[image: image4.wmf]

DRAFT

[image: image5.png]

[image: image6.wmf]

Volume 1: Handbook Overview

Revision 0

 October 26, 2004

Contents

11.1
Handbook Introduction
1-

11.1.1
Purpose
1-

11.1.2
Background
1-

21.2
Handbook Organization
1-

21.2.1
Scope
1-

21.2.2
Approach
1-

41.3
OOT Background
1-

41.3.1
OOT Basics
1-

51.3.2
Principles of OOT
1-

61.3.3
OOT Methodology
1-

71.3.4
OOT Languages
1-

71.3.5
Additional Key OO Concepts
1-

81.3.6
Further OOT Reading
1-

91.4
Acronym List
1-

111.5
Glossary
1-

251.6
OOTiA Workshops
1-

251.6.1
Workshop Committee
1-

251.6.2
Participants in Workshop #1
1-

281.6.3
Participants in Workshop #2
1-

321.7
References
1-

331.8
Feedback Form
1-

Figures

2Figure 1.2‑1 Handbook Approach
1-

5Figure 1.3‑1 Object-Oriented Class Representation
1-

7Figure 1.3‑2 OOA Tasks
1-

1.1 Handbook Introduction

1.1.1 Purpose

The purpose of this four-volume Handbook is to identify key issues and provide some potential approaches to address these issues when using OOT in airborne products. Although some of the issues identified in this Handbook are not unique to OOT, they are discussed in the Handbook because the way they are addressed is key to safe implementation of OOT. This Handbook also provides an approach for certification authorities and their designees to help ensure that OOT issues have been addressed in the projects they are reviewing or approving.

1.1.2 Background

Compliance with the objectives of RTCA/DO-178B XE "DO-178B" , Software Considerations in Airborne Systems and Equipment Certification XE "Software Considerations in Airborne Systems and Equipment Certification" [1], is the primary means of obtaining approval of software used in civil aviation products. When DO-178B was published in 1992, procedure programming was the predominant technique for organizing and coding computer programs. Consequently, DO-178B provides guidelines for software developed using a functional technique and does not specifically consider software developed using OOT XE "OOT" . OOT XE "OOT" is a software development technique that is “expressed in terms of objects and connections between those objects” [9]. Since object-oriented technology differs from the traditional functional approach to software development, satisfying some of the DO-178B objectives when using OOT may be unclear and/or complicated.

To date, few airborne computer systems in civil aviation have been implemented using OOT. Although OOT is intended to promote productivity, increase reusability of software, and improve quality, uncertainty about how to comply with certification requirements has been a key obstacle to using OOT in airborne systems.

Although organizations such as the Object Management Group (OMG) work to develop specifications for OOT, no universal guidelines exist for using OOT in safety-critical systems. Certification authorities have been using issue papers on a project-by-project basis to address OOT XE "OOT" concerns. These project-specific issue papers document high-level safety issues and concerns with OOT but do not suggest or provide detailed issues or acceptable solutions.

This Handbook extends the use of issue papers by identifying key issues and providing some guidelines to help the software community satisfy applicable DO-178B XE "DO-178B" objectives when using OOT XE "OOT" . It also provides an approach for certification authorities and their designees when evaluating OOT projects.

The FAA co-sponsored the Object-Oriented Technology in Aviation XE "Object-Oriented Technology in Aviation" (OOTiA XE "OOTiA") project with the National Aeronautics and Space Administration (NASA) to address OOT XE "OOT" challenges in aviation. The FAA, NASA, other government organizations, academia, international certification authorities, airborne systems manufacturers, and aircraft manufacturers collaborated through two OOTiA workshops and the OOTiA workshop committee to produce this Handbook [see Section 1.6 for additional information on the workshops].

It is anticipated that this Handbook and other documents may be used to impact future changes to the FAA’s software guidance (e.g., to impact future revisions to DO-178B or supplementary guidance XE "DO-178B"). It is also anticipated that this Handbook will be updated in the future as OOT XE "OOT" in aviation matures and lessons are learned. If you have comments, suggested improvements to this Handbook, additional issues, or potential solutions to address an issue(s), please complete and submit the feedback form in Section 1.8 of this volume.

1.2 Handbook Organization

1.2.1 Scope
This Handbook documents key issues and some potential approaches to address these issues when using OOT in airborne systems. It is intended to be informational and educational – a compilation of what we know to date regarding the use of OOT in aviation systems. This Handbook does not constitute Federal Aviation Administration (FAA) policy or guidance nor is it intended to be an endorsement of OOT. This Handbook is not to be used as a standalone product but, rather, as input when considering issues in a project-specific context. In addition, this Handbook does not attempt to define the project criteria or circumstances under which this Handbook should or should not be used in software development. That determination is left to project planners, decision makers, or developers, as appropriate.

This Handbook addresses issues that were identified as having potential impact in safely applying OOT XE "OOT" in airborne systems. Certification authorities, industry, and others submitted potential issues through a web site dedicated to the OOTiA XE "OOTiA" project [7]. Some of the issues are not unique to OOT (e.g., inlining XE "inlining" and templates); however, these issues are discussed in the Handbook because the way they are addressed is key to safe implementation of OOT. Note that this Handbook does not address all potential issues, nor are the guidelines in Volume 3 the only possible solutions to addressing the related issues. As technology advances and experience with OOT increases within the aviation community, this Handbook will likely be updated.

1.2.2 Approach
The Handbook follows a “tiered” approach as shown in Figure 1.2‑1 in which each of its four volumes provides the foundation for all volumes above it. For example, Volume 3: Best Practices relies on contents in both Volume 1: Handbook Overview and Volume 2: Considerations and Issues in substantiating its guidelines.

The four volumes are:

· Volume 1: Handbook Overview (this volume)

· Volume 2: Considerations and Issues
· Volume 3: Best Practices
· Volume 4: Certification Practices

Figure 1.2‑1 Handbook Approach

Each volume is written for a unique combination of target audience and purpose. Each volume is self-contained in that each has a separate list of references applicable to that volume alone. However, to provide a consistent basis among volumes, Volume 1: Handbook Overview contains the Acronym List (see section 1.4) and Glossary (see section 1.5) common to all volumes.

The following sections provide the title, target audience, purpose, and overview of the contents for each volume.
1.2.2.1 Volume 1: Handbook Overview

Target Audience:
All Handbook users

Purpose:
Provide background and foundational information needed to use all other volumes

Contents:
Handbook introduction

Organizational overview of Handbook into volumes

OOT background

Handbook acronym list

 Handbook glossary

OOTiA workshop committee and participants lists

References for Volume 1

Feedback form for suggested improvements to the Handbook

1.2.2.2 Volume 2: Considerations and Issues
Target Audience: Project planners, decision makers, certification authorities, designees

Purpose:
Report and discuss the challenges collected throughout the OOTiA project

Contents:
Considerations before making the decision to use OOT

Considerations after making the decision to use OOT

Open issues (summary of OOTiA Workshop #2 brainstorming session)

Summary

References for Volume 2

Results of the “Beyond the Handbook” session of OOTiA Workshop #2

Mapping of issue list to considerations

Additional considerations for project planning

1.2.2.3 Volume 3: Best Practices

Target Audience:
Airborne systems and OOT software developers, certification authorities, designees

Purpose:
Identify best practices to safely implement OOT in airborne systems by providing some known ways to address the issues documented in Volume 2
Contents:
Mapping of Volume 2 issues to Volume 3 guidelines

Guidelines for demonstrating DO-178B compliance and safely addressing:

· Single inheritance and dynamic dispatch

· Multiple inheritance

· Templates

· Inlining

· Type conversion

· Overloading and method resolution

· Dead and deactivated code, and reuse

· Object-oriented tools

· Traceability

· Structural coverage

References for Volume 3

Index of terms

Frequently asked questions

Extended guidelines and examples

1.2.2.4 Volume 4: Certification Practices

Target Audience:
Certification authorities and designees

Purpose:
Provide an approach to ensure that OOT issues are addressed
Contents:
Activities for Stages of Involvement 1- 4

References for Volume 4

1.3 OOT Background

1.3.1 XE "OOT" OOT XE "OOT" Basics

Object-oriented approaches date to the introduction of the programming language Simula in 1967. Most recently they have been standardized by the Object Management Group XE "Object Management Group" (OMG XE "OMG") through their definition of a Unified Modeling Language XE "Unified Modeling Language" (UML XE "UML") [16], and in other specifications related to model-driven architectures, distributed object communication, etc.

OOT XE "OOT" is a software development technique that is centered on “objects.” The Institute of Electrical and Electronics Engineers XE "Institute of Electrical and Electronics Engineers" (IEEE XE "IEEE") refers to OOT as “a software development technique in which a system or component is expressed in terms of objects and connections between those objects” [9]. An object can be compared to a “black box” at the software level – it sends and receives messages. The object contains both code (methods) and data (structures). The user does not need to have insight into the internal details of the object in order to use the object, hence the comparison to a black box. An object can model real world entities, such as a sensor or hardware controller, as separate software components with defined behaviors.

A major concept in OOT XE "OOT" is the “class XE "class" .” A class is a set of objects that share the same attributes, methods, relationships, and semantics – they share a common structure and behavior [16]. A class describes the characteristics and behavior of a real world entity. Figure 1.3‑1 illustrates a representation of a class definition for an object.

[image: image1.wmf]Class Name

Attributes:

Operations:

Figure 1.3‑1 Object-Oriented Class Representation
1.3.2 Principles of OOT XE "OOT"
There are seven principles that form the foundation for OOT XE "OOT" : abstraction XE "abstraction" , encapsulation XE "encapsulation" , modularity XE "modularity" , hierarchy XE "hierarchy" , typing XE "typing" , concurrency XE "concurrency" , and persistence XE "persistence" [8]. Not all of these principles are unique to OOT, but the OOT development methodology embodies these seven principles. Abstraction, modularity, concurrency, and persistence are principles that are commonly used in other development methodologies. However, encapsulation (using a technique called information hiding XE "information hiding"), hierarchy (using a technique called inheritance), and typing (using a concept called polymorphism XE "polymorphism") are relatively unique to OOT. Each of the seven principles is described below.

Abstraction is one of the fundamental ways that complexity is addressed in software development. “An abstraction XE "abstraction" denotes the essential characteristics of an object that distinguish it from all other kinds of objects and thus provide crisply defined conceptual boundaries, relative to the perspective of the viewer" [8].

