AC 150/5300-13B, Airport Design, Taxiway Fillet Design Tool

User’s Guide
Table of Contents

1 INTRODUCTION ... 3
 1.1 Purpose of this Guide. .. 3
 1.2 Tool Overview ... 3
 1.3 Tool Accuracy ... 4
 1.4 Terminology ... 4

2 USING THE TOOL .. 6
 2.1 Prior to Using the Tool. .. 6
 2.2 Getting Started. ... 9
 2.2.1 General Notes. ... 6
 2.2.2 Opening the Tool ... 7
 2.2.3 Tool Features .. 8
 2.2.4 Status Messages ... 9
 2.3 Steps for Using the Tool. .. 9
 2.3.1 TDG. ... 9
 2.3.2 Delta. ... 10
 2.3.3 Minimum Recommended R-CL and R-Fillet. ... 10
 2.3.4 Edge Light Offset. ... 11
 2.3.5 RVR. ... 12
 2.3.6 Design Curve. .. 12
 2.3.7 Create DXF File. ... 14
 2.3.8 Exiting the Tool. ... 14
 2.3.9 Viewing the DXF File. .. 15
 2.4 Sample Scenarios .. 17
 2.4.1 Example One. ... 17
 2.4.2 Example Two. ... 20
1 INTRODUCTION

1.1 Purpose of this Guide.
This User's Guide provides the steps for operating the Taxiway Fillet Design Tool. If you have suggestions for improving this User's Guide or the Taxiway Fillet Design Tool, you may use the Feedback Form at the end of this document.

1.2 Tool Overview.
The Advisory Circular (AC) 150/5300-13, Airport Design, provides dimensions necessary to lay out taxiway turns of what we call "common" angles (deltas). These angles are 30, 45, 60, 90, 120, 135, and 150 degrees. But in many cases, a turn of a different delta may be upgraded to the new standards based on Taxiway Design Group (TDG), or it may be necessary to build a new taxiway turn with a different delta.

To help in those situations, the Office of Airport Safety and Standards, Engineering Division (AAS-100) has developed computer software that calculates the minimum recommended centerline radius. For deltas of 90 degrees or more, the centerline radius is calculated to limit the nose gear steering angle to 50 degrees. For lesser deltas, the centerline radius is chosen to maintain taxiing speed. In all cases, the tool calculates the pavement dimensions to ensure the required Taxiway Edge Safety Margin (TESM) and minimize excess pavement, and the locations of taxiway centerline and edge lights.

The FAA Taxiway Fillet Design Tool can be used to design the centerline radius and fillets for turns comprising all deltas between 5 and 175 degrees including centerline lights and, optionally, edge lights. With thousands of calculations running in the background, the Taxiway Fillet Design Tool accomplishes in minutes what would ordinarily take hours to achieve by hand.

Dimensions used in this tool, illustrated below, are keyed to AC 150/5300-13.
In addition to displaying pavement dimensions on the user’s computer screen, the program creates a computer-aided design (CAD) drawing in DXF format that can be imported by virtually any CAD software.

1.3 Tool Accuracy.
This tool is accurate only when the airplane is aligned with the taxiway centerline when entering the turn. The design of closely spaced turns, where the airplane is not aligned with the taxiway centerline when entering the second turn, requires the use of more sophisticated modeling software. An example of this situation often occurs at runway entrance taxiways, shown below.

Note: Because suggested centerline and edge lighting placement are calculated in the tool, the tool must also adhere to the guidance in AC 150/5340-30, Design and Installation Details for Airport Visual Aids. Calculations may be more accurate, or cover more scenarios, than the values listed in AC 150/5300-13 or AC 150/5340-30. Where the tool shows edge lights very close to one another, contact the appropriate FAA Airports office for guidance.

1.4 Terminology.

1. Cockpit to Main Gear Distance (CMG)
The distance from the pilot’s eye to the main gear turn center.

2. Main Gear Width (MGW)
The distance from outer edge to outer edge of the widest set of main gear tires.
3. Taxiway Edge Safety Margin (TESM)
 The distance between the outer edge of the landing gear of an airplane with its nose gear on the taxiway centerline and the edge of the taxiway pavement.

4. R-Fillet
 Radius of fillet

5. R-CL
 Radius of centerline

6. RVR
 Runway Visual Range

7. R-Outer
 Radius of outer edge

8. L-1, W-0, W-1
 At the start of the turn, the taxiway is widened on the inside of the turn for a length L-1, with the distance from the taxiway centerline to the pavement edge tapering from W-0 to W-1.

