THE EFFECTS OF DEXTROMETHORPHAMINE ON PHYSIOLOGICAL RESPONSES AND COMPLEX PERFORMANCE DURING SLEEP LOSS

1. Title and Subtitle

2. Author(s)

3. Performing Organization Name and Address
FIA Civil Aeromedical Institute
P.O. Box 25082
Oklahoma City, Oklahoma 73125

4. Sponsor Agency Name and Address
Office of Aviation Medicine
Federal Aviation Administration
900 Independence Avenue, S.W.
Washington, D.C. 20591

5. Report Date
November 1971

6. Distribution Statement
Document is available to the public through the National Technical Information Service, Springfield, Virginia 22151

7. Office of sponsoring agency

8. Report Number

9. Security Classification
Unclassified

10. Project No.

11. Contract Grant No.

12. Type of report and Period Covered

13. Supplementary Notes
Work was performed under Task AM-A-74-PHY-65.

14. Abstract
On two separate occasions, performance of 10 male subjects was measured on the Civil Aeromedical Institute Multiple Task Performance Battery at 4-hour intervals for a period of 24 hours without sleep. Each subject received a capsule at 4-hour intervals beginning at 2000. On one occasion, the first three doses contained 5 mg each of dextromethorphan sulfite followed by placebos for the remaining three capsules. On the other occasion, all capsules were placebos. Results of the experiment demonstrated that the dextromethorphan sulfite sustained a high level of proficiency and alertness and delayed the effects of fatigue for 8 to 12 hours after the ingestion of the third and final drug capsule. Heart rate, rectal temperature, and urinary excretion rate of catecholamines were elevated during this demonstration with amphetamines. Neither the subjects' feelings of fatigue nor the accuracy of their estimates of performance capabilities differed significantly in these two test conditions.
ACKNOWLEDGMENT

The authors express their appreciation to the personnel of the Stress Analysis Research Unit for the biochemical analyses of the urinary catecholamines and 17-ketogenic steroids. They also thank Mr. Peter Nelson of the Biostatistical Section for the statistical analyses of the physiological and biochemical data and the Medical Illustration staff for preparing the graphs.
THE EFFECTS OF DEXTROAMPHETAMINE ON PHYSIOLOGICAL RESPONSES AND COMPLEX PERFORMANCE DURING SLEEP LOSS

I. Introduction.
Dextroamphetamine sulfate is among those drugs (Schedule II) requiring strict controls because of their abuse and addiction potential. Currently, the main use of this and related drugs is as an aid to weight reduction, and then only under certain closely controlled conditions. It is also used in combination with scopolamine as an anti-motion-sickness drug. A combination of scopolamine and dextroamphetamine is in use by the National Aeronautics and Space Administration for the astronauts. Six capsules were used by the crew of Apollo 11.1

The literature on amphetamines has been reviewed extensively by Weiss and Lattie,2 who concluded that amphetamines have their most beneficial effect in countering or preventing performance deterioration that results from fatigue and/or sleep loss. They concluded that amphetamines not only were more effective than caffeine, but also produced fewer and less severe side effects.

Although amphetamines promote a sense of alertness and well-being, little has been reported on the physiological aftereffects resulting from their withdrawal. They also may promote a false sense of performance capability, a condition that could have detrimental effects on skilled performance.

The purpose of this experiment is twofold: First, to identify and clarify possible differences between the subject's appraisal of his performance and objective test scores (test scores will also be related to his physiological responses while under the influence of dextroamphetamine sulfate), and second, to evaluate the subject's performance for several hours after withdrawal of the drug as well as during the use of it.

The results of this study are not to be interpreted as advocating the use of dextroamphetaminesulfate to ameliorate the effects of fatigue or sleep loss. It is representative of a drug type (stimulant), others of which might be as effective without the same degree of abuse and addiction potential.