Encapsulation is the process of hiding the design details in the object implementation. Encapsulation can be described as “the mechanism that binds together code and the data it manipulates, and keeps both safe from outside interference and misuse” [15]. Encapsulation is generally achieved through information hiding XE "information hiding" , which is the process of hiding the aspects of an object that are not essential for the user to see. Typically, both the structure and the implementation methods of the object are hidden.
Modularity is the process of dividing a program into logically separated and defined components that possess defined interactions and limited access to data. Booch writes that modularity XE "modularity" is a “property of a system that has been decomposed into a set of cohesive and loosely coupled modules” [8].

Hierarchy is simply the ordering of abstractions. Examples of hierarchy XE "hierarchy" are single inheritance XE "single inheritance" and multiple inheritance XE "multiple inheritance" . In OOT XE "OOT" , when a sub-class XE "class" is created, this new class “inherits” all of the existing attributes and operations of the original class, called the “parent” or “superclass XE "superclass" ” [13]. Inheritance is a relationship between classes where one class is the “parent” (also called “base,” “superclass,” or “ancestor”) class of another [6]. One author puts it this way, “Inheritance is a relationship among classes where a child class can share the structure and operations of a parent class and adapt it for its own use” [10].

Inheritance is one of the key differences between OOT XE "OOT" and conventional software development. There are two types of inheritance: single inheritance XE "single inheritance" and multiple inheritance XE "multiple inheritance" . In single inheritance, the sub-class XE "class" inherits the attributes and operations from a single superclass XE "superclass" . In multiple inheritance, the sub-class inherits some attributes from one class and others from another class. Multiple inheritance XE "Multiple inheritance" is controversial, because it complicates the class hierarchy XE "hierarchy" and configuration control [14].

Typing is a principle that is used in OOT XE "OOT" that has many definitions. Booch presents one of the most clear and concise definitions by stating, “Typing is the enforcement of the class XE "class" of an object, such that objects of different types may not be interchanged, or at the most, they may be interchanged only in very restricted ways” [8]. Examples of OOT typing XE "typing" are strong typing, weak typing, static typing, and dynamic typing. Each OOT programming language varies in its implementation of typing.

Another OOT XE "OOT" concept closely related to typing XE "typing" is polymorphism XE "polymorphism" . Polymorphism comes from the Greek meaning “many forms.” It allows one name to be used for two or more related but different purposes [15]. It is the ability of an object to assume or become many different forms of an object. Polymorphism specifies slightly different or additional structure or behavior for an object, when assuming or becoming an object [11]. This allows different underlying implementations for the same command. For example, assume there exists a vehicle class XE "class" that includes a steer-left command. If a boat object was created from the vehicle class, the steer-left command would be implemented by a push to the right on a tiller. However, if a car object was created from the same class, it might use a counter-clockwise rotation of the steering wheel to achieve the same command.

Concurrency is the process of carrying out several events simultaneously.

Persistence is “the property of an object through which its existence transcends time (i.e., the object continues to exist after its creator ceases to exist) and/or space (i.e., the object’s location moves from the address space in which it was created)” [8].

1.3.3 OOT XE "OOT" Methodology

OOT XE "OOT" can typically be described in four processes: Object-Oriented Analysis (OOA), Object-Oriented Design (OOD), Object-Oriented Programming (OOP), and Object-Oriented Verification/Test (OOV/T). The implementation of these processes is typically iterative or evolutionary. An overview of each process is addressed below.

OOA is the process of defining all classes that are relevant to solve the problem and the relationships and behavior associated with them [14].

A number of tasks occur to carry out the OOA as shown in Figure 1.3‑2. The tasks are reapplied until the model is completed. As shown in Figure 1.3‑2, use cases, class XE "class" -responsibility-collaborator (CRC) models, object-relationship (OR) models, and object-behavior (OB) models are methods typically used to carry out the OOA. The use case is a method utilized to identify the user’s requirements. The CRC model is used to identify the class attributes, operations, and hierarchy XE "hierarchy" . The OR model is used to illustrate the relationship between the numerous objects. And, the OB model is used to model the behavior of each object.

OOD transforms the OOA into a “blueprint” for software “construction.” Four layers of design are usually defined: subsystem layer, class XE "class" and object layer, message layer, and responsibilities layer. The subsystem design layer represents each subsystem that enables software to achieve the requirements. The class and object design layer contains class hierarchies and object designs. The message design layer contains the internal and external interfaces to communicate between objects. The responsibilities design layer contains the algorithm design and data structures for attributes and operations of each object.

OOP is the coding process of the software development, using an OO language (e.g., C++, Ada 95).
OOV/T is the process of detecting errors and verifying the correctness of the OOA, OOD, and OOP. OOV/T includes reviews, analyses, and tests of the software requirements, design, and implementation. OOV/T requires slightly different strategies and tactics than the traditional functional approach. The variance in the approach is driven by characteristics like inheritance, encapsulation XE "encapsulation" , and polymorphism XE "polymorphism" . Many developers use a design for testability approach to begin addressing any verification/test issues early in the program.

[image: image2.wmf]Identify user

requirements

(use cases)

Identify classes

(attributes &

operations) (CRC)

Specify class

hierarchy

(CRC)

Identify object

-

to

-

object

relationships (OR)

Model object

behavior (OB)

Reapply as needed

Figure 1.3‑2 OOA Tasks
1.3.4 OOT XE "OOT" Languages

Many OO languages exist. Some of the most well known are C++ XE "C++" , Smalltalk XE "Smalltalk" , Ada XE "Ada" 95 XE "Ada 95" , and Java XE "Java" . C++, Ada 95, and Java are of particular interest for designers of embedded software. C++’s tool support, Ada 95’s extension XE "extension" of Ada 83, and Java’s platform independence make these languages very appealing to the developers of airborne systems. But each language has its own set of challenges. Volume 3 of this Handbook attempts to address language-specific issues, where possible. Other volumes are intended to be language-independent. C# XE "C#" is another OO language being considered for embedded software. However, it is still maturing and is not yet addressed in this Handbook.

1.3.5 Additional Key OO Concepts

In addition to the OO concepts described above, the following concepts are important OO concepts mentioned in this Handbook.

Dynamic dispatch XE "Dynamic dispatch" is the association of a method with a call based on the run-time type of the target object. Dynamic dispatch is not related to dynamic linking XE "dynamic linking" nor dynamic link libraries. Dynamic dispatch is sometimes referred to as “dynamic binding XE "dynamic binding" .” There are two types of dynamic dispatch XE "dynamic dispatch" used in OO:

· Single dispatch XE "Single dispatch" is dynamic dispatch XE "dynamic dispatch" based on only the run-time type of the target object. Most OO languages, including Java XE "Java" , Ada 95 and C++ XE "C++" are single dispatching.

· Multiple dispatch XE "Multiple dispatch" is dynamic dispatch XE "dynamic dispatch" based on the run-time types of all the arguments to a call, rather than only the run-time type of the target object.

The Liskov substitution principle XE "Liskov substitution principle" (LSP XE "LSP") is a set of subtyping XE "subtyping" rules that ensure that instances of a subclass XE "subclass" are substitutable for instances of all parent classes in every context in which they may appear. These rules go beyond the simple checking of signatures, taking into account the behavior of operations (as defined by their pre- and post- conditions) and the invariants defined by classes. Even if classes are not defined formally, the principle can be upheld by requiring the inheritance of test cases. Reference [17] provides additional insight into the LSP concept.

1.3.6 Further OOT XE "OOT" Reading

The section identifies some resources recommended for those who desire to study OOT XE "OOT" in more depth. While this is not an exhaustive list of OO references, it is intended to provide a starting point for those interested in learning more about OOT XE "OOT" . The Reference sections of this volume and the other Handbook volumes provide additional resources.

· The Object-Oriented Thought Process by Matt Weisfeld (SAMS Publishing, 2000): This book provides a simple introduction to the OO fundamentals. It is a good resource for those transitioning from the functional approach to OO.

· Object-Oriented Analysis and Design by Grady Booch (Addison-Wesley, 2nd edition, 1994): This book provides a practical introduction to OO concepts, methods, and applications.

· Pitfalls of Object-Oriented Development by Bruce Webster (M&T Books, 1995): Although somewhat dated, this book provides a sound overview of the potential problems in OO development. A summary of its main points are included in Appendix C of Volume 2 since the book is now out of print.

· Design Patterns: Elements of Reusable Object-Oriented Software by Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides (Addison-Wesley, 1995): Patterns are widely used by the OO community to address analysis and design problems. This book provides a guide for effective development and use of patterns.

· Object-Oriented Software Construction by Bertrand Meyer (Prentice Hall, 2nd edition, 1997): Although a large book, this one provides good fundamental information for OO developers.

· Testing Object-Oriented Systems: Models, Patterns, and Tools XE "Tools" by Robert V. Binder (Addison-Wesley, Reading, MA, 2000): This book addresses one of the more difficult aspects of OOT XE "OOT" testing.

1.4 Acronym List

The following acronym list applies to all volumes of this Handbook:

	AC
	Advisory Circular

	ACB
	Anomalous Construction Behavior

	AMJ
	Advisory Material Joint

	API
	Application Programming Interface

	AVSI XE "AVSI"
	Aerospace Vehicle Systems Institute XE "Aerospace Vehicle Systems Institute"

	BIT
	Built-in Test

	CAST XE "CAST"
	Certification Authorities Software Team

	CC
	Control Category

	CM
	Configuration Management

	CORBA
	Common Object Request Broker Architecture

	COTS
	Commercial Off-The-Shelf

	CRC
	Class-Responsibility-Collaborator

	DBC
	Design By Contract

	DER
	Designated Engineering Representative

	EASA
	European Aviation Safety Agency

	EUROCAE
	European Organization for Civil Aviation Equipment

	FAA
	Federal Aviation Administration

	HIT
	Hierarchical Incremental Testing

	IEEE XE "IEEE"
	Institute of Electrical and Electronics Engineers

	IL
	Issue List

	IP
	Issue Paper

	JAA
	Joint Aviation Authorities

	LRU
	Line Replaceable Unit

	LSP XE "LSP"
	Liskov Substitution Principle

	MC/DC XE "MC/DC"
	Modified Condition / Decision Coverage

	NASA
	National Aeronautics and Space Administration

	OB
	Object Behavior

	OMG XE "OMG"
	Object Management Group XE "Object Management Group"

	OO
	Object-Oriented

	OOA
	Object-Oriented Analysis

	OOD
	Object-Oriented Design

	OOP
	Object-Oriented Programming

	OOT XE "OOT"
	Object-Oriented Technology

	OOTiA XE "OOTiA"
	Object-Oriented Technology in Aviation XE "Object-Oriented Technology in Aviation"

	OOV/T
	Object-Oriented Verification/Test

	OR
	Object Relationship

	PDS
	Previously Developed Software

	PSAC
	Plan for Software Aspects of Certification

	RBT
	Requirements-Based Testing

	R-D-C
	Requirements-Design-Code

	RSC
	Reusable Software Component

	RTCA
	RTCA, Inc.