9. L-2, L-3, W-2
 As the airplane continues, the distance from the taxiway centerline to the pavement edge taper must be increased further, for a length L-2, from W-1 to W-2, ending at a distance L-3 from the point of intersection.
2 USING THE TOOL

2.1 Prior to Using the Tool.
The Taxiway Fillet Design Tool is EXCEL-based and runs offline from the hard drive on individual computers. The tool produces an output file located in the default folder designated in EXCEL.

Prior to operating the tool, verify the default folder location by opening any EXCEL file, selecting the Options menu from the File tab, then the Save menu where the “Default local file location” is listed (as shown in the following figure). A typical default file location, replacing “Username” with the actual username, is C:\Users\Username\Documents.

![Excel Options](image)

2.2 Getting Started.
The Taxiway Fillet Design Tool is designed to work on Windows-based computers when input is entered in the order intended (TDG, Delta, R-Fillet, and R-CL).

2.2.1 General Notes.
- Follow on-screen instructions, alerts, and progress information.
- Edge lighting locations may appear strange at very low deltas. The layouts should, however, conform to the standards in AC 150/5340-30. In such cases, engineering
judgment must be used, just as it would be in the absence of this program. Contact the appropriate FAA Airports office for guidance.

- Leaving the “edge light offset” field blank will result in no edge lights being plotted. Centerline lights, however, are always plotted. If centerline lights are not to be installed, turn off the drawing layer of the DXF file in your CAD software.

2.2.2 Opening the Tool.

1. Save the tool to your hard drive.
2. Click to open the tool.
 a. The “Opening Tool…” screen appears.
 b. If prompted, click Enable Content.
 c. The following dialog box displays. Click the button to continue to the tool.

![AC 150/5300-13B, Airport Design Taxiway Fillet Design Tool](image)

 d. The user form appears after the initialization process is complete. Grayed-out boxes indicate calculated display-only fields. The Status information box, in the upper right corner of the form, steps you through the process and provides informative alert information when appropriate. Perform the steps in order, as indicated. Wait for each step to complete before proceeding.
2.2.3 Tool Features.

- The button under the Status information box, top right, contains a hyperlink to the most current version of the Airport Design AC, for reference.
- Each field on the form displays a tip when hovered over.
The “Tool Notes” button, lower left, provides a multi-page help file.

2.2.4 Status Messages.
Status messages, including any noted parameters outside the capabilities of the program, are displayed in the Status information box in the upper right corner of the form. Blue text is informational, and red text indicates a warning or error message.

2.3 Steps for Using the Tool.

2.3.1 TDG.
To use the tool, select the desired TDG from the pull-down list and click <enter>.
The CMG, MGW, TESM, and Taxiway Width are then displayed and shown. Notice the next step is mentioned in the Status information box, top right.

2.3.2 Delta.
Enter the delta value. Click <enter>.

2.3.3 Minimum Recommended R-CL and R-Fillet.
After entering the delta value and clicking <enter>, the “Minimum recommended R-CL” and “R-Fillet (default)” automatically calculate and display.
You may enter R-Fillet and/or R-CL, or leave one or both of these fields blank to use the default values. Using a value for R-CL lower than the minimum recommended value will result in a nose gear steering angle of more than the recommended maximum 50 degrees. In such a case, the maximum nose gear steering angle display in the Status information box in the upper right corner. In the example, R-CL has been entered, rounded up to 110 feet by the user.

2.3.4 Edge Light Offset.
Enter an edge light offset value of 2-10 ft. Click <enter>. Leave the field blank for no edge lights.
2.3.5 **RVR.**
For RVR values less than 1200 ft, click the checkbox.

2.3.6 **Design Curve.**
Click Design Curve. A message box stating the user that the calculations may take a few moments. Click ok to continue.
A Status information appears while calculation of the necessary dimensions to define the fillets is in progress.

X and Y coordinates are based on the origin at the Point of Intersection of the curve. The resulting maximum steering angle appears in the Status information box when the design curve calculations are complete.
2.3.7 Create DXF File.
Enter a file name in the file name box to output a DXF file of that name. Click Create DXF File. The output file location is listed in the Status information box.

