable) and a resource synchronization (e.g., mutexes) that take 
into account virtualization. 
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B.2.2  SPATIAL ISOLATION/PROTECTION/PARTITIONING 

Spatial isolation technologies are, in general, more mature than their temporal isolation 
counterparts. In particular, today’s spatial isolation is implemented using the hardware MMU. The 
MMU is used to provide a virtual address space to each process in the system, as explained in 
section 2.1.2.2, mapping these virtual pages to whatever physical pages are convenient. If the 
virtual pages of two processes map to different physical pages, then they will be completely 
isolated from each other (from the memory point of view). 

Complete spatial isolation is sometimes not convenient or even possible when these processes need 
to communicate or use common services from the OS. For communication, two processes may use 
inter-process communication mechanisms provided by the OS or a shared memory region that is 
mapped to both processes. This offers different degrees of isolation, and the specifics of the 
communication determines how isolated they are. 

Common OS services can potentially weaken spatial isolation. This is a particular concern for 
security and a common way to bridge the isolation. For instance, a well-known attack is to call an 
OS service in a way that malicious code is injected into the call (e.g., as part of a buffer that is 
larger than the OS expects, also known as a buffer overflow attack), forcing it to “return” to the 
injected code. This attack allows the malicious code to run inside the kernel and gain access to all 
the physical memory. Furthermore, the OS code in charge of manipulating page tables  
(e.g., changing page tables when a context switch from one process to another occurs), known as 
the virtual memory system, may contain bugs. As a result, the strength of the spatial isolation also 
depends on the correctness of the implementation of the virtual memory system in the OS. 

When VMs are used, the hypervisor creates a hierarchical virtual memory scheme, in which it 
gives each VM its own page table and the OS gives each process a page table. In general, the 
implementation of the virtual memory system at the hypervisor level tends to be simpler than the 
OS implementation. This is because new VMs are not created as frequently as processes (they are 
typically only created at boot time), and they do not need the flexibility that processes need. 

Reduced complexity of spatial isolation at the hypervisor level has enabled the use of formal 
methods to verify its implementation. This is the case in [B-28], in which the authors verified the 
implementation of the isolation between hypervisor modules. 

B.2.3  I/O ISOLATION 

In addition to the temporal interference caused by I/O devices with DMA access, I/O could create 
problems in a DMA device using memory that does not correspond to the request at hand. To 
prevent this, the I/O memory management unit (IOMMU) was created. The IOMMU creates a 
virtual memory system for I/O devices with DMA access with its own page tables. Hypervisors 
use the IOMMU to do DMA memory remapping, ensuring that the device has access only to the 
memory partition of the request at hand, therefore preserving spatial isolation  
[B-29, B-30]. 

The IOMMU is also designed to reroute interrupts. This is important for temporal isolation, given 
that a task may be preempted by an interrupt, even though such an interrupt is related to a lower-
priority task’s I/O request. This is a twofold problem. First, interrupts must be directed to the core 
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that is related to the I/O request; second, it should be ensured that the interrupt affects the timing 
of only the partition related to that request. Otherwise, interrupts would break the temporal 
isolation. 

Temporal interference from interrupts is a well-known problem in real-time systems. The problem 
originates from the fact that CPUs give higher priority to interrupts than any other task that may 
be running. Whereas in general-purpose computing this may be acceptable, in real-time systems, 
tasks may have higher priorities than some interrupts and, therefore, should not be preempted. 
Moreover, if we follow RMS, if the interrupt has a minimum inter-arrival time larger than that of 
a task, it should be given a lower priority than the task. This problem was addressed in [B-31]. In 
this paper, the authors created an integrated priority space where interrupts can be given any 
priority, even lower than that of a task. This was implemented in COTS i386 hardware using the 
programmable interrupt controller to disable the interrupts that had lower priority than the 
currently running task. This was necessary to circumvent the hardwired priorities of the interrupts. 
IOMMUs simplify the interrupt disabling. However, further research is necessary to align these 
solutions to the temporal protection needed in real-time systems and coordinate it with other shared 
resources. 

B.2.4  HETEROGENEOUS HOST OPERATING SYSTEMS 

Hosting heterogeneous operating systems in different VMs does not impose more challenges for 
isolation than the ones already discussed. However, ensuring that the worst-case timing behavior 
of an application in different operation system is preserved can potentially increase the number of 
OS/hypervisor combinations that need to be validated. 

B.2.5  SUMMARY OF GOALS AND PROPERTIES 

The economies of scale of general-purpose computing have triggered a series of innovations (such 
as cache, pipelined processors, memory bank parallelization, and multicore processors) that 
improve the average-case performance at all levels all the way up to VMs. The need to incorporate 
more functionality in embedded systems, and specifically in avionics systems, demands the use of 
these innovations in the RTES realm. However, two challenges arise from this use: 1) the need to 
adapt innovations in general-purpose computing to make their timing behavior predictable, and 2) 
the need to create an analytic approach that integrates the behavior of all the innovations (cache, 
memory, buses, processors, OS, and hypervisors) while determining the schedulability of task sets 
running in these platforms. Table B-1 shows some of the innovations and their adaptations to 
RTES computing. 
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Table B-1. Innovation properties and adaptations 

Innovation Adaptation 
Properties/ 

Characteristics Integration 

Pipelined processor Abstract 
interpretation 

Increased IPC 
Decreased 
predictability 

WCET 
Measurement plus 
over-approximation 

Cache memory Cache coloring 
Scratchpad memory 

Faster memory 
access 
Eviction isolation 

Memory partitioning 
and scheduling 

Memory banks Bank coloring Memory interference 
isolation 

Coordination with 
cache plus scheduling 

DMA transfer Core co-scheduler 
Reduced and 
predictable DMA 
memory interference 

With schedulability 
Missing additional 
integration 

Interrupts Unified interrupt plus 
task priorities 

Elimination of 
unpredictable 
unrelated interrupts 

Only at the priority 
level 
Missing temporal 
isolation integration 

Hypervisor 
scheduling 

Compositional 
scheduling 

Analyzable but 
inefficient timing 

Some initial 
integration OS and 
memory hierarchy 

B.3  ADDITIONAL CERTIFICATION COMPLEXITY DUE TO VIRTUALIZATION 

B.3.1  ADDITIONAL TIMING VERIFICATION COMPLEXITY DUE TO VIRTUALIZATION 

In this section, the additional complexity added to the timing verification due to the use of VMs is 
discussed. The additional complexity of timing verification comes from four sources: 1) more 
complicated WCET analysis caused by interference between VMs, 2) hierarchical scheduling, 3) 
shared software resources within the VMM, and 4) overhead of the VMM. 

With respect to more-complicated WCET analysis caused by interference between VMs, the 
following is noteworthy. A thread executing in one VM can evict a cache block that a thread in 
another VM has fetched. In this way, the execution of one thread in one VM can impact the 
execution time of another thread in another VM. In multicore processors, there are additional 
effects that are similar. A thread can evict a row in a memory bank that another thread in another 
VM has fetched to this memory bank; this causes the other thread to execute more slowly. In 
addition, a thread in one VM can contend for the memory bus and prevent another thread in another 
VM from accessing the memory bus at a certain instant; this delays the memory access time of the 
other thread. These memory interferences happen because one thread makes a memory access that 
is based on a memory instruction (e.g., load or store) that is in the program. However, a program 
may also make other memory accesses that are not directly seen from the executable binary code. 
For example, a thread that generates a page fault may generate a memory access (a lookup in a 
page table). Whereas a thread performing no-operation (NOP) instructions generates no page 
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faults, the processor may still generate memory access because of hardware prefetching. 
Speculative execution can cause similar additional memory accesses. 

With respect to hierarchical scheduling, the following is noteworthy. Many VMMs schedule VMs; 
if one VM does not need to execute, then another VM will execute. Therefore, the speed of 
execution for one VM depends on whether another VM is busy or idle. Although a thread in one 
virtual processor depends on whether another virtual processor is idle or busy, bounds on the 
timing of a thread can still be proven. The real-time systems community has developed a theory 
called hierarchical scheduling that can do this. It computes a so-called supply-bound function for 
each VM (this provides a function that states for each t, a lower bound on the amount of processing 
time that the VM receives for each time interval of duration t). Given this supply-bound function 
for a VM, timing analysis can be performed of all threads in this VM. This analysis typically makes 
simplifying assumptions, such as ignoring interference from the memory system (mentioned in the 
previous paragraph). 

With respect to shared software resources within the VM, the following is noteworthy. When a 
thread makes a system call to perform I/O, it typically copies data to/from the guest operating 
system kernel. In turn, these data need to be copied from/to the VMM. Therefore, there are shared 
data structures in the VMM. Typically, it is necessary to protect those data structures from 
concurrent accesses (one entity should not write to a data structure in which writes are already in 
progress). Usually, locks are used to prevent that. However, an I/O operation performed by one 
thread in one VM can then impact the timing of one thread in another VM. 

With respect to overhead of the VMM, the following is noteworthy: the VM generates additional 
context switches that may increase the number of cache misses. Finding bounds on these cache 
misses is nontrivial and not well studied. 

B.3.2  ADDITIONAL LOGICAL VERIFICATION COMPLEXITY DUE TO 
VIRTUALIZATION 

This section discusses the additional complexity added to logical verification due to the use of 
VMs. Such additional complexity arises from new interactions between the hypervisor and guests, 
and between the guests themselves. These interactions open up the possibility that a system 
consisting of several OSs will reach new states when executing in a virtualized environment, as 
opposed to the case when each operating system executes on a physically separate hardware-
computing platform. In other words, virtualization exacerbates the “state-space explosion” 
problem, which in turn leads to increased complexity of exhaustive logical verification techniques 
(such as model-checking and theorem-proving) that must analyze all possible reachable states and 
executions. 

What is the essential difference between a virtualized system (one in which multiple OSs share 
one or more CPUs) and a federated system (one in which each OS executes on its own CPU) in 
terms of logical complexity? The answer is that in the virtualized system, the interface between 
OSs is increased significantly. In a federated system, OSs can only interact via a communication 
medium, such as a network, or a shared resource, such as a networked file system. The interfaces 
for interacting in this manner are limited and well understood. For example, network-based 
communication can be abstracted as channels, whereas files can be thought of as shared memory. 
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Synchronization primitives (such as blocking function calls and file locks) are used to avoid 
concurrency issues, such as deadlocks and race conditions. These synchronization primitives are 
also used to restrict possible executions (and therefore the reachable state space). For example, if 
a file is guarded by a lock, then the system can never have an execution in which multiple OSs 
write to the same file at the same time. The “air gap” between OSs in a federated system limits its 
state space and, therefore, its logical verification complexity. 

In contrast, multiple OSs in a virtualized system can interact directly through the shared hardware 
because there is no air gap between them. The most obvious way to interact is via the memory 
subsystem. Unless appropriate protection mechanisms are implemented, one OS could simply 
overwrite the memory of another. Even worse, a guest OS could overwrite the memory of the 
hypervisor, rendering the system completely unpredictable. In the same way, a guest could modify 
the state of a device that is also accessed by another OS or the hypervisor, unless appropriate 
protection mechanisms are employed (e.g., by appropriately programming the IOMMU at system 
boot time). Specific types of such interaction include: 

• Interference by one guest OS on another due to bugs in the VM/hypervisor that allow 
logical isolation between guests to be broken. The interference can lead to data corruption 
or data leakage, and changes in control flow that allow new code to be executed. 

• Interference by a guest on the VM due to logical bugs. This can cause complete takeover 
of the system by a guest, or one guest can cause the entire system to crash or steal CPU 
cycles from others. 

• Interference by the VM on guests over and above those required for virtualization. For 
example, a buggy VM can leak information from guests, corrupt their data and control 
flow, and prevent them from being scheduled properly. 

Ensuring proper isolation between guests, and between the guest and the hypervisor, is possible. 
The challenge is verifying that these isolation mechanisms are implemented correctly. It is 
complicated by the fact that hypervisors must involve at least some low-level programming  
(e.g., assembly), and verifying low-level programs is notoriously complex because of the need to 
model the hardware state and bit-level semantics. Classical program verification techniques that 
treat programs as transformers of numeric variables (e.g., int variables as unbounded integers) are 
no longer adequate in such cases. Traditional state-space reduction techniques, such as abstraction, 
are also not applicable because the low-level code (e.g., programming the IOMMU, or setting the 
value of the register pointing to the base of a nested page table) is crucial to correct implementation 
of the isolation mechanism and cannot be abstracted away without losing the ability to prove the 
system correct. 

The other source of complexity is concurrency. Because the guests and the hypervisor execute in 
parallel, the logical isolation mechanisms (page tables, IOMMUs) must be constantly updated by 
the hypervisor to ensure that the executing guest is able to access its memory and devices, but 
nothing else. The logical invariants needed to prove that this is done correctly are complicated, 
because they involve the states of all the guests. They are difficult to discharge and not amenable 
to compositional reasoning without considerable manual effort (e.g., to apply assume-guarantee 
reasoning by manually constructing appropriate assumptions). 
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Note that all this logical verification complexity is over and above the complexity of verifying a 
virtualized system as if it were federated. For example, we still have to verify that shared files are 
locked properly and network communication is appropriately encrypted. However, verifying a 
virtualized system is not impossible, provided the right combination of architecture-guided 
analysis decomposition is used with software verification that includes an appropriate hardware 
model. Whereas this effort is manually intensive, it may be justified by the safety-critical nature 
of such systems and the fact that the verification effort is a one-time affair that is then amortized 
over many successful deployments of the target system. 

B.4  ISOLATION COMPARISONS WITH OTHER TECHNOLOGIES 

In this section, other technologies developed to provide similar properties as the ones provided by 
VMs are discussed. Their differences and the implications for certification, when appropriate, are 
also discussed. 

B.4.1  OPERATING SYSTEMS 

Whereas general isolation properties of OSs were discussed in section 2, in this section the focus 
will be on variations of OS kernels and their different protection schemes. 

B.4.1.1  Monolithic Kernels 

Monolithic kernels are the most common ones, like the different variants of Unix, including Linux; 
Windows NT; and its successors XP, 7, 8, and 10. These kernels basically present two main 
protection spaces, user and kernel, with the user space partitioned into processes. The monolithic 
kernel partitioning can be considered fairly stable and strong with respect to spatial partitioning. 
However, they can provide only average-case guarantees for temporal protection, as previously 
discussed in section 2.1.1.5. 

Monolithic kernels have the particularity that all kernel activity lives in the same protection space 
and has access to all areas, including the memory of all processes and physical devices (therefore 
the “monolithic” character). This simplifies implementation but also makes it very easy for a fault 
in one area of the kernel to propagate to any other area. Also, because all the functionality of the 
kernel lives in this protection space, the complexity of the code running at this level is significant 
and not very amenable to verification. 

B.4.1.2  Microkernels 

Microkernels were developed to address the complexity problem of monolithic kernels. 
Specifically, microkernels push most of the functionality into modules that execute with a low 
level of privilege (user level). These modules communicate and are scheduled through a very small 
privileged layer known as the microkernel. The microkernel also provides low-level access 
functions to physical devices. For instance, the file system lives in a server running in user space. 
When a user process wants to write to a file, it sends the request to the file system server through 
the microkernel. Then, the file system server identifies the disk blocks it needs to read/modify and 
asks the microkernel to perform these low-level operations. The advantage of this structure is that 
when a server fails, this failure can be contained to the process where the server runs. Properties 
of temporal and spatial protections implemented by the microkernel can be more easily verified. 
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Two examples of microkernels are the QNX Neutrino Microkernel [B-32] and seL4 [B-33]. The 
QNX kernel is a real-time commercial kernel owned by Blackberry. However, seL4 is a research 
microkernel originally developed for general-purpose computing with a particular emphasis on 
security; seL4 has been formally verified from the logical perspective (as opposed to timing). The 
project eChronos has been actively working to create a verified RTOS based on seL4. In particular, 
eChronos includes a fixed-priority scheduler, and its authors are actively engaged in making the 
execution of the kernel predictable, such as by verifying the maximum number of iterations that 
the loops in the kernel execute [B-34]. As discussed in [B-18], microkernels have a lot in common 
with VMs; they can keep only one copy of the kernel and OS services or potentially multiple copies 
and different implementations (e.g., Unix, Linux, Windows). This concept was introduced by the 
Mach microkernel [B-35]. 

B.4.1.3  Separation Kernels (MILS) 

As discussed in [B-18], separation kernels modularize the kernel functionality and create security 
levels (known as Multiple Independent Levels of Security/Safety, or MILS) that simplify the 
security verification. The focus on security differs from the safety certification concerns. Also, 
Rushby’s original paper does not mention timing separation [B-36]. As a result, MILS have 
different objectives from safety-oriented isolation. 

B.4.2  ARINC 653 

A number of commercial RTOSs have implemented the ARINC 653 as already discussed in  
[B-18]. In this section, the partitioning characteristics that make it amenable for certification are 
highlighted. In particular, given that temporal partitions are created as a set of time slots over a 
major frame (see [B-18], section 4.1.4), it is easier to match this scheme with certification 
standards language. For instance, [B-37], section 2.3.3 states that “A software partition should be 
allowed to consume shared processor resources only during its allocated time.” Similarly, in 
section 3.2, the document reads, “For example, any service performed on behalf of an application 
should be executed in its allocated time and not during the time allocated to another application.” 
Similar words are used in [B-38]. For instance, section 2.4.1 reads, “A partitioned software 
component should be allowed to consume shared processor resources only during its scheduled 
period of execution.” In all these cases, validating these requirements against a static timeline (over 
a major frame) can potentially be performed manually or with a simple tool. 

It is worth noting that, because the ARINC 653 standard includes a compositional approach in 
which tasks within a partition are scheduled with fixed-priority scheduling, verifying that tasks do 
not miss their deadlines requires a hierarchical verification approach, as discussed in [B-18], 
section 4.1.4. 

As discussed in section 2, the combined used of resources—including I/O, cache, and memory—
must also be evaluated to ensure the proper temporal isolation. 

B.4.3  TTA 

The TTA approach follows a time partitioning approach similar to ARINC 653 by dividing a major 
frame into slots where different applications are run. However, TTA does not have a hierarchical 
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approach and only schedules the processor based on time slots. Moreover, TTA was born in a 
distributed environment, and a time-slotted bus transmission is used as a global clock that triggers 
all the activities in the distributed system. As mentioned in [B-18], sections 4.1.3 and 4.1.4., 
defining the time slots of a system with this type of scheduling is an NP-complete problem and, 
therefore, does not scale well. 

B.4.4  RESOURCE RESERVATIONS 

The temporal partitioning implemented by resource reservations ensures that if a task is deemed 
schedulable (to meet its deadline), it is guaranteed to stay schedulable even if other tasks try to 
misbehave (execute longer than their WCET). Two elements are involved in this guarantee: 1) a 
worst-case timing analysis (e.g., response time), and 2) a WCET enforcement mechanism. The 
timing analysis typically assumes a priority scheduling, in which a task with high priority is 
allowed to preempt lower-priority tasks whenever it arrives and a minimum inter-arrival time of 
the tasks. Using these elements, the worst-case timing behavior of a task, such as its worst-case 
response time (WCRT), is evaluated (taking into account preemptions from higher-priority tasks). 
If it is shorter or equal to its deadline, it is deemed schedulable. For instance, the WCRT of a task 
in a task set scheduled under RMS or DMS can be obtained with equation 1 from [B-18]. 

Resource kernels track the execution of a task, discounting all the preemptions it may suffer from 
higher-priority tasks to monitor it. During this monitoring, if the kernel discovers that the task will 
exceed its WCET, the kernel stops it, typically reactivating it once its next arrival time elapses. 
This ensures that the calculated WCRT of the tasks is preserved. 

The mechanisms, assumptions, and theory backing up the resource reservation scheme for 
temporal isolation are not as easily relatable to the language in certification documents. More 
specifically, it is not possible to manually identify the “allocation time” of a partition, as stated in 
[B-37, B-38]. Instead, tasks are allowed to preempt each other based on priorities, and 
mathematical properties are used to evaluate the worst-case timing behavior. However, verifying 
whether a task set is schedulable is as easy as evaluating equation 1 in [B-18], which runs 
instantaneously, as opposed to solving a complex NP-complete problem to figure out static time 
slots for ARINC 653 or TTA. 

B.4.5  MIXED-CRITICALITY SCHEDULING 

Mixed-criticality scheduling is a variant of the resource reservation scheme that allocates different 
WCETs to tasks at different criticality levels and assigns each task a criticality level. These 
criticality levels are aimed at matching the software level based on the failure condition 
categorization of certification standards like DO-178. Similarly, the rigor with which each level is 
verified is mapped to the degree of certainty that a task will not exceed a particular WCET (at the 
task criticality level). Because, in practice, a more pessimistic WCET (that allows for a larger 
margin of error) leads to more certainty, the WCET of a task at a higher criticality level will be 
larger than at a lower criticality level. Then, when it is verified whether a task meets its deadline, 
all the tasks in the system are assumed to run with a WCET at the same or a lower criticality level 
as required by the task being verified. Low-criticality tasks are prevented from interfering with 
higher criticality tasks, but a higher criticality task is allowed to steal cycles from lower criticality 



 

B-22 

tasks when the higher criticality task runs at a WCET with a criticality that exceeds that of the 
lower criticality tasks. 

Clearly, different partitioning variants are possible to implement the protection that VMs aim to 
provide. These variants provide different validation approaches; some are easier to match to 
certification documents but may suffer from a more complex configuration/validation scheme. 
Others are easier to configure and validate but may not be readily relatable to certification 
language. 

B.5  DEVELOPMENT PROCESS ISSUES 

In this section, the development process benefits from the isolation or partitioning properties 
offered by VMs will be discussed. Virtualization has become a commodity technology today. At 
the individual user level, products like VMWare, Xen, and VirtualBox are well supported and 
easily deployable on commodity desktops and laptops. Even lightweight container technologies, 
such as Docker, have reached a significant level of easy and widespread use. At the large-scale 
distributed level, well-established server farms, such as Amazon’s EC2 and Microsoft’s Azure, 
can now be found. These enable CPU cycles to be traded in bulk and backed by sophisticated 
service-level agreements. The most common format in which CPU cycles are made available is 
VMs. The user rents one or more VMs on which he or she can execute arbitrary software. The 
supplier manages the hardware infrastructure on which a farm of such VMs can be executed while 
respecting the service-level agreements. 

The availability of cheap and efficient virtualization technology has ushered in some radical 
changes in which software is developed, tested, and maintained: 

• VMs allow much easier setup of a specific development and test environment for a specific 
project. This includes not only the correct operating system but also the right editors, 
compilers, libraries, IDEs, test harnesses, and more. A developer working on multiple 
projects can easily set up one VM per project, each with the appropriate environment. This 
completely sidesteps issues such as software incompatibility between different projects, 
which is a major obstacle if conflicting projects have to be developed on the same OS. It 
also provides a portable development environment that can be transferred easily from one 
machine to another. Because VMs provide the same interface as hardware, they do not 
suffer from portability issues caused by library emulation, such as Cygwin and Wine. 

• VMs provide a natural isolation between multiple projects. Often, this isolation is just a 
precaution to avoid confusion. However, in many cases the isolation is necessary, such as 
when two projects contain proprietary information from different customers or credentials 
(such as software licenses and encryption keys) that should not be mixed. VMs also provide 
network isolation in a natural way and, therefore, are useful to set up protected enclaves 
that are unreachable from the corporate network, LAN, WAN, or Internet. This reduces the 
likelihood of cyber attacks on individual VMs and the spread of contagion from one VM 
to another. 

• The portability of VMs also provides a clean way to share development and testing among 
multiple project members. Developers (e.g., working across different time zones) can work 
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on the same product by sharing a VM. A tester can provide feedback to a developer by 
passing back the VM. Teams can demonstrate and share their products with management 
and customers by deploying them on VMs with all necessary software installed. This 
reduces chances of missing dependencies and failures during demonstrations. 

• The DO-178 standard requires isolation between applications with different levels of 
criticality. VM technology can provide an effective way to achieve this isolation while 
executing such applications on the same hardware. However, isolation must be rigorously 
assured. At the same time, the loss of physical redundancy can hamper fault-tolerant 
characteristics. For example, a hardware fault can affect multiple applications, where 
previously this was impossible because of the “air gap.” 

• DO-178 also requires a mapping between high-level and low-level requirements. 
Virtualization can help construct this mapping by enabling the development of systems in 
a compositional and hierarchical manner. This is particularly critical for RTES, such as 
avionics, that are being developed by large groups of teams working on individual 
subcomponents. Often, the development of subcomponents is subcontracted to other 
organizations, and the resulting products are integrated by the main company. Given the 
increasing trend toward model-based development and virtual integration, real-time 
properties at the system level can be ensured at the system level only by using 
compositional timing verification techniques (such as those presented in section 6.2). 

• Last, the availability of large server farms means that companies have the option of 
outsourcing hardware maintenance to other parties so they can focus their energy on core 
product development. This allows for more specialization and increased productivity and 
innovation of the software ecosystem. 

All these benefits come with the caveat that VMs must be properly designed, developed, and 
deployed, which is by no means a trivial task. However, to a large extent, these problems have 
been addressed in the IT space, if not in the real-time embedded domain. 

B.6  ASSURANCE OF AVIONIC SYSTEMS 

In this section, VM issues related to assurance in avionics systems will be discussed. The section 
focuses on DO-178C and related documents. It begins with a brief overview of DO-178C and then 
considers specific parts of DO-178C. Then, it covers DO-333, which is a supplement to DO-178C 
on formal verification. Then, the section discusses DO-254, which covers complex electronic 
hardware. Finally, a document (CAST) that is not a guidance document but a position paper on 
multicore processors is discussed. This is included because one of the likely usage scenarios of 
virtualization is for multicore processors. 

B.6.1  DO-178C OVERVIEW 

General overview of DO-178C: By law, in the United States of America, an airplane must be 
airworthy; that is, it must be suitable for safe flight. The airworthiness of an airplane is assessed 
by aircraft certification authorities (e.g., FAA). As part of the certification of airworthiness of an 
airplane, the national certification authority approves the software. DO-178C [B-38] is a document 
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that provides guidance for such approval. It discusses the applicant (e.g., an organization that wants 
to develop a new airplane) and the certification authority (e.g., FAA). 

Section 10 in DO-178C [B-38] describes the certification process; it involves three major steps: 1) 
the certification basis, 2) software aspects of certification, and 3) compliance determination. 
Certification basis means that the certification authority establishes the basis for the product to be 
certified in consultation with the applicant. Then the applicant submits a “Plan for Software 
Aspects of Certification” to the certification authority. The certification authority assesses whether 
the plan complies with the certification basis agreed on in the first step. Finally, the certification 
authority determines whether the product to be certified (including its software) complies with the 
certification basis. It does so by reviewing a “Software Accomplishment Summary.” The last two 
steps will be described in this section. 

The “Plan for Software Aspects of Certification” is described in section 11 in DO-178C [B-38]. It 
includes a system overview that describes the function of the system, hardware, and software. It 
also includes a description of the software. It includes a schedule for giving the certification 
authority visibility into the activities of the software life cycle so reviews can be planned. Finally, 
it can contain a large number of plans, including plans for requirements, plans for design, plans 
for coding, plans for integration, and plans for verification. 

The “Software Accomplishment Summary” is described in section 11.20 in DO-178C [B-38]. It is 
similar to the “Plan for Software Aspects of Certification,” but it describes what actually happened 
and deviations from the plan. 

Overview of DO-178C relevant for VMs: According to DO-178C, there should be a description 
of how a function is implemented, and a system should be described with components. A function 
has a failure condition category; it describes the consequences of a failure of a function. For 
example, the category “Catastrophic” means that a failure may result in multiple fatalities, usually 
with the loss of the airplane. There are four other failure condition categories for less severe 
consequences. A software component has a level indicated by a letter A–E, in which A is the most 
critical and E is the least critical. The level of a software component is assigned based on the failure 
condition category of the function it provides. 

DO-178C uses the term “partition.” Partitioning is a way to ensure that one software component 
does not impact another software component. If partitioning is not used, then the software must be 
assigned a level equal to the highest failure condition of the functions that it provides. 
Traditionally, partitions were formed using two techniques: 1) the virtual memory system, and 2) 
ARINC 653. With a virtual memory system, whenever a program accesses memory, it accesses a 
virtual memory address. This virtual memory address is translated to a physical memory address, 
and then data are read from or written to this physical memory address. In this way, the OS can set 
up the virtual memory translation so that a write of one program cannot modify memory that 
another program may access.  

With ARINC 653, a scheduler in the OS forms time partitions (i.e., the scheduler uses time-
triggered scheduling with a table that specifies the starting time and duration of a time partition). 
In this way, a component can be assigned to one time partition and another component can be 
assigned to another time partition. Ideally, they will not influence one another’s timing. In many 
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practical settings, however, execution of one component in one partition will influence the timing 
of another component in another partition. There are many causes for this (as explained earlier in 
this report). Cache eviction is one of the causes. Another is that one component may initiate DMA 
transfer, and this transfer is performed at a time when another time partition is active (i.e., when 
another component executes). Despite these drawbacks, ARINC 653 is used in practice and it 
provides some degree of isolation. With ARINC 653 and each component having its own dedicated 
time partition, the timing of one component tends to be less influenced by the execution of another 
component than would have been the case if no time partitions existed. 

DO-178C specifies that for each system requirement on a function that is allocated to software, 
the software component should have high-level requirements. Then low-level requirements should 
be traceable to high-level requirements. The low-level requirements are inputs to the coding 
process (specified by the Software Development Plan and Software Coding Standard); the low-
level requirements should be sufficiently detailed that coding can be done without further 
information. 

B.6.2  DO-178C-SPECIFIC REMARKS RELATED TO VIRTUAL MACHINES 

This subsection will make detailed remarks on DO-178C with respect to virtualization. 

Section 2 in DO-178C covers system aspects related to software development. Section 2.3.1 
discusses the relationship between software errors and failure conditions: 

It is important to realize that the likelihood that the software contains an error cannot be 
quantified in the same way as for random hardware failures. [B-38, p. 12] 

This statement was made in the context of a system with hardware and software, and discussing 
errors and failure conditions. However, because a VM behaves, from the perspective of application 
software, as hardware but is being implemented in software, it is important to note that the 
simulated hardware (i.e., the VM) can suffer from a fault not only because its underlying hardware 
suffers from a fault but also because of design defects in the software that generates a VM. 

Page 15 mentions that: 

A partitioned software component should not be allowed to contaminate another 
partitioned software component’s code, I/O, or data storage areas. 

From a functional perspective, this can often be achieved if each component has its own VM. 
However, the timing (and, in this case, timing of I/O) can be impacted by the fact that a partitioned 
software executes on a VM. To understand this, consider a legacy system that does not use 
virtualization. In this legacy system, there is an old processor. The software uses a sensor, and the 
software does not use an OS; it performs I/O directly (i.e., I/O code is intertwined with the 
application code—not a recommended practice these days). Assume the functionality is still highly 
valued, but the processor is no longer commercially available. Therefore, a VM equivalent to this 
old processor is needed. It could be replaced as follows: Consider a VMM that simulates even I/O 
instructions, and assume that the software performs programmed I/O. Consider that this 
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programmed I/O is done as follows: read I/O port, perform five NOP operations (to cause a delay), 
and then repeat the above a fixed number of times.  

A software practitioner may have written the software that performs I/O assuming that the code 
executes on a computer with a physical processor with some bounds on its speed. For this 
assumption, the software practitioner can know that the time it takes to execute the five NOP 
instructions is at most a certain known time and at least a certain known time. The choice of using 
five NOPs may be intentional to ensure that the time between two readings of I/O ports is upper 
and lower bounded. However, now when this software performing I/O executes on a virtual 
processor, it can happen that the scheduler in the VMM allocates one time quantum (e.g., 10 ms) 
for VM; at the end of this time quantum, the software performing I/O performs one I/O instruction. 
Then the VMM switches to another VM for one time quantum and switches back again. In this 
case, the time between two I/O operations can be approximately 10 ms, which is typically much 
longer than the time to execute five NOP on a physical processor. Therefore, when a software 
practitioner ports existing software from a physical processor to a VM, the software practitioner 
needs to check if this type of programmed I/O with delays achieved with NOP instructions exists, 
and that the timing between such I/O operations will be satisfactory in the new configuration  
(i.e., the VM). 

Page 15 mentions that: 

A partitioned software component should be allowed to consume shared processor 
resources only during its scheduled period of execution. 

As was mentioned previously in this document, the use of virtualization can cause one software 
component in one partition to evict cache blocks that another software component in another 
partition has fetched. Therefore, one software component can influence the timing of software 
components in other partitions. 

There is another risk related to this and virtualization: it is common in avionics to use triple or 
quadruple modular redundancy to achieve better reliability. The main idea is that hardware faults 
are independent. Therefore, if one processor experiences a fault, then the other processors are not 
likely to experience a fault. However, if these processors are formed as VMs out of a single 
physical processor, then if the physical processor experiences a fault, it will clearly impact all the 
virtual processors (or VMs) running on this physical processor. Therefore, if one takes a single 
physical processor, uses virtualization to form four virtual processors, and runs a quadruple 
redundancy scheme, this cannot be expected to work just like on physical processors. For this 
reason, a system uses replication; the replicas should be assigned to different physical processors 
(i.e., replicated software should be assigned to virtual processors that map to different physical 
processors). 

Section 4 in DO-178C covers the software planning process. Section 4.4.3 discusses the software 
test environment: 

a. The emulator or simulator may need to be qualified as described in section 12.2. [B-
38, p. 29] 
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This sentence appears to have been written assuming that the deployed system does not use 
virtualization; it appears to discuss emulation and simulation only for testing purposes. However, 
if virtualization is used, then the runtime system also has a simulator. It is worth asking whether 
this runtime system should be considered (within DO-178C terminology) as a tool and therefore 
require tool qualification. Alternatively, perhaps the runtime system that provides VMs should 
instead be considered as the deployed software and therefore be verified rather than qualified. The 
FAA considers that anything that executes at runtime should be considered as part of the deployed 
systems and therefore should be verified. 

Section 5 in DO-178C covers the software development process. Section 5.4.2 discusses 
integration process activities: 

a. Software integration should be performed on a host computer, a target computer 
emulator, or the target computer. [B-38, p. 36] 

It is worth asking what “target computer” means here. If the system in operation uses virtualization 
to form two VMs, then the target computer is one of the VMs. The FAA considers that the VM 
should be tested on the actual target hardware given that the combination (VM + hardware) is part 
of the runtime environment required to be tested. 

Section 6 in DO-178C covers the software verification process. Section 6.3 discusses software 
reviews and analysis: 

For example, a combination of reviews, analyses, and tests may be developed to establish 
the worst-case execution time or verification of the stack usage [B-38, p. 41]. 

It is worth noting that virtualization can influence both WCET and stack usage. As already 
mentioned, a component in one VM can evict a cache block fetched by another component in 
another VM. Therefore, one component in one VM can impact the execution time of another 
component in another VM. Stack usage is also influenced by the number of preemptions; the 
number of preemptions is influenced by the response time; and the response time is influenced by 
the WCET. Therefore, migrating software from a physical processor to a virtual processor can 
influence both WCET and stack usage. Even without cache eviction, the execution of one 
component in one VM can still impact another component in another VM. This can happen if a 
VMM that does not use time partitioning is used. Most VMMs for IT systems use a variant of 
round-robin scheduling. Then the amount of processing cycles that one VM will get in a time 
interval depends on whether there are other VMs in the system. Therefore, it can happen that the 
software practitioner tests software in one VM, and its timing is acceptable, but when a new VM 
is started (for running software of another component), the scheduler gives less processing time to 
the former, and its timing requirements are violated. This can happen (i.e., execution on one VM 
can impact the timing of software executing in another VM) even if the VMM uses an event-
triggered real-time scheduler (e.g., global EDF or global Rate-Monotonic). Such real-time 
schedulers typically have an analysis so that the impact of one component on another can be 
bounded. Yet the dependency of timing of one component on the execution of another component 
is still there; it is just that it is bounded.  
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Section 6 in DO-178C covers the software verification process. Section 6.3.1 discusses reviews 
and analyses of high-level requirements: 

a. Compatibility with the target computer: The objective is to ensure that no conflicts 
exist between the high-level requirements and the hardware/software features of the 
target computer, especially system response times and I/O hardware 
[B-38, p. 41]. 

With virtualization, what is referred to as the target computer may be a VM. Once again, with 
virtualization, the response time and stack usage of one thread/component in one VM can be 
influenced by execution of another thread/component in another VM. Yet, once again, 
programmed I/O with NOPs is sometimes used to generate a delay between I/O operations. The 
timing of this execution can be very different in a VM compared to a physical processor. 

Section 6 in DO-178C covers the software verification process. Section 6.3.3 discusses reviews 
and analyses of software architecture: 

a. Compatibility with the high-level requirements: The objective is to ensure that the 
software architecture does not conflict with the high-level requirement, especially 
functions that ensure system integrity, for example, partitioning schemes.  
[B-38, p. 42] 

Some virtualization software for real-time systems (e.g., RT-Xen) uses an event-triggered 
scheduler with a reservation mechanism for each VM. In this way, the execution of one component 
in one VM can impact the timing of a component in another VM. Typically, one configures 
parameters of the reservation mechanism (e.g., VM 1 should receive 30% of the processing 
capacity, and the granularity of allocation should be 10 ms) so that each VM receives a lower 
bound on service for a time interval of given duration. In this way, there is a new type of linked 
requirements. There are requirements on the reservation mechanism, which relates to a VM, and 
on response times of threads within a VM. It is important to trace those requirements. 

Section 6 in DO-178C covers the software-verification process. Section 6.3.3 discusses reviews 
and analyses of software architecture: 

a. Consistency: The objective is to ensure that a correct relationship exists between the 
components of the software architecture. The relationship exists via data flow and 
control flow. If the interface is to a component of lower software level, it should also 
be confirmed that the higher software level has [an] appropriate protection mechanism 
in place to protect itself from potential erroneous inputs from the lower software level 
component [B-38, p. 42]. The messaging between partitions is itself partitioned, so 
that the work done by the sending partition is done in the context of the sender, and 
the work done to perform the receiving operations is done by the receiving partition. 
The MMU will perform any switching required to ensure that each part of the 
transaction is performed by the appropriate actor.  

Shared data structures in the VMM can cause timing dependencies between components in 
different VMs. Consider two components in different VMs, and each VM is allocated to its own 
physical processor (assume that the physical computer is a multicore processor). One component 
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makes a system call to its guest operating system and this, in turn, calls the VMM (for example, 
for memory management). The other component does exactly the same thing. However, if their 
execution in the VMM requires holding a data structure under mutual exclusion, then only one 
system call to the VMM can be done at a time; the other has to wait. This results in a timing 
dependency. 

Section 6 in DO-178C covers the software verification process. Section 6.3.3 discusses reviews 
and analyses of software architecture: 

c. Compatibility with the target computer: The objective is to ensure that no conflicts 
exist, especially initialization, asynchronous operation, synchronization, and 
interrupts, between the software architecture and the hardware/software features of 
the target computer. [B-38, p. 43] 

It is worth mentioning that in this language, the “target computer” could refer to a VM and a VMM. 

Section 6 in DO-178C covers the software verification process. Section 6.3.4 discusses reviews 
and analyses of source code: 

f.  Accuracy and consistency: The objective is to determine the correctness and 
consistency of the Source Code, including stack usage, memory usage, fixed-point 
arithmetic overflow and resolution, floating-point arithmetic, resource contention and 
limitations, worst-case execution timing, exception handling, use of uninitialized 
variables, cache management, unused variables, and data corruption due to task or 
interrupt conflicts. The compiler (including its options), the linker (including its 
options), and some hardware features may have an impact on worst-case execution 
timing, and this impact should be assessed. [B-38, p. 42–43] 

As mentioned above, porting software from running on a physical processor to an “equivalent” 
virtual processor can lead some of these issues to violate timing requirements and stack usage 
requirements. 