	SAS
	Software Accomplishment Summary

	SCI
	Software Configuration Index

	SDA
	State Definition Anomaly

	SDI
	State Defined Incorrectly

	SDIH
	State Definition Inconsistency

	SOI
	Stage of Involvement

	SSA
	System Safety Assessment XE "System Safety Assessment"

	SVA
	State Visibility Anomaly

	UML XE "UML"
	Unified Modeling Language XE "Unified Modeling Language"

1.5 Glossary

This glossary provides definitions for terms used in this Handbook to discuss object-oriented technology issues. It is intended to provide terminology for consistent communication and discussion of issues. Many terms are taken directly from the glossary
 of RTCA/DO-178B, XE "DO-178B" Software Considerations in Airborne Systems and Equipment Certification XE "Software Considerations in Airborne Systems and Equipment Certification" [1]. Other terms are taken from references on object-oriented technology. References are noted, as appropriate, after each definition. Relationships between terms are denoted as contrast, synonym, and see, where specifically pertinent to the definition. This glossary is a resource to be used for all volumes of the Handbook.
Abstract class XE "class" - A class that cannot be directly instantiated. Any class containing an abstract operation must itself be abstract. Contrast: concrete class XE "concrete class" . [2], [16]

Abstract operation - An operation that is declared but not implemented by an abstract class XE "class" . Abstract operations do not have associated methods (bodies) in the class that defines them, but must have an associated implementation in concrete subclasses. See: operation, method. [2], [8] Contrast: concrete operation.

Abstract pattern - A pattern that does not prescribe a particular approach. Additional guidelines are defined by sub-patterns of the abstract pattern XE "pattern" where these guidelines vary by the approach used.

Access mechanism - The manner in which a software component is called upon to perform its intended function. This includes invocation mechanisms and data flow to and from the component. This is typically part of the interface description data. [3]

Actual parameter - See: argument.

Aggregation - A composition technique for building a new object from one or more existing objects that support some or all of the new object's required interfaces. Synonym: composition. [18]

Algorithm - A finite set of well-defined rules that gives a sequence of operations for performing a specific task. [1]

Anomalous behavior - Behavior that is inconsistent with specified requirements. [1]

Applicant - A person or organization seeking approval from the certification authority. [1]

Approval - The act or instance of expressing a favorable opinion or giving formal or official sanction. [1]

Argument - A binding for a parameter that resolves to a run-time instance. Synonym: actual parameter. Contrast: parameter. [16]

Aspect-oriented programming - An approach used to encapsulate policies and strategies that cross-cut the core functionality of a system. Such system- or subsystem-wide policies are referred to aspects. They include policies for error handling, synchronization, resource allocation, fault-tolerance, performance, software monitoring, distributed data access, and other potentially safety related issues. Aspect-oriented programming is generally viewed as complementary to object-oriented development. [2]

Assertion - A Boolean expression whose value should always evaluate to true at a given point in a program's execution. For example, a pre-condition, whose value should evaluate to true whenever a given operation is called; a post-condition, whose value should evaluate to true upon the normal (non-exceptional) return from a given operation; or a class invariant, whose value should evaluate to true after the execution of a class constructor and before/after the execution of every externally visible operation on the class.
Association XE "Association" - The semantic relationship between two or more classifiers that specifies connections among their instances. Such connections may be represented as pointers or access types that reference other objects. They may also be computed rather than stored. [2], [16]

Assurance - The planned and systematic actions necessary to provide adequate confidence and evidence that a product or process satisfies given requirements. [1]

Attribute - A feature within a class XE "class" that describes a range of values those instances of the class may hold. Attributes are stored values or fields in Ada 95, C++, XE "C++" and Java XE "Java" . They may represent either data values or references to other objects (association ends). [2], [16]

Audit - An independent examination of the software life cycle processes and their outputs to confirm required attributes. [1]

Baseline - The approved, recorded configuration of one or more configuration items, that thereafter serves as the basis for further development, and that is changed only through change control procedures. [1]

Certification - Legal recognition by the certification authority that a product, service, organization, or person complies with the requirements. Such certification comprises the activity of technically checking the product, service, organization, or person and the formal recognition of compliance with the applicable requirements by issue of a certificate, license, approval, or other documents as required by national laws and procedures. In particular, certification of a product involves: (a) the process of assessing the design of a product to ensure that it complies with a set of standards applicable to that type of product so as to demonstrate an acceptable level of safety; (b) the process of assessing an individual product to ensure that it conforms with the certified type design; (c) the issuance of a certificate required by national laws to declare that compliance or conformity has been found with standards in accordance with items (a) or (b) above. [1]

Certification authority - The organization or person responsible within the state or country concerned with the certification of compliance with the requirements.

Note:
A matter concerned with aircraft, engine, or propeller type certification or with equipment approval would usually be addressed by the certification authority; matters concerned with continuing airworthiness might be addressed by what would be referred to as the airworthiness authority. [1]

Certification credit - Acceptance by the certification authority that a process, product, or demonstration satisfies a certification requirement. [1] See: credit.

Change control - (1) The process of recording, evaluating, approving, or disapproving and coordinating changes to configuration items after formal establishment of their configuration identification or to baselines after their establishment. (2) The systematic evaluation, coordination, approval, or disapproval and implementation of approved changes in the configuration of a configuration item after formal establishment of its configuration identification or to baselines after their establishment.

Note: This term may be called configuration control in other industry standards. [1]

Checked type conversion - Types are checked if conversion from one type to the other includes a determination either by the compiler or at run-time as to whether they are normally convertible.

Child - In a generalization relationship, the specialization of another element, the parent. See: subclass XE "subclass" , subtype. Contrast: parent, superclass, supertype. Child classes inherit from their parent classes. Similarly, subclasses inherit from their superclasses. [2], [16]

Class - Informally, any classifier. Formally, a description of a set of objects that share the same attributes, operations, methods, relationships, and semantics. A class XE "class" may use a set of interfaces to specify collections of operations it provides to its environment. [2], [16]

Class hierarchy XE "hierarchy" - A collection of classes connected by generalization relationships. The root of the hierarchy represents the most general of these classes. The leaves represent the most specific of these classes. Synonym: inheritance hierarchy.

Classifier - The Unified Modeling Language XE "Unified Modeling Language" (UML XE "UML") defines the term classifier to include interfaces, classes, datatypes, and components. In the Aerospace Vehicle Systems Institute XE "Aerospace Vehicle Systems Institute" (AVSI XE "AVSI") guide (and elsewhere), the term “class” XE "class" is often used informally as a synonym for classifier. Formally, however, classes describe only objects, which have an identity and state, and not datatypes, interfaces, or components. [2], [16]

Client class XE "class" - A class that can reference the attributes of another class.

Client operation - An operation accessible to classes other than the defining class XE "class" and its subclasses.

Code - The implementation of particular data or a particular computer program in a symbolic form, such as source code, object code, or machine code. [1]

Code-sharing - The sharing of code by more than one class XE "class" or component (e.g., by means of implementation inheritance or delegation). See: implementation inheritance, delegation.

Note:
There are many ways to support the sharing of code. The risk is that inheritance can be misused to support only the sharing of code and data structure, without attempting to follow behavioral subtyping XE "subtyping" rules.
Commercial off-the-shelf (COTS) software - Commercially available applications sold by vendors through public catalog listings. COTS software is not intended to be customized or enhanced. Contract-negotiated software developed for a specific application is not COTS software. [1]

Compiler - Program that translates source code statements of a high level language, such as FORTRAN or Pascal, into object code. [1]

Component - (1) A self-contained part, combination of parts, sub-assemblies or units, which performs a distinct function of a system. (2) A physical, replaceable part of a system that packages implementation and provides the realization of a set of interfaces. [1], [16]

Composition - See: aggregation.
Concrete class XE "class" - A class that can be directly instantiated. A concrete class XE "concrete class" has no abstract operations. Contrast: abstract class. [2], [16]

Concrete operation - An operation that has an associated method in the context of a given class XE "class" . Contrast: abstract operation. [2]

Concurrency - (1) Process of carrying out several events simultaneously. (2) A technique used in an operating system for sharing a single processor between several independent jobs. [18]

Condition - A Boolean expression containing no Boolean operators. [1]

Condition/Decision Coverage - Every point of entry and exit in the program has been invoked at least once, every condition in a decision in the program has taken on all possible outcomes at least once, and every decision in the program has taken on all possible outcomes at least once. [1]

Configuration identification - (1) The process of designating the configuration items in a system and recording their characteristics. (2) The approved documentation that defines a configuration item. [1]

Configuration item - (1) One or more hardware or software components treated as a unit for configuration management purposes. (2) Software life cycle data treated as a unit for configuration management purposes. [1]

Configuration management - (1) The process of identifying and defining the configuration items of a system, controlling the release and change of these items throughout the software life cycle, recording and reporting the status of configuration items and change requests and verifying the completeness and correctness of configuration items. (2) A discipline applying technical and administrative direction and surveillance to: (a) identify and record the functional and physical characteristics of a configuration item, (b) control changes to those characteristics, and (c) record and report change control processing and implementation status. [1]

Configuration status accounting - The recording and reporting of the information necessary to manage a configuration effectively, including a listing of the approved configuration identification, the status of proposed changes to the configuration and the implementation status of approved changes. [1]

Constraint - A semantic condition or restriction. Constraints include pre-conditions, post-conditions, and invariants. They may apply to a single class XE "class" of objects, to relationships between classes of objects, to states, or to use cases. [16]

Constructor - An operation that creates an object and/or initializes its state. Formally, the constructor is responsible for establishing any class XE "class" invariant.