The DXF file includes the taxiway centerline and taxiway edges with associated dimensions. It also shows the path taken by the main landing gear adjusted for the TESM. This file is placed in your default documents directory.

2.3.8 Exiting the Tool.
Use the exit button, lower right, to exit the tool. It is programmed to reset the tool and will take a moment to complete. Because of this, the user is provided the option to return to the tool rather than exit.
2.3.9 **Viewing the DXF File.**

DXF files may be imported into most CAD software. In addition, websites are available to upload DXF files into for viewing or to download free viewer software. AutoCAD has a free viewer (DWG TrueView available online at https://www.autodesk.com/products/dwg/viewers#) (select DWG TrueView).

AutoDesk DWG TrueView Tips:

- The “Extents” option on the Extents/Zoom button will display and center the entire diagram in the TrueView window. Zoom options are in the pull-down menu for that button.

- The “pan” tool allows you to reposition the drawing. It resembles a hand, located to the right of the zoom button.

- The features of the output drawing display best on a white background. To change the background color to white in TrueView:
 - Click the big green/blue “D” at the top left
 - Choose “Options”, bottom of the box next to Exit
 - Click “Display” tab
 - Click “Colors…” button
 - Click “Color:” button
 - Select “white” from the pull-down menu
 - Click “Apply and Close” button

Using CAD or viewer software, the layout designed by this tool may be scaled and adjusted for constructability and/or placement of lighting. When making such
adjustments, locate the L1/L2 intersection point along the red “wheel track + TESM” curve to ensure meeting TESM requirements.

The tool produces a fixed-format DXF file readable in AutoCAD or downloadable DXF viewers. Layering is structured as follows:

- Centerline (orange)
- Centerline lights (green)
- Dimensions (blue)
- Edge (black)
- Edge lights (blue)
- Wheel track (magenta)
- Wheel track + TESM (red)

A sample output.
2.4 Sample Scenarios.

2.4.1 Example One.

The first example is an angle of less than 90 degrees.

1. Select TDG-5. Click <enter>. This results in a display of the CMG, MGW, TESM, and standard taxiway width. These cannot be overridden, since taxiways should always be designed for a specific TDG.

2. Enter Delta of 50 degrees. Click <enter>. Notice that the calculated fillet radius is zero, and the minimum recommended centerline radius is 110 feet. In fact, the fillet radius for all deltas of 90 degrees or less is always zero. Either of these values can be overridden. For now, accept the defaults.

3. Enter a value between 2 and 10 feet for edge light offset. If this field is left blank, then edge lights will not be shown in the output drawing. For this example, enter an edge light offset of 10 feet.

4. Leave RVR checkbox unchecked. Leave the check box for RVR less than 1200 blank.

5. Click “Design Curve”. Click “ok”. The design can take a while, so a pop-up message appears for the user to acknowledge. The long calculation time is because of the program determining the optimum location of the inflection point between the “L-1” taper and the “L-2” taper.

6. The pavement between the Wheel Track Plus TESM curve and the pavement edge is technically unnecessary. Straight pavement edges are specified for ease of construction. The program determines the location of the inflection point where the total area of unnecessary pavement is a minimum. But since constructability is the goal, it is perfectly acceptable to adjust this point, say, to accommodate the size of
concrete panels. Just be sure the adjusted point is on or outside the Wheel Track Plus TESM curve.

7. Review the displayed dimensions. All the dimensions necessary to lay out the curve display. But note that the maximum nose gear steering angle is considerably less than 50 degrees. This is because for angles less than 90 degrees, a large centerline radius is selected to allow a greater speed through the turn.

8. Enter the DXF filename. The DXF file will be placed in the user’s EXCEL default local file folder.

9. Click Create DXF File. The location of the file that has been generated is shown in the Status box, top right.
10. View the entire drawing.

11. Zoom in to view various details.
2.4.2 Example Two.
In some cases, it may be necessary to use a centerline radius lower than the minimum recommended. The second example generates a warning message.

1. Select TDG-6. Click <enter>.
2. Enter delta 100. Click <enter>. The default radius of the fillet is 50 feet, and the minimum centerline radius is calculated to be 135 feet.
3. After defaults appear, enter R-CL 120. Click <enter>.
4. A pop-up warning message appears stating that entering an R-CL value less than the minimum recommended R-CL will result in a steering angle of more than 50 degrees.

![Microsoft Excel](image)