Section 6 in DO-178C covers the software verification process. Section 6.4 discusses software 
testing: 

e. The executable object code is compatible with the target computer [B-38, p. 44]. 

It is worth mentioning that in this language, the “target computer” could refer to a VM. 

Section 6 in DO-178C covers the software verification process. Section 6.4.2.1 discusses normal 
test range cases: 

b. For time-related functions, such as filters, integrators, and delays, multiple iterations 
of the code should be performed to check the characteristics of the function in context 
[B-38, p. 46]. 

Porting software from running on a physical processor to an “equivalent” virtual processor can 
lead some of these issues to violate timing requirements and stack usage requirements. This 
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impacts the above statement in DO-178C. Specifically, certain implementations of differentiation 
of a signal with respect to time are performed by taking a sensor reading of the current time and 
then reading the sensor and current time again. The differentiation can then be approximated by 
the difference between the sensor readings divided by the difference between the times read. For 
systems in which time is quantized, it can happen that although some time has elapsed between 
the two sensor readings, and the difference in time is therefore strictly greater than zero, the 
computed time difference is equal to zero. This leads to a division by zero and throws an exception. 
As a result, code that computes differentiation of a signal in this way can compute the wrong result 
because of incorrect timing. This scenario can occur if the timer API (application programming 
interface) used before porting did not use quantized time, but the time API used after porting used 
quantized time. 

Section 6 in DO-178C covers the software verification process. Section 6.4.2.2 discusses robust 
test cases: 

e. A check should be made to ensure that protection mechanisms for exceeded frame 
times respond correctly [B-38, p. 47]. 

Porting software from running on a physical processor to an “equivalent” virtual processor can 
lead some of these issues to violate timing requirements. This impacts the above statement in  
DO-178C. In this case, because it cannot be guaranteed when the temporal protection code will 
run in a VM, it cannot be ensured that a partition can be stopped from exceeding its frame time. 

Section 6 in DO-178C covers the software verification process. Section 6.4.2.2 discusses robust 
test cases: 

f. For time-related functions, such as filters, integrators, and delays, test cases should 
be developed for arithmetic overflow protection mechanisms [B-38, p. 47]. 

As mentioned above, porting software from running on a physical processor to an “equivalent” 
virtual processor can lead some of these issues to violate timing requirements. This impacts the 
above statement in DO-178C. 

Section 6 in DO-178C covers the software verification process. Section 6.4.2.2 discusses robust 
test cases: 

a. Failure to satisfy execution time requirements [B-38, p. 47]. 

As mentioned above, porting software from running on a physical processor to an “equivalent” 
virtual processor can lead some of these issues to violate timing requirements. This impacts the 
above statement in DO-178C. In the same list, DO-178C mentions other timing issues. Once again, 
the use of VMs can impact these requirements. 

Section 6 in DO-178C covers the software verification process. Section 6.4.2.2 discusses robust 
test cases: 

c.  Incorrect responses to missing or corrupted data. [B-38, p. 48] 
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One cause for missing data is that a component is designed as a chain of different threads operating 
at different rates. The missing data are caused by so-called undersampling. That is, thread B reads 
data from a data structure that thread A writes to, and thread B has the same period as thread A. If 
the arrivals of these threads are unsynchronized, and if the response times of threads are variable 
(which is usually the case for event-triggered real-time systems), then thread A sometimes 
produces a new data item for thread B to read; sometimes thread A produces zero new data items 
for thread B to read; and sometimes thread A produces two data items for thread B to read. In the 
latter case, if there is buffer space for only one data item, then one data item is lost. The timing of 
arrival of B and the response time of A influence whether data are lost. As already mentioned, a 
VM can influence the response time. Therefore, migrating software to a VM can cause this 
problem (missing or corrupt data). 

Section 7 in DO-178C discusses software configuration management process. VMMs typically 
rely on configuration parameters when creating VMs. For example, if the VMM uses an event-
triggered real-time scheduler with reservations (which is the case for RT-Xen), then the parameters 
of the reservations become an issue of configuration management. If the VMM uses cache 
coloring, bank coloring, or some other scheme to achieve memory accesses with more time 
predictability, then these coloring schemes also rely on parameters, which add additional 
configuration management issues to the use of VMM. Parameter Data Items are an addition to 
DO-178C that requires lifecycle data. The difficulty this creates is that data do not have the typical 
equivalence classes that algorithms use, making data much more difficult to verify.  

Section 11 in DO-178C covers software life-cycle data. Section 11.1 discusses planning for the 
software aspects of certification: 

b. Software overview. This section briefly describes the software functions with 
emphasis on the proposed safety and partitioning concepts. Examples include 
resource sharing, redundancy, fault tolerance, migration of single event upset, and 
timing and scheduling strategies. [B-38, p. 48] 

Porting software from running on a physical processor to an “equivalent” virtual processor can 
lead some of these issues to violate timing requirements. This impacts the statement in DO-178C. 

In addition, DO-178C states that the software system should be described with components, each 
component should be assigned a level, and the software practitioner may want to use partitioning 
to achieve isolation, as discussed above. However, if virtualization is used, then it needs to be 
determined how a VM relates to a component. For instance, three different component assignment 
cases could be considered: 1) assigning each component to its own VM, 2) assigning multiple 
components with the same level to one VM, or 3) assigning multiple components with different 
levels to the same VM. In this report, these questions are not answered definitively. However, they 
relate to architecting, and therefore they relate to the above statement in DO-178C. 

Section 11 in DO-178C covers software lifecycle data. Section 11.3 discusses planning for 
software aspects of certification: 

b. Partitioning consideration: If partitioning is used, the method used to verify the 
integrity of the partitioning. [B-38, p. 48] 
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If virtualization is used, then this statement relates to verification of the VMM. It is worth pointing 
out once again that the typical time partitioning does not offer complete timing isolation because 
of cache evictions and other effects. However, as mentioned in section 2.5, it is possible to provide 
resource-sharing mechanisms and the corresponding analysis methods to guarantee time 
partitioning. Robust partitioning will ensure that the caching policies, or other mechanisms used, 
are bounded. The hard part is how to verify the robust partitioning requirements when they are 
“negative requirements.” It can be shown when one partition is required to change another 
partition, but how is it shown that one partition “shall not change the memory of another partition 
unless configured to do so.” “Shall not” requirements are very difficult to verify.  

Section 11 in DO-178C covers software life-cycle data. Section 11.4 discusses the software 
configuration management plan: 

b. 9. Software life cycle environment controls: Controls for the tools used to develop, 
build, verify, and load the software, addressing sections 11.4.b.1 through 11.4.b.4. 
This includes control of tools to be qualified [B-38, p. 73]. 

Again, some virtualization solutions for real-time systems (e.g., RT-Xen) rely on configuring 
reservations. Typically, tools are used to dimension reservations so that all tasks served from a 
reservation are guaranteed to meet their deadlines. Such tools may need to be qualified.  
This typically means that the tools are TQL-1 (i.e., need a lot of work to qualify). This depends on 
the tool and the transformations the tools perform. This is not an easy process. These configuration 
files could be 750,000 lines of XML.  

Section 11 in DO-178C covers software life-cycle data. Section 11.6 discusses software 
requirements standards7: 

d. The method to be used to provide derived requirements to the system processes [B-
38, p. 74]. 

In some systems, there is a timing requirement on the maximum allowed latency from when one 
software component receives an event to when another software component has finished. If these 
two components are in different VMs, then the timing analysis can be complex. One way (not 
necessarily the best way, but sometimes convenient) to deal with this is to divide the end-to-end 
deadline into a set of sub-deadlines, one for each component, so that the sum of sub-deadlines 
equals the end-to-end deadline. Then, it is sufficient to check only each sub-deadline of 
components in each VM. This is mentioned because it requires that one derive requirements, and 
this relates to the statement above in DO-178C. 

Section 11 in DO-178C covers software life-cycle data. Section 11.7 discusses software design 
standards: 

b. Conditions imposed on permitted design methods, for example, scheduling, and the 
use of interrupts and event-driven architecture, dynamic tasking, re-entry, global data, 
and exception handling, and rationale for their use [B-38, p. 74]. 

Porting software from running on a physical processor to an “equivalent” virtual processor can 
cause some of these issues to violate timing requirements. This impacts the statement in DO-178C. 
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Section 11 in DO-178C covers software life-cycle data. Section 11.9 discusses requirements data: 

b. Timing requirements and constraints [B-38, p. 75]. 

As mentioned, porting software from running on a physical processor to an “equivalent” virtual 
processor can cause some of these issues to violate timing requirements. This impacts the statement 
in DO-178C. 

Section 11 in DO-178C covers software life-cycle data. Section 11.10 discusses design description. 
Pages 75–76 mention the importance of scheduling and timing in many items in a bulleted list. As 
mentioned, porting software from running on a physical processor to an “equivalent” virtual 
processor can cause some of these issues to violate timing requirements. This impacts the statement 
in DO-178C. 

Section 11 in DO-178C covers software life-cycle data. Section 11.20 discusses the software 
accomplishment summary: 

i. Software characteristics: This section states the Executable Object Code size, timing 
margins including worst-case execution time, memory margins, resource limitations, 
and the means used for measuring each characteristic [B-38, p. 79]. 

Porting software from running on a physical processor to an “equivalent” virtual processor can 
cause some of these issues to violate timing requirements. This impacts the statement in DO-178C. 

Section 12 in DO-178C covers additional considerations. Section 12.1.1 discusses modifications 
to previously developed software: 

i. The area affected by a change should be determined. This may be done by data-flow 
analysis, control-flow analysis, timing analysis, traceability analysis, or a 
combination of these analyses [B-38, p. 81]. 

Porting software from running on a physical processor to an “equivalent” virtual processor can 
cause some of these issues to violate timing requirements. This impacts the statement in DO-178C. 

Section 12 in DO-178C covers additional considerations. Section 12.1.2 discusses change of 
aircraft installation: 

a. The system safety assessment process assesses the new aircraft installation and 
determines the software level and the certification basis. No additional effort will be 
required if these are the same for the new installation as they were in the previous 
installation. [B-38, p. 82] 

Porting software from running on a physical processor to an “equivalent” virtual processor can 
cause some of these issues to violate timing requirements. This impacts the statement in DO-178C. 

Section 12 in DO-178C covers additional considerations. Section 12.1.3 discusses change of 
application or development environment: 
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a. Use and modification of previously developed software may involve a new 
development environment, a new target processor, or other hardware, or integration 
with other software than used for the original application [B-38, p. 82]. 

In this phrase, “a new target processor” may be a VM. As mentioned, porting software from 
running on a physical processor to an “equivalent” virtual processor can cause some of these issues 
to violate timing requirements. 

One vulnerability that should also be mentioned is the use of synchronizing instructions.  

For example, we have two partitions running on one core. Partition A is at level A, and partition 
C is at level C. Partition A issues a system call to send a message to partition C. Partition C cannot 
write to a memory location in the kernel because it lacks the privilege.  

In the kernel, instructions are being executed in a pipeline. Just before the context switch 
instruction, the memory prefetch is getting memory locations through the pipeline using its 
privileged mode. However, the memory fetches are further up the instruction stream and should 
be blocked by the user state, but they are pre-executed in system state. Once the context switch 
instruction is executed and the instructions fetches are committed (from virtual to embedded logic 
analyzer register and then to memory) the memory violation is undetected.  

The RTOS must be analyzed for these context-sensitive instructions, and they need to be preceded 
by synch instructions (data synch, instruction synch, or both) The RTOS suppliers need to conduct 
careful analysis and identify which data or instruction sequences can be affected and which really 
matter. 

B.6.3  DO-333 OVERVIEW 

DO-333 [B-39] partly deals with use of formal methods for verification. This document follows 
the same structure as DO-178C and has the same sections as DO-178 (one for each process). 
However, for most of the sections, there is simply a statement: follow the guidance in DO-178. 
The main exception is the section that discusses verification. 

DO-333 points out that formal methods can be used for different types of requirements. They can 
be used to prove a property between a set of low-level and high-level requirements, and between 
a low-level requirement and source code. Formal methods can also be used to prove a property 
between a low-level requirement and the executable code. DO-333 lists three general classes of 
formal methods: 1) theorem proving, 2) model checking, and 3) abstract interpretation. Theorem 
proving means that a proof is constructed (typically by a human user and with some aid from a 
proof assistant), and then checked automatically. Model checking is an automated, algorithmic, 
and exhaustive technique for verifying properties of finite-state machine models of systems. 
Because software has a very large (potentially infinite) state space, model checking cannot be 
applied to it directly. Abstract interpretation is typically used to construct finite models of software, 
so that it can be analyzed by techniques such as model checking or direct reachability analysis. 

Formal methods can be used to show compliance with requirements, but DO-178C also requires 
that one show the reason for the existence of a requirement. DO-333 shows that the former can be 
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achieved with formal methods, but the latter cannot. To show the reason for the existence of a 
requirement, another method (reviewing) must be used. 

B.6.4  DO-333-SPECIFIC REMARKS RELATED TO VIRTUAL MACHINES 

Section FM.1.0 in DO-333 introduces the document. Section FM.1.6.2 discusses formal analysis: 

These properties are either created or embedded in specific tools that implement the 
formal analysis (for example, worst-case execution timing) [B-39, p. 4]. 

Porting software from running on a physical processor to an “equivalent” virtual processor can 
cause some of these issues to violate timing requirements. This impacts the statement in DO-333. 

Section FM.4 in DO-333 covers the software planning process. Section FM.4.3 discusses software 
plans: 

All assumptions related to the formal analysis should be described and justified, 
especially those associated with the target computer [B-39, p. 11]. 

It is worth mentioning that with virtualization, the target computer may be a VM. This may impact 
timing (which has been discussed on previously). 

Section FM.6 in DO-333 covers the software-verification process. Section FM.6.0 introduces this 
section and mentions: 

As a minimum, testing will still be required to ensure that the Executable Object Code is 
compatible with the target computer [B-39, p. 15]. 

It is worth mentioning that with virtualization, the target computer may be a VM. This may impact 
timing (which has been previously discussed). 

Section FM.6 in DO-333 covers the software verification process. Section FM.6.2.1 discusses 
considerations for formal methods: 

All assumptions related to each formal analysis should be described and justified: for 
example, assumptions associated with the target computer or about the data range limits 
[B-39, p. 17]. 

It is worth mentioning that with virtualization, the target computer may be a VM. This may impact 
timing (which has been previously discussed). 

Section FM.6 in DO-333 covers the software-verification process. Section FM.6.3.1 discusses 
reviews and analyses of high-level requirements: 

c. Compatibility with the target computer: The objective is to ensure that no conflicts 
exist between the high-level requirements and the hardware/software features of the 
target computer, especially system response time and I/O hardware. If the high-level 
requirements and hardware/software features of the target computer are formally 
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modeled, then potential conflicts can be detected through formal analysis [B-39, p. 
19]. 

It is worth mentioning that with virtualization, the target computer may be a VM. This may impact 
timing (which has been previously discussed). 

Section FM.6 in DO-333 covers the software verification process. Section FM.6.3.1 discusses 
reviews and analyses of high-level requirements: 

f. Traceability. The objective is to ensure that the functional, performance, and safety-
related requirements of the system allocated to software were developed into the high-
level requirements. If formal methods are used to meet the objective of section 
FM.6.3.1, item a, this can provide evidence in support of traceability. [B-39, p. 19] 

This statement will be discussed with respect to traceability and timing requirements. Software 
executing on a VM may have different timing compared to the timing that the software would have 
if it executed on a physical machine. One way to deal with this difference is to use a formal method 
for proving the timing requirements of the software. The research literature offers a technique 
called hierarchical (or compositional) scheduling (which is used in RT-Xen—one of the most 
popular open-source virtualization solutions, extended for real-time systems), as discussed in 
section 2.1.2.6. Hierarchical scheduling works as follows: A root scheduler schedules subsystems, 
and in each subsystem, there is a local scheduler. Whenever a subsystem is selected by the root 
scheduler, the local scheduler is invoked to select one thread within the subsystem. For each 
subsystem, there is an interface that describes the resource consumption of the threads in the 
subsystem (e.g., subsystem 1 will need 20% of the processor, and this processing capacity will be 
distributed with a resolution of 10 ms). A schedulability test is applied on the root scheduler; this 
schedulability test is a formal method that can prove that each subsystem receives enough 
processing cycles as indicated by the interface. A schedulability test is applied on each subsystem; 
this schedulability test is a formal method that can prove that all threads within a component meet 
their timing requirements (deadlines) assuming that the subsystem receives processing time as 
specified by the interface of the subsystem. The concepts of hierarchical scheduling can be applied 
for systems that use virtualization in the following way: Let the root scheduler be the scheduler in 
the VMM, let each subsystem be a VM, and let each local scheduler be the scheduler in the guest 
operating system. For such a use, there may be a need to perform traceability between the two 
schedulability analyses (i.e., those associated with the root and local schedulers). 

Section FM.6 in DO-333 covers the software-verification process. Section FM.6.3.2 discusses 
reviews and analyses of low-level requirements: 

c. Compatibility with the target computer: The objective is to ensure that no conflicts 
exist between the low-level requirements and the hardware/software features of the 
target computer, especially the use of resources such as bus loading, system response 
times, and I/O hardware. If the low-level requirements and hardware software features 
of the target computer are formally modeled, then potential conflicts can be detected 
through formal analysis [B-39, p. 20]. 



 

B-37 

It is worth mentioning that with virtualization, the target computer may be a VM. This may impact 
timing (which has been previously discussed). 

Section FM.6 in DO-333 covers the software-verification process. Section FM.6.3.2 discusses 
reviews and analyses of low-level requirements: 

f. Traceability. The objective is to ensure that the high-level requirements were 
developed into the low-level requirements. If formal methods are used to meet the 
objective of section FM.6.3.2, item a, this can provide evidence in support of 
traceability. [B-39, p. 20] 

Timing analysis of systems with virtualization can be performed with theories for hierarchical 
scheduling. It may then be necessary to trace the analysis of a local scheduler to the analysis of a 
root scheduler. 

Section FM.6 in DO-333 covers the software-verification process. Section FM.6.3.3 discusses 
reviews and analyses of software architecture: 

a. Compatibility with the high-level requirements: The objective is to ensure that the 
software architecture does not conflict with the high-level requirements, especially 
functions that ensure system integrity, for example, partitioning schemes. If high-
level requirements and software architecture are formally modeled, then formal 
analysis can be used to show compatibility [B-39, p. 20]. 

As already mentioned, in many virtualization solutions, the execution in one VM can impact the 
timing of execution of a thread in another VM. Many virtualization solutions do not offer complete 
timing isolation. This is true even for RT-Xen, which was designed for real-time systems. As 
already mentioned, though, one can use an analysis to obtain bounds on delay even if complete 
isolation is not achieved. With these bounds, it is (under certain assumptions) possible to make 
changes of software in one VM and reprove its timing properties without having to reprove the 
entire system. This is done with compositional reasoning—not timing isolation. 

Section FM.6 in DO-333 covers the software-verification process. Section FM.6.3.3 discusses 
reviews and analyses of software architecture: 

c. The objective is to ensure that no conflicts exist, especially initialization, 
asynchronous operation, synchronization, and interrupts, between the software 
architecture and the hardware/software features of the target computer. If the software 
architecture and hardware/software features of the target computer are formally 
modeled, then potential conflicts can be detected through formal analysis  
[B-39, p. 21]. 

It is worth mentioning that with virtualization, the target computer may be a VM. This may impact 
timing (which has been previously discussed). 

Section FM.6 in DO-333 covers the software verification process. Section FM.6.3.3 discusses 
reviews and analyses of software architecture: 
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f. The objective is to ensure that partitioning breaches are prevented. If the software 
architecture is formally modeled, some aspects of partitioning integrity can be 
verified by formal analysis [B-39, p. 21]. 

It is worth mentioning that with most virtualization solutions, the execution of one thread in one 
VM can impact the timing of another thread in another VM. If time partitioning (ARINC 653) is 
used, then this dependency can be caused by cache eviction. If time partitioning is not used, but 
an event-triggered real-time scheduler is used in the VMM, then this can still happen simply 
because of CPU scheduling. 

Section FM.6 in DO-333 covers the software-verification process. Section FM.6.3.4 discusses 
reviews and analyses of source code: 

f. Accuracy and consistency: The objective is to determine the correctness and 
consistency of the Source Code, including stack usage, memory usage, fixed-point 
arithmetic overflow and resolution, floating-point arithmetic, resource contention and 
limitations, worst-case execution timing, exception handling, use of uninitialized 
variables, cache management, unused variables, and data corruption due to task or 
interrupt conflicts. The compiler (including its options), the linker (including its 
options), and some hardware features may have an impact on the worst-case execution 
timing, and this impact should be assessed. If mathematically defined syntax and 
semantics exist for the Source Code, then these characteristics can be checked using 
formal analysis. The mathematically defined syntax and semantics may need to take 
into account the programming language standards, compiler information (for 
example, default behavior and configuration options), and characteristics of the target 
computer [B-39, p. 21]. 

It is worth mentioning that with virtualization, the target computer may be a VM. This may impact 
timing (which has been previously discussed). 

Section FM.6 in DO-333 covers the software-verification process. Section FM.6.7 discusses 
formal analysis of the executable object code: 

Verification of the Executable Object Code is primarily performed by testing. This can 
be assisted by reviews and analyses, as indicated in DO-178C. Formal analyses exist to 
establish specific properties, such as worst-case execution time and stack usage. These 
analyses can replace some testing aspects of the Executable Object Code but not all. Tests 
executed in target hardware are always required to ensure that the software in the target 
computer will satisfy the high-level requirements as defined in DO-189C section 6.4.3, 
item a.  

The verification activities should verify: Correct operation of the software in the target 
computer environment… [B-39, p. 22]. 

Section FM.6.7 also discusses “time-related functions” [B-39, p. 24–25], “compatibility with [the] 
target computer” [p. 26], and the use of formal methods to compute safe bounds on resource 
consumption (e.g., stack usage and worst-case execution timing) [p. 27]. It is worth mentioning 
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that with virtualization, the target computer may be a VM. This may impact timing (which has 
been discussed on many occasions above). 

Section FM.12 in DO-333 covers additional considerations. Section FM.12.35 discusses coverage 
analysis when using a combination of formal methods and testing: 

Even when a combination of formal methods and testing is used, functional tests executed 
in target hardware are always required to ensure that the software in the target computer 
will satisfy the high-level requirements as defined in DO-178C section 6.4.3, item c. [B-
39, p. 43] 

It is worth mentioning that with virtualization, the target computer may be a VM. This may impact 
timing (which has been previously discussed). 

B.6.5  DO-254 OVERVIEW 

DO-254 [B-40] is a document that gives guidance for developing airborne electronic hardware. 
Hardware design is not within the scope of this report, but a VM can be used to replace a physical 
computer; for this reason, DO-254 is briefly discussed. 

DO-254 can be thought of as DO-178C, except for hardware. DO-254 is process driven and 
requires the applicant to submit plans. DO-254 uses similar concepts as DO-178C. It discusses 
high-level requirements and low-level requirements. The system is composed of components, each 
component has a level, and the levels are the same as in DO-178C. However, DO-254 refers to the 
levels as hardware assurance design levels. They play the same role as software levels in DO-
178C. 

DO-254 was written in 2000. Today, there is hardware that was not available or not common at 
that time. Specifically, the following hardware is available today that was not available in 2000: 
multicore processors, processors with simultaneous multithreading (also called hyperthreading), 
processor chips with integrated graphics processor units, processor chips with x86-compatible 
processors, and integrated FPGAs. Virtualization is also frequently used in desktop computing and 
server farms today but not in 2000. 

A hardware unit is categorized as simple or complex. A hardware unit is simple if “a 
comprehensive combination of deterministic tests and analyses appropriate to the design assurance 
level can ensure correct functional performance under all foreseeable operating conditions with no 
anomalous behavior” [B-40]. A hardware item that cannot be categorized as simple should be 
categorized as complex. DO-254 discusses complex hardware items. 

B.6.6  DO-254-SPECIFIC REMARKS RELATED TO VIRTUAL MACHINES 

Section 2 in DO-254 covers system aspects of hardware design assurance. Section 2.1.1 discusses 
information flow from the system development process to the hardware design life-cycle process: 

The information flow may include: … 3. Allocated probabilities and at risk exposure 
times for hardware functional failures [B-40, p. 11]. 
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It is worth mentioning that if a physical processor is replaced with a VM, then the fault probabilities 
of the VM will depend on the underlying physical processor that provides the VM. 

Section 2 in DO-254 covers system aspects of hardware design assurance. Section 2.1.2 discusses 
information flow from the hardware design life-cycle process to the system development process: 

The information flow may include: … 3. Implementation architecture, including fault 
containment boundaries. [B-40, p. 11] 

If a system is designed so that each software component has its own dedicated processor, the 
system is modified so that each software component has its own dedicated VM, and all VMs 
execute on a single physical processor, then fault containment boundaries change. 

Section 2 in DO-254 covers system aspects of hardware-design assurance. Section 2.1.3 discusses 
information flow between the hardware design life-cycle process and the software life-cycle 
process: 

The information flow may include: 1. Derived requirements needed for integration, such 
as definition of protocols, timing constraints, and addressing schemes for the interface 
between software and hardware [B-40, p. 12]. 

With most virtualization solutions, the execution of one thread in one VM can impact the timing 
of another thread in another VM. If time partitioning (ARINC 653) is used, then this can be caused 
by cache eviction. If time partitioning is not used, but an event-triggered real-time scheduler is 
used in the VMM, then this can still happen simply because of CPU scheduling. 

Section 2 in DO-254 covers system aspects of hardware design assurance. Section 2.3.1 discusses 
hardware safety assessment considerations: 

If a hardware item contains functions that individually have different design assurance 
levels, such situations may be addressed by either of the following methods: 

* The entire item may be assured at the highest design assurance level. 

* The individual hardware function may be assured separately at the respective 
hardware design assurance levels as defined by the hardware safety assessment, if 
their function, interfaces and shared resources can be protected from adverse effects 
of functions of lower design assurance levels. Design assurance of shared resources 
should be the design assurance level of the function with the highest level  
[B-40, p. 15]. 

The second bullet mentions shared resources in hardware. If two hardware items are replaced by 
two VMs, then there will be additional shared resources in the memory system (cache, memory 
buffer row) of the processor that executes the VMM. 

Section 2 in DO-254 covers system aspects of hardware design assurance. Section 2.3.3 discusses 
qualitative assessment of hardware design errors and upsets: 
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Redundancy management techniques and quantitative assessment methods to be used 
should be selected so that potential common mode faults and the effects of upsets are 
precluded or mitigated [B-40, p. 16]. 

If two hardware elements are replaced with two VMs, then the software of the VMM becomes a 
source of common mode faults. From a timing perspective, the memory system also becomes a 
source of common mode faults. 

B.6.7  CAST-32 

CAST-32 is a position paper discussing multicore processors. It stands for Certification Authorities 
Software Team. The paper assumes that a computer system has two processor cores and only one 
application and that the processor does not use hyperthreading. 

The first 11 pages of the document stress that 1) thermal management may change the clock 
frequency of a processor core, 2) multicore processors have undocumented features, 3) multicore 
processors have not been used in safety-critical systems and, therefore, there is no service history, 
and 4) cores that are not used should be deactivated. Then the document describes VMMs (referred 
to as hypervisors) and states three objectives: 

1. MCP_Determinism_4: An applicant should state whether hypervisors are used.  

2. MCP_Determinism_5: An applicant should show “how they intend to show compliance 
of the software hypervisor with the certification authority’s applicable guidance and has 
successfully conducted those activities that they planned.” 

3. MCP_Determinism_6: Some multicore processors include a hypervisor built into the 
hardware. If this is used, the applicant should state how the applicant intends to verify the 
activated functionality of the multicore processor. 

The document continues by stressing that 1) multicore processors typically have implicitly shared 
resources (e.g., caches) that create interference channels between processor cores from the 
perspective of timing analysis; 2) many hardware features (e.g., interconnection networks on a 
chip) are undocumented; 3) some interconnection networks can cause transactions to be lost or 
served in another order than the one in which they were requested; 4) in existing certified systems, 
each software application is statically allocated to a processor core; and 5) there is not enough 
guidance on multicore processors. The latter is expressed as follows: 

Because of the lack of industry experience with MCPs, the certification authorities are 
concerned that when applicants attempt to conduct software verification using only the 
existing guidance, their approach to verification may not provide enough assurance that 
all the software would comply with its requirements when executing in parallel with the 
mechanisms of the MCP permitting interference between the software hosted on the two 
cores. 



 

B-42 

B.7  CONCLUSION 

Operating systems (OSs) serve the double role of creating a high-level abstraction of the hardware 
(OS services like the File System) and providing the illusion of a dedicated machine to each of the 
programs that run simultaneously in a computer. Early implementations of virtual machines (VMs) 
(e.g., in the IBM 360) aimed at separating the dedicated machine illusion from the high-level 
hardware abstraction. In recent years, VM implementations have taken a new role in supporting 
the “cloud” industry that sells platform as a service, in which different companies package their 
systems in VMs that can be hosted in shared hardware. These VMs are isolated from each other in 
space and time. However, the temporal isolation is limited to average-case response time and 
throughput without hard guarantees. Such isolation has been enough for information systems. 
Furthermore, these metrics are compatible with the advances in hardware, such as cache, memory 
systems, and pipelined processors. In other words, because these different layers focus on the 
average-case response time, they do not need to have a strict coordination, because their combined 
behavior averages out to a reasonable average-case response time and throughput. 

Whereas the spatial isolation implemented by VMs works fine for real-time embedded systems 
(RTES) and in particular for avionics systems, temporal isolation does not. More importantly, the 
number of performance improvements in hardware create a twofold problem. They focus on 
average-case response time that can complicate the worst-case response time evaluation necessary 
for RTES. However, the combined effect of the different layers of hardware improvements (e.g., 
pipeline plus cache plus memory access scheduling/bank parallelism) cannot be easily understood 
from the worst-case point of view. Instead, it is necessary to develop adaptations that restrict and 
coordinate their behavior across layers to make VMs predictable and amenable to worst-case 
analysis, as was discussed in sections 2.1.2 and 2.5. 

VMs are not the only way to provide isolation between components, as discussed in section 4. 
Other implementations are more amenable to providing worst-case temporal isolation to system 
components. In addition, the techniques presented in section 4 can also be used in combination 
with VMs. 

As mentioned in section 5, VMs can be helpful to simplify the development processes when the 
system is developed in a distributed fashion across organizations. However, to make this possible, 
it is necessary to support the development with appropriate analysis techniques that can evaluate 
properties at the individual group level and at the system integration level, typically configured as 
compositional techniques. 

Finally, the use of VMs in avionics systems requires careful consideration of certification 
standards. These issues are covered in section 6. Different aspects of the standards can be affected 
by the use of VMs in avionics systems. In some contexts, VMs have the potential to help, but in a 
larger number of contexts, they can be the cause of concern because they hide decisions in the 
hypervisor that may hinder temporal determinism and isolation. 
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APPENDIX C—EVALUATION OF VERIFICATION TECHNOLOGIES FOR VIRTUAL 
MACHINES 

C.1  TIMING VERIFICATION 

Recall from the previous report, “Assurance Issues on VMs in Avionics Systems,” that avionics 
software interacts with the physical world by reading sensors and computing actuation commands; 
this requires that the timing be correct (appendix B). For example, if timing is incorrect, then a 
feedback controller may become unstable. Another case in which incorrect timing is undesirable 
is in a sensor fusion system. Such a system may take multiple different types of sensor readings as 
input, and its software is intended to draw a conclusion based on these sensor readings, assuming 
that they are taken at approximately the same time. However, if these sensor readings relate to 
different times, then the conclusion drawn may be incorrect. For these reasons, this section 
discusses timing verification. 

C.1.1  NETWORK CALCULUS 

Network calculus [C-1] is not intended for analyzing virtual machines (VMs) or delays of software 
in processors. However, because it deals with timing, it can be thought of as complementary to 
other methods described in this report. Network calculus considers a computer network with 
network elements (e.g., multiplexers with queues, demultiplexers, fixed-delay elements), links, 
and traffic flows. With this information, network calculus computes 1) upper bounds on the delay 
of traffic flows and 2) upper bounds on buffer space needed for queues. Network calculus can be 
distinguished from other methods as follows: Network calculus describes each traffic flow with 
two parameters—burst size and throughput—and the computations needed for the analysis run 
fast. In contrast, other techniques such as schedulability analysis describe software with more 
details; a task may be described with three or more parameters—such as period, deadline, and 
execution time—providing more accurate predictions at the cost of a longer analysis time. 
Schedulability analysis performed with timed automata (described later in this report) provides 
analysis of software with even more detailed models, and this comes at the cost of even longer 
analysis time. 

An example of a result in network calculus is shown in equation C-1: Consider a multiplexer with 
two input flows, one output flow, and first-in, first-out (FIFO) queuing discipline. Then the input-
to-output delay of a bit in flow 1 is upper bounded by: 

 1
𝑊𝑊𝑜𝑜𝑜𝑜𝑜𝑜

∗ 𝑚𝑚𝑚𝑚𝑚𝑚𝑢𝑢≥0(𝑟𝑟1(𝑢𝑢) + 𝑟𝑟2(𝑢𝑢 + 𝐿𝐿/𝐶𝐶2) − 𝐶𝐶𝑃𝑃𝑢𝑢𝑜𝑜 ∗ 𝑢𝑢) (C-1) 

In the expression above, subscript 1 relates to traffic flow 1, and subscript 2 relates to traffic  
flow 2. 𝐶𝐶𝑃𝑃𝑢𝑢𝑜𝑜 is the speed of the output link (in terms of bits per second). 𝐿𝐿 is an upper bound on 
each packet (in terms of bits). 𝑟𝑟1(𝑢𝑢) is an upper bound on the number of bits required to be 
transmitted from traffic flow 1 among all packets received in a time interval of duration u. This is 
analogous for flow 2. Typical network calculus assumes that the function 𝑟𝑟(𝑢𝑢) is represented by 
two parameters; specifically, 𝑟𝑟(𝑢𝑢) is represented as 𝑟𝑟(𝑢𝑢) = 𝑐𝑐𝑐𝑐𝑚𝑚𝑠𝑠𝑡𝑡1 + 𝑐𝑐𝑐𝑐𝑚𝑚𝑠𝑠𝑡𝑡2 ∗ 𝑢𝑢. 

Network calculus also allows computations of burstiness of output queues. In this way, if the rate 
and burstiness of two flows is known, and these two flows are incoming flows to a multiplexer, 
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then we can compute the burstiness of the outgoing flow; this helps when computing further delays 
in a network. In addition, network calculus allows us to compute the maximum buffer space needed 
in a multiplexer. 

Network calculus introduces the concept of a regulator as an element that takes a traffic flow as 
input and produces a traffic flow as output, and this traffic flow is shaped. Specifically, a regulator 
has two parameters, burstiness and rate, and ensures that the outgoing flow from the regulator 
complies with the two parameters regardless of the input flow. In this way, a regulator can be 
thought of as having a similar function as the reservation/server mechanism mentioned in the 
previous report—“Assurance Issues on VMs in Avionics Systems” (appendix B). Note, however, 
that the model used in network calculus is less expressive than those typically used in 
schedulability analysis. 

Network calculus has been extended to analyze not only networks with single-network elements 
but also networks with multiple network elements. For details, see [C-2]. 

The ideas of network calculus have been used in real-time calculus, which is intended for processor 
scheduling. Real-time calculus is covered in the next section. 

C.1.2  REAL-TIME CALCULUS 

Real-time calculus [C-3] defines a mathematical framework (calculus) based on network calculus 
that models recurrent (e.g., periodic) tasks (i.e., threads), resource consumption (central processing 
unit, or CPU, cycles), and processor resource production (CPU cycles) as functions. It defines 
special operations to add and subtract these functions. These operations allow for evaluating 1) 
whether there are enough resources (CPU cycles) to finish the execution of the set of tasks, 2) the 
response time of these tasks, 3) the number of task activations that may be pending (e.g., buffers 
for packets to be processed), and 4) the remaining resource (CPU cycles) after servicing these 
tasks. 

Tasks are modeled as request functions 𝑅𝑅(𝑡𝑡) that represent the total amount of computation (CPU 
cycles) that the task has requested up to time 𝑡𝑡. Processors, however, are modeled as capacity 
functions 𝐶𝐶(𝑡𝑡) that represent the computation that the processor can deliver up to time 𝑡𝑡. Using 
these two functions, it is possible to evaluate how many requests have been “delivered” within an 
interval of time with the equation: 

 𝑅𝑅′(𝑡𝑡) =  min
0≤𝑢𝑢≤𝑜𝑜

{𝑅𝑅(𝑢𝑢) + 𝐶𝐶(𝑡𝑡) − 𝐶𝐶(𝑢𝑢)} (C-2) 

and the remainder capacity function 𝐶𝐶′(𝑡𝑡) = 𝐶𝐶(𝑡𝑡) − 𝑅𝑅(𝑡𝑡). For example, consider a periodic task 
that executes for 10 ms every 100 ms starting its execution at time zero. The processor is modeled 
as a capacity function 𝐶𝐶(𝑡𝑡) that provides one unit of execution capacity every unit of time. This is 
an obvious way to model the processor, but if its frequency is reduced to half, it could provide 
only half a unit of processing capacity per unit of time. Now, it will be possible to evaluate 𝑅𝑅′(𝑡𝑡) 
at different times as presented in Table C-1. 
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Table C-1. 𝑹𝑹′(𝒕𝒕) at different times  

t 𝑹𝑹(𝒖𝒖) 𝑪𝑪(𝒕𝒕) 𝑪𝑪(𝒖𝒖) 𝑹𝑹′(𝒕𝒕) 𝑪𝑪′(𝒕𝒕) 
5 5 5 5 5 0 
10 10 10 10 10 0 
20 10 20 20 10 10 
100 10 100 100 10 90 
105 15 105 105 15 90 
110 20 110 110 20 90 
120 20 120 120 20 100 
200 20 200 200 20 180 

It is worth noting that at any time between 0 and 10, 𝑢𝑢 can take any value because 𝑅𝑅(𝑢𝑢) and 𝐶𝐶(𝑢𝑢) 
will cancel each other. 