Control coupling XE "coupling" - The manner or degree by which one software component influences the execution of another software component. [1]

Control coupling XE "coupling" analysis - Evaluation of the execution relationships and dependencies between software components and in component logic to ensure application execution is correctly designed and implemented.
Control flow analysis - (1) Analysis typically used in the identification and confirmation of control coupling XE "control coupling" . DO-178B XE "DO-178B" does not explicitly define this term or the related term control flow. However, it references both (on pages 21, 28, 52, 61, and 57). [1] (2) Analysis whose objectives are: to ensure the code is executed in the right sequence, to ensure the code is well structured, to locate any syntactically unreachable code, and to highlight parts of the code where termination needs to be considered (i.e., loops and recursion). Call tree analysis is cited as an example of one of many control flow analysis techniques, and is offered as a means of confirming that design rules for the partitioning of critical and non-critical code have been followed. [5]

Control program - A computer program designed to schedule and to supervise the execution of programs in a computer system; e.g., operating system, executive, run-time system. [1]

Conversion - See: type conversion.
CORBA - An industry wide standard for communication between distributed objects, independent of their location and target language. The CORBA standard is defined by the Object Management Group XE "Object Management Group" (OMG XE "OMG"). CORBA itself is an acronym for Common Object Request Broker Architecture. [2]

Coupling - A relationship between components or elements.

Coverage analysis - The process of determining the degree to which a proposed software verification process activity satisfies its objective. [1]

Credit - The compliance to one or more RTCA/DO-178B XE "DO-178B" objectives supported by RTCA/DO-178B software life cycle data. This compliance is used to show that the certification basis has been met and the equipment may receive a certificate. Three types of credit are referred to throughout AC 20-148 [3]:

1. Full credit: fully meets the RTCA/DO-178B XE "DO-178B" objective and requires no further activity by the user.

2. Partial credit: partially meets the RTCA/DO-178B XE "DO-178B" objective and requires additional activity by the user to complete compliance.

3. No credit: does not meet the RTCA/DO-178B XE "DO-178B" objective and must be completed by the user for compliance. [3]

Data abstraction XE "abstraction" - An abstraction denotes the essential characteristics of an object that distinguish it from all other kinds of objects, suppressing all non-essential details. In data abstraction the non-essential details deal with the underling data representation. [8] [16]

Database - A set of data, part or the whole of another set of data, consisting of at least one file that is sufficient for a given purpose or for a given data processing system. [1]

Data coupling XE "coupling" - The dependence of a software component on data not exclusively under the control of that software component. [1]

Data coupling XE "coupling" analysis - An evaluation of the data flow relationships and dependencies between software components to ensure they are correctly designed and implemented.

Data dictionary - The detailed description of data, parameters, variables, and constants used by the system. [1]

Data flow analysis - (1) Analysis typically used in the identification and confirmation of data coupling XE "data coupling" . DO-178B XE "DO-178B" does not explicitly define this term or the related term data flow. However, it references both (on pages 21, 28, 52, 61, and 57). [1] (2) Analysis whose objective is to show that there is no execution path in the software that would access a variable that does not have a set value. Data flow analysis uses the results of control flow analysis in conjunction with the read or write access to variables to perform the analysis. Data flow analysis can also detect other code anomalies such as multiple writes without intervening reads. [5]

Data type, Datatype - (1) A class XE "class" of data characterized by the members of the class and the operations that can be applied to them. Examples are character types and enumeration types. (2) A descriptor of a set of values that lack identity and whose operations do not have side effects. Datatypes include primitive pre-defined types and user-definable types. Pre-defined types include numbers, string and time. User-definable types include enumerations.
Note:
Instances of datatypes, unlike objects, do not have identity or state, but are immutable. As a result, operations on datatypes do not change the state of values they act upon, but compute new values based on existing ones. Some languages use the term immutable in combination with terms class XE "class" and object to denote a datatype and its values. [1], [2] See: immutable.
Deactivated code - Executable object code (or data) which by design is either (a) not intended to be executed (code) or used (data), for example, a part of a previously developed software component, or (b) is only executed (code) or used (data) in certain configurations of the target computer environment, for example, code that is enabled by a hardware pin selection or software programmed options. [1]

Dead code - Executable object code (or data) which, as a result of a design error cannot be executed (code) or used (data) in a operational configuration of the target computer environment and is not traceable to a system or software requirement. An exception is embedded identifiers. [1]

Decision - A Boolean expression composed of conditions and zero or more Boolean operators. A decision without a Boolean operator is a condition. If a condition appears more than once in a decision, each occurrence is a distinct condition. [1]

Decision Coverage - Every point of entry and exit in the program has been invoked at least once and every decision in the program has taken on all possible outcomes at least once. [1]

Declared type - The type associated with a name (such as a variable, constant or parameter) at its point of declaration. The run-time type of any associated object must be a subtype of its declared type. [2]

Delegation - The implementation of an operation by means of a call to an equivalent operation on a component object (the delegate). Delegation can be used as an alternative to implementation inheritance. Contrast: inheritance. [2]

Derived requirements - Additional requirements resulting from the software development processes, which may not be directly traceable to higher level requirements. [1]

Derived type - A type derived for specialization from another type. The derived type is a specialization from the conceptual point of view and may be an expansion from the structural point of view. [4]

Design pattern XE "pattern" - A documented solution to a commonly encountered design problem. In general, a design pattern presents a problem, followed by a description of its solution in a given context and programming language. [2]

Designee - An industry representative that has been authorized by the FAA to make findings of compliance on behalf of the FAA.
Destructor - An operation that frees the state of an object and/or destroys the object itself. [8]

Dynamic binding - See: dynamic dispatch XE "dynamic dispatch" .

Dynamic classification - A semantic variation of generalization in which an object may change its classifier. Contrast: static classification. Using dynamic classification, the class XE "class" of an object may change during its lifetime. Using static classification, it may not. [2], [16]

Dynamic dispatch XE "Dynamic dispatch" - The association of a method with a call based on the run-time type of the target object. Dynamic dispatch is not related to dynamic linking XE "dynamic linking" or dynamic link libraries. Synonym: dynamic binding XE "dynamic binding" . [2]

Dynamic loading (of classes) - The loading of classes dynamically (at run-time) when they are first referenced by an application. The desktop Java XE "Java" environment, for example, provides a class XE "class" loader capable of finding and loading a named class appearing in any of a prescribed list of locations, which may be either local or remote. In real-time systems, class loading is generally not supported or permitted.
Emulator - A device, computer program, or system that accepts the same inputs and produces the same output as a given system using the same object code. [1]

Equivalence class XE "class" - The partition of the input domain of a program such that a test of a representative value of the class is equivalent to a test of other values of the class. [1]

Error - With respect to software, a mistake in requirements, design or code. [1]

Executable Object Code - Consists of a form of Source/Object Code that is directly usable by the central processing unit of the target computer and is, therefore, the software that is loaded into the hardware or system. [1]

Explicit type conversion - Conversion of a value from its type to a designated type by use of a conversion routine.

Failure - The inability of a system or system component to perform a required function within specified limits. A failure may be produced when a fault is encountered. [1]

Failure condition - The effect on the aircraft and its occupants both direct and consequential, caused or contributed to by one or more failures, considering relevant adverse operational and environmental conditions. A failure condition is classified according to the severity of its effect as defined in FAA AC 25.1309-1A or JAA AMJ 25.1309. [1]

Fault - A manifestation of an error in software. A fault, if it occurs, may cause a failure. [1]

Fault tolerance - The built-in capability of a system to provide continued correct execution in the presence of a limited number of hardware or software faults. [1]

Feature - An attribute, operation, or method. This includes attributes that reference other objects (i.e., association ends). Features correspond to methods and fields in Java, methods and member functions in C++, and subprograms and record fields in Ada 95.

Flattened class XE "class" - The flattened form XE "flattened form" of a class is a self contained module representing the composition of its elements with those inherited by it, taking into account the rules for inheritance associated with the language. Inherited elements appear in the flattened class if: 1) they are defined by a superclass XE "superclass" and never overridden, or 2) they are defined by a superclass and referenced by some other element that is not overridden. Some languages (e.g., Eiffel XE "Eiffel") allow you to print the flattened form of a class interface. This is useful to clients because it specifies the full client interface, eliminating the need to refer to superclass definitions. [12]

Flow analysis - A term encompassing both control flow analysis and data flow analysis. [2]

Formal analysis - A type of analysis with a range of acceptable approaches, some of which are only minimally formal (assertions are specified in a reasonably precise manner), others of which are highly formal (involve use of formal specification languages and supporting tools). The former would involve writing assertions in some agreed upon, reasonably precise form, and some simple inspections (involving checking of signatures and pre-/post-conditions) where the basis for the checks is formal, but no training in formal methods is required and no formal methods tools need be used. The latter would involve formal methods to provide an automated approach with more precise, more completely specified assertions that serve as the basis for model checking and other forms of analysis.
Formal methods - Descriptive notations and analytical methods used to construct, develop, and reason about mathematical models of system behavior. [1]

Framework - A framework is a partially completed software application, which has a set of related classes that can be specialized and/or instantiated to implement the application. Since the UML XE "UML" is a formally defined language, some of the existing visual modeling XE "visual modeling" tools use existing frameworks XE "frameworks" to help the coder/developer generate complete applications from UML models.

Generalization XE "Generalization" - A taxonomic relationship between a more general element and a more specific element. The more specific element is fully consistent with the more general element and contains additional information. An instance of the more specific element may be used where the more general element is allowed. See: inheritance. [16]

Generic - In an Ada XE "Ada" program, a generic is a unit that allows the same logical function on more than one type of data.

Hard real-time system - A real-time system in which lateness is not accepted under any circumstance. [6]

Hardware/software integration - The process of combining the software into the target computer. [1]

High-level requirements - Software requirements developed from analysis of system requirements, safety-related requirements, and system architecture. [1]

Host computer - The computer on which the software is developed. [1]

Immutable - Incapable of being changed. Immutable objects represent values whose state cannot be changed (e.g., the string literal “ABC” or the integer literal “4”). Immutable values, however, may be combined to produce new values. The string “ABC”, for example, may be concatenated with the string “DEF” to produce a new immutable string value “ABCDEF”. See: data type, datatype.
Implementation - A definition of how something is constructed or computed. For example, a class XE "class" is an implementation of a type, a method is an implementation of an operation. [16]

Implementation inheritance - The inheritance of the implementation of a more specific element. Includes inheritance of the interface. Contrast: interface inheritance XE "interface inheritance" . Unlike interface inheritance, the inherited elements are more than specifications. They contribute to the executable object code. [2], [16]

Implicit type conversion - A type conversion generated by the compiler as the result of an association between variables of different types, resulting in a value being converted to an expected type based on context.