The request and capacity functions previously defined work only for a specific time interval; in 
the example, they work only for time 0–200. This is not enough to guarantee schedulability, 
because in a different interval, even of the same length (e.g., from 200–400) the conditions may 
be different (e.g., another task may arrive). Therefore, to guarantee schedulability, boundary 
functions are defined to make them work for any interval of a particular length. To do this, Thiele 
et al. [C-3] define a minimum request bounding function 𝛼𝛼𝑃𝑃(𝑡𝑡) such that, for an interval between 
two time instants 𝑠𝑠 and 𝑡𝑡 and any subinterval within its bounds, the request function is bounded 
from above: that is, (𝑡𝑡) − 𝑅𝑅(𝑠𝑠) ≤ 𝛼𝛼𝑃𝑃(𝑡𝑡 − 𝑠𝑠) ∀𝑠𝑠 ≤ 𝑡𝑡. For instance, if 𝑠𝑠 = 0 and 𝑡𝑡 = 200, then 
𝑅𝑅(5) − 𝑅𝑅(0) ≤ 𝛼𝛼𝑃𝑃(5 − 0) but also 𝑅𝑅(15) − 𝑅𝑅(5) ≤ 𝛼𝛼𝑃𝑃(15 − 5) and any other subinterval. The 
request bound function then can be calculated as: 

 𝛼𝛼𝑃𝑃(∆) =  max
𝑢𝑢≥0

{𝑅𝑅(∆ + 𝑢𝑢) − 𝑅𝑅(𝑢𝑢)} (C-3) 

Similarly, a maximum delivery curve 𝛽𝛽 in any subinterval given a processor capacity function is 
defined such that 𝐶𝐶(𝑡𝑡) − 𝐶𝐶(𝑠𝑠) ≥ 𝛽𝛽(𝑡𝑡 − 𝑠𝑠) ∀𝑠𝑠 ≤ 𝑡𝑡. This can be calculated as: 

 𝛽𝛽(∆) =  min
𝑢𝑢≥0

{𝐶𝐶(∆ + 𝑢𝑢) − 𝐶𝐶(𝑢𝑢)} (C-4) 

The remaining processing capacity 𝐶𝐶′ then can be bounded by the function: 

 𝛽𝛽′(∆) =  max
0≤𝑢𝑢≤∆

{𝛽𝛽(𝑢𝑢) − 𝛼𝛼𝑃𝑃(𝑢𝑢)} (C-5) 

C.1.2.1  Rate-Monotonic Example 

Now apply this to a set of periodic tasks scheduled under fixed-priority scheduling with rate-
monotonic priority assignment. Consider two tasks: task 𝜏𝜏1 with period 𝑇𝑇1 = 100 and maximum 
execution time 𝐶𝐶1 = 10, and task 𝜏𝜏2 with period 𝑇𝑇2 = 200 and maximum execution time 𝐶𝐶2 = 20. 
The processor is initially modeled providing a continuous capacity of 1 for each unit of time. It 
then will calculate: 
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1. the request bound function of task 𝜏𝜏1 as 𝛼𝛼𝑃𝑃1(𝑡𝑡) = � 𝑜𝑜
𝑇𝑇1
� 𝐶𝐶1 = � 𝑜𝑜

100
�10 

2. the request bound function of task 𝜏𝜏2 as 𝛼𝛼𝑃𝑃2(𝑡𝑡) = � 𝑜𝑜
𝑇𝑇2
� 𝐶𝐶2 = � 𝑜𝑜

200
�20 

3. the maximum processor delivery curve 𝛽𝛽(𝑡𝑡) = 𝑡𝑡 

There functions are derived from the response time calculation in [C-4]. Now, the remaining 
processing capacity can be calculated after scheduling 𝜏𝜏1: 

 𝛽𝛽′(𝑡𝑡) =  max
0≤𝑢𝑢≤𝑜𝑜

{𝑡𝑡 − � 𝑜𝑜
100
�10} (C-6) 

This residual can be used to schedule 𝜏𝜏2 (given that it runs only when 𝜏𝜏1 does not). This gives us: 

 𝛽𝛽′′(𝑡𝑡) = max
0≤𝑢𝑢≤𝑜𝑜

{�𝑡𝑡 − � 𝑜𝑜
100
��10 − � 𝑜𝑜

200
�20} (C-7) 

The request and capacity functions can now be evaluated as noted ing Table C-2: 

Table C-2. Capacity function evaluation 

𝒕𝒕 𝜶𝜶𝒓𝒓𝟏𝟏(𝒕𝒕) 𝜶𝜶𝒓𝒓𝟐𝟐(𝒕𝒕) 𝜷𝜷′(𝒕𝒕) 𝜷𝜷′′(𝒕𝒕) 
5 10 20 –5 –25 
10 10 20 0 –20 
20 10 20 10 –10 
30 10 20 20 0 
40 10 20 30 10 
100 10 20 90 70 

By time 𝑡𝑡 = 30, both 𝜏𝜏1 and 𝜏𝜏2 have finished, validating that they are schedulable. In addition, the 
negative numbers in columns 𝛽𝛽′(𝑡𝑡) and 𝛽𝛽′′(𝑡𝑡) can be seen as a CPU cycle debt (still needed to 
satisfy the demand). 

C.1.2.2  Compositional Verification 

Capacity functions can also be used to encode how a scheduler gives processing time to a 
component with a set of tasks. For instance, it is possible to model the way an ARINC 653 partition 
scheduler gives slots to a partition. As an example, consider a system with two partitions of 2 ms 
each; first, 2 ms are given to partition 1 and the next 2 ms to partition 2, repeating this pattern 
forever. Then from the point of view of one partition, a delivery curve will be seen: 

 𝛽𝛽(𝑡𝑡) = �
0 𝑚𝑚𝑓𝑓 𝑡𝑡 < 2
𝑜𝑜−2
2

 𝑚𝑚𝑓𝑓 𝑡𝑡 ≥ 2 (C-8) 

The delay at the beginning of the partition time ensures that the worst case (minimum processor 
capacity) is observed. Then, if the two tasks in the rate-monotonic example are shown, in Table 
C-3 results will be: 
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Table C-3. Rate-monotonic example  

𝒕𝒕 𝜷𝜷(𝒕𝒕) 𝜶𝜶𝒓𝒓𝟏𝟏(𝒕𝒕) 𝜶𝜶𝒓𝒓𝟐𝟐(𝒕𝒕) 𝜷𝜷′(𝒕𝒕) 𝜷𝜷′′(𝒕𝒕) 
2 0 10 20 –10 –30 
4 1 10 20 –9 –29 
6 2 10 20 –8 –28 
8 3 10 20 –7 –27 
10 4 10 20 –6 –26 
20 9 10 20 –1 –21 
22 10 10 20 0 –20 
24 11 10 20 1 –19 
26 12 10 20 2 –18 
28 13 10 20 3 –17 
30 14 10 20 4 –16 
40 19 10 20 9 –11 
42 20 10 20 10 –10 
60 29 10 20 19 –1 
62 30 10 20 20 0 
64 31 10 20 21 1 

By time 62, both tasks have finished, validating that they are schedulable. 

This compositional verification technique is needed to verify the hierarchical arrangement of 
schedulers within VMs (i.e., a hypervisor scheduler giving CPU time to a VM and the VM host 
operating system [OS] scheduler giving CPU time to a particular task). 

C.1.2.3  End-to-End Timing Verification 

To verify end-to-end timing of a sequence of tasks (𝜏𝜏1, … , 𝜏𝜏𝑛𝑛) that execute one after another  
(𝜏𝜏𝑖𝑖 followed by 𝜏𝜏𝑖𝑖+1), real-time calculus uses the completion of a task 𝜏𝜏𝑖𝑖 as the arrival of the task 
𝜏𝜏𝑖𝑖+1. These completions are encoded as arrival curves (or functions). These curves are then used 
as a generalization of any task arrival, even the periodic ones that are triggered by a timer. 
However, in this case, it is not only important to evaluate the latest instant when a task can 
complete but also the earliest. This is because if a task 𝜏𝜏𝑖𝑖 completes earlier than in the worst case, 
it will trigger the successor task 𝜏𝜏𝑖𝑖+1, which may preempt earlier another task 𝜏𝜏𝑗𝑗 running on the 
same processor as 𝜏𝜏𝑖𝑖+1. As a result, now both upper and lower arrival bounding functions are 
calculated. This is automatically supported in the Matlab real-time calculus toolbox created by 
Thiele et al. [C-5]. In this tool, arrival curves are specified in two parts:  

1. an initial aperiodic part that specifies a sequence of intervals with a start and an end and a 
slope that indicates the rate of capacity time given (e.g., one unit of processing per unit of 
time, or half a unit) 
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2. a periodic part that is another sequence of intervals with their slope, followed by a 
periodicity specification 

For a deeper discussion of this topic, see the Real-Time Calculus Tutorial [C-5], from which 
additional references can be found. 

C.1.2.4  Limitations 

Real-time calculus is a powerful framework and tool to validate the timing of arbitrarily complex 
schedulers and systems. However, the real challenge is in the specification of the request and 
capacity curves that are not straightforward to encode and prove that they really represent true 
upper and lower bounds. Depending on the precision of the specification, the approximation can 
be tight or not, potentially leading to a significant waste of resources. From the rate-monotonic 
example, it is clear that the curves can be developed from previous results that can be used 
independently from real-time calculus. Furthermore, solving the scheduling of a system specified 
in real-time calculus can easily get into nonscalable territory. 

C.1.3  COMPOSITIONAL ANALYSIS OF REAL-TIME SYSTEMS  

Compositional analysis of real-time systems (CARTS) [C-6] is a tool for computing interfaces of 
components in hierarchical systems. The main idea is that a system is composed of components, 
and in each component there are real-time tasks. A real-time task is described with three 
parameters: period, deadline, and execution time. The tool computes an interface for each 
component. This interface describes the total resource consumption of the tasks in the component. 
With this knowledge, it is then possible to check that the scheduler that allocates processing times 
to components (root scheduler) has enough capacity to supply enough processing time to each 
component. 

C.1.4  TIMED AUTOMATA ANALYSIS 

In this section, schedulability analysis using timed automata will be discussed. The section begins 
by describing the original notion of timed automata. Then it covers a more modern notion of timed 
automata. Finally, it shows how this modern notion can be used to solve various schedulability 
analysis problems. 

Alur and Dill [C-7] presented the original theory of timed automata. This theory describes a system 
as a set of states, a set of clocks, and a set of transitions between some pairs of states; conditions 
that must be true for a transition to occur; and statements on which clocks should be reset when 
certain transitions occur. A timed word is a sequence of pairs that consist of a symbol and a time 
(this indicates a sequence of events, in which each symbol indicates the type of event occurring, 
and the time indicates the time at which the event occurred). The set of timed words that a system 
can generate is called the timed language of the system. The correctness of a system can also be 
specified as a timed language. Then the correctness can be checked through language inclusion: Is 
the timed language of the implemented system a subset of the timed language of the specification? 
If yes, then the system is correct. If no, the system is incorrect. To specify behavior of a system, it 
is important to not only describe which transitions are allowed but also to specify that certain 
transitions should take place (otherwise a system may stay in the initial state forever). Therefore, 
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it is important to specify progress. The original theory of timed automata specifies progress by 
requiring that timed words are infinite; that is, the system never stops. It also specifies that certain 
states must be visited infinitely often. 

Henzinger et al. present a simplified notion of timed automata called “timed-safety automata”  
[C-8, section 3.4]. The idea is to describe progress in another way. Instead of requiring that timed 
words are infinite, and certain states must be visited infinitely often, it allows finite timed words 
and instead adds invariants to states. An invariant is a condition stating that the automata is allowed 
to visit the state only if the invariant is true. For example, if x is a clock and an invariant of a state 
if x ≤ 5, then this forces the automaton to make progress; if the automaton is in this state and x 
becomes 5, then the automation cannot stay in this state and must perform a transition. Today, 
timed-safety automata is used more often than the original theory of timed automata; therefore, the 
term-timed automata is often used to refer to timed-safety automata. An example of a timed 
automata is shown in figure C-1. 

 

Figure C-1. Example of timed automata 

This example shows a lamp that can be off or on. If it is on, then it can be in one of two possible 
states (low light or bright light). Initially, the lamp is in the off state (shown with a circle inside a 
circle). If a user presses a button when the lamp is in this state, then the clock y is reset (i.e., the 
value of the clock is set to zero) and the lamp transitions to another state (marked “low” in  
figure C-1). The value of the clock y progresses. After two time units, it holds that y = 2. If a user 
presses a button again, then the lamp transitions to a new state. If y < 5, then it transitions to the 
state “bright.” If y ≥ 5, then the lamp transitions to the “off” state. This example makes use of 
clocks (y is a clock). It also makes use of guards on transitions (y ≥ 5 is a guard on the transition 
from low to off). It does not, however, make use of invariants. The theory of timed-safety automata 
uses location as a discrete state. Therefore, in the example above, it would be said there are three 
locations rather than three states. 

Numerous tools have been developed for proving properties of timed automata; the most popular 
one is Uppaal [C-9]. This tool allows a software practitioner to specify a system as a set of different 
timed automata and describe their interaction. The latter is achieved through synchronizations of 
transitions. For example, timed-automaton A has a transition 1, and timed-automaton B has a 
transition 7, and these transitions should be made to happen simultaneously. Transition 1 of timed-
automata A can be attached “mysynch!” and transition 7 of timed-automata B can be attached 

press? 
y := 0 

off low
 

bright 

press? 
y >= 5 

press? 
y < 5 

press? 
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“mysync?” In this way, two automata make these two transitions simultaneously. Uppaal also 
comes with a verification engine that can be used to prove that a certain state is not reachable. For 
example, consider a protocol for achieving mutual exclusion in a distributed system and how to 
express that this protocol works correctly. One state could be named CS (meaning critical section) 
and then expressed for each pair of timed automata; it should hold that if one automaton is in CS, 
then the other is not in CS. To simplify modeling, Uppaal also allows variables. These can be 
assigned values during transitions, and they can be used as guards. 

Norstrom et al. [C-10] were the first to express schedulability analysis using timed automata. They 
consider nonpreemptive scheduling of tasks (not necessarily periodic or sporadic) in which the 
execution times of a job are equal to its worst-case execution time (WCET). The paper shows that 
the schedulability analysis problem can be formulated as reachability with a timed automata. The 
idea is to introduce the notion of extended automata with tasks. It works like a normal automaton, 
but for each transition, there is a symbol attached, and this symbol indicates that a job arrives. For 
example, if there is a transition from state 1 to state 2 in automaton A, and this transition is 
associated with “b,” it means that when the automaton takes this transition, then a job of task b 
arrives (i.e., it requests to be executed). There is also a queue associated with the system; this queue 
keeps track of the jobs of each task that has arrived, the time until the deadline, and the remaining 
execution time. For such a queue, unschedulability can be defined; this occurs when there is a 
deadline relative to the current time such that this deadline is smaller than the sum of remaining 
execution times of jobs with deadlines smaller than this deadline. This condition expresses that the 
amount of execution required before a deadline is so large that not all of the execution can be 
finished before the deadline—therefore a deadline miss results. 

Can the extended timed automaton with tasks generate jobs so that the queue becomes 
unschedulable? The paper presents an approach to answer this question; this is done by expressing 
the dynamics of the queue as a normal timed automata with synch points so that when the timed 
automaton extended with tasks makes the transition with “b!”, then the automaton implementing 
the queue makes the transition with “b?”. Therefore, there ends up being two automata: one timed 
automaton that expresses job arrivals and one timed automaton that expresses scheduling decision. 
In the latter, there is a state “error” that represents unschedulability (as mentioned above). 
Therefore, schedulability is checked by asking the question: Is it possible for the system to reach 
the state “error”? This question can be answered with a tool; the paper shows how to do it with 
Uppaal. Figure C-2 shows an example of a timed automaton that expresses job arrivals. 

 

Figure C-2. Job arrival timed automaton 

x>2 
a! 
x := 0 

m n 

b! 

x<4 and y>2 
a! 
y := 0 
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In this example, there are two states: “m” and “n.” In state m, it is possible for a job of task a to 
arrive. In state n, it is possible for a job of task b to arrive, and it is also possible for a job of task 
a to arrive. Clocks (x and y) place restrictions on how frequently jobs can arrive. For example, if a 
transition from m to n is made (and therefore a job of task a arrives), then the clock x is reset  
(i.e., x is set to zero). If a job of task a arrives again (through the self-loop of state n), then it is 
necessary to wait two time units until a job of task a can arrive again. The timed automaton that 
expresses scheduling will now be discussed. Norstrom et al. show a timed automaton for the 
scheduler [C-10, p. 5]. To avoid clutter, it will not be shown; this automaton is shown in  
figure C-3 with only a few of the transitions. 

 

Figure C-3. Scheduler automaton 

Although figure C-3 does not show the entire scheduling automaton, some of its behavior can be 
understood. The scheduler deals with two tasks: task a and task b. The deadline of task a is 7. This 
means that whenever a job of task a arrives, it must finish within 7 time units; otherwise its 
deadline is missed. The deadline of task b is 5; its meaning is analogous. The system starts in an 
empty state (shown as “empty”). If the task automaton generates a job of task a (i.e., performs a 
transition with a!), then the scheduler automaton performs the transition a?. With this transition, 
two variable assignments are performed. The variable taska is assigned 1 and the clock da is 
assigned 0. The variable taska is used to indicate whether a job of task a is ready. The clock da is 
used to indicate the amount of time from the arrival of the job of task a until now. If da exceeds 
the deadline of a job of task a, and this job is still executing, then we know that there was a deadline 
miss. There is a transition taska == 1 da > 7 that performs this; it transitions from the state “run” 
to “error.” See page 5 of the paper [C-10] for further details (transitions for the case when a job 
arrives when the processor is already busy and transitions for the case that a job has finished its 
execution). 

empty run 

b? 
taskb:=1 
db := 0 

a? 
taska:=1 
da := 0 

taska==0 
taskb==0 
r := 0 

error 

taskb==1 
db > 5 

taska==1 
da > 7 
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Whereas Norstrom et al. consider only nonpreemptive scheduling, Fersman et al. [C-11] deal with 
preemptive scheduling and discuss decidability and undecidability. There is a more powerful 
formalism called stop-watch automata; it differs from timed automata, in which clocks are always 
increasing unless they are reset. However, in stop-watch automata, a clock can be stopped so that 
it does not increase. Stop-watch automata are potentially useful for checking schedulability of a 
system that uses preemptive scheduling because the amount of execution that a job has performed 
needs to be tracked; it is natural to do so with a clock. Each job could be associated with a clock 
to keep track of the amount of execution it has performed and then let each clock increase when 
the job executes. However, when a job does not execute, the clock corresponding to this job should 
not increase. In this way, stop-watch automata could be used to perform schedulability analysis of 
a system that uses preemptive scheduling. 

Unfortunately, reachability analysis for stop-watch automata is undecidable (i.e., there is no 
algorithm for this problem that is guaranteed to deliver a correct result and terminate). As 
previously mentioned, it would be natural to model preemptive scheduling with stop-watch 
automata. Therefore, analyzing preemptive scheduling for general arrivals may be thought to be 
undecidable. Fersman et al. [C-11] show, however, that schedulability checking for preemptive 
scheduling with a general arrival model is decidable. It is achieved without stop-watch automata. 
Specifically, it is achieved by using timed automata that are update automata, in which a clock can 
have its value subtracted by another clock to model that a task does not execute during the time at 
which a higher-priority task executes.  

This work assumes that a job executes according to WCET. It is actually not stated explicitly in 
the paper that a job executes according to its WCET, but it can be inferred from the paper in three 
ways [C-11, pp. 8, 12]:  

1. An upper bound on the number of jobs of task P is given by D(P)/C(P). This statement 
assumes that a job executes according to its WCET. 

2. “c(i,j) (a computing clock) is … subtracted with C(k) when the running task, say Pkl, is 
finished if it was preempted after it was started.” However, because timed-automata with 
subtraction of a constant is used, this will only work if C(k) is a constant; therefore, the 
approach will only work if a job executes according to its WCET. 

3. “Note that the maximum number of instances of Pi appearing in a schedulable queue is 
ceil(D(i)/C(i)).” This statement assumes that a job executes according to its WCET. 

The paper [C-11] shows how to perform schedulability analysis of tasks in which job arrivals are 
described with a timed automaton. The method in the paper achieves this by performing 
reachability with a subtraction automata. The main drawback of the approach is that it does not 
allow a job to execute at less than its WCET. The main advantage of the approach is that it allows 
a software practitioner to model systems that could not be modeled with normal scheduling theory 
(normal real-time scheduling theory assumes that jobs from a task arrive periodically or 
sporadically with a minimum inter-arrival time).  

The main idea of the approach in the paper is as follows: For each task, there is an upper bound on 
the number of jobs that are active. Let <i,j> denote the jth job of process i. An automaton describes 
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the arrival of tasks; this automaton has actions on edges and associates a job arrival for each action. 
A scheduler automaton is then also formed. If n is an upper bound on the number of jobs that could 
be active, then the scheduler automaton has n + 2 locations; one location is idle, another location 
is an error, and for each possible job, there is also one location runningi,j. Edges are described 
between these locations; for each edge, a guard, an action, and an update of variables (in the paper, 
the updating is called reset) is described. For each potential job, there is a tuple describing elapsed 
time since arrival, total execution time performed so far since arrival, and its status (if it is running, 
preempted, released, or free). When a job arrives, two clocks are set to zero: one for elapsed time 
since arrival and one for total execution time. These clocks increase with the progress of real time. 
This is fine for the clock that keeps track of the elapsed time since job arrival.  

The other clock, however, should stop when the job is not executing (in this case, because it has 
been preempted). This could be done with so-called stop-watch automata, but (as already 
mentioned) reachability for such automaton is undecidable. The solution used in the paper is as 
follows: whenever a job <i,j> finishes, the following is done: for each other job that has been 
preempted, decrement its clock that records total execution time so far by the execution performed 
by <i,j>. This works in the model assumed in the paper because the execution performed by <i,j> 
is equal to its WCET. Therefore, reachability analysis on the automata construction used by the 
authors is equivalent to schedulability testing. The authors show that reachability testing of this 
type of automata is decidable. The reason for this is that for all reachable states, there is an upper 
bound on the clock variables. Reachability analysis of automata in which clock values can be 
subtracted by a constant is decidable (if such an upper bound does not exist, then the problem is 
undecidable). 

Amnell et al. [C-12] present a tool that is based on the schedulability test in [C-11]. This tool not 
only performs schedulability testing but also some code generation. They extend this tool by 
allowing the execution time of a job to be specified with a lower bound (CB) and an upper bound 
(CW) [C-13]. This extension is done as follows: Each job is associated with two clocks—c and w. 
When a job arrives, its c clock is initialized to zero, and its w clock is initialized to the WCET of 
the job minus the best-case execution time of the job. For a job, there is a guard on the event that 
the job finishes, and this guard is CB <= c < = CB + w. Whenever a job J finishes, all jobs J′ that 
were preempted have their c and w updated as follows: cJ’ := cJ’ – CJ,B and wJ’ := wJ’ – wJ. The idea 
is to maintain bounds on the execution times that a job has performed (w indicates the difference 
between these bounds). 

Fersman et al. [C-14] show that schedulability analysis can be performed with n + 1 clocks, where 
n is the number of tasks. They also show how to model tasks in which the arrival time depends on 
a condition on data. Both of these results assume that execution times of a job are constant  
(i.e., its upper bound is equal to its lower bound). 

Pavel and Wang [C-15] show that the problem of determining schedulability (using reachability 
analysis) is undecidable if all of the following three conditions are true: 1) the execution time of a 
task has an upper bound and a lower bound, which may be different; 2) the arrival time of a job 
may depend on the completion time of another job (e.g., precedence constraint); and 3) a task may 
preempt another task. This is shown through transformation of the halting problem of a two-
counter machine to the problem of determining schedulability. The paper also shows that if at most 
two of the above conditions are true, then schedulability is decidable.  
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The main idea of the proof that schedulability testing is undecidable if the above three conditions 
are true is as follows: Consider a two-counter machine. This machine has two registers; each 
register stores a non-negative number (there is no upper bound on this integer). A control unit 
executes a program, and this program has three types of instructions: 1) decrement a counter, 2) 
increment a counter, and 3) branch conditionally depending on whether a counter is zero. The 
paper constructs a timed automata extended with tasks and shows that it can simulate a two-counter 
machine; specifically, it shows that if and only if the two-counter machine reaches a halting state, 
then the extended timed automata reaches a state with a deadline miss. Therefore, with this 
construction, it is shown that if and only if the two-counter machine reaches a halting state, then 
the task set is unschedulable. Because determining whether a program on a two-counter machine 
can reach a halting state is undecidable, it follows that determining schedulability with an extended 
timed automata is undecidable too.  

A key idea in this construction is that a correspondence can be formed between a counter in the 
two-counter machine and a clock in the timed automata with tasks. If the counter is v, the clock is 
21–v. In this way, any value of the counter has a corresponding value of the clock. The paper shows 
that for each state of the program in the two-counter machine, a state can be formed in the timed 
automata with tasks. The paper observes that if the program executes a decrement on a counter, it 
doubles the corresponding clock. The paper constructs transitions in the timed automata such that 
if and only if the program decrements a counter, the clock value is doubled. Incrementing a counter 
and making the clock value half are analogous. The program may contain a conditional branch 
instruction. This can be implemented in the timed automata by having a state with two transitions: 
one for branch-taken and another for branch-not-taken. For these transitions, there are guards. If 
the condition for the branch in the program is c = 4, then the guard for the corresponding transition 
in the timed automata is 21–4. The paper also shows that the undecidability result for the three 
conditions is true even if the task set is such that only a single preemption can occur. 

Fersman and Wang [C-16] extend the approach in Fersman et al. [C-14] to deal with precedence 
constraints (i.e., thread A must finish before thread B executes because thread A produces data 
that thread B needs) and resource constraints (e.g., thread A and thread B share a data structure, 
and operations on this data structure should not be done concurrently). Note that this paper assumes 
that the execution time of a job is constant. 

Guan et al. [C-17] do not consider timed automata but present a schedulability analysis with an 
expressive model; it achieves this analysis using abstraction and refinement. The idea is as follows: 
Each task is described with a number of concrete behaviors. There is an operation that can form 
an abstraction of two concrete behaviors. To understand this merging, consider the following 
example: A task 1 has a behavior 1 that in a time interval of duration 10, there can be at most 5 
units of execution, and in a time interval of duration 20, there can be at most 15 units of execution. 
Consider that task 1 also has another behavior (behavior 2) stating that in a time interval of duration 
10, there can be at most 6 units of execution, and in a time interval of duration 20, there can be at 
most 14 units of execution. Then an abstraction of these two behaviors considers the worst case 
from each behavior; the abstraction states that in a time interval of duration 10, there can be at 
most 6 units of execution, and in a time interval of duration 20, there can be at most 15 units of 
execution. In this abstracted behavior, the worst case has been taken for each concrete behavior. It 
is shown that two concrete behaviors can be described (through an over-approximation) with an 
abstract behavior. However, two abstract behaviors can also be described with a single abstract 
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behavior. In this way, one abstract behavior can be obtained for each task. This allows for 
performing schedulability analysis rapidly.  

This comes at the cost of pessimism, however; it may be that the task set was actually schedulable, 
but the schedulability test could not guarantee that. Guan et al. [C-17] describe an approach to 
reduce pessimism through refinement as follows: Initially, all tasks have a single behavior; if there 
are n tasks, when there is a queue with a single element, this single element is a vector with n 
behaviors. The schedulability analysis is run as described above. If it fails, then the following is 
done: Choose one task (task i); its behavior is an abstract behavior that was formed from two other 
(potentially abstract) behaviors. The two behaviors offer refinements of the abstract behaviors. 
Remove the head element in the queue, and form two elements that are added to the queue. Each 
of these two elements are vectors; a vector differs only in that for one of the elements of the vector, 
the refined behavior is used. With this new queue, choose the head element and check 
schedulability. If it cannot guarantee schedulability, then perform refinement again. 

In [C-18], Fersman et al. repeat results from previous papers. They state that if the execution time 
of a job is fixed, job arrivals may be data-driven, the computer has a single processor, and job 
arrivals are described with timed automata, then the schedulability analysis problem is decidable. 
As already mentioned in a previous paper, when execution times are given in a range (best-case 
execution time, WCETs), then the schedulability analysis problem is undecidable. For this reason, 
this paper presents an over-approximation technique for this case. The idea is that the actual 
execution time of a job J is used in two ways: to determine when the job may finish (this execution 
time is used as a guard), and to update a lower- and upper-bound variable for lower priority jobs. 
The update can be performed in a pessimistic way; the lower bound can be updated by a lower 
bound on the execution of the higher priority task and, analogously, the upper bound can be 
updated by an upper bound on the execution time of the higher priority task. 

In [C-19], Pavel et al. extend a previous paper [C-15] to multiprocessors. They consider a set of 
tasks in which each task is assigned to a processor (i.e., no migration) and assume that there is a 
timed automata such that for an edge of the timed automata there is a label indicating the task that 
arrives when this edge fires. There is also a scheduling automaton such that some guards fire when 
a task arrives. For the case that the finishing of a task cannot influence the arrival of other tasks, 
the paper shows that the schedulability analysis problem is undecidable (note that from the 
perspective of decidability, this makes multiprocessor analysis different from single-processor 
analysis). 

C.1.5  WORST-CASE EXECUTION TIME ANALYSIS 

The schedulability analysis developed for real-time systems takes as an input the WCET of the 
function that is executed periodically by the task. More specifically, WCET analysis is the problem 
of finding an upper bound on the execution time of a function when the function executes by itself 
on a processor. Researchers started studying this problem in the 1980s [C-20], and it has now 
received significant attention. See [C-21] for a good summary. In general, there are two approaches 
to obtain the WCET of a task: 1) a measurement-based approach, and 2) a model-based approach. 
Measurement-based approaches are first discussed, then model-based approaches. 
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C.1.5.1  Measurement-Based WCET Analysis 

Existing measurement-based WCET analysis combines measurements with some type of model 
that can include statistical models or execution path models. 

C.1.5.1.1  Statistical-Based WCET Estimation and Validation 

Hansen et al. [C-22] present an approach in which execution time measurements are used to create 
a statistical model based on extreme value theory (EVT) [C-23] to 1) predict the probability of 
exceeding a specific WCET that could be matched to the application requirements, 2) obtain 
WCET beyond the measurements used for a given target probability of exceeding this WCET, and 
3) validate that the measurement data match a specific statistical model (probability distribution). 

The authors in [C-22] use EVT to avoid the large amount of data required to obtain good estimates 
of the tail behavior (worst case) when using traditional methods and allow them to generate an 
estimate higher than the highest observed value. EVT models data as a random variable 𝑌𝑌 =
max𝑋𝑋1, … ,𝑋𝑋𝑛𝑛 and uses the generalized extreme value distribution (that converges as 𝑚𝑚 approaches 
infinity) to obtain the desired worst case. More specifically, this distribution converges to any of 
three forms: Gumbel, when the underlying distribution is not heavy tailed (like the normal 
distribution); Frechet, when the underlying distribution is heavy tailed; and Weibull, when the 
distribution has a bounded upper tail (like the uniform). To use this approach, the 𝑌𝑌 distribution 
needs to be constructed by dividing the data into sample blocks (considered to be iid—independent 
and identically distributed) of size 𝑟𝑟 that match each of the 𝑋𝑋𝑖𝑖 variables. Then, the maximum of 
each block is obtained, and the best-fit parameters of the selected distribution are calculated, 
followed by a fitness test. Once the model is constructed, the WCET can be estimated for a 
particular probability. 

In [C-22], only the Gumbel distribution is explored. This distribution has two parameters: a 
location parameter 𝜇𝜇, and a scale parameter 𝛽𝛽. These parameters are then used to build the 
cumulative distribution function: 

 𝐹𝐹𝐺𝐺(𝑦𝑦) = 𝑒𝑒−𝑃𝑃
𝑦𝑦−𝜇𝜇
𝛽𝛽  (C-9) 

This function can then be used to compute the percent-point function: 

 𝐹𝐹𝐺𝐺−1(𝑞𝑞) = 𝜇𝜇 − 𝛽𝛽log (− log(𝑞𝑞)) (C-10) 

That is used to compute the WCET. 

The estimation of the parameter for the Gumbel distribution involves applying linear regression to 
the quantile plot (QQ-plot [C-23]) of the data against that of the distribution. For the Gumbel 
distribution, this takes the form of a line with a positive slope that intersects the y-axis on the 
positive side. From this line, 𝜇𝜇 can be obtained from the y intersect and 𝛽𝛽 from the slope of the 
line. 
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Once 𝜇𝜇 and 𝛽𝛽 are obtained, a chi-square test is conducted to verify the fitness of the distribution 
to the data. From the results of this test, there may be a need to restructure the sample data to create 
sample blocks of different sizes that can be tested again. 

Once the properly fit distribution is obtained, it is possible to calculate the WCET for a particular 
probability of exceeding this WCET 𝑝𝑝𝑃𝑃 as follows. First, compute the probability 𝑞𝑞 that all 𝑟𝑟 
samples in a block are less than the WCET: 

 𝑞𝑞 = (1 − 𝑝𝑝𝑃𝑃)𝑏𝑏 (C-11) 

Then use equations C-10 and C-11 to calculate the WCET 𝜔𝜔: 

 𝜔𝜔 = 𝜇𝜇 − 𝛽𝛽log (− log(1 − 𝑝𝑝𝑃𝑃)𝑏𝑏)) (C-12) 

C.1.5.1.1.1  Limitations 

This approach can provide WCET estimates with a strong theoretical support for smaller 
measurement samples than non-EVT distributions and theory. However, no variable execution 
paths are considered. As a result, the approach needs to be complemented with execution path 
exploration if the software exhibits multiple paths. 

C.1.5.1.2  Rapita RapiTime 

Rapita RapiTime [C-24] is a tool to automate the measurement of WCET of embedded software. 
The tool automatically instruments the code to obtain execution time measurement of blocks of 
code and builds a structural model to relate those blocks to the general structure of software and 
the different execution paths. This structure is also used to predict the worst-case path that the 
software can exhibit and derive a WCET based on it and the measured execution time blocks. 

RapiTime allows the addition of annotations to code to eliminate infeasible paths that can make 
the WCET estimate pessimistic. RapiTime also identifies the hot spots where execution time 
improvements can be more significant. 

The tool is built with DO-178B in mind. DO-178B requires the qualification of verification tools 
like this one. Therefore, the company that commercializes this tool provides the qualification data 
to satisfy this requirement. 

C.1.5.1.3  Limitations 

RapiTime does not offer any probabilistic characterization of the WCET obtained. As a result, the 
obtained WCET is as good as the data used to obtain it. Depending on how many samples the user 
collects, the WCET can be more conservative or not. 
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C.1.5.2  Model-Based WCET Analysis 

C.1.5.2.1  Abstract Interpretation 

This section starts with some history of WCET analysis. Then it discusses abstract interpretation 
[C-25] and AiT [C-26] because these are the most popular methods and tools. 

Shaw’s work [C-27] served as a catalyst for the research community to begin studying WCET 
analysis. It presented a framework for reasoning about time that involved two specifications:  
1) timing of individual lines of code and how the time required for executing multiple lines of code 
can be derived from single lines of code and 2) the arrival times and deadlines of programs. The 
former is relevant for WCET. The method can be understood with an example. Consider the 
following program: 

 

The WCET of this program can be computed as follows: 

 

Shaw [C-27] presents rules (based on the grammar of the language) to compute a WCET of a 
program based on its constituent parts. This method has two drawbacks. First, it assumes that the 
executable code directly maps to the source code. In some cases, this is not true; for example, a 
compiler may perform dead code elimination or move a computation out of a for-loop. Second, it 
describes the execution time of an individual part with an upper bound and a lower bound, and 
these bounds do not depend on other parts. However, modern processors today use caches, so the 
time to perform a load instruction depends on previous memory operations. For these reasons, the 
method in [C-27] is not used today. 

Researchers realized that the hardware needs to be modeled. One approach was to use abstract 
interpretation; it was initially used for cache analysis. Abstract interpretation [C-25] is a general 
technique for proving properties of programs. The idea is as follows: A program consists of 
instructions, and each instruction performs a mapping of a before-instruction state to an after-
instruction state. Describing these mappings for each instruction is cumbersome and would lead 
to time-consuming analysis. Therefore, abstract interpretation introduces the notion of abstraction. 
It can be best understood through an example. If there is an instruction “z := x * y,” where x, y, and 
z are 32-bit integers, then every combination of x and y can be enumerated, and a table can express 

if a>=7 then 
 b := 7 
 flag := 1 
 else 
 b := 0 
 end if 

 WCET of program = 
 WCET of “if statement” + 
 WCET of condition “a>=7” + 
 max( WCET of “b:=7” + WCET of “flag := 1”, 
 WCET of “b:=0” 
 ) 
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the value of z. However, later in a program, the exact value of z is not a concern—the only concern 
is whether it is negative, positive, or zero (for example, z may be used later in a conditional branch). 
In abstract interpretation, abstract values are used; values are represented with their abstraction, 
and instructions expressed on their abstractions as well. For example, multiplication can be 
expressed as follows: 

 

Then, in a program, consider each basic block (a sequence of instructions with a single entry point 
and a single exit point), and describe the computation performed by this basic block for how it 
produces a next state (described with the abstractions) from its previous state (described with the 
abstractions). With this description, facts of a program can be derived by applying these operations 
iteratively, considering that the output for certain basic blocks is the input to other basic blocks, 
and considering that two abstractions can be merged. When two states are different, merging may 
result in a state of “don’t know.” Abstract interpretation is typically quite fast for program analysis, 
but it suffers from potential loss of precision; it may be that some facts of a program are true, but 
the method cannot prove them. 

Typically, abstract interpretation was used for proving facts about the computed values of 
programs (e.g., to prove that after a certain basic block has finished execution, a certain variable 
has taken a certain value or is within a certain range). However, abstract interpretation can also be 
applied to other types of states, such as which cache blocks are in the cache memory after a basic 
block. Indeed, Alt et al. [C-28] describe how a memory instruction changes the state of the cache, 
and this can be used to classify memory instructions. For example, a memory instruction can be 
classified as “always hit,” meaning that whenever it executes, it results in a cache hit. Another 
category is “always miss,” meaning that whenever it executes, it results in a cache miss. Yet 
another category is “not classified,” which means that the analysis could not categorize the 
memory access. With such an analysis, other types of analyses can obtain more accurate bounds 
on the execution time of a basic block. Today, abstract interpretation is used in the tool AiT—one 
of the most popular WCET tools today [C-26]. 

C.1.5.2.2  Symbolic Execution 

Another method to obtain the WCET is the use of symbolic execution that explores the micro-
architectural features of the processor in which the program runs. An example of this approach is 
presented in [C-29]. In this paper, the authors develop a symbolic execution framework to explore 
the effect of cache in the WCET of a program that can easily be extended to other features, such 

 if x is zero then z is zero. 
 if y is zero then z is zero. 
 if x is negative and y is negative, then z is positive. 
 if x is negative and y is positive, then z is negative. 
 if x is negative and y is don’t know, then z is don’t know 
 if x is positive and y is negative, then z is negative. 
 if x is positive and y is positive, then z is positive. 
 if x is positive and y is don’t know, then z is don’t know 
 if x is don’t know and y is negative, then z is don’t know. 
 if x is don’t know and y is positive, then z is don’t know. 
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as pipelines. In this paper, the authors model the execution of the program as a labeled transition 
system 𝑆𝑆 as a tuple (ℒ, ℓ0,⟶), where ℒ is the set of program points with ℓ0 ∈ ℒ as the unique 
initial program point, and ⟶ ⊆ ℒ × ℒ × 𝑂𝑂𝑝𝑝𝑠𝑠, where 𝑂𝑂𝑝𝑝𝑠𝑠 is the set of operations of the program. 
These operations are restricted to be either assignments or assumptions. Assignments assign values 
to the variables of the system, and assumptions specify conditions that must be true to allow the 
execution to continue in this path. This transition system builds a directed acyclic graph (DAG) 
that is a simplification of a full-control flow graph. 

Based on the transition system previously defined, a symbolic state is defined as a tuple (ℓ, 𝑐𝑐,𝜎𝜎,Π), 
where ℓ ∈  ℒ is the concrete program point of this state, 𝑐𝑐 is the abstract cache state, 𝜎𝜎 is the current 
valuation of all the variables of the program, and Π is a first-order logical formula that encodes the 
conditions that must be true for the execution of the program to reach this point. With these 
definitions, as the program executes and new branches are created into the execution DAG, loops 
are unrolled, and infeasible paths are discovered, the cache state is also updated (as memory 
locations loaded/unloaded into cache). At the same time, summarizations of the branches in terms 
of conditions that encode infeasible paths and cache states are created to be reused in other 
branches. These summarizations are the core of a scalable analysis; they allow for determining 
that a branch analysis can be assumed to be dominated by another branch (e.g., has a “less”-worse 
execution time). 

This approach first uses both the transition system representation of the program and the 
summarization to evaluate the worst-case timing of a branch of execution given a cache state. 
Then, it reuses the result in other branches if it can be proven that the first dominates the second, 
(i.e., that it still has the same infeasible paths and the same or worst cache state). 

This framework was implemented in the LLVM IR framework with the Z3 SMT engine as the 
constraint solver. The paper presents a number of experiments over some benchmarks. Whereas 
this approach provides more precise WCET figures, the complexity of the approach remains super-
linear with respect to the complexity of space and time. 

Other work has explored similar approaches. For example, Banerjee et al. [C-30] use abstract 
interpretation and SAT solvers to explore infeasible paths and architectural features in the 
calculation of WCET. 

C.1.5.2.2.1  Limitations 

As mentioned before, this approach suffers from superlinear complexity in space and time. 
Moreover, the algorithm in this case considers only cache, and adding other architectural features 
might increase the verification time. 

C.2  LOGICAL VERIFICATION 

In this section, several verification technologies relevant to assuring logical correctness of systems 
that use virtualization techniques are discussed in more detail. Logical correctness is primarily 
concerned with ensuring that the software does the right thing (i.e., produces the expected output). 
All logical verification techniques require the user to specify the initial state of the software, the 
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inputs, and the expected outputs. They differ in the specific way these artifacts are expressed and 
checked. 

C.2.1  TESTING 

Software testing is by far the most widely used logical verification technique in practice. Whereas 
a full treatment of testing is beyond the scope of this article, it will be described briefly. The basic 
idea is to express the initial condition, inputs, and outputs of the target software as a “test case.” 
The testing tool then executes the software, starting from the specified initial state, and stimulates 
it with the specified inputs. Finally, it checks whether the outputs from the software match the ones 
expected in the test case. If they do, then the test passes. Otherwise, the test fails. The main 
advantage of testing is that it can be highly automated and run routinely. Various languages and 
software development environments include some form of testing infrastructure (e.g., JUnit). 

One limitation of testing is its lack of coverage. Because software (including avionics software) 
has enormous state spaces, even a very large number (e.g., tens of millions) of test cases exercise 
only a minute fraction of their possible executions. This lack of coverage manifests in several 
ways. For example, many bugs are found during “integration testing” when multiple components 
are combined and then tested. This happens even when the individual components have passed 
unit tests. Second, bugs are detected during field trials despite the software having been tested 
heavily. Often, these are due to sequences of interactions with the physical environment and human 
operators that were not covered by testing. Whereas a number of criteria (such as MC/DC proposed 
by the FAA) have been developed to achieve higher syntactic coverage of software via testing, the 
problem of achieving adequate semantic coverage remains open. 

Another limitation of testing is that it is biased toward the implementation side of the software 
engineering “V” process. These limitations of testing would also be applicable to software with 
virtualization machines. The state-space explosion problem would be exacerbated by the high 
degree of concurrency and interaction between the various VMs. It is recognized that defects found 
earlier are easier to fix and therefore reduce the overall software development cost. In the rest of 
this section, more exhaustive logical verification techniques will be described that not only provide 
higher coverage but also are better suited to the earlier (design and modeling) phases of software 
development. 

C.2.2  THEOREM PROVING AND DEDUCTIVE VERIFICATION 

The ideas behind applying theorem proving to verify logical correctness of software were 
developed in the early 1980s by Floyd and Hoare. The verification problem is stated in the form 
of a Hoare triple. Formally, a Hoare triple is of the form {𝑝𝑝} 𝑆𝑆 {𝑞𝑞}, where 𝑆𝑆 is a program (e.g., a 
sequence of statements, a loop, a function call) and 𝑝𝑝 and 𝑞𝑞 are conditions (they are known 
respectively as the pre-condition and the post-condition) expressed over the variables appearing in 
𝑆𝑆. The triple is valid if whenever 𝑆𝑆 is executed in a state that satisfies 𝑝𝑝, it terminates in a state that 
satisfies 𝑞𝑞. For example, consider the Hoare triple {𝑚𝑚 ≥ 0} 𝑦𝑦 ≔ 𝑚𝑚 {𝑚𝑚 = 𝑦𝑦 ∧ 𝑦𝑦 ≥ 0}. This triple is 
valid because if the assignment statement 𝑦𝑦 ≔ 𝑚𝑚 is executed from any state that satisfies 𝑚𝑚 ≥ 0, 
the resulting state must satisfy the condition 𝑚𝑚 = 𝑦𝑦 ∧ 𝑦𝑦 ≥ 0 (note that ∧ denotes logical 
conjunction). Similarly, consider the Hoare triple {𝑚𝑚 ≥ 0} 𝑦𝑦 ≔ 𝑚𝑚 − 1 {𝑦𝑦 ≥ 0}. This triple is 
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invalid because if the assignment 𝑦𝑦 ≔ 𝑚𝑚 − 1 is executed from a state that satisfies 𝑚𝑚 ≥ 0 (in 
particular, suppose 𝑚𝑚 = 0), then the resulting state may not satisfy 𝑦𝑦 ≥ 0 (in this case 𝑦𝑦 = −1). 

Once a Hoare triple is specified, its validity is checked by constructing a logical formula known 
as a verification condition (VC) and proving that the VC is valid. To verify complex programs 
with loops and function calls using this approach, Hoare triples for all functions, and loop 
invariants for all loops must be specified. Informally, the loop invariant for a loop is a condition 
that holds whenever an execution of the program is about to enter the body of the loop. Several 
tools automatically construct VCs from a program that is sufficiently annotated with pre- and post-
conditions for functions and loop invariants and prove the validity of these VCs using off-the-shelf 
satisfiability modulo theory (SMT) solvers. In particular, the Frama-C [C-31] tools verify C 
programs with ACSL annotations in this way. For example, the C program shown in figure C-4 
can be verified automatically by Frama-C. 

 

Figure C-4. Example C code with ACSL annotations 

Note that the function’s pre-condition is 𝑚𝑚 = 0, and its post-condition is that the return value is 
10. The loop invariant is that the value of 𝑚𝑚 must be between 0 and 10, inclusively. Other such 
deductive software verifiers include Boogie, Why3, and ESC-Java. Whereas Boogie and Why3 
have their own target programming languages, the ESC-Java tool verifies Java programs. 
Deductive verifiers are extremely powerful in that complex safety properties about a program’s 
behavior can be specified via pre- and post-conditions, but they are manually intensive. However, 
the cost is usually justified for verifying long-running system software (such as operating systems 
[C-32]) that are critical to get right and do not change frequently. For example, Frama-C has been 
used to verify avionics software [C-33]. Whereas there has been some effort to apply deductive 
verifiers to hypervisors [C-25], more work needs to be done. In particular, better hardware models 
need to be constructed so that hypervisors can be verified across a broader range of platforms. 

C.2.3  ABSTRACT INTERPRETATION 

Abstract interpretation [C-34] is another exhaustive verification technique for proving logical 
correctness of programs. The idea behind abstract interpretation is to perform reachability analysis 
over an abstract model of the program’s semantics constructed via an abstract domain. The model 
is conservative in that if no unsafe state is reachable in the model’s abstract state space, then no 
unsafe state is reachable in the program’s concrete state space. However, the model is imprecise 
and can lead to false warnings. In other words, there may be a path to an unsafe state in the model, 
but no corresponding execution in the actual program. Consider again the example C program 
from figure C-4. The control flow graph (CFG) of that program is shown in figure C-5 (a). 

/*@requires x == 0; @modified \nothing; @ensures \return == 10;*/ 
int foo (int x) 
{ 
  int i = x; 
  /*@loop invariant 0<=i<=10; @loop assigns i;*/ 
  while (i < 10) i++; 
  return i; 
} 
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Figure C-5. Control flow graph and results of abstract interpretation 

Informally, the CFG is a directed graph in which nodes represent program statements and edges 
represent flow of control from one statement to another. Suppose an abstract interpretation of this 
program was performed using the interval abstract domain [C-35]. This means that each abstract 
state will assign only an interval of possible values to the program variables (𝑚𝑚 and 𝑚𝑚). Note that 
each interval must over-approximate all possible values of the corresponding variable in concrete 
executions. Therefore, at the entry node of the CFG, the interval is 𝑚𝑚 = [0,0] ∧ 𝑚𝑚 = [−∝, +∝]. This 
means that although the value of 𝑚𝑚 must be 0, the value of 𝑚𝑚 is unconstrained. Assume here that 𝑚𝑚 
is a mathematical integer, not a machine integer. This is for simplicity of presentation and is not 
an inherent limitation of abstract interpretation. 

Next, reachability is performed over the abstract state space, using the semantics of the program 
statements to produce next states from previous ones. Therefore, after the initial assignment  
𝑚𝑚 ≔ 𝑚𝑚, there is a new abstract state 𝑚𝑚 = [0,0] ∧ 𝑚𝑚 = [0,0]. After the assignment, the value of 𝑚𝑚 is 
no longer unconstrained. Figure C-5 (b) shows the state of the abstract interpretation at this stage. 
At the conditional statement 𝑚𝑚 < 10, the 𝑌𝑌 branch must be followed because the condition holds 
under the abstract state. Now the assignment 𝑚𝑚 ≔ 𝑚𝑚 + 1 is performed to get the abstract state  
𝑚𝑚 = [0,0] ∧ 𝑚𝑚 = [1,1]. When the control-flow edge is followed to return to the conditional 
statement, the previous abstract state 𝑚𝑚 = [0,0] ∧ 𝑚𝑚 = [0,0] must be “merged” with the new one to 
get an updated abstract state 𝑚𝑚 = [0,0] ∧ 𝑚𝑚 = [0,1]. Figure C-6 (a) shows the state of the abstract 
interpretation at this stage. 

(a) 

𝑚𝑚 ≔ 𝑚𝑚 

𝑚𝑚 < 10 

𝑚𝑚 ≔ 𝑚𝑚 + 1 𝑟𝑟𝑒𝑒𝑡𝑡𝑢𝑢𝑟𝑟𝑚𝑚 𝑚𝑚 

𝑌𝑌 𝑁𝑁 

𝑚𝑚 ≔ 𝑚𝑚 

𝑚𝑚 < 10 

𝑚𝑚 ≔ 𝑚𝑚 + 1 𝑟𝑟𝑒𝑒𝑡𝑡𝑢𝑢𝑟𝑟𝑚𝑚 𝑚𝑚 

𝑌𝑌 𝑁𝑁 

(b) 

𝑚𝑚 = [0,0] ∧ 𝑚𝑚 = [−∝, +∝] 

𝑚𝑚 = [0,0] ∧ 𝑚𝑚 = [0,0] 
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Figure C-6. Progress of abstract interpretation 

If this process is repeated by going through the loop 10 times, the abstract state  
𝑚𝑚 = [0,0] ∧ 𝑚𝑚 = [0,10] will be computed at the conditional statement. At this point, the 𝑁𝑁 branch 
will be followed and the abstract state 𝑚𝑚 = [0,0] ∧ 𝑚𝑚 = [10,10] obtained at the 𝑟𝑟𝑒𝑒𝑡𝑡𝑢𝑢𝑟𝑟𝑚𝑚 statement, 
which suffices to prove that the function returns 10. 

The advantage of abstract interpretation is its scalability and efficiency. Most commercial static 
analysis tools, such as Coverity and Klocwork, perform abstract interpretation in one way or 
another. The scalability comes from the fact that the abstract domain can focus only on the 
variables of interest—and relationships between them—and eliminate all other program details. 
Moreover, a technique known as “widening” can be used to analyze loops that have large bounds 
without having to unwind them completely (as in the example). On the flip side, scalability comes 
at the cost of precision. Therefore, static analysis tools are plagued by false warnings, which limit 
their effectiveness. In practice, domain-specific abstract domains and heuristics are used to reduce 
the number of false warnings or weed them out. However, this limits practical applicability to 
multiple domains and increases manual cost. Nevertheless, abstract interpretation remains the most 
widely used formal verification technology for logical correctness over industrial code bases. 

There are two potential ways in which abstract interpretation could be used to verify avionics 
software with VMs. First, it can be applied through an off-the-shelf static analyzer. Static analyzers 
can help find common programming errors, such as numeric overflows and buffer overflows, 
which plague all types of software. However, they do not provide any benefits that are specific to 
this type of software. Second, new abstract domains can be developed targeted toward low-level 
software involving concurrency and use of special hardware features. This is more challenging, 
and prior work on abstract interpretation of concurrent low-level programs has yielded limited 
benefits. 

C.2.4  MODEL CHECKING 

Model checking [C-36] is an algorithmic and automated technique for proving correctness of finite 
state models of systems against properties specified using temporal logic. The model is given as a 
Kripke structure, which is a finite state machine for which states are labeled with atomic 

(a) 

𝑚𝑚 ≔ 𝑚𝑚 

𝑚𝑚 < 10 

𝑚𝑚 ≔ 𝑚𝑚 + 1 𝑟𝑟𝑒𝑒𝑡𝑡𝑢𝑢𝑟𝑟𝑚𝑚 𝑚𝑚 

𝑌𝑌 𝑁𝑁 

𝑚𝑚 ≔ 𝑚𝑚 

𝑚𝑚 < 10 

𝑚𝑚 ≔ 𝑚𝑚 + 1 𝑟𝑟𝑒𝑒𝑡𝑡𝑢𝑢𝑟𝑟𝑚𝑚 𝑚𝑚 

𝑌𝑌 𝑁𝑁 

(b) 

𝑚𝑚 = [0,0] ∧ 𝑚𝑚 = [−∝, +∝] 

𝑚𝑚 = [0,0] ∧ 𝑚𝑚 = [0,1] 

𝑚𝑚 = [0,0] ∧ 𝑚𝑚 = [0,1] 

𝑚𝑚 = [0,0] ∧ 𝑚𝑚 = [0,10] 

𝑚𝑚 = [0,0] ∧ 𝑚𝑚 = [10,10] 
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propositions that denote facts that are true in that state. For example, figure C-7 shows the model 
of a microwave oven. There are four atomic propositions: 𝑠𝑠𝑡𝑡𝑚𝑚𝑟𝑟𝑡𝑡 means that the oven is turned on; 
𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑒𝑒 means that the oven door is closed; ℎ𝑒𝑒𝑚𝑚𝑡𝑡 means that the food is being cooked; and 𝑒𝑒𝑟𝑟𝑟𝑟𝑐𝑐𝑟𝑟 
means that some error condition has occurred because of incorrect operation. 

 

Figure C-7. A Kripke structure model of a microwave oven 

The target properties are expressed using temporal logic. Here are three example properties 
expressed in computation tree logic: 

• 𝐴𝐴𝐴𝐴(ℎ𝑒𝑒𝑚𝑚𝑡𝑡 ⇒ 𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑒𝑒): If the oven is cooking the food, then the door is closed. 
• 𝐴𝐴𝐴𝐴(𝑠𝑠𝑡𝑡𝑚𝑚𝑟𝑟𝑡𝑡 ⇒ 𝐴𝐴𝐹𝐹 ℎ𝑒𝑒𝑚𝑚𝑡𝑡): Whenever the oven is turned on, eventually it will cook the food. 
• 𝐴𝐴𝐴𝐴((𝑠𝑠𝑡𝑡𝑚𝑚𝑟𝑟𝑡𝑡 ∧ ~𝑒𝑒𝑟𝑟𝑟𝑟𝑐𝑐𝑟𝑟) ⇒ 𝐴𝐴𝐹𝐹 ℎ𝑒𝑒𝑚𝑚𝑡𝑡): Whenever the oven is turned on properly, eventually 

it will cook the food. 

Model checking involves an exhaustive exploration of the state space of the Kripke structure to 
prove the target property or find a counterexample (i.e., an execution of the model) that shows why 
the property does not hold. In the example, the first and third properties are valid, whereas the 
second one does not hold. The counterexample to the second property is an execution in which the 
microwave is turned on without closing the door first. 

Model checking has been widely used to verify properties of concurrent systems, including 
software and hardware. The big challenge with model checking is with state-space explosion, and 
most of the advances in this area have been devoted to addressing this problem. The first prototype 
model checker was explicit state and could only verify systems with 10,000 or so states. Modern 
model checkers, such as NuSMV and SPIN, use a host of techniques, including symbolic analysis 
using binary decision diagrams and partial order reduction, and can verify systems with over 1020 
states [C-37]. The development of more powerful computers has also improved the ability of 
model checkers to handle larger and more complex systems. A variant of model checking, known 
as bounded model checking [C-38], uses powerful propositional satisfiability (SAT) solvers to 
verify properties over an unwinding of a model’s state space up to some specific bound. Whereas 

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑝𝑝𝑒𝑒𝑚𝑚 𝑑𝑑𝑐𝑐𝑐𝑐𝑟𝑟 

𝑑𝑑𝑐𝑐𝑚𝑚𝑒𝑒 

𝑐𝑐𝑝𝑝𝑒𝑒𝑚𝑚 𝑑𝑑𝑐𝑐𝑐𝑐𝑟𝑟 𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑒𝑒 𝑑𝑑𝑐𝑐𝑐𝑐𝑟𝑟 

𝑠𝑠𝑡𝑡𝑚𝑚𝑟𝑟𝑡𝑡 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑐𝑐 

𝑤𝑤𝑚𝑚𝑟𝑟𝑚𝑚𝑢𝑢𝑝𝑝 

𝑠𝑠𝑡𝑡𝑚𝑚𝑟𝑟𝑡𝑡 𝑐𝑐𝑣𝑣𝑒𝑒𝑚𝑚 𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑒𝑒 𝑑𝑑𝑐𝑐𝑐𝑐𝑟𝑟 
𝑟𝑟𝑒𝑒𝑠𝑠𝑒𝑒𝑡𝑡 

𝑐𝑐𝑝𝑝𝑒𝑒𝑚𝑚 𝑑𝑑𝑐𝑐𝑐𝑐𝑟𝑟 

~𝑠𝑠𝑡𝑡𝑚𝑚𝑟𝑟𝑡𝑡 ~𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑒𝑒 
~ℎ𝑒𝑒𝑚𝑚𝑡𝑡 ~𝑒𝑒𝑟𝑟𝑟𝑟𝑐𝑐𝑟𝑟 

𝑠𝑠𝑡𝑡𝑚𝑚𝑟𝑟𝑡𝑡 ~𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑒𝑒 
~ℎ𝑒𝑒𝑚𝑚𝑡𝑡 𝑒𝑒𝑟𝑟𝑟𝑟𝑐𝑐𝑟𝑟 

~𝑠𝑠𝑡𝑡𝑚𝑚𝑟𝑟𝑡𝑡 𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑒𝑒 
~ℎ𝑒𝑒𝑚𝑚𝑡𝑡 ~𝑒𝑒𝑟𝑟𝑟𝑟𝑐𝑐𝑟𝑟 

~𝑠𝑠𝑡𝑡𝑚𝑚𝑟𝑟𝑡𝑡 𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑒𝑒 
ℎ𝑒𝑒𝑚𝑚𝑡𝑡 ~𝑒𝑒𝑟𝑟𝑟𝑟𝑐𝑐𝑟𝑟 

𝑠𝑠𝑡𝑡𝑚𝑚𝑟𝑟𝑡𝑡 𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑒𝑒 
~ℎ𝑒𝑒𝑚𝑚𝑡𝑡 𝑒𝑒𝑟𝑟𝑟𝑟𝑐𝑐𝑟𝑟 

𝑠𝑠𝑡𝑡𝑚𝑚𝑟𝑟𝑡𝑡 𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑒𝑒 
~ℎ𝑒𝑒𝑚𝑚𝑡𝑡 ~𝑒𝑒𝑟𝑟𝑟𝑟𝑐𝑐𝑟𝑟 

𝑠𝑠𝑡𝑡𝑚𝑚𝑟𝑟𝑡𝑡 𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑒𝑒 
ℎ𝑒𝑒𝑚𝑚𝑡𝑡 ~𝑒𝑒𝑟𝑟𝑟𝑟𝑐𝑐𝑟𝑟 

𝑠𝑠𝑡𝑡𝑚𝑚𝑟𝑟𝑡𝑡 𝑐𝑐𝑣𝑣𝑒𝑒𝑚𝑚 
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in general it does not perform complete verification, it has been extremely effective for finding 
bugs, which often have short counterexamples. 

However, model checking is limited to verifying finite state systems, which is insufficient for 
programs that typically have infinite state spaces. The applicability of model checking to avionics 
software with virtualization is therefore most likely possible through a generalization of model 
checking to software, which is described next. 

C.2.5  SOFTWARE MODEL CHECKING 

The idea behind software model checking [C-39] is to use a counterexample-guided abstraction-
refinement approach. This is an iterative procedure with the following steps: 

1. Create a finite abstract model 𝑀𝑀 of the program by, for example, using predicate 
abstraction. 

2. Verify 𝑀𝑀 using model checking. 
3. If 𝑀𝑀 satisfies the target property, then so does the original program because the abstraction 

procedure is conservative. In this case, the software model checker terminates by declaring 
the program to be verified. 

4. Otherwise, let 𝐶𝐶𝐶𝐶 be the counterexample returned by the model checker in step 2. 
5. Check whether 𝐶𝐶𝐶𝐶 corresponds to a concrete execution of the program. If so, then a 

counterexample has been found. The software model checker terminates and reports this 
counterexample as diagnostic feedback. 

6. Otherwise, 𝐶𝐶𝐶𝐶 is a spurious counterexample. Use it to create a more refined model 𝑀𝑀 and 
repeat from step 2. 

This approach has been implemented in a number of commercial and academic tools. For example, 
Microsoft’s® static driver verifier essentially uses this technique to prove that device drivers 
interact correctly with the Windows kernel. Software model checking has seen a lot of growth in 
recent years, and tools regularly compete in an annual competition [C-40]. Starting with the 
verification of safety properties of sequential C programs, it now includes concurrent programs 
with pointers, object-oriented programs, and verification of more complex properties, such as 
termination. Bounded model checkers for software [C-41] are also available. 

However, most software model checkers are still targeted toward source code. To verify low-level 
software with virtualization, an appropriate hardware model must be developed and the model 
checker extended to reason about the hardware. In particular, model checkers will be required to 
reason about assembly code that is often a part of system software, such as hypervisors. 

In this section, various verification techniques for logical verification are summarized. Whereas 
considerable progress has been made, application of these techniques to avionics software with 
virtualization remains an open challenge. Developing an appropriate hardware model that includes 
the semantics of virtualization primitives will be crucial. In addition, given the complexity of these 
systems, it is unlikely that any single verification technique will be able to handle an entire system. 
A compositional approach that combines multiple techniques in a sound manner will be necessary 
for success. The presentation of the verification evidence produced by various tools in a connected 



 

C-25 

and traceable manner (from high-level requirements to low-level tool outputs), in the spirit of 
assurance and safety cases, will aid certification. 

C.3  CONCLUSION 

Verification technologies are key for the safe use of virtual machines (VMs) in avionics systems. 
Unfortunately, the state of the art is not well developed. Three broad challenges are faced. First, 
verification technologies need to be expressive; they must describe a system so that the description 
is sufficiently close to reality. Second, verification techniques need to run fast. Third, verification 
techniques need to be able to deal with the specifics of VMs. All of these verification techniques 
are now well understood. In general, there is a tradeoff between the speed of verification and the 
level of detail of the model on which the verification depends. One potentially useful idea for 
achieving greater fidelity of the models and sufficient speed in verification is the use of 
abstractions. This is true for both timing and logical verification. 

The main motivation for the use of VMs in avionic systems is the possibility of isolating different 
parts of the system in VMs. However, appropriate technology is needed to verify these parts 
independently and compose the results (compositional verification). More specifically, the 
capacity to tolerate modification to one VM without requiring a reverification of the whole system 
is key and aligned to the use of partitions in standards like DO-178B/C. More research is needed 
to obtain practical compositional verification technologies for both the timing and logical aspects. 
The recommendations for certification of engineers will be deferred until the compositional 
verification techniques are discussed in the next section. 
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APPENDIX D—COMPOSITIONAL VERIFICATION FOR VIRTUAL MACHINES 

D.1  INTRODUCTION 

Virtualization offers the possibility of isolating components and potentially verifying them 
independently from one another. Certification standards, such as DO-178C, require an isolation to 
allow the verification of an individual component without the need to recertify the rest. However, 
either because of their need to interact with each other or because they use the same hardware, the 
isolation among components offered by virtualization is not absolute. This means that the 
techniques used for verification must be aware of these interactions across components. The 
research community has identified this type of verification as compositional verification. 

Compositional verification defines components whose behavior can be affected by other 
components and can also affect other components, only through an interface. With this definition, 
the verification process is decomposed into two parts. First, components are verified taking into 
account the interactions with other components observable through the interface. Second, the 
whole system is verified as a collection of components connected through their interfaces, whose 
behavior is limited to what is observable through the interface. Clearly, these interfaces are 
influenced by both the verification technology and the mechanisms that restrict the behavior, such 
as a virtual machine (VM) and its hypervisor. 

In this report, the compositional technologies that support the use of different types of 
virtualization to enable independent component verification will be studied, both from the timing 
and logical perspectives. Section 2 discusses virtualization interfaces from both the perspective of 
timing and functional correctness. Because timing is changed as a result of virtualization, timing 
is emphasized in the discussion. Section 3 presents mitigation strategies. Section 4 gives 
recommendations. 

D.2  VIRTUALIZATION INTERFACES: A VERIFICATION PERSPECTIVE 

Different virtualization techniques offer different interfaces that can be mapped to different 
compositional verification techniques. In the following, this mapping is studied and the tradeoffs 
that they offer are discussed. 

D.2.1  VIRTUALIZATION TIMING INTERFACES CHARACTERIZATION AND 
MODELING 

In this section, the focus is on temporal virtualization, the different ways to define the timing 
interfaces they provide, and the corresponding compositional verification technology. 

D.2.1.1  Task Model 

To set up the discussion, an initial model of the tasks that can be hosted in a VM will be 
provided. Specifically a task 𝜏𝜏𝑖𝑖 is defined as: 

 𝜏𝜏𝑖𝑖 = (𝑂𝑂𝑖𝑖, 𝐽𝐽𝑖𝑖 ,𝑇𝑇𝑖𝑖,𝐷𝐷𝑖𝑖 ,𝐶𝐶𝑖𝑖) (D-1) 
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where 𝑂𝑂𝑖𝑖 is the time of the first job arrival of the task, 𝐽𝐽𝑖𝑖 is the jitter that a task can suffer on 
activation, 𝑇𝑇𝑖𝑖 is its period, 𝐷𝐷𝑖𝑖 its deadline, and 𝐶𝐶𝑖𝑖 is its worst-case execution time. This model 
describes a task 𝜏𝜏𝑖𝑖 that arrives at times 𝑐𝑐𝑇𝑇𝑖𝑖 + 𝑂𝑂𝑖𝑖 for non-negative integer values of 𝑐𝑐 and a job is 
released [𝑐𝑐𝑇𝑇𝑖𝑖 + 𝑂𝑂𝑖𝑖,𝑐𝑐𝑇𝑇𝑖𝑖 + 𝑂𝑂𝑖𝑖 + 𝐽𝐽𝑖𝑖], capturing that 𝐽𝐽𝑖𝑖 is an upper bound on the release jitter.  
Figure D-1 shows this. 

 

Figure D-1. Concepts in the model: Oi, Ji, Ti, Ci 

It is worth noting that when applications have tasks that execute across multiple processors (e.g., 
reading sensor data in one processor, performing control computation in another processor, and 
actuating in yet another processor), they need to be decomposed into the different segments that 
execute in each of the processors with the corresponding deadlines and offsets that will ensure that 
their dependencies will be satisfied. In this example, one time unit represents one millisecond. 
Consider an example with an end-to-end task 𝜏𝜏1𝑃𝑃2𝑃𝑃 with a period equal to its deadline 𝑇𝑇1𝑃𝑃2𝑃𝑃 = 100 
and 𝐷𝐷1𝑃𝑃2𝑃𝑃 = 50 that must execute three segments 𝐶𝐶1,1, = 10,𝐶𝐶1,2 = 10,𝐶𝐶1,3 = 10 in three different 
processors. It can be decomposed into independent tasks such that: 

 𝐷𝐷1,1 + 𝐷𝐷1,2 + 𝐷𝐷1,3 = 𝐷𝐷1𝑃𝑃2𝑃𝑃 = 50 (D-2) 

and 

 𝐷𝐷1,1 = 𝑂𝑂1,2 (D-3) 

and 

 𝐷𝐷1,1 + 𝐷𝐷1,2 = 𝑂𝑂1,3 (D-4) 
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One such decomposition is the following9: 

• 𝜏𝜏1,1 = (𝑇𝑇1,1 = 100,𝑂𝑂1,1 = 0,  𝐽𝐽1,1 = 0,𝐶𝐶1,1 = 10,𝐷𝐷1,1 = 17) 
• 𝜏𝜏1,2 = (𝑇𝑇1,2 = 100,𝑂𝑂1,2 = 17, 𝐽𝐽1,2 = 0,𝐶𝐶1,2 = 10,𝐷𝐷1,2 = 17) 
• 𝜏𝜏1,3 = �𝑇𝑇1,3 = 100,𝑂𝑂1,3 = 34, 𝐽𝐽1,3 = 0,𝐶𝐶1,3 = 10,𝐷𝐷1,3 = 16� 

Figure D-2 shows a Gantt chart of the decomposition with the corresponding parameters. 

 

Figure D-2. Deadline decomposition 

D.2.1.2  Brittleness 

One of the key objectives of a timing interface is to isolate changes in a component. The research 
literature offers one approach for this [D-1]. It considers a system with components, and each 
component has an interface. Normal compositional schedulability analysis takes the interface as 
input. Here, however, a question arises: Is there an assignment of tasks to each component such 
that for each component, the tasks in this component respect the interface and the resulting task 
set is unschedulable? If the answer is “no,” then the task set is schedulable. Brittleness will now 
be discussed more generally. 

To characterize the brittleness of an interface, the following degrees of brittleness that match the 
degrees of freedom of a component task specification are defined.  

  

                                                 
9  The research literature offers several approaches for decomposing a task in a distributed system with an end-to-end-deadline 

into many independent tasks. One such method is available in [D-2]. 
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1. Period Brittleness: Period brittleness defines the sensitivity of an interface to changes in 
the periodicity of a task inside a component. If the period is modified and all the other 
factors remain equal, it can also modify the utilization (𝑈𝑈𝑖𝑖 = 𝑊𝑊𝑖𝑖

𝑇𝑇𝑖𝑖
) of the task. Therefore, this 

degree of brittleness is divided into 

a. Utilization-Neutral Period Brittleness, in which the budget is adjusted to keep the 
same utilization, and 

b. Utilization-Agnostic Period Brittleness, in which the budget is not adjusted and it 
will affect the utilization. 

It is worth noting that utilization can be discussed only if the deadline is the same as the 
period. Otherwise, the focus needs to be on the density as described in the next paragraph. 
If the deadline is shorter than or equal to the period even across modifications, the density 
will remain the same. 

2. Deadline Brittleness: The deadline brittleness has a similar effect to period brittleness with 
respect to density of the task (𝛿𝛿𝑖𝑖 = 𝑊𝑊𝑖𝑖

𝐷𝐷𝑖𝑖−𝐽𝐽𝑖𝑖
). As a result, we also divide this brittleness into: 

a. Density-Neutral Deadline Brittleness, in which the budget is adjusted to keep the 
density constant, and 

b. Density-Agnostic Deadline Brittleness, in which the budget remains unchanged 
allowing the density to be modified. 

Note that when period and deadline are equal (and the offset is zero), the utilization and 
the density are the same, and when that is not the case, the relevant figure is density. 
Therefore, for the rest of the degrees of brittleness, the focus will be on density. 

3. Offset Brittleness: This also modifies the density of the task and, therefore, is also divided 
into: 

a. Density-Neutral Offset Brittleness, and 
b. Density-Agnostic Offset Brittleness. 

Note that even though the deadline could be modified to keep the density the same (or the 
offset in the case of deadline brittleness), the focus in this case is on the adjustment of the 
budget. 

4. Budget Brittleness: Similar to period and deadline brittleness, it is possible to modify the 
period and deadline to keep the utilization or density equal and, therefore, have both: 

a. Density-Neutral Budget Brittleness, and 
b. Density-Agnostic Budget Brittleness. 

5. Jitter Brittleness: Jitter also affects density and, therefore, it is divided into: 

a. Density-Neutral Jitter Brittleness, and 
b. Density-Agnostic Jitter Brittleness. 
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The duration of the active interval of a task 𝜏𝜏𝑖𝑖 is defined as the deadline of the task minus its jitter 
parameter. This computed quantity is denoted 𝐴𝐴𝑖𝑖. 

D.2.1.3  Time-Division Partitioning Interfaces 

Time-division (TD) partition interfaces are offered by virtualization technology that provides time 
slots of CPU time to a component at regular intervals. The two most common virtualization 
technologies of this type are time-triggered architecture (TTA) [D-3] and ARINC 653 [D-4]. 

The interface defined by TTA consists of a frame-length specification (ℱ) and a set of time slots 
within the slot, typically of equal length. This can be specified as beginning offset and size 
((𝑟𝑟𝑖𝑖, 𝑧𝑧𝑖𝑖)). Putting it all together, a time-division partition interface can be expressed as: 

 𝐼𝐼𝑇𝑇𝐷𝐷 = (ℱ, {(𝑟𝑟1, 𝑧𝑧1), (𝑟𝑟2, 𝑧𝑧2), … , (𝑟𝑟𝑛𝑛, 𝑧𝑧𝑛𝑛)}) (D-5) 

Here, it is assumed that the indices of bi are given in time order; that is 𝑟𝑟1 ≤ 𝑟𝑟2 ≤ ⋯ ≤ 𝑟𝑟𝑛𝑛. 

Time interfaces and interfaces in general have the purpose of isolating the component from the 
rest of the system to allow it to evolve independently. Specifically, this has two points of view. 
First, from the component perspective, if some other part of the system is modified, the interface 
of the component should not be modified. Second, from the rest of the system point of view, if the 
component is modified, then its interface should not be modified. From the certification 
perspective, the interface should allow for performing the certification against this interface and, 
therefore, if such an interface remains stable across changes it should block the propagation of 
changes. 

TD interfaces are typically used in two ways: 1) to directly execute a task and 2) to execute a set 
of tasks for which another scheduler is used within the time slots of the interface. The former is 
the traditional way TTA systems are developed, and the latter is the way ARINC 653 systems are 
developed. In particular, it is common for ARINC 653 systems to use fixed-priority scheduling 
within the partitions. 

Time interfaces must be evaluated in conjunction with the compositional verification techniques 
that would allow them to match their isolation objective. In other words, a compositional 
verification technique allows for evaluating whether a component with a specific interface can 
fulfill its timing specification (e.g., meet deadlines) after a change without the need to change the 
interface. The compositional techniques and their limitation are now presented, which can help 
answer this question. 

D.2.1.3.1  Optimization and Constraint-Solving Approaches 

Optimization and constraint-solving approaches—such as integer linear programing, mixed-
integer linear programing, satisfiability (SAT) solvers, and satisfiability modulo theory (SMT) 
solvers—are typically used to either evaluate whether a TD interface can satisfy a task 
specification or to define a TD interface to satisfy such a specification. Whereas there are a number 
of approaches to optimize the combined schedule of tasks and messages in a time-triggered 
architecture based on these techniques, such as [D-5] [D-6], schemes for compositionality have 
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not been proposed. However, it is common for this approach to identify the time slot table of a 
node as the interface of the node that has the same structure of the 𝐼𝐼𝑇𝑇𝐷𝐷 defined before. Therefore, 
a few aspects of this interface will be discussed. 

D.2.1.3.1.1  Human Readability 

Having a set of time slots allows the designer to easily check if the deadlines are met and that the 
precedence constraints of the different segments running on different nodes are respected. This is 
true if the schedule is small. Note, however, that if the least common multiple (LCM) of periods 
of tasks is large (e.g., because periods of tasks are relative prime numbers), then the schedule 
becomes very large, and therefore it is not so easy to “see” that deadlines are met and precedence 
constraints are satisfied. 

D.2.1.3.1.2  Change Isolation 

There are two brittleness limits that are worth discussing for this type of interface: 

1. Partition initial blackout limit: An interface 𝐼𝐼𝑇𝑇𝐷𝐷 = (ℱ, {(𝑟𝑟1, 𝑧𝑧1), (𝑟𝑟2, 𝑧𝑧2), … , (𝑟𝑟𝑛𝑛, 𝑧𝑧𝑛𝑛)} has 
an initial blackout interval equal to 𝑟𝑟1. This means that no task can be modified to have a 
period smaller than 𝑟𝑟1. 

2. Partition additional blackouts limits: For any two consecutive time slots (𝑟𝑟𝑖𝑖, 𝑧𝑧𝑖𝑖), (𝑟𝑟𝑖𝑖+1, 𝑧𝑧𝑖𝑖+1) of 
an interface 𝐼𝐼𝑇𝑇𝐷𝐷 = (ℱ, {(𝑟𝑟1, 𝑧𝑧1), (𝑟𝑟2, 𝑧𝑧2), … , (𝑟𝑟𝑛𝑛, 𝑧𝑧𝑛𝑛)} if 𝑟𝑟𝑖𝑖+1 > 𝑟𝑟𝑖𝑖 + 𝑧𝑧𝑖𝑖 then there is a 
blackout slot (𝑟𝑟𝑖𝑖𝑏𝑏𝑃𝑃, 𝑧𝑧𝑖𝑖𝑏𝑏𝑃𝑃) such that 𝑟𝑟𝑖𝑖𝑏𝑏𝑃𝑃 = 𝑟𝑟𝑖𝑖 + 𝑧𝑧𝑖𝑖 and 𝑧𝑧𝑖𝑖𝑏𝑏𝑃𝑃 = 𝑟𝑟𝑖𝑖+1 − (𝑟𝑟𝑖𝑖 + 𝑧𝑧𝑖𝑖). This means 
that any modification to a task period that increases a period while preserving the same 
density, and in which the period increment falls within a blackout, will not result in an 
increment in available CPU time and that the budget adjustment may therefore lead to a 
system that is not schedulable. 
 

D.2.1.3.1.3  Internal fragmentation  

Given that the interface describes a series of time slots that can be given to different tasks within 
the component (processor), if a new task is added, the interface will have to be added, assuming 
that all the time slots of the interface have already been assigned. Similarly, if a task changes one 
of the parameters that define its active interval, the blackouts discussed before can prevent it from 
receiving its required CPU time. Any slight increase in the 𝐶𝐶𝑖𝑖 of the task can also render the task 
unschedulable if it goes beyond its assigned time slot. 

D.2.1.3.1.4  Component Integration 

Given that there is no modular schedulability per se, verifying that all the component interfaces 
can be satisfied (i.e., that they are schedulable system-wide) in this case is no different from the 
component-level schedule. 



 

D-7 

D.2.1.3.2  Priority-Based Delay-Calculation Approaches 

A number of approaches exist that can be used for the compositional modeling of TD partitions 
when used in combination with fixed-priority scheduling that uses delay calculation  
[D-7][D-8] [D-9]. In this section, the focus is on [D-10], which presents a scheme to address the 
compositional analysis of ARINC 653 partitions with fixed-priority tasks within each partition. 
The timing interface of a partition is modeled as a single time slot that repeats periodically: 

 𝜙𝜙 = (Π,Θ) (D-6) 

where Π is the period (ℱ in our TD interface) and 𝜃𝜃 is the duration of the time slot (Θ = 𝑧𝑧𝑖𝑖 of a 
time slot (𝑟𝑟𝑖𝑖, 𝑧𝑧𝑖𝑖)). 

With this definition, the minimum amount of CPU time that this interface provides is described 
with a supply-bound function 𝑠𝑠𝑟𝑟𝑓𝑓𝜙𝜙(𝑡𝑡): 

 𝑠𝑠𝑟𝑟𝑓𝑓𝜙𝜙(𝑡𝑡) = � 𝑜𝑜
Π
�Θ + max �0, 𝑡𝑡 − (Π − 𝛩𝛩) − �𝑜𝑜

𝛱𝛱
�𝛱𝛱� (D-7) 

This can be better understood by the example shown in figure D-3. 