Independence - Separation of responsibilities which ensures the accomplishment of objective evaluation. (1) For software verification process activities, independence is achieved when the verification activity is performed by a person(s) other than the developer of the item being verified, and a tool(s) may be used to achieve an equivalence to the human verification activity. (2) For the software quality assurance process, independence also includes the authority to ensure corrective action. [1]

Inheritance - A mechanism by which more specific elements incorporate (inherit) the structure and behavior of more general elements. Inheritance can be used to support generalization, or misused to support only code sharing XE "code sharing" , without attempting to follow behavioral subtyping XE "subtyping" rules. See: generalization, Liskov substitution principle XE "Liskov substitution principle" . [16]

Inheritance hierarchy XE "hierarchy" - See: class XE "class" hierarchy.

Inherited element - An element of a class XE "class" inherited by its subclasses. In UML XE "UML" , inherited elements include operations, methods, associations, and constraints involving classes.

Inline - A command used in Java XE "Java" , Ada XE "Ada" , and C++ XE "C++" to hint to the compiler that expansion of a method body within the code of a calling method is to be preferred to the usual call implementation. For all of these languages, the compiler can follow or ignore the recommendation to inline. [2]

Instance - An entity to which a set of operations can be applied and which has a state that stores the effects of the operations. See: object. [2]

Integral process - A process which assists the software development processes and other integral processes and, therefore, remains active throughout the software life cycle. The integral processes are the software verification process, the software quality assurance process, the software configuration management process, and the certification liaison process. [1]

Integrator - The manufacturer responsible for integrating a software component (e.g., a reusable software component) into the target computer and system with other software components. [3]

Interface – For object-oriented technology, an interface is a definition of the features accessible to clients of a class XE "class" . Interfaces are distinct from classes, which may also contain methods, associations and modifiable attributes.

Note:
The UML XE "UML" definition of interface differs slightly from that defined by Java XE "Java" in that Java interfaces may contain constant fields, while UML interfaces may contain only operations. [2]

Interface description data - Data that identifies the interface details of the reusable software component. It is provided by the reusable software component developer to the integrator and applicant. \ The interface description data should explicitly define what activities are required by the integrator and/or applicant to ensure that the reusable software component will function in accordance with its approval basis. [3]

Interface inheritance - The inheritance of the interface of a more specific element. Does not include inheritance of the implementation. Contrast: implementation inheritance. Unlike implementation inheritance, the inherited elements are only specifications. They are not contained in the executable object code. [2], [16]

Interrupt - A suspension of a task, such as the execution of a computer program, caused by an event external to that task, and performed in such a way that the task can be resumed. [1]

Invariant - A condition associated with a class XE "class" that is established when a new instance of the class is created and must be maintained by all its publicly accessible operations. As a result, the invariant is effectively a part of the pre-condition XE "precondition" and the post-condition XE "postcondition" of every such operation. It may be violated in the intermediate states that represent the execution of a given method so long as the operations of the object are properly synchronized and such violations are not externally observable. [2]

Liskov substitution principle XE "Liskov substitution principle" (LSP XE "LSP") - A set of subtyping XE "subtyping" rules that ensure that instances of a subclass XE "subclass" are substitutable for instances of all parent classes in every context in which they may appear. These rules go beyond the simple checking of signatures, taking into account the behavior of operations (as defined by their pre and post conditions) and the invariants defined by classes. Even if classes are not defined formally, the principle can be upheld by requiring the inheritance of test cases. [2] See: inheritance.
Logically unrelated types - Types are logically unrelated when one does not define a set of operations that is a subset of the other.

Low-level requirements - Software requirements derived from high-level requirements, derived requirements XE "derived requirements" , and design constraints from which source code can be directly implemented without further information. [1]

Macro-expansion - Full expansion of the code generated by the compiler for each instantiation of a template.

Maintenance code - Code residing in a airborne computer-based system that interfaces with an onboard maintenance computer or computer used by maintenance personnel. The function of this code is usually to report to the maintenance computer any problems detected during normal operations. [3]

Means of compliance - The intended method(s) to be used by the applicant to satisfy the requirements stated in the certification basis for an aircraft or engine. Examples include statements, drawings, analyses, calculations, testing, simulation, inspection, and environmental qualification. Advisory material issued by the certification authority is used if appropriate. [1]

Media - Devices or material which act as a means of transferal or storage of software, for example, programmable read-only memory, magnetic tapes or discs, and paper. [1]

Member Function - A method in C++. [17]

Memory device - An article of hardware capable of storing machine-readable computer programs and associated data. It may be an integrated circuit chip, a circuit card containing integrated circuit chips, a core memory, a disk, or a magnetic tape. [1]

Memory usage analysis - See: other memory usage analysis and stack usage analysis.

Message - In object-oriented programming, the invocation of an operation is referred to as a message, i.e., a message that identifies the operation being called and provides argument values for associated parameters.

Method - The implementation of an operation. A method specifies the algorithm or procedure associated with an operation. A method corresponds to a subprogram with a body in Ada 95, to a member function with a body in C++ XE "C++" , and to a concrete method in Java XE "Java" . See: operation. [2], [16] Contrast: multimethod.

Modified Condition/Decision Coverage - Every point of entry and exit in the program has been invoked at least once, every condition in a decision in the program has taken all possible outcomes at least once, every decision in the program has taken all possible outcomes at least once, and each condition in a decision has been shown to independently affect that decision's outcome. A condition is shown to independently affect a decision's outcome by varying just that condition while holding fixed all other possible conditions. [1]

Monitoring - (1) [Safety] Functionality within a system which is designed to detect anomalous behavior of that system. (2) [Quality Assurance] The act of witnessing or inspecting selected instances of test, inspection, or other activity, or records of those activities, to assure that the activity is under control and that the reported results are representative of the expected results. Monitoring is usually associated with activities done over an extended period of time where 100% witnessing is considered impractical or unnecessary. Monitoring permits authentication that the claimed activity was performed as planned. [1]

Multimethod - A method invoked using multiple dispatch. Multimethods differ from ordinary methods in that the run-time classes of all parameters (rather than only the target object) are considered when selecting the method to be executed at the point of call. See: method.
Multiple dispatch - Dynamic dispatch XE "Dynamic dispatch" based on the run-time types of all the arguments to a call, rather than only the run-time type of the target object. Contrast: single dispatch. [2]

Multiple inheritance XE "Multiple inheritance" - A semantic variation of generalization in which a type (a class XE "class") may have more than one supertype (superclass XE "superclass"). Contrast: single inheritance XE "single inheritance" . [16]

Multiple-version dissimilar software - A set of two or more programs developed separately to satisfy the same functional requirements. Errors specific to one of the versions are detected by comparison of the multiple outputs. [1]

Non-virtual - A C++ XE "C++" keyword that specifies that a given member function may be overridden in subclasses and calls to it are resolved at compile time (static binding).

Object - An entity with a well-defined boundary and identity that encapsulates state and behavior. State is represented by attributes and relationships; behavior is represented by operations, methods, and state machines. An object is an instance of a class XE "class" . See: class, instance. [16]

Object Code - A low-level representation of the computer program not usually in a form directly usable by the target computer but in a form which includes relocation information in addition to the processor instruction information. [1]

Object Management Group XE "Object Management Group" (OMG XE "OMG") - A standards body for the object-oriented development community. The membership includes all major object-oriented tool vendors, many companies offering OO training and consulting services, many companies offering COTS software, and many end users of OO technology, including several of the members of AVSI XE "AVSI" . The OMG defines interface standards for distributed object communication (e.g., CORBA) and for OO modeling tools (e.g., UML XE "UML"). [2]

Object-oriented (OO) - (1) the use of classes to support encapsulation XE "encapsulation" , (2) the use of inheritance of interfaces to support subtyping XE "subtyping" , (3) the use of inheritance of implementation (state and code) to support subclassing, and (4) the use of dynamic dispatch XE "dynamic dispatch" (virtual method invocation) to support polymorphism XE "polymorphism" and the inheritance of code. [2]

Operation - A service that can be requested of an object. An operation has a signature, which may restrict the actual parameters that are possible. An operation corresponds to a subprogram declaration in Ada 95, to a function member declaration in C++ XE "C++" , and to an abstract method declaration in Java XE "Java" . It does not define an associated implementation. See method. [2], [16]

Other memory usage XE "memory usage" analysis - Analysis related to the sharing of resources between different software ‘partitions’. These forms of analysis include, but are not limited to, memory (heap), input/output (I/O) ports, and special purpose hardware, which perform specific computations or watchdog timer functions. [5]

Overloading XE "Overloading" - Use of the same name for different operators or behavioral features (operations or methods) visible within the same scope.

Overriding - The redefinition of an operation or method in a subclass XE "subclass" . [2]

Parameter - The specification of a variable that can be changed, passed, or returned. A parameter may include a name, type, and direction. Parameters are used for operations, messages, and events. [16] See: argument.
Parent - In an inheritance relationship, the generalization of another element, producing the child. See: superclass XE "superclass" , supertype. Contrast: child, subclass XE "subclass" , subtype. Child classes inherit from their parent classes. Similarly, subclasses inherit from their superclasses. [2], [16]

Part number - A set of numbers, letters or other characters used to identify a configuration item. [1]

Partitioning - See: software partitioning.
Patch - A modification to an object program, in which one or more of the planned steps of re-compiling, re-assembling or re-linking is bypassed. This does not include identifiers embedded in the software product, for example, part numbers and checksums. [1]

Pattern - A documented solution to a commonly encountered analysis or design problem. Each pattern XE "pattern" documents a single solution to the problem in a given context. [2] See: process pattern.
Polymorphism - A concept in type theory, according to which a name (such as a variable) may denote objects of many different classes that are related by some common superclass XE "superclass" ; thus, any object denoted by this name is able to respond to some common set of operations in different ways. [8]

Post-condition - A constraint that must be true at the completion of an operation. [16]

Pre-condition - A constraint that must be true when an operation is invoked. [16]

Process - A collection of activities performed in the software life cycle to produce a definable output or product. [1]

Process pattern XE "pattern" - A documented solution to a problem with the software development process. A process pattern presents the problem, followed by a description of its solution in a given context. [2] See: pattern.