 

Figure D-3. Supply-bound function sample 

Figure D-3 shows how an interval 𝑡𝑡 is divided into a blackout interval in which the interface does 
not provide any CPU time, a number of whole periods in which the full Θ amount of CPU time is 
secured, and a remainder that can be obtained by subtracting the blackout period and the whole 
periods already accounted for from 𝑡𝑡. 
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The CPU time that a task 𝜏𝜏𝑖𝑖 requests within an interval 𝑡𝑡 between two time instants 𝑡𝑡1 and 𝑡𝑡2 with 
all the tasks with higher priority than 𝜏𝜏𝑖𝑖 is described with the request function: 

 𝑟𝑟𝑓𝑓𝑃𝑃,𝑖𝑖(𝑡𝑡1, 𝑡𝑡2) =  ∑ ��𝑜𝑜2−𝑂𝑂𝑗𝑗
𝑇𝑇𝑗𝑗

� − �𝑜𝑜1−𝑂𝑂𝑗𝑗−𝐽𝐽𝑗𝑗
𝑇𝑇𝑗𝑗

�� 𝐶𝐶𝑗𝑗𝑖𝑖
𝑗𝑗=1  (D-8) 

where tasks with lower index have higher priority. 

With this function, it is then possible to evaluate the schedulability of a task set by testing one task 
at a time for the different intervals between 0 and the LCM of the tasks’ periods. These intervals 
need to be incremented only with the arrival of the period. This can be captured with a variable 𝑡𝑡𝑥𝑥 
that is updated as: 𝑡𝑡𝑥𝑥 =  𝑂𝑂𝑖𝑖 + 𝐽𝐽𝑖𝑖 + 𝑚𝑚𝑇𝑇𝑖𝑖 for integer values of x between 0 and the value that makes 
𝑡𝑡𝑥𝑥 + 𝐷𝐷𝑖𝑖 − 𝑂𝑂𝑖𝑖 − 𝐽𝐽𝑖𝑖 ≥ 𝐿𝐿𝐶𝐶𝑀𝑀. Then a task is tested within each of these interval values as 

 ∃𝑡𝑡 ∈ (𝑡𝑡𝑥𝑥, 𝑡𝑡𝑥𝑥 + 𝐷𝐷𝑖𝑖 − 𝑂𝑂𝑖𝑖 − 𝐽𝐽𝑖𝑖]: 𝑟𝑟𝑓𝑓𝑃𝑃,𝑖𝑖(0, 𝑡𝑡) ≤ 𝑠𝑠𝑟𝑟𝑓𝑓𝜙𝜙(𝑡𝑡) ∧ 𝑟𝑟𝑓𝑓𝑃𝑃,𝑖𝑖(𝑡𝑡𝑥𝑥, 𝑡𝑡) ≤ 𝑠𝑠𝑟𝑟𝑓𝑓𝜙𝜙(𝑡𝑡 − 𝑡𝑡𝑥𝑥) (D-9) 

This basically means that there exists an interval 𝑡𝑡 in which the requested CPU time is less or equal 
to the supplied CPU time. This is verified for each of the task arrivals (i.e., jobs) within the 0-to-
LCM interval as discussed in this section. 

D.2.1.3.2.1  Human Readability 

The schedule of fixed-priority task sets running under TD interfaces is less readable than a full 
TTA-style interface. This is because it is not clear from the interface the exact instant when a task 
runs. However, it is possible to still relate the earliest time that a task can start to run and the latest 
time when it completes. This information can then be used to verify the end-to-end deadlines and 
the precedence constraints of distributed tasks. Whereas ensuring that these timing constraints are 
respected requires understanding this theory, once the theory is understood, the information 
observed in the interfaces does not grow with the number of tasks in a component as it does in a 
TTA interface. 

D.2.1.3.2.2  Change Isolation 

The change-isolation capacity of this interface is now discussed in terms of its brittleness limit. 
For TD interfaces analyzed with supply (see “1. Partition Blackout Brittleness Limit” and  
figure D-3) and demand bound functions the following limits are worth highlighting: 

1. Partition Blackout Brittleness Limit: When the modification to the task parameters 
𝑇𝑇𝑖𝑖,𝐷𝐷𝑖𝑖 ,𝑂𝑂𝑖𝑖, 𝐽𝐽𝑖𝑖 leads to either 𝑇𝑇𝑖𝑖 ≤ (Π − Θ) or (𝐷𝐷𝑖𝑖 − 𝐽𝐽𝑖𝑖) ≤ (Π − Θ), then the task will not be 
able to guaranteed the reception of any CPU time. This is because CPU time can be 
guaranteed only after the blackout period has elapsed, as can be seen in figure D-3. Notice 
that this limit is independent of the density and therefore cannot be overcome even if the 
budget is adjusted. 

2. Task Active interval to Partition Period Ratio Limits: This ratio creates a rounding effect 
that limits the amount of CPU time that a task can receive. There are three cases: 



 

D-9 

a. When the task active interval 𝐴𝐴𝑖𝑖 is larger than the blackout period but smaller than 
the partition period, i.e., (Π − Θ) < 𝐴𝐴𝑖𝑖 ≤ Π: then the budget that the task is 
guaranteed to receive is limited by: max (𝐴𝐴𝑖𝑖 − (Π − Θ),Θ). This means that it is not 
guaranteed to receive the full Θ budget given that the blackout interval can delay 
the availability of the CPU budget. 

b. When the task active interval 𝐴𝐴𝑖𝑖 is larger than the partition period but smaller than 
twice the period minus the length of the budget: Π < 𝐴𝐴𝑖𝑖 ≤ 2Π − Θ then the 
maximum amount of CPU time that the task can be guaranteed is Θ. It is worth 
noting that even if the task parameters such as 𝐷𝐷𝑖𝑖 ,𝑇𝑇𝑖𝑖,𝑂𝑂𝑖𝑖, 𝐽𝐽𝑖𝑖 are modified to enlarge 
the active interval to reduce the required CPU bandwidth consumption, this will not 
have an effect if the new active interval 𝐴𝐴𝑖𝑖𝑛𝑛𝑃𝑃𝑛𝑛 stays within the range presented 
previously, i.e., Π < 𝐴𝐴𝑖𝑖𝑛𝑛𝑃𝑃𝑛𝑛 ≤ 2Π − Θ. This is because within this interval no more 
CPU time can be guaranteed. 

c. Generalizing the previous result when the task active interval is within the range 
((𝑚𝑚 − 1)Π,𝑚𝑚Π − Θ], i.e., (𝑚𝑚 − 1)Π < 𝐴𝐴𝑖𝑖𝑃𝑃𝑜𝑜𝑃𝑃 < 𝐴𝐴𝑖𝑖𝑛𝑛𝑃𝑃𝑛𝑛 ≤ 𝑚𝑚Π, the task is still 
guaranteed to receive only at most: (𝑚𝑚 − 1)Θ, i.e. no more CPU time can be 
guaranteed. 

This means that if the active interval of the task 𝜏𝜏𝑖𝑖 is increased by a factor ∆, i.e., 𝐴𝐴𝑖𝑖𝑛𝑛𝑃𝑃𝑛𝑛 =
∆𝐴𝐴𝑖𝑖𝑃𝑃𝑜𝑜𝑃𝑃 and the density is kept the same, the time demand in this interval would increase by 
the same factor: 𝐶𝐶𝑖𝑖𝑛𝑛𝑃𝑃𝑛𝑛 = ∆𝐶𝐶𝑖𝑖𝑃𝑃𝑜𝑜𝑃𝑃 but the available CPU time would not be increased. 

Reduced Internal Fragmentation: It is worth highlighting that using fixed-priority scheduling 
within a partition using this analysis technique reduces the internal fragmentation of a component 
as compared to techniques in which everything is driven by time (e.g., TTA). For instance, it is 
possible to add a task to the component keeping it schedulable with the same interface given that 
the budget of the interface is used (and shared) by all the tasks in the component instead of having 
individual time slots assigned to individual tasks. This also applies to changes to the parameters 
of component tasks. 

D.2.1.3.3  Timed-Automata Approach 

Recall from section 1.4 in our previous report “Evaluation of Verification Technologies for VMs” 
(appendix C) that: 

1. A timed automata is a state-machine extended with real-valued clocks that can be tested 
and reset. Because the value of a clock now represents part of a state, the timed automata 
literature refers to an automata as having locations and transitions. A transition goes from 
one location to another location and a location may have a guard (i.e., a condition that must 
be true for the transition to be enabled). Guards can be of different types; one is based on 
clocks. For example, if x is a clock, then the transition from location L1 to location L2 
might have the guard x≥5). A transition may have one or many actions; one possible action 
is to reset a clock. For example, if x is a clock, then setting x to zero might be an action of 
a transition). 
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2. To simplify modeling, a network of timed automata can be described. For such use, there 
is a primitive that specifies that two timed automata perform transitions simultaneously. 

3. Timed-automata can be used to perform schedulability analysis. An error location can be 
introduced for each task (indicating that a job of the task has not yet finished and that the 
time since the job arrived exceeds the deadline). Then a so-called reachability analysis can 
be performed (i.e., to decide if it is possible to reach an error location). If “yes,” then the 
system is unschedulable; otherwise the system is schedulable. 

4. The arrival times of a task with a timed automaton can be described. This allows a software 
practitioner to model the software in a way that is very close to reality (e.g., modeling 
bursty arrivals). 

5. With this approach, exact schedulability analysis can be decided if runtime scheduling is 
non-preemptive; with some minor adjustments, it is possible to also model some special 
cases of preemptive scheduling. 

6. The advantage of performing schedulability testing this way is that it is very expressive. 
The drawback is that the time to perform the schedulability analysis grows rapidly with the 
number of tasks, and therefore only systems with a small number of tasks can be analyzed 
in practice. 

The use of timed automata for schedulability analysis was previously discussed, but not for 
analysis of hierarchical systems. Therefore, in this section, schedulability analysis for analysis of 
hierarchical systems is discussed. 

The paper [D-11] studies hierarchical scheduling on a single processor. The paper considers 
priority-based scheduling—fixed-priority or Earliest-Deadline-First (EDF)—of the global 
scheduler (the one that allocates processing time to components). The paper models hierarchical 
scheduling with timed automata with details on the operating system, proves correctness properties 
of these details, and also shows how to translate these details to C code so that it can run in an 
operating system. The paper considers preemptive scheduling and uses the TIMES tool [D-12] 
(already mentioned in a previous report) that models timed automata systems. 

Because the TIMES tool supports only non-preemptive scheduling, the paper splits a task into 
fragments, each of one time unit. Note that this paper focuses on proving properties of the 
scheduler implementation—the paper does not perform schedulability analysis. 

The paper [D-13] studies hierarchical scheduling on a single processor. The paper considers EDF 
scheduling of the global scheduler with reservations; this is called Constant Bandwidth Server. 
The paper considers fixed-priority preemptive scheduling as the local scheduler in each component 
(the paper refers to a component as an application). The paper performs schedulability analysis of 
each component (i.e., no analysis of the entire system is needed). This analysis is performed by 
modelling the system as a linear hybrid automata (a generalization of timed automata) and doing 
reachability analysis (i.e., a deadline miss corresponds to reaching a bad location, and the analysis 
aims to check if the system can reach this location). The reachability analysis is performed with a 
tool FORTS that the authors of the paper [D-13] have developed.  
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The idea for the modeling is as follows: Consider that there are n tasks in a component; this 
component is modeled with n+2 tasks. Each of these tasks is described with one timed automaton; 
for each of these timed automaton, there is a transition that indicates that a job arrives and there is 
a timer that serves as a guard on this transition that represents a job arrival. Because there are n 
tasks in the component, there are n such automata. There is also one dispatching automaton. For 
each possible subset of tasks that can be ready, there is one location to represent this subset, and 
for each such subset, there is a specified task that executes (because it is fixed-priority scheduling 
and it is assumed that priorities are unique). There is also one automaton that describes the server. 
It actually does not specify exactly the behavior of the server; instead, it specifies that the server 
execute in such a way that the server deadlines are met. With these n+2 automata, schedulability 
testing can be performed (using reachability analysis). This is accomplished with the stop-watch 
automata approach described by previous work mentioned in the report “Evaluation of Verification 
Technologies for VMs” (appendix C); that is, for each task, there are two clocks—one clock that 
is always incrementing and describes the amount of time since arrival and another clock that 
describes the total amount of execution that a job has done so far; this clock has a zero derivative 
when the job is preempted. The paper [D-13] shows examples of task sets for which traditional 
schedulability tests cannot prove schedulability but for which the method in [D-13] can. The risks 
of brittleness in the hierarchical scheduling scheme in [D-13] are the same as those described in 
section 2.1.3.2.2 (Change Isolation). There is, however, an additional risk of brittleness with this 
approach simply because the approach performs exact schedulability testing. It is believed that the 
brittleness of this approach can be reduced/assessed by modifying it in a fairly generic way as 
follows: Consider a component k and let orig denote the set of tasks in that component. Then check 
schedulability with the method mentioned in [D-13]. Assume that it resulted in deeming the task 
set schedulable. Now use binary search to find a number such that multiplying the server budget 
of the component makes the component schedulable but decreasing the server budget by some 
small amount makes the component unschedulable. This multiplication factor shows how much 
the budget can change without changing schedulability. A similar procedure can be used in case 
the original task set was unschedulable. 

The paper [D-14] studies hierarchical scheduling. A previous work [D-15] performed 
schedulability analysis with timed automata and another studied schedulability analysis of a 
system with hierarchical scheduling using Petri nets. The paper [D-14] combines these ideas (but 
uses only timed automata; i.e., does not use the Petri nets from previous work). Thereby, the paper 
[D-14] presents a schedulability analysis of a system with hierarchical scheduling using timed 
automata. The idea is to analyze each component individually and for each individual analysis to 
use an automata that describes the supply of time from the global scheduler. The authors point out 
that hierarchical scheduling leads to some pessimism; that is, there are task sets such that the task 
set is schedulable if it was scheduled directly on the processor but because hierarchical scheduling 
is used, it is not possible to guarantee that deadlines are met (even if an exact schedulability 
analysis for hierarchical scheduling is used). Note that this pessimism is not caused by the 
schedulability test; it is caused by the use of hierarchical scheduling. Because the paper [D-14] 
performs exact schedulability analysis, the comment about brittleness made regarding paper [D-
13] also applies to paper [D-14]. 

The paper [D-16] introduces the notion of stochastic supply to describe how much processing time 
the global scheduler supplies. For this model, a schedulability test based on timed automata is also 
presented. The paper [D-16] also compares a non-stochastic analysis against the CARTS tool 
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(mentioned in this section) and finds an error in the CARTS tool. The paper [D-17] is a journal 
version of [D-16]; it also offers analysis of systems with multicore processors. For multicore 
processors, an important aspect of brittleness is the following: Consider a computer system with 
two processors and three components—component 1, component 2, and component 3. Assume 
that component 1 and component 2 are assigned to processor 1, and component 3 is assigned to 
processor 2. Assume that the system is schedulable. Now, change the system so that the software 
in component 1 requires much more processing, and component 3 requires much less processing. 
If the assignment of components to processors remains the same, the system may be 
unschedulable. A static assignment of tasks to processors may make the system more brittle. This 
could be mitigated by using a runtime scheduler with dynamic migrations. However, a runtime 
scheduler that allows tasks to migrate may generate additional overhead. This overhead is 
obviously problematic because it can delay execution of some tasks. More insidiously, however, 
it is often very hard to find an upper bound on this overhead. A better approach is to assign tasks 
to processors statically so that this assignment does not change at runtime, but at design time, if 
the software changes, to allow a new assignment of tasks to processors. 

D.2.1.3.4  Real-Time Calculus Approach 

Given that it depends on the underlying scheduling scheme being modeled, real-time calculus  
[D-7] does not have a fixed brittleness characterization. Specifically, recall from [D-18] that real-
time calculus uses request functions 𝑅𝑅(𝑡𝑡) to describe the total amount of computation (CPU cycles) 
that a task requires and capacity functions 𝐶𝐶(𝑡𝑡) to describe the capacity of a processor to provide 
CPU cycles over a specific time interval 𝑡𝑡 (e.g., from 0 to 100 ms). This interval is generalized to 
“any” interval of a specific length ∆ with the request-bound function: 

 𝛼𝛼𝑃𝑃(∆) =  max
𝑢𝑢≥0

{𝑅𝑅(∆ + 𝑢𝑢) − 𝑅𝑅(𝑢𝑢)} (D-10) 

that obtains the maximum CPU request for an interval of length ∆ and any possible subinterval of 
length 0 to ∆. Similarly, the maximum delivery curve for any subinterval of length ∆ is calculated 
with: 

 𝛽𝛽(∆) =  min
𝑢𝑢≥0

{𝐶𝐶(∆ + 𝑢𝑢) − 𝐶𝐶(𝑢𝑢)} (D-11) 

Then, it is possible to obtain the remaining processing capacity after the request-bound function 
of the tasks had been serviced with the equation: 

 𝛽𝛽′(∆) =  max
0≤𝑢𝑢≤∆

{𝛽𝛽(𝑢𝑢) − 𝛼𝛼𝑃𝑃(𝑢𝑢)} (D-12) 

This function is then used to verify whether the request bound of a task is schedulable if it can be 
ensured that for an interval ∆ equal to the deadline of the task 𝛽𝛽(∆) ≥ 0 (see example in [D-18]). 

Real-time calculus enables the analysis of mixed scheduling policies. For instance, it is possible 
not only to evaluate pure fixed-priority scheduling or pure TDMA scheduling, but it is possible to 
evaluate a mixture of these two. Unfortunately, these mixtures can create inefficiencies. 
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This can be observed in the example presented in section 1.2.2 of [D-18] in which two TDMA 
partitions are used to schedule two periodic tasks. Specifically, the two partitions have a size of  
2 ms, dividing the timeline in 2-ms segments as shown in figure D-4. 

 

Figure D-4. TDMA partitions example (size = 2 ms) 

This gives a task the delivery curve: 

 𝛽𝛽(𝑡𝑡) = �
0 𝑚𝑚𝑓𝑓 𝑡𝑡 < 2
𝑜𝑜−2
2

 𝑚𝑚𝑓𝑓 𝑡𝑡 ≥ 2 (D-13) 

This curve can now be compared with the supply-bound function of figure D-3 to make the 
following observations: 

1. They both have a blackout period. However, in figure D-3, this blackout repeats 
periodically, whereas in the delivery function of equation D-5, it does not. 

2. Equation D-5 makes a linear approximation of the available CPU time by dividing the 
“rest” of the time (after discounting the blackout) by the size of the number of partitions 
(2). In contrast, in figure D-3, a more elaborate modeling of the periodic interleaving of 
blackout and CPU availability is used. 

These two observations highlight the significance of the modeling step. In particular, equation  
D-5 shows a solution that was originally aimed at simplifying the explanation of real-time calculus 
that, in this case, also allows for discussing the penalty incurred for such a simplification. To see 
this, consider a task 𝜏𝜏1 with 𝑇𝑇1 = 10, 𝐶𝐶1 = 3, 𝑂𝑂1 = 𝐽𝐽1 = 0, and 𝐷𝐷1 = 5. If the model provided in 
figure D-3 is used, there is a supply-bound function: 

 𝑠𝑠𝑟𝑟𝑓𝑓𝜙𝜙(𝑡𝑡) = �𝑜𝑜
4
�4 + max �0, 𝑡𝑡 − (4 − 2) − �𝑜𝑜

4
�4� (D-14) 

And a request-bound function for 𝜏𝜏1: 

 𝑟𝑟𝑟𝑟1 = � 𝑜𝑜
10
�3 (D-15) 

Then, subtracting 𝑟𝑟𝑟𝑟1 − 𝑠𝑠𝑟𝑟𝑓𝑓𝜙𝜙 for 𝑡𝑡 = 5, the remaining execution time to be completed is found: 

 �5
4
�4 + max �0,5 − (4 − 2) − �5

4
�4� − � 5

10
�3 = 0 (D-16) 

meaning that by this time the task has already finished. However, if the delivery curve in equation 
D-5 is used the result is:  

 5−2
2
− � 5

10
�3 = 1.5 (D-17) 
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meaning that there is still part of the task that needs to be executed (from the model point of view). 

D.2.1.3.4.1  Request and Delivery Curves Modeling 

To understand the effects of the curve modeling, how these curves are described is first discussed. 
Specifically, a curve is specified in two dimensions (X and Y) where the X-axis defines elapsed 
time and Y defines the amount of computation or CPU time. In this setting, a curve is composed 
of a set of curve segments each of which has a starting point (x,y) and a slope indicating the amount 
of computation time per elapsed time. For instance, the curve presented in equation D-5 consists 
of two segments as: 𝛽𝛽 = ��(0,0,0), �2,0, �1

2
����. This is shown in figure D-5. 

 

Figure D-5. Sample delivery curve 

Delivery curves can also have a repeating part at the end that is specified as another set of curve 
segments with the starting X and Y, its period and offset. For instance, a periodic part at the end of 
𝛽𝛽 with a blackout segment could be created followed by an interval of full dedication of the CPU 
that repeats every 3 ms to create: 𝛽𝛽′ = ��(0,0,0), �2,0, �1

2
��� , [(4,1,0), (5,1,1)], 3,0�. This is 

shown in figure D-6. 
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Figure D-6. Delivery curve with periodic segments 

Generalizing for the purpose of discussion, a delivery curve can be defined as:  
𝛽𝛽𝑖𝑖 = ([(𝑚𝑚1,𝑦𝑦1, 𝑠𝑠1), … , (𝑚𝑚𝑘𝑘,𝑦𝑦𝑘𝑘, 𝑠𝑠𝑘𝑘)], [(𝑚𝑚𝑘𝑘+1,𝑦𝑦𝑘𝑘+1, 𝑠𝑠𝑘𝑘+1), … , (𝑚𝑚𝑛𝑛,𝑦𝑦𝑛𝑛, 𝑠𝑠𝑛𝑛)],𝑇𝑇𝑖𝑖 ,𝑂𝑂𝑖𝑖) where the periodic 
part is optional. 

D.2.1.3.4.2  Change Isolation 

The effect that the model of the request and delivery curves has on the brittleness of the model is 
now discussed with respect to the: 

• Blackout Brittleness Limit: Delivery curves in real-time calculus may encode two types of 
blackout—aperiodic and periodic. However, the limit comes from the way the residual 
delivery function is calculated in equation D-4, which includes calculating the minimum 
available CPU cycles from the previous delivery curve in equation D-3 and the 
maximization of the CPU cycles request from equation D-2. Clearly, any modification to 
task periods where 𝑇𝑇𝑖𝑖 or (𝐷𝐷𝑖𝑖 − 𝑂𝑂𝑖𝑖 − 𝐽𝐽𝑖𝑖) is smaller than the maximum blackout of the 
delivery curve will make that task unschedulable. 

• Delivery Curve Fragmentation Brittleness: This fragmentation occurs when the sequence 
of the delivery curve segments that minimizes the CPU in the 𝐴𝐴𝑖𝑖 interval (see equation  
D-3) that ends with a blackout segment. Then, the part of the blackout segment beyond 𝐴𝐴𝑖𝑖 
is an interval that causes brittleness. In other words, if the blackout curve segment is 
(𝑚𝑚𝑏𝑏 ,𝑦𝑦𝑏𝑏 , 𝑠𝑠𝑏𝑏), and the one that follows the blackout segment is (𝑚𝑚𝑏𝑏+1,𝑦𝑦𝑏𝑏+1, 𝑠𝑠𝑏𝑏+1), then any 
modification to the task parameters that enlarges the active interval to 𝐴𝐴𝑖𝑖𝑛𝑛𝑃𝑃𝑛𝑛 within the 
limits of the blackout interval (i.e., 𝐴𝐴𝑖𝑖𝑛𝑛𝑃𝑃𝑛𝑛 ≤ 𝑚𝑚𝑏𝑏+1) will not increase the CPU time available 
to the task. 

D.2.1.4  Real-Time Server Interfaces 

Recall from section 4.1.1 in the report “Survey of Literature Related to Virtual Machines” 
(appendix A) that: 
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1. Reservations allow a software practitioner to ensure timing isolation (i.e., an overrun of 
one task in one reservation does not jeopardize timing guarantees of another task in another 
reservation). 

2. There can be one or many tasks in a reservation. A task in a reservation is allowed to 
execute only when the higher level scheduler selects the reservation for execution. 

3. It is common to associate a reservation with a parameter P and Q, where P is often called 
the period of the reservation, and Q is often called the budget of the reservation. 

4. Each reserve maintains a dynamic budget q. A task in a reserve is allowed to execute only 
if this dynamic budget is strictly greater than zero. Typically, this dynamic budget of a 
reserve is decremented when there is a task in the reserve that executes. When this budget 
reaches zero, the reserve is depleted, and then no execution from software within the 
component is allowed. Later, the budget of the component may get replenished/recharged, 
and then execution of software within the component is allowed. 

5. There are different reservation-based schemes; they differ in how reserves are scheduled 
and recharged, and whether a reserve can use budget from another reserve. 

6. Typically, schedulability analysis is performed within a reserve (to make sure that if the 
reserve gets enough processing power, all tasks within the reserve meet their deadlines) 
and schedulability analysis is also performed of reserves (to make sure that the entire 
system has enough processing power that each reserve gets what it needs). 

7. The reservation can be thought of as an interface in the sense that the tasks can be changed 
as long as they do not break the reserve; with such change, it is guaranteed that all deadlines 
are met. 

Reservations have been very successful. They were originally conceived in the early days of Rate-
Monotonic Scheduling in the 1980s, and significant subsequent work has been performed on 
improving, maturing, and extending reservations after that. Reservations are supported in many 
standards and are used in practice. However, they have one fundamental weakness, which will be 
reported in this section. 

Consider a computer system with a single processor and K tasks. Assume that the tasks are 
constrained-deadline sporadic tasks; that is, a task is characterized by a minimum inter-arrival time 
(T), a relative deadline (D), and an execution time (C). Assume that these parameters are as 
follows: Ti = ∞, Di = i, Ci = 1. It can be seen that each task has infinite minimum inter-arrival times, 
and this implies that a task generates a single job. It can also be seen that all tasks have the same 
execution times but different relative deadlines. 

Figure D-7 shows the schedule generated when all tasks generate a job simultaneously at time 0, 
and they are scheduled with EDF. 
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Figure D-7. An example of a task set that is schedulable but that performs poorly with 
reservation/bandwidth-like interfaces 

It can be seen that all deadlines are met in this particular scenario. It can be shown that for all 
possible scenarios that are legal with respect to this task set, it holds for the generated schedule 
that all deadlines are met. However, suppose that reservations are used and that each task is in its 
own reservation. A reservation must be assigned a period (P) and a budget (Q). Let Pi denote the 
period of the ith reservation and let Qi denote the budget of the ith reservation. Note that a task is 
described with three parameters, but a reservation is described with two parameters. Therefore, the 
global scheduler (which decides which reservation should execute at a given time) has less 
information about the tasks than the scheduler would have had if tasks were scheduled directly on 
the processor. The same applies to the global schedulability test (i.e., the schedulability test that 
takes the reservations as input). For this reason, hierarchical scheduling would be expected to lead 
to a performance loss. This will be shown in this section. 

It is easy to show that for a task to meet its deadline, it is necessary that: 
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Plugging in the actual numbers from the example above yields: 
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For all the reserves to be schedulable, it must hold that: 
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to meet deadlines on a unit-speed processor. Therefore, it must hold that: 
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It can be seen that for K≥2, the above is false. However, a processor R times faster can be used. 
Therefore, it holds that it is necessary that: 
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How large a value of R is enough? It is easy to see that for K = ∞, the left-hand side approaches 
infinity and, therefore, R must be infinite. 

The above reasoning shows that there is a task set that can be scheduled on a unit-speed processor. 
If reservations are used, however, it is necessary to use a processor that is infinitely faster to make 
it schedulable. 

Stated another way—reservations can cause an infinite loss of performance. 

D.2.1.5  General-Purpose Virtualization Machine Interfaces 

The Xen hypervisor will now be discussed. Recall section 2.2 in the report “Survey of Literature 
Related to Virtual Machines” (appendix A) that discussed Xen. The focus now will be on its 
scheduler, its application programming interface (API), and its ability to handle real-time 
requirements. 

Xen uses a credit scheduler. It allows a software practitioner to implement a form of weighted fair 
queuing for scheduling VMs. For example, if Xen has two VMs, the API can be used to give them 
equal weight; then one VM would receive 50% of the processing capacity, and the other would 
receive 50% of the processing capacity. Another way would be to give the first VM a weight of 1 
and the second VM a weight of 3. In this way, the first VM receives 25% of the processing 
capacity, and the second VM receives 75% of the processing capacity. 

More processing capacity can be assigned to one VM over another, but this does not take deadlines 
into account. This can be problematic for certain real-time workloads in which the amount of 
processing capacity that each VM needs is the same, but they have different timing requirements. 
This can be seen by constructing an example analogous to the one shown in section 2.1.4, in which 
the weight of the credit scheduler plays the same role as the bandwidth (Q/P) mentioned in section 
2.1.4. 

D.2.1.6  Mixed-Criticality Interfaces 

Mixed-criticality scheduling as initially presented by Vestal [D-19] presents layering interfaces in 
both priority and criticality. To see this, fixed-priority scheduling will be discussed followed by 
the modification to support criticality. 
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D.2.1.6.1  Priority Layer Interface 

Given a task set {𝜏𝜏1, … , 𝜏𝜏𝑛𝑛} where each task is assumed to process events or pieces of data 
periodically (e.g., a frame from a movie) and where these tasks are assigned different priorities 
(𝑝𝑝𝑟𝑟𝑚𝑚𝑐𝑐𝑟𝑟𝑚𝑚𝑡𝑡𝑦𝑦(𝜏𝜏𝑖𝑖) ≠ 𝑝𝑝𝑟𝑟𝑚𝑚𝑐𝑐𝑟𝑟𝑚𝑚𝑡𝑡𝑦𝑦(𝜏𝜏𝑗𝑗) if 𝑚𝑚 ≠ 𝑗𝑗)10, a fixed-priority scheduler selects the higher priority task 
𝜏𝜏𝑖𝑖 that is ready to execute. This task continues to execute until either it has finished its periodic 
execution (e.g., finished processing the current video frame and needs to wait for the arrival of the 
next frame) or until a higher priority task 𝜏𝜏𝑗𝑗 becomes ready to execute (in which case 𝜏𝜏𝑗𝑗 is selected 
for execution). The implication of these decisions is that a task 𝜏𝜏𝑗𝑗 is never preempted by a lower 
priority task (e.g., 𝜏𝜏𝑖𝑖), effectively isolating 𝜏𝜏𝑗𝑗 from all lower priority tasks. In other words, if it is 
assumed that the tasks in the task set are ordered in decreasing order of priority (𝑝𝑝𝑟𝑟𝑚𝑚𝑐𝑐𝑟𝑟𝑚𝑚𝑡𝑡𝑦𝑦(𝜏𝜏𝑖𝑖) >
𝑝𝑝𝑟𝑟𝑚𝑚𝑐𝑐𝑟𝑟𝑚𝑚𝑡𝑡𝑦𝑦(𝜏𝜏𝑗𝑗) if 𝑚𝑚 < 𝑗𝑗), fixed-priority scheduling defines a layered interface where a task 𝜏𝜏𝑖𝑖 is 
isolated from modification to the parameters of tasks {𝜏𝜏𝑗𝑗|𝑗𝑗 > 𝑚𝑚} if their priority remains lower than 
𝜏𝜏𝑖𝑖s. This is reflected in the response time formula from [D-20]: 
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that takes into account the preemptions from the set of task {𝜏𝜏𝑗𝑗|𝑗𝑗 < 𝑚𝑚}, that is considered the higher 
priority layer, but that ignores the task set {𝜏𝜏𝑘𝑘|𝑐𝑐 > 𝑚𝑚} that is considered the lower priority layer, 
given that the scheduler isolates 𝜏𝜏𝑖𝑖 from this set/layer. 

An example of the priority layers is shown in figure D-8, in which, for example, 𝜏𝜏2 is able to ignore 
the priority layers below it where 𝜏𝜏3 and 𝜏𝜏4 reside but needs to take into account the priority layer 
where 𝜏𝜏1 resides. 

                                                 
10  Assigning the same priority to two tasks is possible but complicates the discussion. 
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Figure D-8. Priority layers example 

Some initial work in mixed criticality took advantage of the priority isolation to provide criticality 
isolation. For instance, Vestal [D-19] explored the use of using priority as criticality and [D-21] 
that defines a new priority assignment called Own-Criticality-Based Priority that searches all 
possible priority assignments to maximize schedulability while providing criticality protection. 
Unfortunately, these schemes suffer from a loss of schedulability given that a task 𝜏𝜏𝑖𝑖 with a short 
deadline may unnecessarily be delayed by a higher criticality task 𝜏𝜏𝑗𝑗 with a longer deadline (which 
could tolerate additional delay), making 𝜏𝜏𝑖𝑖 miss its deadline. As a result, alternative mechanisms 
were developed to improve the criticality protection while minimizing the schedulability penalty. 

D.2.1.6.2  Criticality Layer Interface 

A common approach to providing criticality protection while minimizing the schedulability 
penalty is to use priorities to maximize utilization and stop low-criticality tasks only when the 
deadline of a higher criticality task can be missed. This is the approach taken by the zero-slack 
rate-monotonic (ZSRM) scheduling [D-22][D-23]. In ZSRM, tasks are assigned priorities, 
ensuring that tasks with shorter periods have higher priorities than those with longer periods 
(known as rate-monotonic priority assignment), and stop lower criticality tasks only at the last 
instant possible to avoid a deadline miss of a high-critical task (known as zero-slack instant). 
Similar techniques are used by other schedulers, such as the Earliest-Deadline First Virtual 
Deadline [D-24], but the discussion will be limited to ZSRM for simplicity. 

The low-criticality-stopping mechanism creates a layer similar to the priority layer. Specifically, 
this mechanism prevents the low-criticality task interference from leading to deadline misses of a 
high-criticality task. However, a key difference is that the mechanism does not isolate the high-
criticality task from low-criticality task interference but only limits such interference to prevent 
deadline misses. 
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An example of the criticality layers is shown in figure D-9, which is a modification of figure D-8, 
where 𝜏𝜏3 has higher criticality but lower priority than 𝜏𝜏2. As a result, 𝜏𝜏3 is able to preempt 𝜏𝜏2 at 
time 𝑡𝑡1, but at time 𝑡𝑡2, 𝜏𝜏2 stops all lower criticality layers where tasks 𝜏𝜏2 and 𝜏𝜏4 reside, leaving 
higher criticality layers active where task 𝜏𝜏1 resides. This allows 𝜏𝜏1 to preempt 𝜏𝜏3 again. Once 𝜏𝜏3 
finishes, the lower criticality layers are reactivated. 

 

Figure D-9. Criticality layers 

D.2.1.6.3  Assurance Level and Criticality 

Mixed-criticality scheduling was created to meet the need to provide different degrees of assurance 
to tasks with different levels of criticality. More specifically, Vestal [D-19] observed that  
1) standards like DO-178B/C [D-25] required a higher level of assurance and 2) in real-time 
scheduling, using a larger estimate of the worst-case execution time (WCET) of a task decreases 
the probability that such a task will exceed it. In mixed-criticality scheduling, this is used to assign 
one WCET per criticality level to each task and assign a criticality to each task so that it matches 
the assurance level required by the certification standard. As an example, consider a task set with 
three task {𝜏𝜏1, 𝜏𝜏2, 𝜏𝜏3} with period (𝑇𝑇), WCET (𝐶𝐶(𝑐𝑐𝑟𝑟𝑚𝑚𝑡𝑡𝑚𝑚𝑐𝑐𝑚𝑚𝑐𝑐𝑚𝑚𝑡𝑡𝑦𝑦_𝑐𝑐𝑒𝑒𝑣𝑣𝑒𝑒𝑐𝑐)) and criticality (𝜁𝜁): 

 𝜏𝜏1 = (𝐶𝐶1(3) = 3,𝐶𝐶1(2) = 2,𝐶𝐶1(1) = 1,𝑇𝑇1 = 10, 𝜁𝜁1 = 3), (D-24) 

 𝜏𝜏2 = (𝐶𝐶2(3) = 2,𝐶𝐶2(2) = 2,𝐶𝐶2(1) = 1,𝑇𝑇2 = 20, 𝜁𝜁2 = 2), (D-25) 

 𝜏𝜏3 = (𝐶𝐶3(3) = 3,𝐶𝐶3(2) = 3,𝐶𝐶3(1) = 3,𝑇𝑇3 = 30, 𝜁𝜁3 = 1) (D-26) 

Then, when the schedulability of a task 𝜏𝜏𝑖𝑖 is verified, the WCET is used for all tasks at the 
criticality level of 𝜏𝜏𝑖𝑖 (𝜁𝜁𝑖𝑖). For example, to verify the schedulability of 𝜏𝜏2, 𝐶𝐶1(𝜁𝜁2) = 𝐶𝐶1(2) =
2,𝐶𝐶2(𝜁𝜁2) = 𝐶𝐶2(2) = 2,𝐶𝐶3(𝜁𝜁2) = 𝐶𝐶3(2) = 3 would be used for the corresponding tasks in the task 
set. 
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ZSRM embraces the layering approach and uses only two execution times per task: one for its own 
criticality level and another for the lower criticality layers that are originally called overloaded 
execution time (𝐶𝐶𝑖𝑖𝑃𝑃) and nominal execution time (𝐶𝐶𝑖𝑖), respectively. This allows for providing a 
conditional schedulability that embeds some tolerance to uncertainty in the parameters. 
Specifically, the schedulability guarantee offered is: 

 

In ZSRM, this tolerance to an overload was captured in the parameter names, and in mixed-
criticality scheduling in general, it is embedded in the different execution-time parameters. 