Product service history XE "service history" - A contiguous period of time during which the software is operated within a known environment, and during which successive failures are recorded. [1]

Proof of correctness - A logically sound argument that a program satisfies its requirements. [1]

Range checking - The verification that data values lie within specified ranges and maintain a specified accuracy. Range checking includes, but is not limited to, overflow and underflow analysis, the detection of rounding errors, range checking, and the checking of array bounds. [5]

Real-time system - A system that responds in a (timely) predictable way to unpredictable external stimuli arrivals. A real-time system has to fulfill under extreme load conditions including:

· timeliness: meet deadlines, it is required that the application has to finish certain tasks within the time boundaries it has to respect;

· simultaneity or simultaneous processing: more than one event may happen simultaneously, all deadlines should be met;

· predictability: the real-time system has to react to all possible events in a predictable way; and

· dependability or trustworthiness: it is necessary that the real-time system environment can rely on it. [6]

Relationship - A semantic connection among model elements. Examples of relationships include associations and generalizations. [16]

Release - The act of formally making available and authorizing the use of a retrievable configuration item. [1]

Repeated inheritance - The inheritance of an element via more than one path through the inheritance hierarchy XE "hierarchy" .

Requirements-based testing - (1) Testing performed using test cases and procedures developed to confirm that the software performs its intended function as specified by its requirements. Requirements-based testing includes both normal range test cases, and robustness (abnormal range) test cases. The test cases are to be developed from the software requirements and the errors sources inherent in the software development process. [1] (2) Testing performed with the objective of showing that the actual behavior of the program is in accordance with its requirements. Two common methods are cited for conducting requirements-based testing: equivalence class XE "class" testing, and boundary value testing. [5] The use of the term in this Handbook is intended to encompass both definitions.
Requirements, Design, and Code Standards (R-D-C Standards) - Guidelines used to control, develop, and review software requirements, design, and code. [1]

Reusable software component (RSC) - The software, its supporting RTCA/DO-178B XE "DO-178B" software life cycle data, and additional supporting documentation being considered for reuse. The component designated for reuse may be any collection of software, such as, libraries, operating systems, or specific system software functions. [3]

Reverse engineering - The method of extracting software design information from the source code. [1]

Robustness - The extent to which software can continue to operate correctly despite invalid inputs. [1]

Run-time type/class XE "class" - The type/class associated with an object at run-time (e.g., when the object is first created). In Ada 95, this is the tag associated with objects of a tagged type. [2]

Scalar types - A type that defines a variable containing a single value at run-time. A scalar type is either a discrete type or a real type. The values of a scalar type are ordered.
Signature - The name and parameter types of an operation or method. A signature may include an optional returned parameter type (depending upon the target language). [16]

Simple dispatch - A restricted form of single dispatch, in which (a) all calls other than method extensions are dispatching, and (b) dispatch is semantically equivalent to invocation of a dispatch routine containing a case statement. [2]

Simulator - A device, computer program, or system used during software verification, that accepts the same inputs and produces the same output as a given system, using object code which is derived from the original object code. [1]

Single dispatch XE "Single dispatch" - Dynamic dispatch XE "Dynamic dispatch" based on only the run-time type of the target object. Most OO languages, including Java XE "Java" , Ada 95 and C++ XE "C++" are single dispatching. Contrast: multiple dispatch. [16]

Single inheritance XE "Single inheritance" - A semantic variation of generalization in which a type (a class XE "class") may have only one supertype (superclass XE "superclass"). Contrast: multiple inheritance XE "multiple inheritance" . [16]

Software - Computer programs and, possibly, associated documentation and data pertaining to the operation of a computer system. [1]

Software architecture - The structure of the software selected to implement the software requirements. [1]

Software change - A modification in source code, object code, executable object code, or its related documentation from its baseline. [1]

Software integration - The process of combining code components. [1]

Software level - One of the software levels defined by DO-178B XE "DO-178B" , section 2.2.2. Software level is based upon the contribution of software to potential failure conditions as determined by the safety assessment process. [1]

Software library - A controlled repository containing a collection of software and related data and documents designed to aid in software development, use or modification. Examples include software development library, master library, production library, program library and software repository. [1]

Software life cycle - (1) An ordered collection of processes determined by an organization to be sufficient and adequate to produce a software product. (2) The period of time that begins with the decision to produce or modify a software product and ends when the product is retired from service. [1]

Software partitioning - The process of separating, usually with the express purpose of isolating one or more attributes of the software, to prevent specific interactions and cross-coupling XE "coupling" interference. [1]

Software product - The set of computer programs, and associated documentation and data, designated for delivery to a user. In the context of DO-178B XE "DO-178B" , this term refers to software intended for use in airborne applications and the associated software life cycle data. [1]

Software requirement - A description of what is to be produced by the software given the inputs and constraints. Software requirements include both high-level requirements and low-level requirements. [1]

Software tool - A computer program used to help develop, test, analyze, produce or modify another program or its documentation. Examples are an automated design tool, a compiler, test tools and modification tools. [1]

Source code - Code written in source languages, such as assembly language and/or high level language, in a machine-readable form for input to an assembler or a compiler. [1]

Stack usage analysis - A form of shared resource analysis that establishes the maximum possible size of the stack required by the system and whether there is sufficient physical memory to support this stack size. Some compilers use multiple stacks, and this form of analysis is required for each stack. Potential stack-heap allocation collisions, when these forms of storage compete for the same space, are also included. [5]

Standard - A rule XE "rule" or basis of comparison used to provide both guidance in and assessment of the performance of a given activity or the content of a specified data item. [1]

State - A condition or situation during the life of an object during which it satisfies some condition, performs some activity, or waits for some event. [16]

Statement coverage - Every statement in the program has been invoked at least once. [1]

Static analyzer - A software tool that helps reveal certain properties of a program without executing the program. [1]

Static binding - With regard to calls to operations, the ability to associate a particular method (implementation of an operation) with a particular call to that operation at compile time.

Static classification - A semantic variation of generalization in which an object may not change [its] classifier. Contrast: dynamic classification. Using dynamic classification, the class XE "class" of an object may change during its life time. Using static classification, it may not. [2], [16]

Strongly typed - A characteristic of a programming language, according to which all expressions are guaranteed to be type consistent. [8]

Strongly typed language - A strongly typed language associates a type with each data element (variable or expression), and ensures that only operations appropriate to that type are applied to the data element. Only meaningful conversions between logically related types are permitted. A subset of a language may be considered strongly typed, even if the full language is not.

Structural coverage - A software-program method of determining the adequacy of the extent of the verification accomplished in the composition/decomposition of the software program.

Structural coverage analysis - An analysis that (1) determines which software structures and code structures were not exercised by the requirements-based test procedures; and (2) provides traceability XE "traceability" between the implementation of the software requirements in the code structure and the verification of those requirements via test cases. [1]

Structure - A specified arrangement or interrelation of parts to form a whole. [1]

Subclass - In a generalization relationship, the specialization of another class XE "class" ; the superclass XE "superclass" (parent). See: generalization, child. Contrast: superclass, parent.

Note: “subclass XE "subclass" ” and “child” are used interchangeably in object-oriented development. [16]

Subinterface - A subclass XE "subclass" /subtype that is an interface (defines no methods, associations, or modifiable attributes). See: interface.

Substitutability - With regard to subtyping, the ability to substitute an instance of a given subtype for an instance of one of its supertypes in any context in which the supertype instance may appear (see also Liskov substitution principle XE "Liskov substitution principle" (LSP), which defines a set of typing rules intended to guarantee substitutability).

Substitution - With regard to subtyping, the replacement of an instance of a subtype with an instance of one of its supertypes.

Subtype - In a generalization relationship, the specialization of another type; the supertype. See: generalization. Contrast: supertype. [2], [16]

Superclass - In a generalization relationship, the generalization of another class XE "class" ; the subclass XE "subclass" . See: generalization, parent. Contrast: subclass, child.
Note: “superclass XE "superclass" ” and “parent” are used interchangeably in object-oriented development. [16]

Superinterface - A superclass XE "superclass" /supertype that is an interface (defines no methods, associations, or modifiable attributes). See: interface.

Supertype - In a generalization relationship, the generalization of another type; the subtype. See: generalization. Contrast: subtype. [16]

System - A collection of hardware and software components organized to accomplish a specific function or set of functions. [1]

System architecture - The structure of the hardware and software selected to implement the system requirements. [1]

System safety assessment - An ongoing, systematic, comprehensive evaluation of the proposed system to show that relevant safety-related requirements are satisfied. [1]

System safety assessment process - Those activities which demonstrate compliance with airworthiness requirements and associated guidance material, such as, JAA AMJ/FAA AC 25.1309. The major activities within this process include: functional hazard assessment, preliminary system safety assessment, and system safety assessment. The rigor of the activities will depend on the criticality, complexity, novelty, and relevant service experience of the system concerned. [1]

Target computer - The physical processor that will execute the program while airborne. [3]

Target computer environment - The target computer and all its support hardware and systems needed to function in its actual airborne environment. [3]

Target environment - See: target computer environment. [3]

Target object - The object that is the target of a method call [most often written targetObject.methodName (argumentList);]. Dynamic dispatch XE "Dynamic dispatch" typically involves selection of a method based on the declared types of the arguments and the run-time type of the target object. [2]

Task - The basic unit of work from the standpoint of a control program. [1]

Template - A parameterized model element with unbound (formal) parameters that must be bound to actual (type) parameters before it can be used. At a target language level, templates correspond to Ada XE "Ada" generics and to C++ XE "C++" templates. [2]

Template class XE "class" - A parameterized class. Template classes are implemented as generic packages in Ada XE "Ada" , and to template classes in C++ XE "C++" . Java XE "Java" does not currently support parameterized class definitions. [2]

Template operation - A parameterized operation or method. Template operations are referred to as generic subprograms in Ada XE "Ada" , and as template member functions in C++ XE "C++" . Java XE "Java" does not currently support parameterized class XE "class" definitions. [2]

Test case - A set of test inputs, execution conditions, and expected results developed for a particular objective, such as to exercise a particular program path or to verify compliance with a specific requirement. [1]

Testing - The process of exercising a system or system component to verify that it satisfies specified requirements and to detect errors. [1]

Test procedure - Detailed instructions for the set-up and execution of a given set of test cases, and instructions for the evaluation of results of executing the test cases. [1]

Timing analysis - A form of analysis to establish the temporal properties of the input/output dependencies. A common and important aspect of this analysis is the worst-case execution time for the correct behavior of the overall system. Certain languages offer features that make timing analysis XE "timing analysis" difficult, e.g., loops without static upper bounds and the manipulation of dynamic data structures. [5]

Tool qualification - The process necessary to obtain certification credit for a software tool within the context of a specific airborne system. [1]

Traceability XE "Traceability" - The evidence of an association between items, such as between process outputs, between an output and its originating process, or between a requirement and its implementation. [1]

Transition criteria - The minimum conditions, as defined by the software planning process, to be satisfied to enter a process. [1]

Type - The concepts of type and class XE "class" are in general distinguished, with a type representing an abstraction XE "abstraction" implemented by one or more classes. In most of the classical object-oriented programming languages this distinction is not performed. [4] In UML XE "UML" and languages such as Java XE "Java" , however, a distinction is made between interface types (abstractions) and class types, which implement them.

Type conversion - The act of producing a representation of some value of a target type from a representation of some value of a source type. Type conversion is used to resolve mismatched types in assignments, expressions, or when passing parameters. Type conversions may be either implicit or explicit. With implicit type conversion XE "implicit type conversion" the compiler is given the responsibility for determining that a conversion is required and how to perform the conversion. With explicit type conversion XE "explicit type conversion" the programmer assumes the responsibility. Synonym: conversion.
Unchecked type conversion - Types are unchecked if conversion from one type to the other does not include a determination either at compiler time or run-time as to whether they are normally convertible.
Unified Modeling Language XE "Unified Modeling Language" (UML XE "UML") - A language for specifying, visualizing, constructing, and documenting the artifacts of software systems, as well as for business modeling. The UML represents a collection of best engineering practices that have proven successful in the modeling of large and complex systems. [16]

Use case - The specification of a sequence of actions, including variants, that a system (or other entity) can perform, interacting with actors of the system. [16]

Validation - The process of determining that the requirements are the correct requirements and that they are complete. The system life cycle process may use software requirements and derived requirements XE "derived requirements" in system validation. [1]

Variables - Named memory locations that contain data that may change during software execution.

Verification - The evaluation of the results of a process to ensure correctness and consistency with respect to the inputs and standards provided to that process. [1]

Virtual - For C++, “virtual” is a XE "C++" keyword that specifies a given method (member function) may be overridden in subclasses, and that calls to it are dispatching.

Weakly typed - Strict enforcement of type rules but with well-defined exceptions or an explicit type-violation mechanic, e.g., operations on a data element are not restricted to those defined for its logical type (Booleans can be added to one another), or automatic conversions between logically unrelated types are permitted with no change in data representation (integer values are converted to floating point values). Contrast: strongly typed.

Weakly typed language - A programming language or modeling language that is weakly typed. Contrast: strongly typed language.

1.6 OOTiA Workshops

NASA and FAA sponsored two OOTiA XE "OOTiA" workshops for the purposes of:

· Identifying safety and certification issues related to using OOT XE "OOT" ;

· Coordinating and communicating with industry, government, and academia on OOT XE "OOT" ; and

· Working together to establish positions on the key OOT XE "OOT" issues.

The workshops were led and coordinated by a workshop committee and were attended by international representatives from government, industry, and academia (see section 1.6.1 for a list of workshop committee members and sections 1.6.2 and 1.6.3 for lists of workshop participants). OOTiA XE "OOTiA" Workshop #1 was held in April 2002 and was followed by Workshop #2 in March 2003.