D.2.1.6.4  Brittleness of Mixed-Criticality Layer Interface 

The brittleness of mixed-criticality layers had been investigated for ZSRM with a metric called 
ductility. More specifically, ductility is the opposite of brittleness, and the purpose of the metric 
was to investigate the consequence of overloads within the system. In particular, ductility measures 
the number of deadline misses and their importance (i.e., how critical). These deadline misses are 
combined in a weighted sum that are assigned an order of magnitude more weight to one deadline 
of one criticality level than to another of the next lower criticality level. This is reflected in a 
ductility table (see table D-1) presented in the following dual-criticality (high and low) system: 

Table D-1. Ductility 

Overloads Deadline Misses 
High Low High-Criticality Low-Criticality 
Yes Yes No Yes 
Yes No No Yes 
No Yes No Yes 
No No No No 

This table reflects under the Overloads columns whether high-criticality tasks, low-criticality 
tasks, or both overload (runs for 𝐶𝐶𝑃𝑃), and under the Deadline Misses columns whether a deadline 
miss will be observed in high- or low-criticality tasks. This table is translated into a 0/1 matrix  
(yes = 0, no = 1), and the deadline misses are quantified, as shown in table D-2: 

  

A task 𝜏𝜏𝑖𝑖 is guaranteed to meet its deadline if it does not execute beyond its 𝐶𝐶𝑖𝑖𝑃𝑃 , and 
no task 𝜏𝜏𝑗𝑗with higher criticality (𝜁𝜁𝑗𝑗 > 𝜁𝜁𝑖𝑖) executes more than 𝐶𝐶𝑗𝑗. 
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Table D-2. Deadline Misses for different overload states 

Overloads Deadline Misses 
High Low High Criticality Low Criticality 
Yes Yes 1 0 
Yes No 1 0 
No Yes 1 0 
No No 1 1 

Total 4 1 

Then add the columns, and multiply the “High Criticality” column by the maximum number that 
can be achieved by adding all previous columns plus 1. In this case, if all the numbers in the “Low-
Criticality” column were 1, then the sum would be 4. This means that the the second column needs 
to be multiplied by (4 + 1 = 5). This scales each column by one order of magnitude more than the 
previous one, as happens in the decimal system, in which tens are multiplied by the maximum 
number that a single digit can reach (9), plus 1. Then, for this example, the ductility obtained will 
be: 

 Ductility = 4 (4 + 1) +1 = 21 (D-27) 

This metric was used to measure the improvements obtained by new deployment algorithms for 
mixed-criticality systems in multiple processors called “Compress-on-overload Packing” [D-26]. 
A plot of the normalized ductility obtained with this algorithm contrasting with a criticality-
agnostic Worst-Fit Decreasing algorithm is shown in figure D-10. 
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Figure D-10. Compress-on-overload packing for ZSRM 

This ZSRM was extended to support multi-modal systems in which the criticality of a task can 
change in different modes (e.g., at low speed, an active suspension task is low criticality, but at 
high speed it is safety critical) with the corresponding deployment algorithm called “vector Mixed-
Criticality Packing” (vMCP) [D-27]. Figure D-11 shows the normalized ductility obtained with 
the new deployment and scheduling algorithm compared to a criticality-agnostic vector packing 
(multidimensional packing). In this case, each mode is modeled as one dimension in the vector-
packing algorithm. 
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Figure D-11. vMCP ductility compared to vector packing 

Clearly, not only can the execution time of a task vary, but also the periodicity. More importantly, 
changing the periodicity can be a way to compensate for overloads in the system. ZS-QRAM  
[D-28] is a variant of ZSRM that takes advantage of this. ZS-QRAM generalizes criticality into 
utility to capture the fact that the benefit of improving the quality of service (QoS) exhibits 
diminishing returns as QoS is increased. For example, increasing the frames per second (FPS) in 
a movie from 10 to 15 provides more utility to the user than increasing from 25 to 30, even though 
the number of FPS is the same. The diminishing-returns property allows us to model the gain in 
utility per unit of resource (CPU time) an application is given, creating what are called utility 
curves. This utility per unit or resource is known as the marginal utility. In this case, the task also 
has two execution times (𝐶𝐶𝑖𝑖,𝐶𝐶𝑖𝑖𝑃𝑃), but the amount of resources consumed is changed by varying the 
period (i.e., each task will have a set of periods and its corresponding marginal utility). This 
matches most common application-adaptation knobs, as is the case of the FPS, in which the period 
matches priority. 

Figure D-12 shows the utility curves of a task set under nominal execution time (nominal curve) 
and overloaded execution time (overloaded curve).  

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5

N
or

m
al

iz
ed

 D
uc

til
ity

Number of Processors

Vector Packing

mCOP



 

D-26 

 

(a) Utility Curves with Nominal 
Execution Time 

 

(b) Utility Curves with Overloaded 
Execution Time 

Figure D-12. Utility curves 

The nominal curve is used offline to assign the initial period of the tasks and its initial priority 
following rate-monotonic scheduling. This initial selection is begun by using the longest period of 
all the tasks and performing ZSRM schedulability. If it succeeds, then the task with the steepest 
marginal utility (slope in the utility curve) in the nominal curve selected and its period are reduced 
by one step. The steepest slope is selected to ensure that the maximum amount of utility is obtained 
per unit or resource assigned. The schedulability is tested again, and this step is repeated until the 
next period reduction is not possible or until all the tasks are running with their smallest period. 

At runtime, when a task 𝜏𝜏𝑖𝑖 executes beyond its 𝐶𝐶𝑖𝑖, a period degradation (a longer period is selected) 
on a task is performed, and its priorities are reassigned according to the new period. The selection 
of the task is performed using the overloaded curve by selecting the flattest curve to ensure that 
the least amount of utility is lost per unit of resource freed (to ameliorate the overload). Then the 
priorities are adjusted according to rate-monotonic scheduling. 

For this scheduler, a variation of ductility called utility degradation resilience (UDR) captures the 
tolerance to preserve utility in the system on overloads. UDR is calculated in a similar manner to 
ductility, but using utility multiplying each of the “ones” in the matrix instead of the order-of-
magnitude scaling factor. 

Figure D-13 shows the UDR for an experiment in which different schedulers are evaluated as the 
overload ratio (𝑊𝑊𝑖𝑖

𝑜𝑜

𝑊𝑊𝑖𝑖
) changes. The figure shows UDR for rate-monotonic (RM) scheduling, RM with 

period transformation (e.g., instead of using a 10 ms period, use a 5 ms period for half the 𝐶𝐶𝑖𝑖), 
ZSRM, and finally, ZS-QRAM. Clearly, the adaptations of ZSQRAM allow it to preserve more 
utility (UDR) than the other schedulers. 
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Figure D-13. Average UDR 

The flexibility provided by mixed-criticality schedulers is offered on a per-task basis. This means 
that so far no concept of multi-task component has been developed. Clearly, this is an area of 
research that needs to be investigated. 

D.2.1.7  Concepts Related to Brittleness 

Recall that brittleness refers to the ability of an interface to withstand changes. A related concept 
will now be discussed: anomalies and sustainability. These concepts are not relevant for 
compositionality, but they are relevant for verification. 

Scheduling anomalies refers to a situation in which a scheduler succeeds, but making a change 
expected to have positive effect causes the scheduler to fail. Scheduling anomalies were originally 
observed in 1968 by Graham [D-29] in non-preemptive scheduling of jobs on a multiprocessor. 
He considered a set of jobs that all arrive simultaneously in which each job is given a priority and 
wanted to find the earliest time so that, for all possible schedules that the jobs can generate, all 
jobs will finish (this time is called the makespan). Graham observed that for certain job sets, 
decreasing the execution time of one job could cause a larger makespan. This is unintuitive. 
Graham also found that for the slightly more complex problem in which jobs may have precedence 
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constraints, there are situations where the makespan increases if a precedence constraint is 
removed. 

Later, Andersson and Jonsson [D-30] saw that anomalies also exist in preemptive scheduling on 
multiprocessors. Consider a scheduling algorithm for tasks that do not migrate but use a so-called 
bin-packing algorithm to assign tasks to processors. For such a system, there are anomalies in the 
sense that there are task sets for which bin packing succeeds, but a decrease in the execution time 
of a task makes the bin-packing algorithm fail. Consider a scheduling algorithm for tasks that are 
allowed to migrate, for which tasks are stored in a ready queue shared between processors. For 
such migrative scheduling, consider the case that tasks are assigned fixed priorities. Then the 
lowest priority task will execute only if there is no higher-priority task that is ready for execution. 
In this case, if tasks are periodic, an increase in period (which makes the task intuitively use fewer 
resources) can create a new situation that generates a larger delay on a lower-priority task. 

Anomalies also play an important role in WCET analysis, for which a cache hit may cause the 
WCET [D-31]. This is because although an instruction that experiences a cache hit executes faster 
than if it would have experienced a cache miss, the difference may change the scheduling of 
subsequent instructions within the processor. This is an issue in processors that can have multiple 
outstanding instructions, and instructions may be executed out of order. 

Later, the notion of sustainability was conceived for scheduling tasks on a processor [D-32]. This 
refers to the schedulability test—not the scheduler. For a schedulability test that is sustainable with 
respect to execution times, if the task set is deemed schedulable by the schedulability test, and 
worst-case execution-time parameters of some tasks are then decreased, the task set is still deemed 
schedulable by the schedulability test. 

One positive result is by Liu and Ha [D-33], who showed that scheduling jobs with fixed-priority 
preemptive scheduling has no anomalies on a single processor. This is fortunate because this 
scheduler is very common in practice. 

Sensitivity analysis has been explored not for compositionality but for verification. This is 
important because response times are nonlinear with changes in task parameters. This can be seen 
as follows: Consider two tasks to be scheduled on a single processor. τ1 has the highest priority, 
and τ2 has the lowest priority. Their parameters are as follows: 

 
𝑇𝑇1 = 1 𝐶𝐶1 = 1 − 𝜖𝜖
𝑇𝑇2 = 1

𝜖𝜖
𝐶𝐶2 = 1  (D-28) 

If 1
𝜖𝜖
 is an integer, then the response time of τ2 is 1

𝜖𝜖
 and, therefore, the task set is schedulable. Suppose 

the execution time of task τ1 by 𝜖𝜖 × (1 − 𝜖𝜖) is increased. Then the task set becomes: 

 
𝑇𝑇1 = 1 𝐶𝐶1 = 1 − 𝜖𝜖2

𝑇𝑇2 = 1
𝜖𝜖

𝐶𝐶2 = 1  (D-29) 
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The response time of τ2 is now 1
𝜖𝜖2

. Suppose that 𝜖𝜖 is chosen to be 𝜖𝜖 = 10−6. Increasing the 
execution time of τ1 by approximately 10−6 can cause the response time of τ2 to be 106 times 
larger. To put it differently, a small increase in the execution time of one task can cause a large 
increase in the response time of another. 

It has been shown that a very small modification of one parameter of a task can cause a large 
difference in the response time of another task. Sensitivity analysis aims to determine the impact 
of such changes (and other changes). Three studies are noteworthy. 

Vestal [D-34] considered fixed-priority preemptive scheduling on a single processor and used 
previous work on schedulability analysis for it to give answers to the following questions: 1) If a 
task set is schedulable given an index i, how much can the execution time of task τi be allowed to 
increase without making the task set unschedulable? 2) If a task set is schedulable, by how much 
is it possible to multiply all execution times of all tasks without making the task set unschedulable? 
The author of [D-34] presented closed-form expressions that answer these questions. The authors 
of [D-34] also extended these result to more complex systems: 1) a system in which a task may 
block because it waits for a semaphore held by a lower priority task, and 2) a system in which there 
is a set of modules and each task consists of a subset of these modules. 

Punnekat et al. [D-35] pointed out that for more complex models, performing sensitivity analysis 
with closed-form expression is not possible. Therefore, the authors propose different types of 
binary-search procedures. One example of such a procedure is as follows: 

1. Take a task set as input. 
2. Store this task set as orig_taskset; later in the procedure, modify the task set, and then 

compare with the orig_taskset. 
3. Check schedulability with some method. 
4. When the task set is schedulable, multiply all execution times by some factor greater than 

1. 
5. When the task set is unschedulable, divide execution times by some factor greater than 1. 
6. Now, there is a task set that is schedulable, but multiplying all execution times by some 

factor makes it unschedulable. 
7. Repeat steps 4–5 with a sufficiently small factor. 
8. Now, there is a task set that is schedulable but one in which multiplying all execution times 

by some small factor makes it unschedulable. 
9. Choose some task in the task set obtained at line 8; let i denote the index of the task. Take 

the execution time of task i in the orig_taskset, and divide by the execution time of task i 
in the task set obtained after line 9. This factor tells how much the speed of the processor 
can change (or, alternatively, how much the execution times can be scaled) until 
schedulability changes. 

In this procedure, a factor is obtained stating how much all execution times can be scaled without 
changing the result of schedulability testing. The authors of [D-35] also point out that a similar 
procedure can be used to determine how much a single task can have its execution time scaled 
without changing schedulability. 
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Bini et al. [D-36] studied sensitivity analysis from another perspective. They let certain variables 
of a taskset be free variables and expressed the space of assignments of these free variables that 
make the resulting task set schedulable. The authors show two examples of such spaces: 1) letting 
execution times of all tasks be the free variables yields the space of all assignments of values to 
execution times that makes the task set schedulable, and 2) letting periods of all tasks be the free 
variables yields the space of all assignments of values to periods that makes the task set 
schedulable. With such a space, sensitivity can be computed. 

D.2.2  VIRTUALIZATION LOGICAL INTERFACES CHARACTERIZATION AND 
MODELING 

Compositional verification has a long history in the domain of functional verification. For 
exhaustive verification techniques, such as model checking and theorem proving, it is widely 
known that compositional verification is crucial for scalable analysis. Some of the earliest work in 
this area is known as assume-guarantee or rely-guarantee reasoning. The assume-guarantee 
paradigm was proposed in various contexts in the early 1980s by Misra and Chandy [D-5], Jones 
[D-37], and Pnueli [D-38], and has since been explored (in manual/semi-automated forms) widely. 
The key idea is to represent each component as an automaton, with its interface being a set of 
actions (such as messages being sent or received) used to interact with other components. An 
assume-guarantee style proof rule is then developed and proved to be sound. This proof rule allows 
for verifying a property of the entire system by proving sub-properties about individual 
components. For example, one approach is to represent each component as a finite-state process, 
in which communication happens by synchronizing on shared actions, as in the Communicating 
Sequential Process formalism [D-39]. The property to be verified is also expressed as a finite state 
process, and 𝑆𝑆 ≼ 𝑃𝑃 is written to mean that system 𝑆𝑆 satisfies property 𝑃𝑃. Parallel composition of 
two processes 𝑀𝑀1 and 𝑀𝑀2 is denoted by 𝑀𝑀1 ∥ 𝑀𝑀2. In this setting the following “non-circular” 
assume-guarantee proof rule has been shown to be sound and complete [D-40]: 

 𝑀𝑀1≼𝐴𝐴 𝑀𝑀2∥𝐴𝐴≼𝑃𝑃
𝑀𝑀1∥𝑀𝑀2≼𝑃𝑃

 (D-30) 

Informally, this proof rule states that if component 𝑀𝑀1 satisfies assumption 𝐴𝐴, and component 𝑀𝑀2 
satisfies property 𝑃𝑃 under the assumption 𝐴𝐴, then the system composed of 𝑀𝑀1 and 𝑀𝑀2 satisfies 
property 𝑃𝑃. Note that the advantage of this proof rule is that the two premises (above the horizontal 
line) can be discharged without constructing the system 𝑀𝑀1 ∥ 𝑀𝑀2, which avoids state-space 
explosion. Of course, this means that an appropriate (and small) assumption 𝐴𝐴 needs to be found 
that satisfies the two premises. The main difficulty is in doing this automatically. Several projects 
have explored the construction of such assumptions using learning algorithms, such as L*  
[D-41, D-42]. A number of other assume-guarantee proof rules exist. For example, consider the 
following “circular” proof rule: 

 𝑀𝑀1∥𝐴𝐴2≼𝐴𝐴1 𝑀𝑀2∥𝐴𝐴1≼𝐴𝐴2 𝐴𝐴1∥𝐴𝐴2≼𝑃𝑃
𝑀𝑀1∥𝑀𝑀2≼𝑃𝑃

 (D-31) 

This rule states that if there exist two assumptions 𝐴𝐴1 and 𝐴𝐴2 such that: 1) premise 1: component 
𝑀𝑀1 satisfies 𝐴𝐴1 under an environment that satisfies 𝐴𝐴2; 2) premise 2: component 𝑀𝑀2 satisfies 𝐴𝐴2 
under an environment that satisfies 𝐴𝐴1; and 3) premise 3: the system composed of 𝐴𝐴1 and 𝐴𝐴2 
satisfies property 𝑃𝑃, then (conclusion) the system composed of 𝑀𝑀1 and 𝑀𝑀2 also satisfies 𝑃𝑃. 
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In another approach, originally proposed by Pnueli [D-38] for deductive program verification, 
components are program fragments, or environments under which they execute. Nevertheless, the 
proof rules have a similar structure irrespective of the underlying formalism used to represent 
components. 

Relationship between premises and verification technology: The premises are discharged by a 
formal verification technique, such as model checking, SMT solving, or theorem proving. The 
specific verification technology used is tied to the formalism used to describe the components and 
assumptions. For example, one option is to express the components and assumptions as finite-state 
machines. In this case, the premises are typically discharged by a state-space-exploration 
technique, such as model checking. Another option is to represent the components and assumptions 
as logical formulas. In this case, theorem-proving-based techniques are more appropriate for 
discharging the premises. The application of theorem proving can range from being interactive 
(such as with PVS and HOL/Isabelle) to fully automated (such as with SMT solvers such as CVC4 
and Z3). 

Brittleness of premises: Given a specific system, property, and assume-guarantee proof rule, there 
may be multiple assumptions that are sufficient to verify the system against the property using the 
proof rule. For example, consider a specific system 𝑀𝑀1 ∥ 𝑀𝑀2 and property 𝑃𝑃. Suppose that the non-
circular proof rule presented previously is being used and that the conclusion of proof rule holds 
(i.e., 𝑀𝑀1 ∥ 𝑀𝑀2 ≼ 𝑃𝑃). In this case, there may be several different assumptions 𝐴𝐴, each of which 
satisfy the two premises of the proof rule. One way to determine which of these assumptions is 
preferable is to choose the one that is least brittle. The concept of brittleness is inspired by the 
observation that, in practice, systems are often modified to fix errors and add new features. In this 
situation, it is desirable to have a verification approach that can be repeated with minimal 
additional effort if the target system and property undergo a small modification. In the context of 
assume-guarantee reasoning, an assumption (or set of assumptions) is said to be brittle if it (or 
they) can no longer satisfy the premises of the proof rule when one or more system components or 
the property is altered even slightly. In other words, brittle assumptions are “over-fitted” to the 
target system and property, and become unusable with even a small change. 

In practice, the general observation is assumptions that are neither too restrictive nor too 
permissive are less brittle than those that are very restricted behaviorally. More specifically, 
suppose state machines are being used to represent assumptions. In this case, a state machine that 
accepts a moderately large language is less brittle and, therefore, preferable from a verification 
perspective compared to a state machine that either accepts too many traces or too few. To 
understand why this is the case, consider again the noncircular proof rule presented previously. If 
𝐴𝐴’s language is too small, it risks not satisfying the first premise if the language of 𝑀𝑀1 increases. 
However, if 𝐴𝐴’s language is too large, the risk is that the second premise will fail if the language 
of 𝑀𝑀2 increases. A non-brittle assumption 𝐴𝐴 should therefore balance between satisfying the two 
premises. This is also generally the case for other assume-guarantee proof rules. Similarly, if 
logical formulas are being used, those with a moderate number of satisfying assumptions are less 
brittle. The general guideline is that an assumption should be as general as possible (to 
accommodate for the larger possible range of behaviors of the components), whereas still being 
able to discharge the proof rules. Therefore, when constructing appropriate assumptions for 
assume-guarantee reasoning, whether manually or algorithmically, it pays to lean toward non-
brittle ones. 
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Assume-Guarantee and Virtualization: In the context of virtualized systems, assume-guarantee 
reasoning can have several applications, including: 

• Modeling and Verifying Spatial Isolation: Ensuring that applications executing in different 
partitions (or guests) are logically isolated, other than what is permitted by OS-level 
interfaces, such as shared filesystems and network devices. 

• Modeling/Verifying Logical Interactions Between Partitions: Ensuring that applications in 
different partitions interact according to well-defined rules. For example, this might involve 
only certain partitions communicating with each other, and such interaction always using 
specific files and network protocols. 

• Modeling/Verifying Logical Distributed Protocols: Ensuring that the correctness of protocols 
used by partitions are implemented properly. For example, this might involve verifying that 
correct synchronization mechanisms are used (to avoid deadlocks and race conditions), and 
message exchanges use appropriate formats and sequences. 

From a certification perspective, it is advisable to have evidence that each of the above categories 
of correctness have been verified using appropriate techniques. Each of these classes of correctness 
will now be discussed in the context of various commonly used partitioning schemes. 

D.2.2.1  Time-Division Partitioning and Interaction Protocol 

D.2.2.1.1  ARINC 653 

Partitions in ARINC 653 are referred to as “APEX” partitions. ARINC supports both inter-
partition and intra-partition communication. Intra-partition interaction (i.e., between applications 
belonging to the same APEX partition) happen via standard OS-level inter-process (shared 
memory, pipes) and inter-thread (shared global variables) communication mechanisms. This can 
be logically verified. Moreover, applications that interact must use appropriate synchronization 
mechanisms (such as mutexes and semaphores) to avoid race conditions. These mechanisms must 
be implemented properly (e.g., using priority ceiling) to avoid priority inversions among tasks. 
Finally, the mechanisms must be used in the correct order to avoid deadlocks. Applications running 
in different partitions must communicate via ports and channels. Two types of ports are 
supported—polling and buffered. Polling ports have an effective slot size of 1. Newly sent or 
arrived data overwrite old data. In contrast, buffered ports can save several messages and deliver 
them in FIFO order. Both types of ports can be formally defined in terms of channels and verified 
using assume-guarantee reasoning for asynchronous communication processes. Verification can 
be of three varieties: 1) verifying that APEX partitions are logically isolated (i.e., there are no 
means of communication other than via ports); 2) verifying that applications use ports in the correct 
manner (e.g., that each polling port on a sender process side is paired up with another polling port 
on the receiver process side); and 3) verifying that the overall interaction leads to safe and secure 
behavior expressed by some system-level property. 
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D.2.2.1.2  TTA/TTP 

In the TTA/TTP scheme, time is strictly divided among applications. It must be verified that 
applications cannot interact other than via standard interfaces. In particular, it must be ensured that 
information from one application does not inadvertently leak into another via a shared memory or 
device. In addition, as in the case of ARINC 653, correct use of synchronization mechanisms must 
be verified to avoid race conditions and deadlocks. 

D.2.2.2  Rate-Monotonic-Based Partitioning Synchronization Protocols 

In the rate-monotonic approach, time is allocated preemptively based on thread priorities. One 
major problem is to avoid priority inversion, which happens when a low-priority task holds a 
shared resource 𝑅𝑅 (e.g., a mutex) and, therefore, blocks a higher priority task that is also trying to 
acquire 𝑅𝑅 for an unbounded amount of time. To avoid this problem, special mutexes are used. Two 
such mutex schemes will now be discussed. 

D.2.2.2.1  Reserve Inheritance 

A reserve-inheritance mutex [D-4] is attached with a resource, and each resource is given the 
priority equal to that of the highest priority task that might access it. When a task acquires a mutex, 
its priority is bumped to that of the associated resource. This means that it will not be preempted 
by (and therefore cannot block) another task trying to acquire the mutex. One verification 
challenge is to prove that the mutexes have been implemented correctly (e.g., that priorities have 
been assigned to resources in the right way) and that thread priorities are updated correctly when 
they acquire a mutex. Another verification challenge is to prove the correctness of the scheme 
under all possible usage scenarios. Finally, it must be verified that tasks use mutexes properly. All 
these verification problems can be addressed in a compositional manner, and evidence to that effect 
will aid certification. 

D.2.2.2.2  Priority and Criticality Inheritance 

A priority-inheritance mutex [D-43] also involves updating thread priorities, but this happens more 
“lazily” than the reserve-inheritance scheme. When a low-priority thread 𝑇𝑇𝐿𝐿 first acquires the 
mutex, its priority remains unchanged. However, if a high-priority thread 𝑇𝑇𝐻𝐻 subsequently attempts 
to acquire the mutex, then the priority of 𝑇𝑇𝐿𝐿 is bumped up to that of 𝑇𝑇𝐻𝐻. This allows 𝑇𝑇𝐿𝐿 to be 
scheduled, and it can run until it releases the mutex, thereby avoiding priority inversion. Various 
variants of this protocol have been proposed in the literature. In a mixed-criticality setting, there 
is also the danger of criticality inversion, which can be avoided by using mutexes based on 
criticality inheritance protocols [D-44]. As in the case of reserve inheritance, correctness of these 
protocols at the algorithmic and implementation level, and their correct usage by threads, are 
challenges for verification. In each case, verification can be done in a compositional manner, and 
evidence of successful verification will increase confidence in predictable behavior at runtime. 

D.2.2.3  General Purpose Virtualization Inter-Partition Coordination 

In general, virtualized systems, in which the partitioning is done by a hypervisor and not based on 
time, there are also verification challenges that can be addressed by compositional logical analysis. 
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These fall into the categories mentioned above—ensuring that the coordination protocols among 
the partitions are correct at the algorithmic level, proving them correct at the implementation level, 
and finally verifying that the applications running within each partition use these protocols 
correctly. This approach has the hallmarks and advantages of compositional verification, because 
it allows for proving correctness of an entire system by first reasoning about each component  
(i.e., partition) and then verifying that the correct interaction between any group of components 
following the prescribed protocols leads to safe and predictable behavior. 

D.2.2.4  Distributed Coordination and Virtualization 

Finally, there are protocols and algorithms for distributed systems, such as leader election, 
consensus, and logical synchrony. Such protocols involve multiple components, which may 
execute in separate VMs, or on the same VM. In any case, there are still the verification challenges 
that have formed a common thread in this section. First, we need to prove that the protocols are 
correct at the algorithmic and implementation level. For example, the Physically Asynchronous 
Logically Synchronous (PALS) protocol has been subjected to rigorous verification both as an 
algorithm [D-45] and implementation [D-46]. Second, it needs to be proven that applications use 
the protocol in a correct manner. 

D.3  MITIGATION STRATEGIES FOR COMPOSITIONAL VERIFICATION PROBLEMS IN 
VIRTUALIZED SYSTEMS 

In this section, some of the techniques are discussed that can be used to mitigate shortcomings of 
virtualization with respect to compositional verification. 

D.3.1  MITIGATION STRATEGIES FOR TIMING VIRTUALIZATION 

From the timing point of view, compositional shortcomings come from both imperfect 
virtualization mechanisms and imprecise modeling. Some of the most important shortcomings and 
their mitigation strategies are discussed as follows. 

D.3.1.1  Modeling Approximation for Scalable Verification and Enforcement 

Some of the new challenges in virtualization are the correct identification and separation of the 
use of shared hardware. For example, in multicore processors, the shared-memory hierarchy is one 
of the big challenges for avionics systems. Whereas some virtualization/partitioning schemes had 
been offered for these resources [D-47], it is clear that at times it would be necessary to share 
partitions. The challenge in this case is absence of all the details. For such a case, it is possible to 
create safe model approximations and validate some of the parameters of the model through 
experiments. In [D-47], the authors used these concepts in two strategies. First, the authors 
developed a double-bounding model approximation that bounds the delay due to shared memory 
by taking the minimum between the worst case from each memory-access point of view and the 
worst case from the full-job execution. Second, the authors used experiments to obtain the value 
of the memory-access reordering queue inside the memory controller. 
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D.3.1.2  Hardware Scheduling Enforcement 

Complementary to model approximations, it is also possible to restrict the behavior of the hardware 
to simplify the verification. Two examples are worth discussing. First, the enforcement of the 
concurrent memory accesses from DMA I/O devices can delay the memory access from the CPU 
(and the tasks running in it). In [D-48], the authors proposed a co-scheduler hardware that 
intercepts DMA requests and schedules them in a way that allows a predictable scheduling of CPU 
tasks. 

In a second example, [D-49] Yun et al. describe a mechanism (called MemGuard) to police 
accesses to the shared memory bus in a multicore processor. This allows them to eliminate 
unpredictable accesses and simplify the timing verification, even if at the cost of performance. 

D.3.2  MITIGATION STRATEGIES FOR LOGICAL VIRTUALIZATION 

Compositional verification, whereas powerful in theory, is nontrivial in practice. For example, in 
the case of assume-guarantee reasoning, finding appropriate assumptions is quite complicated. 
Several strategies can help make this process practically feasible. First, the system should be 
properly architected so that its decomposition into components is clean and natural, and expressed 
rigorously. This means that components have well-defined interfaces, and such interfaces should 
be used in a relatively small number of ways. For example, the interface can be a set of input and 
output actions, and their legal use can be expressed as a finite state machine. 

Second, the architecture can be multi-layered, in which components at each layer are further 
decomposed at the next layer. Key to this process is to represent each component at the right level 
of abstraction. The abstraction should eliminate details that are not important for verification, yet 
retain sufficient details so that target properties can be verified successfully. Formal notations, 
such as Architecture Analysis and Design Language and Statecharts, can be used to represent this 
hierarchical decomposition rigorously. 

Third, the correspondence between abstract models of components and their concrete 
implementations should be demonstrable in a direct way. There are two ways of achieving this 
goal. One way is to generate the abstraction from the component’s implementation, and use these 
abstractions for verification. There are several automated abstraction techniques, such as predicate 
abstraction [D-50], that can extract finite state machine (or push-down system) models from source 
code. Another way is to describe the models in an executable format, and then generate code 
directly. Of course, the correctness of the code generator must also be argued. 

Finally, automated techniques can be used to construct the appropriate intermediate assumptions 
that can be used to discharge the premises of the assume-guarantee rules. For example, learning 
algorithms have been used successfully for this purpose. 

D.4  DISCUSSION AND RECOMMENDATIONS 

One of the key appeals of virtual machines (VMs) and related virtualization technologies is the 
ability to isolate components, thereby enabling the recertification of a component that has been 
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modified without the need to recertify the rest of the components in the system. This is known as 
compositional verification. 

In this report, the multiple issues related to compositional verification have been discussed from 
the point of view of virtualization mechanisms and analysis techniques. In this section, the main 
points of this report are summarized, and it ends with recommendations. 

Perhaps the first observation was that, because their hypervisors lack a deterministic timing 
isolation between VMs, general-purpose VMs do not allow compositional verification. New 
efforts are currently being conducted to create real-time versions of these VMs. One of the main 
efforts is RT-Xen. Whereas RT-Xen is a step in the right direction, there are still some inherited 
mechanisms (like time quanta) that must be corrected to lead to hard real-time guarantees. 

Second, generalized modeling techniques aimed at capturing any type of mechanisms, such as 
real-time calculus and timed automata, do not take full advantage of detailed knowledge of 
virtualization mechanisms because doing so can reduce their generality. As a result, they can lead 
to either intractable verification problems or very pessimistic models. 

Mixed-criticality virtualization techniques that take into account the criticality levels present in 
standards such as DO-178C, are, at this time, focused on single-task isolation. Clearly, there is a 
need to extend these techniques to multi-task components that can support the challenges faced by 
the FAA. 

Finally, assume-guarantee techniques for logical-verification compositionality still have a long 
way to go to make them more practical. Of particular importance is the development of 
architectures that simplify the assumptions, and the creation of interfaces. 

This paper’s recommendations can be summarized as follows: 

1. Additional research is required to develop virtualization mechanisms and verification 
technologies that take into account the componentization required by the FAA (e.g., multi-
task). This is because the current combination of virtualization mechanisms and 
compositional analysis do not provide true component independence (i.e., modifying one 
component impacts another). 

2. New research in architectures and verification technologies for components with multiple 
levels of criticality, and with multiple tasks, is necessary. In this case, current research in 
mixed-criticality virtualization and verification either does not allow independent 
verification or can accommodate only one task per component. 

3. New research in logical verification via the assume-guarantee style of interfaces and 
enforcement mechanisms is required. This is because the current technology to specify 
interfaces is either too complex (too many interacting options) or does not reflect the 
executable code. 

4. There is a need to develop a protocol to allow the disclosure of details of commercial 
products that include hardware, operating systems, and verification tools to construct 
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evidence for certification with respect to the isolation claims that commercial real-time 
VMs offer. 

For the certification engineer, these recommendations can be further elaborated as: 

1. General-purpose virtual machines such as VMWare or VirtualBox should not be considered 
for avionics systems because there is no reliable technique to verify the timing isolation 
between VMs. 

2. Real-time hypervisors that provide predictable temporal isolation should be paired with the 
verification technique that matches their mechanism. For instance, if time-division 
multiplexing is used (e.g., TTA), then exhaustive timeslot allocation algorithms must be 
used, and the arguments about why specific allocations satisfy the partition requirements 
must be presented. Similarly, if the technology is based on rate-monotonic scheduling and 
processing servers, the corresponding response time techniques must be used. 

3. When considering recertification of partitions (or VMs) in isolation, the brittleness of the 
verification techniques must be considered. In particular, arguments to support why a 
modification to a partition does not affect other partitions must be presented. As elaborated 
in this appendix, different techniques have different sensitivities to modifications 
(brittleness). The brittleness discussion in this appendix can be used by a certification 
engineer to guide his/her evaluation of the isolation arguments. 

4. When presenting logical arguments of separation, care should be taken to the assumptions 
of such claims. This is particularly important during recertification when the assumptions 
may change. 

5. Arguments of isolation for VMs running in multicore processors must properly support the 
interference channels mentioned in CAST32A with the supporting details from the 
processor documentation.  

Note: GR 

The partitioned systems are never implemented with their connections, schedules, 
import/export channels. They are always designed as components that are integrated. This 
integration is directed by tools and a “language” that allows the composition to be 
expressed and then implemented through configuration files.  

Of interest would be a description of these configuration files that help map applications 
onto the VM/Partitions/Task mechanisms together with the corresponding description of 
the communication mechanisms. This would allow for describing and simulating the 
behavior of composed systems and translating them to operational components.  
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APPENDIX E—SINGLE-TO-MULTICORE PORTABILITY OF ASSURANCE DATA 

E.1  INTRODUCTION 

The notion of a multiprocessor implemented on a single chip is now more than 20 years old in 
academic circles [E-1, E-2]. A multiprocessor implemented on a single chip became known as a 
chip multiprocessor. With later commercialization, it become known as a multicore processor or 
multicore. Today, in many contexts, multicore processors are the norm; it is now more than 10 
years since multicore processors became mainstream. 

Given this context, the use of multicore processors in avionics has received increasing interest. 
There are two reasons for this: commercial availability and performance. With respect to 
commercial availability—single-core chips are simply not available from many chip vendors; if 
buying processor chips from such a vendor, then a multicore chip is the only option. With respect 
to performance—multicore processors offer advantages over single-core processors. These 
advantages include: 1) the potential for parallel execution of threads in multicore processors, and 
2) lower power consumption and lower thermal dissipation, therefore reducing the need for 
advanced cooling and power generation. The potential for parallel execution is particularly helpful 
for software systems that are already multithreaded; this is typically the case for avionics. 
Reducing the need for advanced cooling and power generation is important for application 
domains in which size, weight, and power are important; this is also typically the case for avionics. 

This increasing interest in using multicore processors in avionics raises the question of how to 
certify aircraft that use multicore processors. This document discusses this question—particularly 
what can go wrong when porting software that was originally developed for a single-core processor 
and now executing on a multicore processor. 

E.1.1  SCOPE AND LIMITATIONS 

Dealing with single-event upset (SEU) is important in avionics and this issue is more serious in 
multicore chips [E-3]. However, because this report focuses on software, SEU issues and Error 
Correcting Codes will not be discussed. 

Hardware also needs to be approved. Often, an applicant gets credit for “service experience” on 
using a certain chip. Clearly, if a given software system has very long service experience on a 
given single processor system and now this software is ported to a multicore chip, it is natural to 
ask whether this multicore chip has the same service history with this software, and if the answer 
is no, it is natural to ask how much trust there can be in this new multicore chip. Because this is a 
hardware issue, this will not be discussed. For such issues, the reader may find [E-4] valuable. 

The remainder of this document is organized as follows: Section 2 discusses timing correctness, 
section 3 discusses logical correctness, and section 4 presents conclusions. 

E.2.  TIMING 

Section E 2.1 will revisit scheduling theory for a single processor. Similar material is mentioned 
in previous FAA reports, specifically “Fixed-Priority Scheduling” in “Assurance Issues on VMs 
in Avionics Systems” (appendix B, section 2.1.2.5) and “Reservations” in “Survey of Literature 
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Related to Virtual Machines” (appendix A, section 4.1.1). The scheduling theory is revisited for 
the reader to understand the remainder of this section without having to read the other reports. 

Section E 2.2 shows that the independence of execution time in a multicore system is broken. 
Section E 2.3 shows the importance of the problem and ongoing efforts. Section 2.4 discusses one 
of the previously used ideas (time partitioning with ARINC 653) and how previously used 
synchronization mechanisms can fail/perform poorly when used with multicore processors. Tables 
E-1 through E-8 present the observations in the literature that in a multicore procecessor where 
execution time depend on other processors. Each table has a relevance to the section that follows. 

Table E-1. Observations set 1 in the literature that in a multicore processor, execution time 
may depend on other processors 

Paper Context Statement/Testimony 

[E-5] Multiprocessor “The copy-rate decreases to 50% of the value in the 
single CPU if only 2 memory banks are available.” 

  

“We have clearly demonstrated the consequences of 
memory preemption on a SUN E3000 server with 4 
CPUs, where the execution speed of a video-
conferencing application running on a dedicated CPU 
drops from 25 to 20 frames per second if the remaining 
CPU demands a lot of megabytes per second (see FIG. 
1.1.). 

[E-6] Single-core + 
I/O 

“Summarizing Measurement Results: … We consider 
the slowdown of this application as the upper bound … 
For our machine, we determine an upper bound value of 
1.49.” 

[E-7] Processor and 
I/O 

“…the interference between cache activity and I/O 
traffic generated by COTS peripherals can 
unpredictably slow down a real-time task by 44%.”  

E.2.1  SCHEDULING THEORY REVISITED 

When describing and verifying real-time software, it is common to use the notion of a task. In this 
context, a task is an entity that generates a (potentially infinite) sequence of jobs in which each is 
described with an arrival time, a deadline, and its potential consumption of resources. A task can 
be used to model a thread in an operating system. However, a task can also be used to model other 
types of execution like periodic execution of an interrupt service routine. 

On a system with a single-core processor, the resource consumption is typically described with a 
worst-case execution time (WCET). For example, it is common to describe a software system as a 
set of tasks for which task i is characterized by Ti, Di, and Ci. Here, Ti denotes the minimum inter-
arrival time of task i; Di denotes the relative deadline of task i; and Ci denotes the WCET of  
task i. The interpretation of these parameters is that task i generates a sequence of jobs, the arrival 
time of these jobs is separated by at least Ti time units, and each job must have performed a certain 
number of units of execution (at most Ci) at most Di time units after its arrival. This model has 



 

E-3 

been very useful because it can describe a feedback-control system with periodic sampling (time-
triggered arrivals), and it can also describe alarm systems (a job arrives because of a certain 
condition; e.g., the physical world is in a bad state). In this model, it is common to talk about the 
response time of a job—it is the time from when the job arrived until when it finished execution. 
It is also common to talk about the response time (sometimes called WCET) of task i and denote 
it Ri. This is a number such that 1) for all possible jobs that the system can generate, for each job 
of task i, the response time of this job is at most Ri, and 2) there is a schedule that the system can 
generate and for this schedule, there is a job of task i such that the response time of the job is equal 
to Ri. Clearly, if Ri could be computed for each task and then checked for all tasks, and it holds 
that Ri ≤ Di, it is sure that all deadlines are met. For this reason, researchers have developed runtime 
schedulers and analysis techniques that achieve this. 

Researchers have given particular attention to systems in which each task is assigned a priority (a 
number) and then at runtime, among the tasks with a job that is ready for execution, the task that 
is selected to execute is the one with the highest priority. This type of scheduling is known as 
fixed-priority scheduling. The reason for its popularity is that it is supported in many real-time 
operating systems. 

Two common ways of assigning priorities include: 1) rate monotonic (RM), and 2) deadline 
monotonic (DM). With RM, the priority of a task monotonically increases with its arrival rate (and 
its arrival rate is the inverse of its T-parameter). With DM, the priority of a task monotonically 
increases with the tightness of its deadline (the deadline is tighter if its D-parameter is smaller). 

The research literature also offers methods for proving that deadlines will be met for all possible 
schedules that a system can generate. These methods are called schedulability tests. A 
schedulability test takes as input a set of parameters of the task set (e.g., T, D, C of tasks) and 
outputs a Boolean value. If it outputs true, then it is guaranteed that all deadlines will be met. For 
fixed-priority scheduling, Ri can be computed for each task τi and compared against Di. Clearly, 
Ri depends on all tasks with higher and equal priority as task τi. For this reason, it is typical to let 
hep(i) denote the set of tasks with higher or equal priority as task τi. With this notation, Ri can be 
computed as the smallest Ri that satisfies the following equation: 
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Typically, this equation is solved with fixed-point iteration. It is done as follows: Let Ri
k denote 

the value of the k:th iteration. Then Ri
k is computed as follows: 

 𝑅𝑅𝑖𝑖1 = 𝐶𝐶𝑖𝑖 (E-2) 
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When convergence is obtained (i.e., Ri
k+1 = Ri

k) then Ri has been found. If one of the Ri
k values 

exceeds Di, then there is a deadline miss and the iterative procedure can be terminated. This 
termination condition is useful because there are task sets for which this iterative procedure does 
not converge; this happens for overloaded systems (e.g., T1 = 1, D1 = 1, C1 = 1,  
T2 = 2, D2 = 2, C2 = 1). 