1.6.1 Workshop Committee

	Participant
	Affiliation

	J. Chilenski
	Boeing Commercial Airplanes

	G. Daugherty
	Rockwell Collins, Inc.

	K. Hayhurst
	NASA Langley Research Center

	C. Kilgore
	FAA Technical Center (AAR-470)

	J. Knickerbocker
	Sunrise Certification & Consulting, Inc.

	J. Lewis
	FAA Headquarters (AIR-120)

	B. Lingberg
	FAA Headquarters (AIR-120)

	S. Obeid
	embeddedPlus Engineering

	B. Ocker
	FAA Chicago Aircraft Certification Office (ACE-117C)

	T. Rhoads
	Goodrich

	L. Rierson
	FAA Chief Scientific and Technical Advisor (AIR-106N)

	W. Schultz
	Honeywell

	W. Struck
	FAA Transport Directorate (ANE-111)

	D. Wallace
	FAA Ft. Worth Aircraft Certification Office (ASW-170)

1.6.2 Participants in Workshop #1

	Participant
	Affiliation

	K. Achenbach
	Rolls-Royce Corporation

	M. Almesåker
	Saab AB Sweden

	J. Angermayer
	MITRE

	J. Auld
	NovAtel Inc.

	I. Baxter
	Semantic Designs

	A. Bell
	The Boeing Company

	D. Bernier
	Rockwell Collins

	B. Bianchi
	Ametek

	B. Bogdan
	Computer Science Corporation

	M. Brennan
	Applied Microsystems

	D. Brown
	Rolls-Royce plc

	V. Brown
	Honeywell, Inc.

	R. Butler
	NASA Langley Research Center

	B. Calloni
	Lockheed Martin Aeronautics Company

	R. Calloway
	NASA Langley Research Center

	S. Chappell
	Computer Science Corporation

	J. Chelini
	Verocel, Inc.

	J. Chilenski
	Boeing Commercial Airplanes

	M. Christie
	Universal Avionics Systems Corporation

	J. Coleman
	Hamilton Sundstrand

	O. Collins
	Raytheon - IATC

	M. Consiglio
	ICASE

	M. Cors
	Goodrich Avionics Systems

	J. Daly
	TRW (Aeronautical Systems)

	G. Daugherty
	Rockwell Collins, Inc.

	R. Deal
	Honeywell

	D. DeHoff
	Raytheon Technical Services Company

	M. DeWalt
	Certification Services, Inc.

	V. Dovydaitis
	Foliage Software Systems, Inc.

	P. Dunn
	Northrop Grumman Commercial Nav Systems

	G. Edmands
	The MITRE Corporation

	E. Edora
	Solers, Inc.

	C. Erwin
	FAA Wichita Aircraft Certification Office (ACE-115)

	T. Ferrell
	FAA Consulting

	U. Ferrell
	FAA Consulting

	G. Finelli
	NASA Langley Research Center

	S. Fischer
	LITEF GmbH, Germany

	L. Framarini
	BAE Systems

	D. Geis
	Goodrich Avionics Systems

	G. Graessle
	Honeywell, Intl.

	S. Grainger
	Marinvent Corporation

	M. Gulick
	Solers, Inc.

	T. Hammer
	Honeywell

	K. Hayhurst
	NASA Langley Research Center

	M. Haynes
	Marinvent Corporation

	R. Hirt
	Raytheon Aircraft Company

	M. Holloway
	NASA Langley Research Center

	G. Horan
	FAA Engine Directorate (ANE-110)

	M. Isaacs
	FAA Mike Monroney Aeronautical Center (AOS-240)

	D. Johnson
	Astronautics Corporation of America

	R. Johnson
	Bell Helicopter

	M. Jones
	NovAtel Inc.

	G. Kelly
	Honeywell

	C. Kilgore
	FAA Technical Center (AAR-421)

	J. Klein
	Lockheed Martin Air Traffic Management

	J. Knickerbocker
	Sunrise Certification & Consulting, Inc.

	J. Knight
	University of Virginia

	T. Lambregts
	FAA Chief Scientific and Technical Advisor (ANM-113N)

	P. Lawrence
	Boeing

	J. Lee
	Boeing

	Y. Lee
	Arizona State University

	S. Leichtnam
	Computer Science Corporation

	J. Lewis
	FAA Headquarters (AIR-120)

	B. Lingberg
	FAA Headquarters (AIR-120)

	J. Masalskis
	Boeing

	J. Mason
	Boeing

	G. Millican
	Honeywell

	J. Monagan
	Rockwell Collins

	J. Monfret
	BarcoView

	B. Moody
	USAF

	B. Newman
	Astronautics Corporation of America

	S. Obeid
	embeddedPlus Engineering

	B. Ocker
	FAA Chicago Aircraft Certification Office (ACE-117C)

	A. Oswald
	MITRE/CAASD

	C. Paganoni
	SAIC

	M. Patel
	WPAFB

	G. Pavlin
	Brightline Avionics GmbH

	L. Peckham
	NASA Langley Research Center

	T. Petroski
	Boeing

	M. J. Peuser
	Honeywell

	C. Pohlman
	Lockheed Martin Aeronautics Company

	G. Putsche
	Boeing

	H. Quach
	Lockheed Martin Corporation

	R. Rader
	Lockheed Martin

	R. Randall
	Boeing Wichita Modification & Maintenance Center

	T. Reeve
	Patmos Engineering Services

	T. Rhoads
	Goodrich FUS

	W. Rieger
	Boeing

	L. Rierson
	FAA Chief Scientific and Technical Advisor (AIR-106N)

	K. Rigby
	BAE Systems

	B. Rivet
	Hamilton Sundstrand

	D. Robinson
	FAA Headquarters (AIR-130)

	C. Rosay
	JAA-CEAT

	T. Roth
	Honeywell International Inc.

	V. Santhanam
	Boeing Wichita Development & Modification Center

	T. Schavey
	Smiths Aerospace

	S. M. Schedra
	Wind River Systems, Inc.

	W. Schultz
	Honeywell International

	M.l Smith
	Ametek

	F. Sogandares
	MITRE/CAASD

	M. Sonnek
	Honeywell

	R. Souter
	FAA Wichita Aircraft Certification Office (ACE-116W)

	C. Spitzer
	AvioniCon

	E. Startzman
	Boeing Wichita Development & Modification Center

	D. Stephens
	Boeing

	W. Struck
	FAA Transport Directorate (ANM-111)

	D. Sungenis
	Computer Science Corporation

	A. Theodore
	UNITECH

	H. Thomas
	Honeywell, Inc.

	M. Valentin
	Airbus France

	J. Van Leeuwen
	United Technologies - Sikorsky Aircraft

	D. Wallace
	FAA Ft. Worth Aircraft Certification Office (ASW-170)

	D. Woodward
	BAE Systems

	P. Wright
	Boeing

1.6.3 Participants in Workshop #2

	Participant
	Affiliation

	G. Adams
	Lockheed Martin Aero

	J. Angermayer
	The MITRE Corp.

	J. Auld
	NovAtel

	F. Barber
	Avidyne Corporation

	B. Bianchi
	Ametek

	T. Bihari
	AMT Systems Engineering, Inc.

	R. Bogdan
	Computer Sciences Corporation

	F. Bortkiewicz
	The Boeing Company

	M. Brennan
	Metrowerks Corporation

	E. Brockway
	Lockheed Martin

	B. Brosgol
	Ada Core Technologies, Inc.

	D. Brown
	Rolls-Royce plc

	J. Burck
	Smiths Aerospace - Electronic Systems

	B. Cain
	METI

	J. Carlton
	Escher Technologies

	K. Carroll
	Lockheed Martin Aero

	P. Catlin
	Goodrich Avionics Systems, Inc.

	R. Chapman
	Praxis Critical Systems Limited

	R. Charley
	The Boeing Company

	J. Chelini
	Verocel, Inc.

	J. Chilenski
	The Boeing Company

	E. Chiuchiolo
	FAA

	K. Clegg
	University of York

	D. Coleman
	MDHI

	J. Coleman
	Hamilton Sundstrand

	M. Consiglio
	NASA Langley Research Center

	M. Cors
	Goodrich Avionics Systems

	D. Crocker
	Escher Technologies

	E. Danielson
	Rockwell Collins

	G. Daugherty
	Rockwell Collins

	T. Deaver
	Northrop Grumman

	L. Demeestere
	BarcoView

	M. DeWalt
	Certification Services, Inc.

	B. Dulic
	Transport Canada

	G. Edmands
	The MITRE Corporation

	C. Erwin
	FAA

	D. Fisher
	Ada Core Technologies, Inc.

	G. Frye
	FAA/AIR-130

	R. Fulton
	Honeywell

	E. Galiana
	CMC Electronics

	D. Geis
	Goodrich Avionics Systems

	C. Gibson
	Honeywell

	F. Guay
	FWGC

	M. Gulick
	Solers, Inc.

	D. Hatfield
	FAA

	R. Hawkins
	University of York

	M. Hawthornthwaite
	Engenuity Technologies

	K. Hayhurst
	NASA Langley Research Center

	M. Haynes
	Marinvent Corporation

	B. Hendrix
	Lockheed Martin Aeronautics Company

	R. Hirt
	FAA

	T. Hofmann
	Diehl Avionik Systeme GmbH

	M. Holloway
	NASA Langley Research Center

	S. Hutchesson
	Rolls-Royce plc

	M. Jones
	NovAtel

	R. Key
	FAA

	J. Kilchert
	Diehl Avionik Systeme GmbH

	J. Knickerbocker
	Sunrise Certification and Consulting

	J. Knight
	University of Virginia

	P. La Pietra
	Honeywell

	T. Lambregts
	FAA

	J. D. Lawrence
	DRPM AAA

	J. Lewis
	FAA

	B. Lingberg
	FAA

	J. Liscouski
	BAE Systems

	P. Maneely
	Honeywell

	E. Mannisto
	Honeywell

	S. Matthews
	Avidyne Corporation

	D. Mayerhoefer
	Green Hills Software

	M. Mehlich
	Semantic Designs, Inc.

	B. Mierow
	Hamilton Sundstrand

	G. Millican
	Honeywell

	S. Morton
	Applied Dynamics International

	S. Obeid
	Embedded Plus Engineering

	J. Offutt
	George Mason University

	R. Oracheff
	Paragon Transportation LLC

	L. Peckham
	NASA Langley Research Center

	M. Peuser
	Honeywell

	S. Ray
	BAE Systems Controls

	T. Reeve
	Patmos Engineering. Services

	B. Reynolds
	Rockwell Collins

	T. Rhoads
	Goodrich

	W. Richter
	Gulfstream

	L. Rierson
	FAA

	B. Rivet
	Hamilton Sundstrand - UTC

	D. Robinson
	FAA

	C. Rosay
	JAA/CEAT

	T. Roth
	Honeywell

	W. Ryan
	FAA

	L. Schad-Alford
	The Boeing Company

	K. Schlatter
	Jeppesen

	E. Schonberg
	Ada Core Technologies, Inc.

	V. Shapiro
	AMTI

	T. Smith
	Air Traffic Software Architecture

	C. Spitzer
	AvioniCon

	R. Stanley
	Air Traffic Software Architecture

	E. Startzman
	The Boeing Company

	J. Steidl
	Astronautics Corporation of America

	E. Strunk
	University of Virginia

	T. Swinehart
	Goodrich Avionics Systems, Inc.

	B. Thedford
	Hanscom AFB

	A. Theodore
	Unitech

	L. Thompson
	Honeywell

	M. Valentin
	AIRBUS France

	J. Van Leeuwen
	Sikorsky Aircraft

	D. Wallace
	FAA

	P. Whiston
	High Integrity Solutions Ltd

	M. Whitehurst
	The Boeing Company

	A. Wils
	K.U. Leuven

	M. Wittman
	Honeywell

	D. Woodward
	BAE Systems

	P. Wright
	The Boeing Company

1.7 References
1. RTCA, Inc., Software Considerations in Airborne Systems and Equipment Certification, RTCA/DO-178B, December 1992, Washington, D.C.
2. Aerospace Vehicle Systems Institute XE "AVSI" . Guide to the Certification of Systems with Embedded Object-Oriented Software, version 1.5.
3. FAA AC 20-148, Reusable Software Components, final (unsigned) version dated August 3, 2004.

4. Laplante, Phillip A (editor). Dictionary of Computer Science, CRC Press LLC, 2001.

5. Guidance for the Use of Ada XE "Ada" in High Integrity Systems, ISO/IEC TR 15942:2000 see http://isotc.iso.ch/livelink/livelink/fetch/2000/2489/Ittf_Home/ITTF.htm.
6. Dedicated Systems Encyclopedia, available from http://www.dedicated-systems.com/encyc/techno/terms/defini/def.htm.
7. Object-Oriented Technology in Aviation Program website: http://shemesh.larc.nasa.gov/foot/.
8. Booch, Grady. Object-Oriented Analysis and Design. Addison-Wesley, 2nd edition, 1994.

9. “Glossary of Software Engineering Terminology.” ANSI/IEEE XE "IEEE" Standard, 1983.

10. Gomaa, Hassan. Software Design Methods for Concurrent and Real-time Systems. Addison-Wesley, 1993.

11. Hathaway, Bob. “Frequently Asked Questions on Object-Oriented.” Web site: http://www.cs.cmu.edu/Groups/AI/html/faqs/lang/oop/faq-doc-0.html.

12. Meyer, Bertrand. Object-Oriented Software Construction. Prentice Hall, 2nd edition, 1997.

13. Montlick, Terry. “What is Object-Oriented Software?” Web site: http://www.softwaredesign.com/.
14. Pressman, Roger. Software Engineering: A Practitioner’s Approach. McGraw Hill, 4th edition, 1997.

15. Schildt, Herbert. Teach Yourself C++ XE "C++" . McGraw Hill, 1998.

16. Object Management Group XE "Object Management Group" . OMG XE "OMG" Unified Modeling Language XE "Unified Modeling Language" Specification, version 1.3, June 1999, available from http://www.omg.org/technology/documents/vault.htm#modeling.
17. Liskov, Barbara and Jeanette Wing. “A Behavioral Notion of Subtyping,” ACM Transactions on Programming Languages and Systems, 16(6): 1811-1841, November 1994.

18. FOLDOC: Free Online Dictionary of Computing, http://foldoc.doc.ic.ac.uk.

1.8 Feedback Form

[image: image3.wmf]
U.S. Department

of Transportation

Federal Aviation

Administration

Feedback Information

Please submit any written comments or recommendations for improving this Handbook. You may also

suggest new items or subjects to be added. And, if you find an error, please tell us about it. Send to:

FAA, AIR-120, Room 815, 800 Independence Ave., S.W., Washington, DC 20591.

Subject:
Handbook for Object-Oriented Technology in Aviation XE "Object-Oriented Technology in Aviation" (OOTiA XE "OOTiA")

To: OOTiA Handbook POC,
FAA/AIR-120, Software Program Manager

(Please check all appropriate line items)

(An error has been noted in Volume __, section ______, paragraph _______, on page _______ .

(Recommend Volume __, section ______, paragraph _______ on page _______ be changed as follows:

 (attach separate sheet if necessary)
(In a future change to this Handbook, please include coverage on the following subject:

 (briefly describe what you want added):
(Other comments:

(I would like to discuss the above. Please contact me.

Submitted by: __ Date: _________________

Phone: ____________________ Address: __

Email: ____________________ Routing Symbol (if applicable): ______________________

Volume 4:

Certification Practices

Volume 3: Best Practices

Handbook for Object-Oriented Technology in Aviation (OOTiA)

This Handbook does not constitute Federal Aviation Administration (FAA) policy or guidance, nor is it intended to be an endorsement of object-oriented technology (OOT). This Handbook is not to be used as a standalone product but, rather, as input when considering issues in a project-specific context.

Volume 2: Considerations and Issues

Volume 1: Handbook Overview

� The glossary definitions from RTCA/DO-178B� XE "DO-178B" � are used with permission of RTCA.

PAGE
This Handbook does not constitute Federal Aviation Administration (FAA) policy or guidance nor is it intended to be an endorsement of OOT. This Handbook is not to be used as a standalone product but, rather, as input when considering issues in a project-specific context.

_1144048783.ppt

Class Name

Attributes:

Operations:

_1144048993.ppt

Identify user

requirements

(use cases)

Identify classes

(attributes &

operations) (CRC)

Specify class

hierarchy

(CRC)

Identify object-

to-object

relationships (OR)

Model object

 behavior (OB)

Reapply as needed

_1003152106

_1134201705.doc
[image: image1.png]