Table E-2. Observations set 2 in the literature that in a multicore processor, execution time 
may depend on other processors 

Paper Context Statement/Testimony 

[E-8] Single 
processor 

“the utilization increment [because of cache eviction] 
can be as high as 13%” 

[E-9] dual core + I/O “…measured a WCET increase 2.96 times for the task.”  

[E-3]  multicore 

About cache sharing: “If the data set is smaller than the 
L2 cache visible to a core and the L2 cache is shared 
(Intel Processor), the worst case performance loss 
through the second core depends on the data set size and 
it between 30% and 95% for write operations and 19% 
and 92% for read accesses.” 
About cache coherency: “On the AMD processor, the 
performance loss is 99% on small data sets and it moves 
to 50% for large data sets.” 
About data buses: “If the cores operate on a data set 
which is so large that the caches have no effect, the 
performance drops down to 50% if both cores are 
active.” 

E.2.2  THE INDEPENDENCE OF WORST-CASE EXECUTION TIME IS BROKEN ON A 
MULTICORE PROCESSOR 

Unfortunately, the results described so far apply only to single-core processors. On a multicore 
processor, the execution time of a job depends on jobs executing on other processors. Specifically, 
a job can have longer execution time because of execution of jobs on other processors, and this 
can cause a deadline miss. This will be shown with a simple example. 

Example 1: Consider three tasks and two processors. Task 1 is assigned to processor 1. Task 2 and 
Task 3 are assigned to processor 2. The tasks are characterized with the parameters T1 = 1, D1 = 1, 
C1 = 0.5, T2 = 1, D2 = 1, C2 = 0.5, T3 = 1, D3 = 1, C3 = 0.5 (i.e., they all have the same T, D and C 
parameter). Priorities are assigned so that task 2 has higher priority than task 3. Then the response 
times of these tasks can be computed; this yields R1 = 0.5, R2 = 0.5, R3 = 1, and therefore all 
deadlines are met. This is shown in figure E-1. However, this reasoning assumed that the system 
can be analyzed as two single-core systems. In reality, the execution times may be larger. For 
example, it may happen that C1 = 0.6 and C2 = 0.6 because execution times may increase in a 
multicore processor; then task 3 misses its deadline. 
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Figure E-1. Example of a task set that meets its deadline if C1 = 0.5 and C2 = 0.5 but, 
because of multicore, the execution time can become larger (C1 = 0.6, C2 = 0.6), and then 

task τ3 would miss its deadline 

Therefore, when verifying timing of software on a multicore processor, it is important to be aware 
that the execution time of one job may depend on execution of other jobs on other processors. The 
independence of WCET is broken. This increase in execution time has multiple causes; one is that 
one job can evict a cache block that another job has fetched. 

Table E-3. Observations set 3 in the literature that in a multicore processor, execution time 
may depend on other processors 

Paper Context Statement/Testimony 

[E-10] Multithreaded 
processor 

“We also observe that, in general, the detected 
slowdown is quite high (up to 15.3x)” 

[E-11] Multicore 

“…the worst-case execution time (WCET) can be 
multiple times slower than the same application running 
on a single-core…” 
“A major result demonstrated by the measurements is 
the substantial impact that concurrently active devices 
may have on a single devices’ performance, in terms of 
storage type instructions. The influence could be of a 
factor from approximately 1.6 for L3 SRAM and 5.1 
when accessing DDR memory.” 

E.2.3  IMPORTANCE OF THE PROBLEM 

It is well established through the scientific literature that in a multicore processor, the execution 
time of one job may depend on jobs on other processors. Tables E-1–E-8 show evidence from the 
research literature on this. These tables show results from researchers’ measurements on execution 
time and how they are affected by execution of jobs on other processors. These tables also show 
the experimental results when using techniques to reduce this effect. 
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The degree to which the execution time of one job depends on other jobs on other processors 
depends on the context, on the processor architecture, and on the application behavior. For 
example, if jobs are less memory intensive, contention on the memory system is not too severe, 
and this may cause the execution time of one job to be only marginally dependent on other jobs 
on other processors. From the tables, it can be seen, however, that for certain settings, the 
dependence of the execution time on other jobs can be severe. [E-12] (mentioned in table E-8) 
observed that the execution time could be 103 times larger. 

As already mentioned, in a multicore processor, the execution time of one program can be 
impacted by execution of a program on another processor core because the programs may share 
resources in the memory system. This is often referred to as memory interference channels. 
Examples of memory interference channels are: 

1. One program fetches a cache block to the cache and later accesses could operate faster if 
accessing the same memory address; but with multicores, another processor core could 
fetch some other data that maps to the same cache set and, therefore, evict the cache block. 

2. The execution of one program is delayed because it needs to use the memory busthe bus 
between the memory controller and the main memory (DRAM). The delay is caused by 
another program using the memory bus. 

3. One program opens a memory row in a memory bank (in DRAM) to read a word from it. 
If additional accesses are to the same row, these additional accesses are performed faster. 
However, it could happen that another program on another processor core requests to 
access another row in the same memory bank, and then it is necessary to close the current 
row and open a new row. This could cause an extra delay to the former program. 

4. A memory controller can reorder memory requests. This reordering is typically 
implemented in hardware, and it aims to speed up execution of programs in general. 
Unfortunately, this reordering does not account for the deadlines of respective programs, 
and it is hard to analyze this delay. Typically, this reordering is done by 1) prioritizing read 
operations over write operations (because if a read operation is delayed then a processor 
may stall), 2) prioritizing operations that perform data movement in the same direction as 
previous operations (because there is an extra overhead in changing the directionality of 
the memory bus), and 3) prioritizing memory operations to memory addresses that are in a 
bank with a currently open row. 

5. There is contention on memory ports (e.g., the memory port of on-chip SRAM used in 
cache memories). 

6. There are additional memory operations caused by execution of the program that are not 
visible in a program’s executable code. For example, consider a load instruction that is 
already in memory and experiences a cache miss when fetching data; if this instruction 
generates a TLB miss, this instruction may require four memory accesses. Many processors 
use (stride) prefetching units that speculatively fetch data ahead of the need for the data. 
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7. There are additional memory operations that are not caused by execution of the program. 
These include memory operations from DMA operations generated by I/O devices. 

Table E-4. Observations set 4 in the literature that in a multicore processor, execution time 
may depend on other processors 

Paper Context Statement/Testimony 

[E-13] Multicore 

“Experimental results show that, in the considered 
benchmarks, eliminating the interference of the last level 
cache can lead up to a 250% improvement in the 
execution time.” 

[E-14] Multicore 
“proper shared cache management can enable significant 
WCET reductions; on our test platform, observed 
WCETs were reduced up to almost five-fold.” 

[E-15] Multicore 

“For instance, the execution time of PS.streamcluster is 
increased by 60% under the no-bank-protection 
approach, but the increase is only 12% under our 
combined cache and bank coloring approach.” 

Table E-5. Observations set 5 in the literature that in a multicore processor, execution time 
may depend on other processors 

Paper Context Statement/Testimony 

[E-16] Multicore 

“Figure 5(b) illustrates the response times when all cores 
share the same bank partition. With bank sharing, we 
observed up to 12x of response time increase in the 
target platform. ” 

[E-17] Multicore 

“As can be seen in Figure 7 (H and H+P), the cache 
sensitive workload gobmk experienced a performance 
gain of as much as 13% under the interference of a 
heavy background workload with page coloring.” 

 

  



 

E-8 

Table E-6. Observations set 6 in the literature that in a multicore processor, execution time 
may depend on other processors 

Paper Context Statement/Testimony 

[E-18] Multicore 

“The memory latency can increase more than 15-fold on 8-
cores for a e500mc processor as witnessed by the statement: 
Table 1 shows the memory access latencies for read and 
write operations with increasing number of interfering cores. 
TABLE 1. P4080 MEMORY ACCESS LATENCIES FOR 
INCREASING NUMBER OF CONCURRENT CORES. 
LATENCIES USE FOR EVALUATION ARE MARKED 
BOLD 
Latency (cycles)” 
Cores 1 2 3 4 5 6 7 8 
Read 41 75 171 269 296 439 460 604 
Write 39 164 245 463 517 737 784 1007 

 

There are additional reasons why the execution time of one job depends on execution of other jobs 
on other processors. 

8. Consider two jobs that execute on different virtual cores (as part of hyperthreading) but 
that share functional units (for example ALUs) or a floating-point unit. If both jobs request 
use of the same type of resource, only one job might be granted the resource, and the other 
job would have to wait. This sharing of resources within a processor core could cause the 
execution time of one job to depend on another job. 

9. Consider two jobs that execute on different processor cores in a system that uses dynamic 
thermal management. In such a system, a processor can execute at high speed if all other 
processors are idle. If one job executes first, and this job is the only job in the system, it 
can execute at high speed. However, if the other job arrives and now executes on the other 
processor, the processor speed would be reduced (so as not to overheat the processor). 
Therefore, thermal management can cause the execution time of one job to depend on 
another job. 

These examples show that if a job executes in a multicore system, it can experience larger—
sometimes much larger—execution time than it would have experienced if executing in a single-
core system. Tables E-1–E-8 show significant documentary evidence for this. Therefore, 
researchers have developed techniques (see reference list at the end of this document) and 
certification bodies have produced a position paper [E-19] because DO-178C does not explicitly 
offer guidance on multicores. Researchers have also collaborated to provide recommendations  
[E-20]. These two documents and their context will now be discussed. 

As reported by [E-21], the aviation community has 1) formed a “Multi-Core for Avionics” working 
group, 2) organized a first workshop in January 2013 at EASA, 3) organized a second workshop 
in Cologne in July 2014, 4) produced a “Handbook for the Selection and Evaluation of 
Microprocessors for Airborne Systems” (FAA), 5) started producing a document, “Identification 
of Issues with Multi-core Processors” (FAA), and 6) produced a report “MULCORS–Use of 
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Multicore Processors in Airborne Systems” (EASA). Some of these interactions led to the CAST-
32 position paper that later (in November 2016) led to the CAST-32A position paper coordinated 
among certification authorities in North and South America, Europe, and Asia. The CAST-32A 
position paper will now be discussed. 

The CAST-32A position paper [E-19] discusses topics that can impact safety in avionics. It also 
gives rationale for why these are topics of concern and discusses objectives to address the concerns. 
The CAST-32A position paper states that interference channels should be identified, does not 
recommend schedulers that allow tasks to migrate arbitrarily between processors at runtime (called 
global scheduling in the real-time systems research literature), and does not recommend the use of 
hyperthreading. It is noteworthy that some hypervisors (e.g., Xen and RT-Xen, one of the most 
popular hypervisors) use global scheduling. The paper recommends the use of a safety net. There 
are many reasons for this; one is that multicore processors may have unintended functionality and 
produce unexpected behavior. The paper does not give any example of this. It is noteworthy that 
it has been reported that the Intel Skylake processor can freeze11 because of a defect in the 
hardware. The paper points out the risks in using simulation for timing verification. Specifically, 
it states that: “Because interference between applications occurs via the proprietary internal 
mechanisms of an MCP, any simulation of those mechanisms is less likely to be representative in 
terms of functionality or execution time than testing conducted on the target MCP.” 

The position paper “Minimal Multicore Avionics Certification Guidance” [E-20] is written by 
academics and industry participants within the area of real-time systems. It came out of the First 
TCRTS Workshop on Certifiable Multicore Avionics Systems (CMAS) in 2015. The paper’s 
objective is to “identify necessary requirements on multicore avionics certification process that 
will maximize the freedom to develop innovative solutions without sacrificing quality and 
consistency of the certification process.” It introduces the notion of a core group and argues that 
certification of software within a core group should not depend on software in other core groups. 
Further, the paper argues that certification of multicore avionics should address interference 
channels and that “developers need to investigate the processor architecture and identify all the 
interference channels.” The paper points out that solutions to mitigate and analyze interference 
channels rely on data provided by chip manufacturers and that this information may be incomplete, 
contain errors, or have ambiguities. 

 
 

  

                                                 
11  See https://arstechnica.com/gadgets/2016/01/intel-skylake-bug-causes-pcs-to-freeze-during-complex-workloads/ and 

https://communities.intel.com/thread/100321. 

https://arstechnica.com/gadgets/2016/01/intel-skylake-bug-causes-pcs-to-freeze-during-complex-workloads/
https://communities.intel.com/thread/100321
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Table E-7. Observations set 7 in the literature that in a multicore processor, execution time 
may depend on other processors 

Paper Context Statement/Testimony 

[E-22] Multicore 

“The difference of slowdown factors between the two 
tasks could be as large as factor of two (2.2x against 
1.2x)” 
“As we increase 470.lbm’s assigned memory bandwidth, 
however, performance of 462.libquantum gradually 
decreases; when the reserved bandwidth for 470.lbm is 
2.0GB/s (i.e., 3.0GB/s aggregate bandwidth reservation), 
more than 40% IPC reduction is observed due to increased 
memory contention.” 
“Note first that MemGuard-RO does not guarantee 
performance isolation anymore as 462.libquantum is 17% 
slower than the baseline. It is because the 2.4GB/s 
bandwidth cannot be guaranteed by the given memory 
system, causing additional queuing delay to the 
462.libquantum.” 
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Table E-8. Observations set 8 in the literature that in a multicore processor, execution time 
may depend on other processors 

Paper Context Statement/Testimony 

[E-12] Multicore “Without cache partitioning, a task can suffer up to 
103X slowdown due to interference at the shared LLC.” 

[E-23] Multicore 

“Measurements we performed on a commercial 
multicore platform (Freescale P4080) revealed that a 
task’s WCET can increase by as much as 600 percent 
when a task on one core runs with logically independent 
tasks in other cores.” 

[E-24] Multicore 

“When validating real-time constraints on an m-core 
platform, excessive analysis pessimism can effectively 
negate the processing capacity of the additional m-1 
cores so that only “one core’s worth” of capacity is 
available.” 
“Obs. 1. Providing LLC isolation reduced WCETs by up 
to 277% for the uB task and by up to 242% for the 
Matrix program.” 

E.2.4  WHY PORTING SOFTWARE TO A MULTICORE PROCESSOR IS CHALLENGING 

It is tempting to believe that every task set that is schedulable on a single processor is also 
schedulable on a multiprocessor. If this were true, porting one software system to a multicore 
would be trivial. Unfortunately, as shown by the example, this is not true. 

Example 2: Consider two tasks and a single processor. Assume that the tasks are characterized as 
T1 = ∞, D1 = 1, C1 = 0.6, T2 = ∞, D2 = 2, C2 = 1. Priorities can be assigned using deadline monotonic, 
and this shows that task 1 has higher priority and task 2 has lower priority. The worst-case response 
time can then be computed, and this computes the worst-case response time of task 1 as 0.6 and 
the worst-case response time of task 2 as 1.6. Port this system to a multicore system with two 
processor cores, assign task 1 to processor 1, and assign task 2 to processor 2. If there is no co-
runner interference because of sharing of resources in the memory system, the response times are 
as follows: the response time of task 1 is 0.6, and the response time of task 2 is 1; therefore, all 
deadlines are met. However, with co-runner interference, it may happen that a task executes with 
the speed 1/2 when it has a co-runner, and a task executes with speed 1 when it has no co-runner. 
In that case, if both tasks arrive at time zero, the schedule shown in figure E-2 is generated. In this 
schedule, during the time interval [0,1], task 1 and task 2 execute both with speed 1/2. At time 1, 
the deadline of task 1 expires without finishing. During the time interval [1,1.2], task 1 and task 2 
both execute with speed1/2. At time 1.2, task 1 finishes. During the time interval [1.2,1.6], task 2 
executes with speed 1. It can be seen that task 1 misses its deadline because its deadline is at  
time 1, but it finishes at time 1.2. This example shows that a software system that meets all its 
deadlines when executing on a single-core system cannot be assumed to fulfill all timing 
requirements when this software is ported to a multicore processor. 
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Figure E-2. Example of a task set that meets its deadline on a single-core system, but 
executed here on a multicore system and misses its deadline 

E.2.5  TEMPORAL PARTITIONING 

In single-core processors, temporal partitioning prevents a task from delaying another task in an 
unpredictable manner. More specifically, a temporal partition is defined with a set of temporal 
parameters, also known as a temporal interface. 

The temporal interface parameters typically vary depending on the underlying runtime 
infrastructure but are always based on the worst-case time a task needs to execute to finish before 
the next (periodic) activation of the task (e.g., due to the arrival of another frame in a video-
processing application). More specifically, it has two types of parameters: 1) the amount of CPU 
time the task needs to finish its periodic execution, and 2) the interval within which such CPU time 
must be delivered to meet its deadline. 

Example 3: A video player displaying 20 frames per second (FPS) needs to process one frame 
every 50 ms. If the frame processing takes 10 ms in the worst case, the interface should define how 
10 ms will be delivered within an interval of 50 ms, assuming the deadline is equal to the end of 
the period (i.e., it needs to finish processing a frame before it is time to process the next one). 

The interface defined by a time-slot-based partitioning consists of an interval known as a major 
frame and a set of time slots (subintervals) within this major frame12: 

 (𝑀𝑀, 〈𝑠𝑠1, … , 𝑠𝑠𝑛𝑛〉) (E-4) 

where 𝑀𝑀 is the size of the major frame and 𝑠𝑠𝑖𝑖 is the size of the 𝑚𝑚th interval assuming that 𝑀𝑀 =
 ∑ 𝑠𝑠𝑖𝑖𝑛𝑛

𝑖𝑖=1 . Then partitions are given a set of time slots in which their task(s) execute. 

Partition System 1: For instance, a system with five time slots and three time slot-based partitions 
may be defined (in milliseconds) as: 

 (𝑀𝑀 = 100, 〈𝑠𝑠1 = 20, 𝑠𝑠2 = 10, 𝑠𝑠3 = 30, 𝑠𝑠4 = 20, 𝑠𝑠5 = 20〉) (E-5) 

                                                 
12  Different variations of this definition are used by different vendors and standards.  
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with three partitions, 𝑃𝑃1 = {1,5}, 𝑃𝑃2 = {4}, and 𝑃𝑃3 = {2,3}. Then, the video player in example 3 
can be guaranteed to execute at least 10 ms every 50 ms in partitions13 𝑃𝑃1or 𝑃𝑃3, but not in 𝑃𝑃2. This 
is because even though 𝑃𝑃2 has enough execution time allocated (20 ms) to support two executions 
of the video player, this allocation is not spread into two subintervals of 50 ms as required by the 
application. 

Processing servers and resource reservations [E-25, E-20, E-21, E-26, E-27] allow the definition 
of a simpler interface with only two parameters—the WCET 𝐶𝐶𝑖𝑖 and the period of execution 𝑇𝑇𝑖𝑖. For 
the video player, this interface would be as simple as 𝐶𝐶1 = 10𝑚𝑚𝑠𝑠, 𝑇𝑇1 = 50𝑚𝑚𝑠𝑠. For completeness, 
this interface also includes a deadline that can be shorter than the period leading to the three-
parameter interface: (𝐶𝐶𝑖𝑖 ,𝑇𝑇𝑖𝑖,𝐷𝐷𝑖𝑖). 

E.2.5.1  WCET Dependence 

Timing interfaces assume that the WCET of a task does not change if other tasks running in other 
temporal partitions are run in the system. This assumption is preserved in a single-core processor 
where the partitions take turns to the only core. However, in multicore processors, multiple 
partitions can be running in real concurrency in different cores. Because the cores of the processor 
share hardware resources, the execution of one task in one core can delay the execution of another 
task in another core. This delay invalidates the WCET independence assumption of the timing 
interfaces, as we have seen in section 2.2. 

A number of research projects [E-9, E-12, E-23, E-16, E-15] have presented experiments that show 
the WCET dependence on tasks running on other cores (i.e., co-runners). For example, figure E-3 
shows an experiment from [E-16] in which it is possible to observe the sensitivity of different 
application benchmarks [E-28] to the execution of co-runner tasks. Four key observations are 
worth highlighting: 

1. Different applications have different sensitivity to the interference from other cores. In 
particular, in figure E-3, the swaptions benchmark shows no sensitivity to co-runners, with 
an execution time that remains unchanged no matter how many tasks run in the other cores. 
In contrast, the streamcluster benchmark exhibits extreme sensitivity to the interference, 
increasing its execution time five-, eight-, and 12-fold when the benchmark is run with one, 
two, and three co-runners.  
 
The intuition behind this difference is that less sensitive applications access memory less 
frequently (execute instructions that mostly perform computations), or the memory that 
they access is small enough to fit in the private cache (as opposed to the cache shared 
between cores) such that they rarely access main memory. In contract, highly sensitive 
applications have frequent accesses to memory from a region that cannot fit in the private 
cache. 

2. The execution time of a task increases with the number of co-runners. 

                                                 
13  The starting of the period of the task must be appropriately synchronized with the start of the major frame. 



 

E-14 

3. The increase in execution time depends on the code of the co-runner. This is not obvious 
in figure E-3, in which all the co-runners are memory-intensive tasks, but it is worth 
observing that if a sensitive task has only co-runners with very few memory accesses, the 
task will not be affected. 

4. As a consequence of the previous point, the increase in execution time will depend on:  
1) whether a task is restricted to run always on the same core (partitioned scheduling) or 
allow it to run on any core (global scheduling), and 2) the cores on which the tasks are run 
(if partitioned scheduling is used). 

 

Figure E-3. WCET dependence 

The observations about figure E-3 clearly highlight WCET dependence on co-runners. This breaks 
the temporal interfaces that rely on the WCET independence. As a result, virtualization 
technologies that aim at providing temporal isolation and rely on independent WCET interfaces 
are affected by multicore co-runner interference. This means that the timing parameters of their 
interface are not portable from single-core to multicore processors. 

For example, consider again the video player from example 3 with the Partitioned System 1. For 
the sake of the example, assume that the video player has the same sensitivity as the streamcluster 
benchmark and that the Partitioned System 1 is used in core 1 of a quad-core processor. Now 
assume that the same co-runners from the experiment in figure E-3 are run. This means that with 
one co-runner, the WCET will go to (at least) 50 ms, reaching 100% utilization (50

50
), and it will not 

fit in any of the partitions from Partitioned System 1. The only possibility is to run it in the three 
partitions using 100% of the processor. Clearly, with two and three co-runners, the WCET jumps 
to 80 ms and 120 ms with utilizations of 160% and 240%, respectively, which cannot fit in one 
core. 
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E.2.5.2  Enhanced Partitioning Techniques for Multicore Processors 

New partitioning techniques for multicore processors have been developed in the research 
community. These include techniques for cache partitioning [E-8, E-12, E-29, E-30, E-31], 
memory-bank partitioning [E-8, E-16, E-32, E-33], and the memory bus [E-22, E-31, E-34]. 
However, in this case, the interface must include new parameters. For example, when the cache is 
partitioned, a task is restricted to a smaller region of the cache. As a result, its WCET will increase 
because of the additional accesses to memory necessary to fetch the data that were not able to fit 
in the cache. The implication of this increase is that our interface would need to incorporate 
additional parameters that describe memory accesses, cache and memory partition sizes, and their 
interrelationships. 

An example of an enhanced timing interface is presented in [E-16], in which the number of 
memory accesses 𝐻𝐻𝑖𝑖 is included leading to the interface: (𝐶𝐶𝑖𝑖 ,𝑇𝑇𝑖𝑖,𝐷𝐷𝑖𝑖 ,𝐻𝐻𝑖𝑖). This interface is intended 
only to enable memory-bank partitioning. Another example that takes into account cache partitions 
is presented in [E-15], in which a timing interface is defined as: (𝑇𝑇𝑖𝑖, �𝐶𝐶𝑖𝑖1,𝐶𝐶𝑖𝑖2, … ,𝐶𝐶𝑖𝑖𝑘𝑘�,𝑀𝑀𝑖𝑖). In this 
case, each of the 𝐶𝐶𝑖𝑖

𝑗𝑗  specifies the execution time when 𝑗𝑗 cache partitions (i.e., colors) have been 
assigned to the task, and 𝑀𝑀𝑖𝑖 specifies memory-size requirement. Clearly, each 𝐶𝐶𝑖𝑖

𝑗𝑗  represents one 
parameter that combines two: the execution time and the amount of cache. 

So far, the timing interfaces have been discussed as an interface to a single task and not necessarily 
a collection of tasks as it happens when using virtual machines (VMs). Clearly, because the 
individual task interface is not portable, the combined interface (for a task set) is also not portable. 

E.2.6  SYNCHRONIZATION 

When tasks synchronize to implement critical sections and prevent race conditions, they delay 
each other. This delay creates three problems when tasks are scheduled under fixed-priority 
scheduling. First, a high-priority task may be delayed waiting for a mutex that is locked by a lower 
priority task, creating what is known as priority inversion. Second, the lower priority task may be 
preempted by medium-priority tasks multiple times, enlarging the delay (e.g., blocking) that the 
high-priority task suffers. This problem is known as unbounded priority inversion. Finally, this 
blocking may modify the schedulability equations necessary to verify that a task meets its deadline. 

Figure E-4 shows a Gantt chart with an unbounded priority inversion example. In this figure, the 
low-priority task arrives at time 0 and enters the critical section (black rectangle) at time 2, locking 
the mutex shared with the high-priority task (not shown). Then, the high-priority task preempts it 
at time 5 and executes until time 10 when it tries to lock the mutex. Because the mutex is locked, 
the high-priority task blocks waiting for the mutex to be released. At this time, the low-priority 
task resumes, but at time 15 is preempted by the medium-priority task. Then the medium-priority 
task runs up to time 32 when the low-priority task resumes inside its critical section, and it 
continues to execute until time 37 when it unlocks the mutex. At this time, the high-priority task 
is unblocked and resumes, locking the mutex, runs in the critical section up to time 40 and 
continues to run up to time 42. However, at time 40, its period, which is also its deadline, elapses, 
missing its deadline. 
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Figure E-4. Unbounded priority inversion 

In [E-35], Sha et al. presented techniques to prevent the unbounded delays and calculate the delays 
imposed by the priority inversion to consider this delay in the schedulability equations. In 
particular, two protocols known as the Basic Priority Inheritance (PI) Protocol and the Priority 
Ceiling Protocol (PCP) were presented in [E-35]. These protocols are specifically designed to 
address the priority inversion in real-time systems; therefore, they will be referred to as real-time 
synchronization protocols. With the PI protocol, when a high-priority task tries to lock a mutex 
that is being held by a lower priority task, the lower priority task inherits the priority of the high-
priority task. As a result, if a medium-priority task arrives, it will not be able to preempt the low-
priority task that now is running with the priority of the high-priority task. Avoiding the medium-
priority tasks preemptions limits the delay suffered by the high-priority task. With this protocol, it 
is possible to calculate the worst-case delay that a task may suffer when it locks a set of mutexes. 
In general terms, this calculation is the sum of the largest critical sections among all the lockers 
with lower priority for each of the mutexes14. 

Using PCP, the lower priority task that holds the mutex acquires the highest priority among the 
potential lockers as soon as a higher priority task tries to lock the mutex. This simplifies the 
calculation of the maximum delay as just the largest possible critical section among all the critical 
sections of the potential lockers with lower priority: 

 𝐵𝐵𝑖𝑖 = max(𝐶𝐶𝑆𝑆𝑗𝑗𝑘𝑘) 
∀𝑘𝑘∧𝑗𝑗∈𝑜𝑜𝑃𝑃𝑐𝑐𝑘𝑘𝑃𝑃𝑃𝑃𝑙𝑙

 (E-6) 

where 𝐶𝐶𝑆𝑆𝑗𝑗𝑘𝑘 is the WCET of the 𝑐𝑐 critical section of locker 𝑗𝑗 and 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑒𝑒𝑟𝑟𝑠𝑠 is the set of potential 
lockers. 

An additional property of PCP is that it prevents deadlocks given that, once one of the potential 
lockers locks the first mutex, no other locker can lock any other mutex because the first one cannot 
be preempted by any other locker because of the inherited priority. 

                                                 
14  See [E-37] for a method to calculate this term.  
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The effect of the priority inheritance approach (both PI and PCP) is shown in figure E-5. In this 
case, as soon as the high-priority task tries to lock the mutex at time 10, the low-priority task 
inherits the high-priority task priority. This prevents the medium-priority task from preventing the 
low-priority task when it arrives at time 15. As a result, the low-priority task is able to release the 
mutex at time 25, allowing the high-priority task to resume and finish at time 29. It is worth noting 
that, in this case, both PI and PCP produce the same execution scenario, but they can produce 
different scenarios in another situation. 

 

Figure E-5. Bounded priority inheritance with PI and PCP 

E.2.6.1  Synchronization in Multicore Processors 

In multicore processors, the synchronization problem has more dimensions to consider. The 
problems and current solutions will be discussed. 

The concept of remote blocking will first be discussed. Remote blocking happens when a task 
𝜏𝜏𝑜𝑜𝑃𝑃𝑡𝑡𝑖𝑖𝑛𝑛𝑡𝑡 tries to lock a mutex that is being held by another task 𝜏𝜏ℎ𝑃𝑃𝑜𝑜𝑃𝑃𝑖𝑖𝑛𝑛𝑡𝑡 in another core. In this case, 
using priority inheritance to prevent unbounded blocking does not always work because the task 
𝜏𝜏𝑏𝑏𝑜𝑜𝑃𝑃𝑐𝑐𝑘𝑘𝑖𝑖𝑛𝑛𝑡𝑡 (originally the medium-priority task) may have a higher priority than task 𝜏𝜏𝑜𝑜𝑃𝑃𝑡𝑡𝑖𝑖𝑛𝑛𝑡𝑡. This 
is shown in figure E-6. 
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Figure E-6. Ineffective priority inheritance in remote blocking 

To bound the remote blocking with priority inheritance, Rajkumar [E-36, E-37] introduced the 
Multiprocessor Priority Ceiling Protocol (MPCP) that uses the concept of global mutex. Global 
mutexes are assigned a priority ceiling from a special priority band for global priority inheritance 
that goes above all local priorities. This allows a task to obtain this global priority on locking the 
mutex and avoid being preempted by any task with local priorities that does not participate in 
global locking. Figure E-7 shows how the unbounded blocking in figure E-6 is solved. 

 

Figure E-7. Global priority inheritance under MPCP 

However, not all problems are solved. Two problems, or perhaps drawbacks, remain. First, MPCP 
can no longer prevent deadlocks. To see this, consider two tasks 𝜏𝜏1 and 𝜏𝜏2 running in two different 
cores that lock two mutexes 𝑚𝑚1and 𝑚𝑚2. In this case, 𝜏𝜏1 first locks mutex 𝑚𝑚1and obtains the global 
priority ceiling. However, because 𝜏𝜏2 is running in another core, it can continue to run. Now 𝜏𝜏2 
locks 𝑚𝑚2 and after that tries to lock 𝑚𝑚1. It then suspends itself waiting for 𝑚𝑚1 to be released. 
Meanwhile 𝜏𝜏1 continues to execute in the other core and then tries to lock 𝑚𝑚2, suspending itself 
waiting for 𝑚𝑚2 to be released. There is now a circular-wait characteristic of a deadlock. 
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Second, remote blocking can cause a processor to remain idle for some period. This can be seen 
in figure E-7 in core 1 between times 10 and 20 when 𝜏𝜏𝑜𝑜𝑃𝑃𝑡𝑡𝑖𝑖𝑛𝑛𝑡𝑡 waits for 𝜏𝜏ℎ𝑃𝑃𝑜𝑜𝑃𝑃𝑖𝑖𝑛𝑛𝑡𝑡 to release the lock, 
but because there is nothing else to run, the processor remains idle. This was explored in [E-38] in 
which new task-to-core assignment algorithms based on bin-packing were developed to reduce 
this idle time (utilization loss). The experiments in the paper showed a reduction of up to 50% in 
the wasted utilization. 

The calculation of the blocking term also changes. In particular, it has to take into account the self-
suspension behavior that remote blocking induces. See [E-37, E-38] for a further discussion on the 
topic. 

With respect to synchronization, this analysis shows a lack of portability from a single-core to a 
multicore processor. 

E.2.6.2  Synchronization Among Partitions 

Ideally, synchronization between partitions should not be allowed. However, on occasion, it cannot 
be fully avoided. In some cases, two tasks do not need to achieve mutual exclusion but only need 
to share data in a manner that does not cause corruption. For such situations, lock-free data sharing 
can be used; see, for example, [E-39]. However, in other cases, it is important for a task to hold a 
resource under mutual exclusion. This is the case, for instance, when two video players are trying 
to use the screen or a screen manager like the X server in a Unix-based system. In this case, it 
would be possible to assign a different partition (or reservation) to each of the players to prevent 
them from interfering with each other. However, they would either need to lock the shared screen 
every time they would use it or request another task (e.g., the X server) to perform an action 
(modify a part of the screen) on the shared resource on their behalf. For resource reservations, one 
would think that it would be possible to use priority inheritance because they use rate-monotonic 
scheduling. However, this will create another problem because of the use of enforcement. 
Specifically, if a task 𝜏𝜏ℎ𝑃𝑃𝑜𝑜𝑃𝑃𝑖𝑖𝑛𝑛𝑡𝑡 that is holding the mutex is enforced while it is running in its critical 
section and while another task 𝜏𝜏𝑜𝑜𝑃𝑃𝑡𝑡𝑖𝑖𝑛𝑛𝑡𝑡 is trying to lock the mutex, the 𝜏𝜏𝑜𝑜𝑃𝑃𝑡𝑡𝑖𝑖𝑛𝑛𝑡𝑡’s blocking time will 
be enlarged because of the enforcement. Figure E-8 shows an enforcement at time 15. 

 

Figure E-8. Additional blocking due to reservation enforcement 

To solve this issue, de Niz et al. [E-40] developed the basic reserve inheritance and the reserve-
ceiling protocols that allow a task locking a mutex to inherit a reserve to prevent it from being 
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enforced because of the exhaustion of its own reserve. More specifically, in the reserve-ceiling 
protocol, a reserve ceiling is assigned to the shared resource to be used only when such a resource 
is used (e.g., the X server in the example). Unfortunately, the budget of the single ceiling reserve 
that supports multiple lockers requires the budget of such a reserve to be the sum of all the critical 
sections using the shared resource in addition to the original reserve for each locker in which the 
critical sections were already accounted. Clearly, this leads to very pessimistic (low) utilization. 
To remove this pessimism, de Niz et al. developed the multi-reserve ceiling protocol that creates 
one reserve per locker, but the budget of the ceiling reserve is considered part of the original 
locker’s reserve budget. 

Once a resource is shared across partitions, the isolation property is lost. Instead, when a task 
overruns its budget, it is possible to contain the consequences of this overrun only to the group of 
tasks with which it shares resources. 

It is clear that the assurance data coming from the analysis of synchronization protocols in single-
core processors is not portable to multicore processors. This is the case not only for timing 
calculations but also for logical properties such as deadlock prevention that some synchronization 
protocols are able to offer (e.g., PCP) in single-core but cannot offer in multicore. 

E.3.  FUNCTIONAL CORRECTNESS 

Porting assurance data for functional correctness is also nontrivial when software is migrated from 
single-core to multicore platforms. In this section, the main challenges that must be addressed 
during such a porting process are discussed. By functional correctness, it is meant that all software 
procedures eventually complete execution and produce the correct result. Therefore, violations of 
functional correctness typically take one of two forms—either some procedure fails to terminate, 
or it terminates but produces an incorrect result. Note that the focus is on procedures, because each 
individual procedure is still expected to terminate even though the overall software may not. For 
example, in the context of real-time software, although the overall task may not terminate, each 
periodic job must do so. 

E.3.1  VIOLATION OF FUNCTIONAL CORRECTNESS IN SEQUENTIAL SETTING 

Generally, violations of functional correctness can have different underlying reasons. For example, 
consider a procedure 𝑃𝑃 that is purely sequential. In other words, 𝑃𝑃 executes in a single thread that 
does not interact with any other thread. In such a situation, failure to terminate could be due to an 
infinite loop. Similarly, an incorrect result could be due to a logical error. Figure E-9 shows a C 
procedure (with a bug) that is supposed to compute the factorial of its argument, but has both kinds 
of problems: 

 

Figure E-9. Example program that violates functional correctness 

int factorial (int n) { 
 if (n == 0) return 1; 
 else return n * factorial(n-2); 
} 
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Specifically, a call to factorial (3) will never terminate, and a call to factorial (4) will return an 
incorrect result of 8 instead of the correct result of 24. However, these types of bugs are typically 
not introduced by the migration to multicore because the semantics of a sequential procedure do 
not depend on the number of cores of the execution platform. 

E.3.2  VIOLATION OF FUNCTIONAL CORRECTNESS IN CONCURRENT SETTING 

The focus in this report, however, is on safety-critical avionics software. Such software is typically 
concurrent, and therefore its semantics do depend on the number of cores. In particular, this 
difference in semantics can lead to the two types of violations of functional correctness mentioned 
previously. In the rest of this section, without loss of generality, attention will be restricted to 
multi-thread software in which threads communicate via shared variables and synchronize via 
mutexes. However, results will apply to general concurrent software with other units of 
concurrency (e.g., processes), communication (e.g., message passing), and synchronization (e.g., 
monitors and semaphores). Specifically, functional correctness violations can occur in the 
following ways: 

• Deadlocks can cause procedures not to terminate. Broadly speaking, a deadlock occurs 
when one or more threads are blocked when trying to acquire a mutex. This can happen, 
for example, when two threads acquire different locks and then try to acquire the lock that 
is already held by the other. Consider the code fragment shown in figure E-10, in which 
one thread executes procedure p1() and another thread executes procedure p2(). Here, the 
functions lock(m) and unlock(m) are used to acquire and release mutex m, respectively. 

 

Figure E-10. Example program with deadlock 

There is an execution in which both threads succeed on their first lock statement, but then 
deadlock on their second lock statement. 

• Livelocks can also cause procedures not to terminate. A livelock happens when one or more 
threads constantly change their state (i.e., they are not blocked), but do not make any 
progress. For example, consider the code fragment shown in figure E-11, in which one 
thread executes procedure p1() and another thread executes procedure p2(). Here, function 
trylock(m) attempts to acquire mutex m. On success, it returns 1. Otherwise, it returns 0. 

void p2() { 
 lock(mutex2); 
 lock(mutex1); 
} 

void p1() { 
 lock(mutex1); 
 lock(mutex2); 
} 
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Figure E-11. Example program with livelock 

There is an execution in which both threads livelock, continuously succeeding to acquire 
their first lock, but failing on their second lock. 

• Race conditions can cause procedures to compute incorrect results. In some sense, race 
conditions are the dual of deadlocks and livelocks. Whereas deadlocks and livelocks are 
caused by too much synchronization, race conditions are caused by inadequate 
synchronization, leading to unforeseen executions. For example, consider the code 
fragment shown in figure E-12, in which one thread executes procedure p1() and another 
thread executes procedure p2(). Both threads access a global variable g, which is initialized 
to 0. 

 

Figure E-12. Example program with race condition 

It is natural to expect that after the two procedures have terminated, the final value of g must be 2. 
This is true if there was adequate synchronization to ensure that each procedure executes 
atomically. However, note that each procedure performs a read and a write, and there is no 
synchronization. Therefore, the following execution leads to a final value of g being 1. First, both 
threads read the initial value 0 of g into some local variable. Next, each thread increments this 
local variable to obtain 1. Finally, the new value 1 of the local variable is written back to g. 

There is a wide body of literature on deadlocks, livelocks, and race conditions, their underlying 
causes, and various automated techniques [E-41, E-42, E-43] to detect them in concurrent 
software. Such techniques involve both static and dynamic verification, heuristics (such as partial-
order reduction [E-44]), compositional verification (such as assume-guarantee reasoning [E-45]), 
and abstraction. Many of these techniques have been implemented in tools and applied on 
industrial systems. Before the emergence of multicore processors, these tools and techniques did 
a good job of detecting and helping to eliminate many serious functional flaws in programs, 
including avionics software. From a certification standpoint, as long as only single-core CPUs are 
used for execution, the evidence of the application of at least some of these tools to check 
functional correctness of a piece of code could be used to argue that the code in question is 
acceptably bug-free. 

void p2() { 
 for(;;) { 
 lock(mutex2); 
 if(trylock(mutex1)) break; 
 unlock(mutex2); 
 } 
} 

void p1() { 
 for(;;) { 
 lock(mutex1); 
 if(trylock(mutex2)) break; 
 unlock(mutex1); 
 } 
} 

void p2() { 
 g = g + 1; 
} 

void p1() { 
 g = g + 1; 
} 
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E.3.3  VIOLATIONS OF FUNCTIONAL CORRECTNESS IN MULTICORE PLATFORMS 

However, multicore processors reduce the effectiveness of these tools in critical ways. Even if a 
piece of code was found to be completely correct (e.g., free of deadlocks, livelocks, and race 
conditions) by existing verification tools, that code can still demonstrate functionally incorrect 
behavior when executed on a multicore platform. The main culprit is that the vast majority of 
functional-verification tools were developed under an assumption of software memory access 
semantics (known as sequential consistency) that work for single-core CPUs but do not hold for 
multicore CPUs. Therefore, verification tools that assume sequential consistency are unsound with 
respect to multicore platforms. In the rest of this section, this issue is discussed in more detail. 

E.3.3.1  Sequential Consistency 

Every computing platform has to implement some memory consistency [E-46] semantics to 
reconcile between the memory operations performed by various threads. In single-core platforms, 
and even on shared-memory multi-processor platforms, the de facto standard is known as 
sequential consistency [E-47] (SC). These semantics were defined originally by Lamport as 
follows: 

Definition: [A multiprocessor system is sequentially consistent if] the result of any execution is 
the same as if the operations of all the processors were executed in some sequential order, and the 
operations of each individual processor appear in this sequence in the order specified by its 
program. 

Consider the example program shown in figure E-13, in which one thread executes procedure p1() 
and another thread executes procedure p2(). The two threads execute on different cores. Both 
threads access global variables x and y, which are initialized to 0. In addition, p1() writes to variable 
r1 and p2() writes to variable r2. Both r1 and r2 are also initialized to 0. This example is taken 
from a presentation on “Multicore Semantics and Programming” [E-48], and its correct behavior 
is at the heart of mutual-exclusion algorithms (e.g., Dekker’s). 

 

Figure E-13. Example program to demonstrate sequential consistency 

Under sequential consistency, the final values of r1 and r2 cannot both be 0 after the two threads 
terminate. For brevity, statements in the example are referred to by their labels L1, …, L4. Li → 
Lj is written to mean that the statement at label Li executed before the statement at label Lj. For 
example, by SC, L1 → L2 and L3 → L4 is known. Note that the relation → is transitive (i.e., if Li 
→ Lj and Lj → Lk then it is known that Li → Lk). 

Claim 1: After procedures p1() and p2() terminate, the final values of variables r1 and r2 cannot 
both be 0 if the memory accesses are sequentially consistent. 

void p2() { 
 L3: y = 1; 
 L4: r2 = x; 
} 

void p1() { 
 L1: x = 1; 
 L2: r1 = y; 
} 
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Proof: By contradiction. Suppose that the values of r1 and r2 are both 0. Because r1 is 0, it is 
known that L2 → L3. Therefore, by SC and transitivity of →, it is known that L1 → L3. Similarly, 
because r2 is 0, it is known that L4 → L1. Again, by SC and transitivity of →, it is known that L3 
→ L1. However, it is impossible to have any sequentially ordered execution in which both L1 → 
L3 and L3 → L1 are true.  

Unfortunately, modern multicore processors do not enforce sequential consistency. If the above 
example is implemented (e.g., using C++) and executed on a multicore machine, rare but regular 
violations of claim 1 would be observed. This is problematic for two reasons. First, because SC is 
at the heart of many critical algorithms (such as Dekker’s mutual exclusion), violation of SC can 
lead to serious faults. Second, because the violations of SC are rare, such faults may not show up, 
even after a considerable amount of testing. They must be detected by more rigorous methods that 
provide better coverage. Unfortunately, many such rigorous verification tools assume sequential 
consistency semantics and, therefore, their results cannot be ported in a direct way from single-
core to multicore platforms. 

Sequential consistency is not enforced primarily because of performance considerations. Modern 
multicore platforms have complex memory systems, involving multiple levels of caches and 
memory banks. Enforcing sequential consistency would require some ultimate memory arbiter that 
would determine the order in which reads and writes occur. Such an arbiter would be a severe 
performance bottleneck. Modern multicore processors therefore implement consistency semantics 
that are more relaxed than SC. These semantics result from the fact that each core maintains its 
own write buffer to prevent blocking on write operations and also reorders reads and writes (to 
different memory locations) to improve performance. In the rest of this section, three such 
semantics are considered—Total Store Order (TSO), Processor Consistency (PC), and Partial Store 
Order (PSO). 

E.3.4  RELAXED MEMORY CONSISTENCY MODELS 

As mentioned before, relaxed memory-consistency models result from write buffers and 
reorderings of reads and writes that violate sequential consistency. Therefore, it is useful to 
consider various orderings of read and write operations on a thread15. Because there are two basic 
operations—read and write—there are four possible orderings: 

• W→R: write must complete before subsequent read 
• R→R: read must complete before subsequent read 
• R→W: read must complete before subsequent write 
• W→W: write must complete before subsequent write 

Sequential consistency requires that all four orderings must be enforced in each thread. TSO and 
PC both allow the first ordering (W→R) to be violated. This means that a read R can happen before 
a write W even if R occurs after W in the program. Recall again the program from figure E-13. 
Under both TSO and PC, the following orders are allowed: L2→L1 (because the read of y can be 
moved before the write to x) and L4→L3 (because the read of x can be moved before the write  

                                                 
15  The material in this section is influenced by a set of online lecture notes on “Relaxed Memory Consistency,” available at 

http://www.cs.cmu.edu/afs/cs/academic/class/15418-s12/www/lectures/14_relaxedReview.pdf  



 

E-25 

to y). Consequently, as was observed in practice, the values of r1 and r2 can both be 0 after the 
two procedures terminate. 

The key difference between TSO and PC is how writes by one core are visible to other cores. TSO 
requires that, at any point in time, each write by a core is either visible to all other cores or to none. 
In other words, it is not possible for a write by core C1 to be visible to core C2 but not to core C3 
under TSO. In contrast, this type of different visibility of writes by different cores is allowed by 
PC. Consider the program fragment shown in figure E-14, in which procedures p1(), p2(), and p3() 
are executed by different threads on different cores. Global variables x, y, and r are initialized to 
0. 

 

Figure E-14. Example showing difference between TSO and PC 

Under TSO, the final value of r must be 1. This is because p3() can read x only after it breaks out 
of the while loop. However, this means that the value of y has been set to 1 by p2(), which implies 
that p2() observed the value 1 written to x by p1(). Under TSO, therefore, p3() must also now 
observe this new value 1 of x. However, under PC, it is possible for the write to x by p1() to be 
observed by p2() but not by p3(). Therefore, the final value of r under PC can be 0. 

The PSO semantics differ from both TSO and PC in that they also allow the W→W ordering to be 
violated, in addition to W→R. Consider the program fragment shown in figure E-15, in which 
procedures p1() and p2() are executed by different threads on different cores. Global variables x 
and y are initialized to 0. 

 

Figure E-15. Example showing the difference between TSO, PC, and PSO 

Under both TSO and PC, the final value of r must be 1: 

1. Because W→W, there is L1→L2. 
2. Because L3 observes L2, there is L2→L3. 
3. Because R→W, there is L3→L4. 
4. By transitivity of →, there is L1→L4, which means the final value of r must be 1. 

However, under PSO, it is also possible for the final value of r to be 0. Essentially, because PSO 
does not guarantee W→W, there is no longer L1→L2. Specifically, consider the following 
execution: 

void p2() { 
 while (x == 0); 
 y = 1; 
} 

void p1() { 
 x = 1; 
} 

void p3() { 
 while (y == 0); 
 r = x; 
} 

void p2() { 
 L3: while (y == 0); 
 L4: r = x; 
} 

void p1() { 
 L1: x = 1; 
 L2: y = 1; 
} 
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 L2→L3→L4→L1  (E-7) 

This execution is possible under PSO and results in a final value of r being 0. In summary, this 
shows that relaxed memory-consistency models are subtly different from sequential consistency. 
Therefore, assurance data for functional correctness generated by the majority of existing 
functional verification tools (such as static analyzers and software model checkers) are not directly 
portable to multicore platforms because these tools are based on the assumption of sequential 
consistency. 

E.3.5  PRIORITY-BASED LOCKING FAILURES 

The issues related to multicore memory-consistency semantics discussed so far are relevant to both 
real-time and non-real-time software. There is, however, another issue that affects real-time 
software specifically: the failure of priority-based locking protocols on multicore CPUs. In 
particular, the focus is on real-time software consisting of multiple threads scheduled based on 
their priorities. This is a common paradigm used in avionics software (e.g., fixed-priority 
scheduling with rate-monotonic priority assignment). In such software, a lock is often acquired by 
changing thread priorities at runtime. For example, a thread can be given a lock by raising its 
priority to be higher than all other threads. The lock can be released by reverting the thread back 
to its normal priority. There are many variants of this idea, including priority ceiling and priority 
inheritance [E-35] protocols. However, all such schemes were designed originally under the 
assumption of a single CPU capable of executing only one thread at a time, as was discussed in 
section 2.6. These schemes do not work when multiple cores are available. For example, raising a 
thread’s priority to be higher than all other threads does not give it exclusive access to a shared 
resource because another thread can always execute in parallel on a different core and access the 
resource simultaneously. There has been considerable work on synchronization mechanisms for 
multiprocessor systems [E-49], and many such mechanisms may be applicable for multicore 
platforms. However, the assurance data for logical correctness must be examined carefully to 
ensure that the synchronization mechanisms used by the avionics software are appropriate for the 
target platform to which the software is being ported. 

E.4  SUMMARY AND RECOMMENDATIONS 

This increasing interest in using multicore processors in avionics raises the question of how to 
certify aircraft whose avionics include multicore processors. This report discusses this question, 
particularly what can go wrong when porting software that was originally developed for a single-
core processor and now executes on a multicore processor. Moreover, as seen in section 2.5, the 
isolation techniques used to allow independent certification of different partitions do not work 
immediately when moving these techniques from single-core to multicore processors. Obviously, 
this includes virtualization technologies for both general-purpose computing and real-time 
computing. New techniques have appeared in the academic community to create new forms of 
partitioning. However, the number of partitions that is possible to create and the utilization that is 
possible to achieve are still limited and cannot scale to large avionics systems (e.g., with 200-plus 
tasks). 

From the logical point of view, the goal so far in this section has been to demonstrate that memory-
consistency semantics on multicore processors are quite complicated and differ substantially from 
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sequential consistency, which is the de facto standard for single-core processors. These differences 
can lead to violations of functional correctness when a program is executed on a multicore 
platform, even when the program behaves correctly on single-core CPUs. Moreover, the majority 
of current formal verification tools assume sequential consistency, and are therefore unsound for 
multicore platforms. One issue in developing formal verification tools for multicore processors is 
that the actual memory-consistency semantics implemented by hardware vendors for multicore 
processors is not rigorously documented. There have been some recent efforts to remedy this 
situation by the academic community. For example, TSO-like semantics for x86 processors [E-50] 
have been proposed by Owens et al. and incorporated into the CompCert compiler [E-51]. 
However, there has been limited acceptance of these semantics by hardware vendors and 
verification-tool developers. Nevertheless, the bottom line for certification authorities remains that 
the memory-consistency semantics of the target hardware platform, and how it matches the 
memory consistency assumed by applied verification tools, must be carefully considered while 
porting certification data for functional correctness of avionics software from single-core to 
multicore platforms. 

It has been seen that from both the perspective of timing and logical correctness, there are 
significant risks when migrating software to multicore processors. More research is needed in the 
following areas: 

• Timing-analysis methods that deal with undocumented hardware 
• How to properly configure methods that reduce the execution-time variation caused by 

hardware 
• How to develop scalable partitioning techniques and configuration methods for multicore 

processors 
• How to achieve mutual exclusion among tasks in the context of a real-time scheduler 
• New logical-verification methods that target the pitfalls of the multicore memory-

consistency models 
• New synchronization algorithms for the new memory-consistency models 

For the certification engineer, these recommendation can be further elaborated as: 

• When considering the timing portability arguments, it is important to verify the proper 
documentation is provided. In particular, different arguments may need different levels of 
detail. However, all arguments must include some level of inter-core interference, in which 
the timing behavior of a task in one core is evaluated when other tasks with different a type 
of code is running in other cores. 

• For timing portability arguments for software that uses mutual exclusions, the proper 
argument that explicitly mentions the mechanisms and the proper verification techniques 
must be presented.  

• For logical correctness portability arguments, it is important to consider the consistency 
model implemented by the multicore processor and whether this model matches the 
presented arguments.  
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APPENDIX F—IDENTIFICATION OF ASSURANCE ISSUES ON EMULATION OF 
CERTIFIED HARDWARE 

F.1  TECHNOLOGY FOR HARDWARE EMULATION 

Hardware emulation, often referred to as “emulation” in this report, is a widely prevalent technique 
for combating the problem of hardware obsolescence. The hardware industry innovates at a rapid 
pace to meet the growing and morphing computational needs of society. Therefore, old hardware 
standards, instruction sets, and design principles are quickly supplanted by newer ones. In many 
cases, necessitated by the need to balance considerations of cost, efficiency, and time to market, 
the newer hardware is not even backward compatible with its older counterparts. Further, once the 
newer hardware grabs a sufficiently large market share, it is no longer cost effective to even 
manufacture the older hardware because of the loss of the economy of scale. Consequently, 
software vendors repeatedly face the following dilemma: should they update their software to be 
compatible with the newer hardware, or should they develop the software from scratch? In the 
non-safety-critical software world, a vendor typically makes this decision after considering a host 
of technical and economic factors. 

In the safety-critical avionics domain, however, it is often cost prohibitive to change the software, 
because that triggers an expensive recertification process. This makes hardware emulators a 
particularly attractive option. In essence, a hardware emulator imitates the “complete hardware 
and software” stack of a “target/guest” system on top of a “host” hardware and software stack. 
This means that software for obsolete hardware can be run seamlessly on the latest hardware 
without any changes. 

Note that emulation and virtualization are related, but subtly different. In virtualization, the guest 
operating system (OS) is often targeted at the same hardware as the host OS. The main motivation 
for virtualization is to allow multiple guests to share the same hardware, even if each guest could 
have executed directly on the hardware. The main concern in virtualization from a safety 
perspective is to ensure proper “logical and timing isolation” between guests. In contrast, the main 
motivation for emulation is to allow software for one hardware platform to execute on different 
hardware, on which it could not execute directly. The main concern in emulation from a safety 
perspective is to ensure “logical and timing equivalence” between the behaviors of the emulator 
and old hardware. This is particularly important when the hardware has been certified for specific 
avionics software. In the rest of this section, emulation will be presented in more detail and 
assurance issues involved in the use of emulators for certified software will be discussed. 

F.1.1  THREADED CODE 

Emulators are often implemented with threaded code [F-1], a concept from the 1970s that is still 
useful. For this reason, a short discussion on this topic is warranted. In normal programs executing 
on a normal processor, the processor has an instruction set and a program counter, and the program 
executes instructions from that instruction set. This offers the advantage that each instruction can 
execute quickly because it is interpreted directly by the processor. Unfortunately, a drawback is 
that the program requires lots of memory. It can be said that its code density is low. An alternative 
approach is to write the program with instructions that are not necessarily the ones that the 
processor can execute. For each instruction, there is a subroutine that executes this instruction and 
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this subroutine is implemented with instructions from the processor. For example, a single byte 
with the hexadecimal number 3F might mean “pop two words from the stack and then add them 
and store the result on the stack.” If this operation occurs frequently in the program, this approach 
(of writing the executable code with an instruction set that differs from the processor it executes 
on) can offer significant space savings. 

This alternative approach, in which a program may have instructions that differ from those of the 
process and the program also contains an interpreter of the instructions, is known as threaded code 
[F-1]. The article [F-1] reports results on a PDP-11 and points out that threaded code is slower 
than inline code but is faster than function calls (PDP-11 has an instruction that is well suited for 
threaded code). The article [F-1] also points out that one can write a program in which some parts 
use threaded code and other parts do not. 

Threaded code is used in Java virtual machines (VMs), and it is also used in an early version of 
SimICS16 [F-2]. There are many different ways of implementing threaded code. Some methods 
implement the program as a set of subroutine calls in which each subroutine ends with a return 
instruction. Another method stores the program as a sequence of pointers to subroutines so that the 
interpreter calls these subroutine in that order. Typically, there is a variable that keeps track of a 
virtual program counter. 

The concepts of hardware emulation and one of the key implementation examples (threaded code) 
will be referred to in the rest of this section. 

F.2  LOGICAL EQUIVALENCE/DIFFERENCES EMULATION VS REAL-HARDWARE 

The main concern from a safety perspective when using an emulator is to ensure that it has the 
same logical and timing behavior as the target hardware. In this section, the assurance issues 
involved in ensuring logical equivalence are discussed. Logical equivalence is important to ensure 
that the target software reaches the same execution states on the emulator as on the original 
hardware. This is critical to ensure that safety properties, such as absence of deadlocks, race 
conditions, and other application-specific invariants, continue to be preserved on the emulator. 

When the guest hardware is single-core, the emulator must imitate detailed behavior of each 
instruction in the instruction set architecture of the guest. This is often complicated by the fact that 
instructions have esoteric side effects. In many cases, the side effects should probably be classified 
as hardware bugs. However, the target software could have been functioning properly despite these 
side effects. Even worse, in many cases, the software could have been relying on the bugs 
inadvertently. Therefore, it is important to identify these side effects and reproduce them 
accurately as part of the emulator. This process is complicated by the fact that such side effects, 
especially bugs, are often undocumented and must be discovered by a painstaking trial-and-error 
process. In addition, the emulator must also imitate the behavior of peripheral devices and the 
software stack that were present on the old system. 

                                                 
16  SimICS is a full-systems simulator originally intended to simulate server processors, but it now also targets avionics systems. 

See, for example, https://www.windriver.com/markets/aerospace-defense/face.html. 
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In the case in which the old system was multicore or multi-processor, the assurance issue is further 
exacerbated by the need to implement appropriate memory-consistency semantics. Memory 
consistency can be a complicated issue on multicore and multi-processor systems. In theory, there 
are several choices to select. However, in practice, the actual memory consistency implemented 
by specific hardware is often undocumented and can be recovered only by tedious reverse-
engineering. 

In both the single-core and multicore cases, it is equally important that the emulator imitate each 
instruction within an appropriate amount of time that is commensurate to the amount of time 
required to execute that instruction on the original hardware. This is referred to as temporal 
equivalence, and it is discussed next. 

F.3  TEMPORAL EQUIVALENCE/DIFFERENCES EMULATION VERSUS REAL-
HARDWARE 

Consider an old hardware platform and a software system to be used on a new hardware platform 
to emulate the old platform. Unless certain precautions are taken, it may happen that the timing of 
the execution of the software on the new platform is different from what it was when executing on 
the old platform. There is typically not an interest in having exactly the same timing; instead, there 
is an interest in having exactly the same timing between I/O events. The paper [F-3] provides 
important results for this situation and is therefore discussed in this section. 

The paper [F-3] considers a software system that executes on a source platform. The goal is to run 
this program on a target platform so that the timing is the same. The software system is described 
with a control flow graph. An example of such a graph is shown in figure F-1. 

 

Figure F-1. An example of a control flow graph (no cycle) 

A node in a control flow graph represents a basic block. A basic block is a piece of code in the 
program that has a single entry point and a single exit point. The edges in a control flow graph 
represent control flow. For example, consider the leftmost node in figure F-1. There is an edge to 
the second-leftmost node. This means that when the basic block of the leftmost node in the graph 
has finished, the program executes the basic block of the second-leftmost node. Note that to the 
right, there are two nodes. There are edges to these two nodes. This means that if the basic block 
of the second-leftmost node finishes, the program has two possibilities for the next basic block to 
execute. Therefore, a trace of execution of a program can be thought of as a path in the control 
graph. 
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Some of the nodes are basic blocks that perform no I/O. Other nodes are basic blocks that perform 
I/O. This report is interested in making sure that for a path from one node that performs I/O to 
another node that performs I/O, the execution time on the new hardware platform is the same as 
the execution on the old hardware platform. For this reason, in figure F-1, the nodes without I/O 
are lightly shaded, and the nodes with I/O are darkly shaded. 

In the example in figure F-1, the graph is directed but it has no cycles. In general, a control flow 
graph can have cycles. Figure F-2 shows an example of that. 

 

Figure F-2. Another example of a control flow graph (with a cycle) 

Note that a control flow graph with cycles has an infinite number of paths. Therefore, making sure 
that, for the given software system, the new platform has the same timing as on the old platform 
is challenging. The reason it is challenging is that the property must be ensured for an infinite 
number of paths. 

The paper [F-3] annotates each node in the control flow graph with two numbers: 1) execution 
time of the basic block in the old platform and 2) execution time of the basic block in the new 
platform. Figure F-3 shows an example of this. 
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Figure F-3. Another example of a control flow graph in which each node is described with 
the execution time of the old platform and the execution time of a new platform 

In figure F-3, the first number in a node is the execution time of the basic block corresponding to 
the node for the old platform. The second number is for the new platform. It can be seen in this 
figure that the leftmost node executes faster on the old platform than on the new platform. 
Therefore, if the program would execute only the leftmost node and if the leftmost node were an 
I/O node, the new platform would have incorrect timing. Fortunately, the leftmost node is not an 
I/O node. This report is interested in proving that for each path from source to destination, timing 
is correct for each pair of nodes that perform I/O. 

The paper [F-3] defines three timing properties related to correctness. It introduces a path as 
complete if the source in the path is the same as the entry point in the control flow graph and the 
destination of the path is the same as an exit point of the control flow graph. For a given complete 
path, cp, the paper defines ∆(cp) as the maximum difference between the timing of the old and 
new platform between each pair of I/O nodes. The paper defines a complete path in the execution 
on the new platform as timing equivalent with respect to the execution on the old platform if  
∆(cp) = 0. A complete path cp is executable with timing equivalence if there exist synchronization 
methods that guarantee the timing equivalence of cp. 

The paper introduces another slightly weaker notion, timing invariance, meaning that the new 
platform is slower by a certain bound; specifically, timing invariance is achieved if there is a 
constant C such that ∆(cp) ≤ C. If no such number exists, then it is divergent. 

One of the main results in the paper [F-3] is that a set of subpaths can be identified between I/O 
nodes such that the subpath has no cycle, and then it is needed only to ensure that the timing 
between the I/O nodes for the target platform is faster than for the source platform. This result is 
important because it allows consideration of control flow graphs with an infinite number of paths 
yet to be analyzed. 

F.4  DISCUSSION AND RECOMMENDATIONS 

Hardware emulation introduces two important problems to certification—timing and logical 
equivalence. From the logical equivalence point of view, one of the key challenges is to identify 
and account for the side effects of an implementation of the native hardware that software can 
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actually rely on. The issue here is that hardware emulation may not reproduce the native hardware 
faithfully given that such side effects may not be part of the documented behavior of the hardware. 

From the timing perspective, the main challenge is to ensure timing equivalence between inputs 
and outputs because the timing effects are visible only to the external world at the input and output 
points. This is especially important for real-time systems such as avionics systems that are sensitive 
to when the software senses the environment (input) and produces the actuation (output) to keep 
the aircraft under control. 

Clearly, hardware emulation is a significant challenge for the certification of avionics systems. In 
general, there are no definitive solutions for all the issues that may be faced when using emulation, 
but in this section two key perspectives about how to frame the problem were presented. 

For the certification engineer, these recommendations can be further elaborated as: 

1. The arguments for timing equivalence can be presented as an input-to-output argument as 
soon as the equivalence is presented in a way that include all the paths. 

2. Arguments for logical portability must include native hardware side effects used by the 
software. 
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APPENDIX G—FUTURE WORK AND RECOMMENDATIONS 

The gaps identified in this project are first described; recommendations are then provided to cover 
these gaps. 

G.1  CURRENT GAPS 

G.1.1  TEMPORAL VIRTUALIZATION 

Current temporal-virtualization technologies do not fully cover the application requirements from 
aircraft manufacturers or certification needs from the FAA. Three aspects are worth discussing: 
development, application requirements, and the verification of temporal-virtualization 
implementations. 

G.1.1.1  Development 

The most popular virtualization products in the market are designed for general-purpose 
computing and do not offer strict timing guarantees. This type of virtualization will not be 
discussed in this section. However, the real-time operating systems that offer real-time guarantees 
provide virtualization schemes with a number of drawbacks that complicate development and 
hinder maintenance and certification and proper isolation in multicore processors. These issues 
will be discussed next. 

There are a number of aspects of development that current real-time virtualization (RTV) 
approaches do not support properly. First, commercial RTV is based on the ARINC 653 temporal-
partitioning standard. This standard, although it can provide strong isolation properties, requires 
the calculation of time slots that satisfy all the timing requirements of the different applications. 
Unfortunately, calculating such partitions requires techniques of high computational complexity, 
such as mixed-integer linear programming or satisfiability modulo theory (SMT). Therefore, this 
complicates development scenarios in which different teams define the timing parameters of their 
modules independently from other teams. Such development scenarios are becoming increasingly 
common with increasing application complexity. There are other products based on rate-
monotonic scheduling (RMS), which favors modularity. Such products are, unfortunately, not 
mature enough. This is perhaps in part due to the lack of a standard that supports the 
commercialization of products based on RMS. 

Second, maintenance can be hindered by the lack of modularity of current RTV. Specifically, 
changes in one module may require changes in timing parameters (e.g., execution time, periods, 
deadlines) that may require changes in the time slots of the module. In this case, the new 
requirements for the time slots in one module may then trigger the need to change the time slots 
in other modules, which can potentially require recertification of the other modules. 

Third, as already mentioned before, when changes in one module require changes in another, the 
modularity of the recertification may be affected. If that is the case, the affected modules may need 
to be recertified. 

Finally, multicore processors present new challenges to virtualization. In particular, the hardware 
resources shared across cores, such as cache and memory banks, can create significant delays in a 



 

G-2 

task running in one core because of the access to these resources by another task in another core. 
Today, a large amount of RTV has been ported to multicore processors, but it is not clear that all 
these potential delays had been properly validated. 

G.1.1.2  Application Requirements 

With respect to application requirements, it is worth noting that avionics applications are 
distributed in nature. Specifically, an application may need to gather sensing data from one 
computer node, merge the data and perform some computation in another node, and perform 
actuation or display information in yet another node. As a result, the timing behavior needs to 
match these end-to-end requirements, and the virtualization needs to support this distributed 
nature. Unfortunately, current RTV techniques are mostly focused on a single node and do not 
take into account distributed applications. In practice, virtualization (or partitioning) support for 
these applications is provided as a collection of node-bound partitions. Unfortunately, this 
collection can create more modularity problems in which the modification of an application can 
impact multiple applications in multiple nodes. Some temporal verification technologies for 
distributed algorithms have been explored in the past, such as the real-time pipeline model [G-1]. 
More recently, such a model was used to create mixed-criticality temporal isolation mechanisms 
and the corresponding analysis in [G-2]. However, much more needs to be investigated to match 
distributed applications, which are more complex than pipelines. 

G.1.1.3  Verification of Temporal-Virtualization Implementations 

As formal verification evolves and becomes easier to apply to real applications, the FAA has been 
allowing its use for certification purposes. However, one of the challenges in this area is the formal 
verification of the temporal properties of the temporal-virtualization implementations. In general, 
this is a hard problem, and new models of time that can be verified are needed. The work to verify 
the temporal properties of ZSRM [G-3] is a start. However, the demonstration of this work is 
limited to the assumptions made about the underlying Linux kernel. More research is needed to 
understand how to verify such assumptions or verify other implementations. 

G.1.2  SPATIAL VIRTUALIZATION 

Spatial virtualization has been, in general, more stable and more generic than temporal 
virtualization. In particular, spatial virtualization from general-purpose virtualization technology 
can be used for real-time systems. However, when formal proofs on spatial partitioning are needed, 
traditional spatial-virtualization implementations have proven to be too complex. This complexity 
prevents the application of logical verification techniques in a practical manner. As a result, a new 
approach to minimizing the size of a hypervisor to enable full verification of its implementation is 
taking place. Two examples of this approach are the XMHF micro-hypervisor [G-4] and the seL4 
[G-5] micro-kernel. However, separation proofs from these micro-hypervisors to prove application 
properties can be used only if all the code in the specific partition can be verified. Therefore, such 
a partition needs to be simple, ruling out complex virtual machines (VMs) that host complex 
operating systems, such as Linux. Moreover, combining the temporal-protection proofs from  
[G-3] and the spatial-protection proofs [G-4] is another challenge that must be addressed. 
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Multicore processors can actually create interaction patterns between temporal and spatial 
partitioning. In particular, temporal partitioning in multicore processors involves partitioning 
memory regions in a way that eliminates (or minimizes) the delays that one task running in one 
core may experience because of the execution of another in another core. In this case, temporal 
and spatial partitioning must be coordinated. 

Finally, supporting distributed applications implies that a spatial partition to support an application 
can actually be composed of an aggregation of partitions in different nodes. Such an aggregation 
may be enough for some applications, but the verification of what code is authorized to access 
what partitions in an end-to-end manner needs to be investigated. 

G.1.3  VIRTUALIZATION-AWARE TEMPORAL VERIFICATION 

G.1.3.1  Temporal Predictability of I/O Virtualization 

In current implementations, the virtualization of I/O is typically performed in a server-based 
manner. This means that one separate core is dedicated to the I/O services that the hypervisor 
provides to all VMs. However, current timing-verification techniques do consider this. New 
verification techniques to consider this need to be developed. 

G.1.3.2  Temporal Predictability of Memory Accesses in Virtualization 

Processors today use a variety of techniques to bridge the difference in speed between the 
processor(s) and the memory. As a result, there are many shared resources in the memory system 
(e.g., caches, memory bus, row buffer in memory banks, and port(s) to cache memories). Some of 
these shared resources can be dealt with by introducing mechanisms (e.g., cache coloring) that 
ensure timing isolation with respect to that resource. However, there are other resources for which 
such mechanisms do not exist. If high assurance is needed, then it may be necessary to model those 
shared resources in timing verification and to develop verification methods that can allow such 
models. It should be noted that many of these resources are very complex and depend on 
information that vendors do not disclose. Therefore, it is not obvious whether an explicit model 
(modeling the arbitration protocol for the resource and the possible accesses from software) is 
practical or even possible for most resources. There may be a need for more indirect approaches. 

G.1.3.3  Temporal Predictability of Accesses to Data Structures in Virtualization 

When using virtualization, there are (at least) two types of operating system kernels, the hypervisor 
and the guest operating system. Each has data structures. For example, each has schedulers and 
each needs data structures to keep track of the scheduled entities (a hypervisor schedules VMs; a 
guest operation system schedules processes). However, computers today do not write to an entire 
data structure; computers today write a word (e.g., 64-bit word). As a result, there are cases when 
an operating system performs an update on a data structure such that during this update, there is 
an instant where the data structure has been partially updated but not fully updated. Because of 
that, the operating system must not allow reading that data structure. There are different ways of 
dealing with this issue, such as mutual-exclusion mechanisms (e.g., spinning or semaphores) or 
lock-free data-sharing protocols. What they have in common, however, is that they influence 
timing. There are known techniques for verifying timing of software in the presence of such 
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mechanisms. However, they require that the data structures/mechanisms be modeled. In many 
cases, the source code for the hypervisor and the guest operating system is not available and, 
therefore, it is very difficult to obtain such a model. 

G.1.4  VIRTUALIZATION-AWARE LOGICAL VERIFICATION 

As discussed in previous sections of this report, logical verification of virtualized systems is further 
complicated by additional interaction between the hypervisor and guests, and between the guests 
themselves. Such interactions can occur through interfaces that are not present in non-virtualized 
systems. For example, unless proper care is taken, a guest can access the hypervisor’s memory and 
the memory of other guests directly. Similarly, a guest can interact with other guests and the 
hypervisor via shared devices. In general, such unwanted interactions are prevented via logical 
isolation mechanisms, such as locks and mutexes, and hardware-supported privilege-separation 
schemes (e.g., the hypervisor can set its own memory to be inaccessible by software such as the 
guest OS running at lower privilege levels). However, the correct usage and correct 
implementation of these isolation and privilege-based mechanisms must be verified. Whereas 
software analysis and verification techniques have made rapid progress in recent years, the 
presence of low-level code and sheer code size put realistic hypervisors still beyond the reach of 
fully automated and scalable verification. New verification techniques, such as focusing on 
analysis of low-level code and compositional reasoning, must be developed to overcome these 
challenges. 

G.2  RECOMMENDATIONS 
 
G.2.1  FUTURE RESEARCH 

New research efforts to improve modularity must be fostered. These efforts should proceed in two 
directions. First, improve modularity of current partitioning standards such as ARINC 653. 
Second, develop new standards acceptable to the practitioner based on other more analytic 
foundations such as RMS. 

The challenge presented by multicore processors to virtualization technology needs to be 
addressed. In particular, efforts to identify the evidence necessary to validate virtualization 
technology must continue. This is because the research in real-time multicore scheduling is not yet 
complete, and therefore the impact of new research results to virtualization will need to be 
investigated as these results become available. 

Clearly, virtualization must address the distributed nature of avionics applications. This must be 
done while preserving modularity supporting modular certification and recertification. The 
exploration of RTV to support complex distribution models is necessary. 

With respect to timing verification for virtualization, there is a need to address the three gaps. 
Specifically, there is a need for research to develop methods to analyze timing of software 
considering that I/O is performed by a server. There is also a need for research to develop methods 
to analyze the timing of software executing on hardware in which the hardware is undocumented 
(mentioned as one of the gaps above). In addition, there is a need for research to develop methods 
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to analyze the timing of software executing on virtualization platforms (hypervisor and guest 
operating system) 

From the spatial-virtualization point of view, continued research is proposed in three areas. First, 
verification schemes need to be investigated for partitioning implementation. This may start with 
hypervisors, but it must be ensured that enough support is provided to the application. Second, the 
interactions between temporal and spatial partitions in multicore processors must be investigated 
and certifiable solutions provided to such interactions. Finally, the support of distributed 
applications must be investigated to support today’s application requirements. This will require, 
in particular, an increased focus on verifying low-level system code, and compositional reasoning 
and abstraction to handle the state-space explosion problem. 

G.2.2  CURRENT PRACTICE 

As discussed before, current standards for temporal virtualization are based on techniques that are 
not always sufficiently scalable or modular. In particular, the ARINC 653 style of partitioning may 
impose severe complexity and brittleness to software modifications. Exploring the development 
of new standards based on more flexible technologies such as rate-monotonic scheduling (RMS) 
is recommended. 

With respect to timing requirements, it is recommended that the operating system vendor provide 
evidence that the use of shared data structures inside its operating system is based on a data-sharing 
protocol (e.g., mutual exclusion) with predictable timing behavior. It is also recommended that the 
application developer list all known resources that impact timing. In addition, it is recommended 
that the application developer provide evidence of the worst-case impact on delay on an execution 
path for the resources. These include the three mentioned: 1) I/O server, 2) data structures in 
operating systems, and 3) shared hardware resources (particularly in the memory system). Because 
more research is needed on these topics, it is probably not realistic to require that a software 
practitioner formally prove correct timing with respect to these resources. It is recommended, 
however, that the practitioners list these resources and estimate (sometimes called engineering 
judgment) the worst-case delay it can cause for respective timing requirements paths. 

With respect to logical/spatial requirements, hardware vendors, verification researchers, and tool 
developers must agree on a formalization of low-level software semantics. Whereas hardware 
vendors typically document their instruction and architecture in a lot of detail, such documentation 
is informal (e.g., in English prose) and not amenable to formal reasoning. As a result, different 
verification groups have attempted to develop their own formalizations of hardware semantics. 
These efforts, though worthy of praise, are not coordinated and are also incomplete. Each group 
formalizes only a subset of the hardware necessary for their current project. This means that tools 
are not only incomparable, but also that the semantics formalized by the research groups (which 
always involve some level of abstraction) are not vetted by the hardware industry. This situation 
must change if the challenge system software is to be verified in a scalable and sound manner. 
Second, the state of the art in compositional reasoning of system software must be advanced. This 
requires formalizing the architecture of low-level systems, such as hypervisors, and new 
compositional techniques, such as assume-guarantee proof rules, derived from the architecture. 
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G.2.3  CERTIFICATION ENGINEER PERSPECTIVE 

From the certification engineer perspective, recommendations can be summarized as follows: 

• General-purpose virtual machines (VMs), such as VMWare or VirtualBox, should not be 
considered for avionics systems because there is no reliable technique to verify the timing 
isolation between VMs. 

• Real-time hypervisors that provide predictable temporal isolation should be paired with 
the verification technique that matches their mechanism. For instance, if time-division 
multiplexing is used (e.g., time-triggered architecture), then exhaustive timeslot 
allocation algorithms must be used and the arguments regarding why specific allocations 
satisfy the partition requirements must be presented. Similarly, if the technology is based 
on rate-monotonic scheduling and processing servers, the corresponding response time 
techniques must be used. 

• When considering recertification of partitions (or VMs) in isolation, the brittleness of the 
verification techniques must be considered. In particular, arguments to support why a 
modification to a partition does not affect other partitions must be presented. As 
elaborated in a previous appendix, different techniques have different sensitivity to 
modifications (brittleness). The brittleness discussion can be use by a certification 
engineer to guide evaluation of the isolation arguments. 

• For applications with end-to-end timing requirements (e.g., end-to-end deadlines), the 
arguments must include how individual node deadlines are combined to satisfy end-to-
end deadlines and how they are affected by the partitioning mechanisms and verification 
techniques. 

• When presenting logical arguments of separation, care should be taken with the 
assumptions of such claims. This is particularly important during recertification when the 
assumptions may change. 

• The interactions between logical correctness of spatial separation and timing separation 
must be presented. This is particularly important if these arguments are formalized with 
exhaustive verification techniques.  

• Arguments of isolation for VMs running in multicore processors must properly support 
the interference channels mentioned in CAST32A with the supporting details from the 
processor documentation. 

• Arguments to support the correctness of the interactions between spatial and temporal 
partitions must be included when using multicore processors. This is because the 
incorrect use of shared-hardware partitions can affect timing guarantees and partitioning 
assumptions. 

• When considering the single-to-multicore timing portability arguments, it is important to 
verify that proper documentation is provided. In particular, different arguments may need 
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different levels of detail. However, all arguments must include some level of inter-core 
interference, in which the timing behavior of a task in one core is evaluated when other 
tasks with different types of application code are running in other cores. 

• For single-to-multicore timing portability arguments for software that use mutual 
exclusions, the proper argument that explicitly mentions the mutual exclusion 
mechanisms and the proper verification techniques must be presented. 

• For logical correctness, single-to-multicore portability arguments, it is important to 
consider the consistency model implemented by the multicore processor and whether this 
model matches the presented arguments.  

• The arguments for timing equivalence of emulated hardware can be presented as an input-
to-output argument as soon as the equivalence is presented in a way that include all 
execution paths. 

• Arguments for logical portability of emulated hardware must include native hardware side 
effects used by the software. 
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