II. Method.
Ten male paid volunteers (ages 20 to 28 years) served as subjects. Preceding the actual experiment, they spent 2 days in indoctrination and training on the Civil Aeromedical Institute Multiple Task Performance Battery (MTPB). The battery included tasks that involved monitoring, group problem solving, mental arithmetic, pattern discrimination, and two-dimensional compensatory tracking. The subjects were tested in 2-hour sessions every 4 hours for a total of seven sessions. The task schedules for the first and second hours of each session were identical. The basic 1-hour task schedule required performance of the combinations of tasks shown in Table 1. Two different kinds of analyses were carried out. The first analysis was an appropriate expansion of a Lindquist Type VII analysis of variance design applied to each of the individual performance task measures. The second analysis, also an expanded Lindquist Type VII design, was applied to composite scores derived as follows: The measures taken during a given 15-

<table>
<thead>
<tr>
<th>Time in Minutes</th>
<th>0-15</th>
<th>15-30</th>
<th>30-65</th>
<th>65-90</th>
</tr>
</thead>
<tbody>
<tr>
<td>Memory</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Motivation</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Arithmetic</td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Pattern Recognition</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Problem Solving</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Training</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: X indicates task active
minute interval were combined so that each contributed equal variance to the resultant composite score. (See Chiles, Jennings, and West for a more detailed description of the method of computation of the composite scores.) These composite scores were analyzed separately for each interval, and, in addition, the mean of the 15-minute composite scores for each hour of test ing was analyzed. At the end of each test session, the subject was asked to estimate his level of performance during the preceding session, expressed as a percent of what he thought his “best” performance would be. At that time, the subject was to indicate a subjective estimate of his state of fatigue by completing the 10-item Subjective Fatigue Checklist.

Physiological responses consisted of heart rate (HR), which was obtained by using dry silver electrodes with a CM, lead, and measured continuously with an Electrocardiograph (Avionics, Model 400), and rectal temperature (T_r), which was measured by an indwelling thermistor probe read from a portable bridge.

Urine samples were collected periodically, preserved with 1.2 N sulfuric acid, and frozen for later analyses. Biochemical analyses of the 17-ketogenic steroids (17-KGS) were made by a method described by Few, and values were measured with a colorimeter in a Technicon Autoanalyzer system. Values for urinary epinephrine (E) and norepinephrine (NE) were made by using an automated differential fluorometric technique reported by Florio and Moses. Urine dextroamphetamine was determined by a modified colorimetric method of Keller and Ellenbogen and read from a Zeiss Spectrophotometer at a wavelength of 508 m. All concentrations were multiplied by the urine volume measured for each to obtain the total output.

After the training period, the 10 subjects were arbitrarily divided into two groups of five subjects each. Each group was tested twice, at 1-week intervals, in a double-blind design. For one test the subjects ingested only sugar (lactose) placebos at 4-hour intervals for a total of six capsules beginning at 2000. In the other test dextroamphetamine sulfate capsules were administered in three 5-mg doses at 2000, 2400, and 0400 and placebos in identical capsules were administered at 0800, 1200, and 1600. One group was tested first with the placebo and the other group was tested first with the dextroamphetamine. Figure 1 shows the schedule of events that each of the two groups completed, once with the placebo and once with the drug. Subjects reported at 1630, at which time EEG electrodes were attached and the rectal probe was inserted. Subjects voided and discarded the first urine at 1700. Measurements were initiated directly after the first complete performance session at 2000. These were continued at 4-hour intervals for the ensuing 24-hour test period with the exception of HR and T_r observations, which were read each hour. Subjects did not sleep throughout the test period.

III. Results.

A. Fatigue Checklist. The Subjective Fatigue Checklist provided a scale of 0 to 20, with 0 representing extreme fatigue and 20 representing the condition of being totally refreshed. When only the placebo was used, the mean score was 8.9; when the dextroamphetamine was used, the mean score was 9.5. The numerical difference between the two conditions was not statistically significant.

B. Subjective Performance Estimates. The summary data for the performance estimates are shown in Table 2. These data present a compari-
<table>
<thead>
<tr>
<th>Session Clockhours</th>
<th>True Scores</th>
<th>Estimated Scores</th>
<th>Δ</th>
<th>σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>72.5 ± 1.55</td>
<td>83.3 ± 3.18</td>
<td>10.8</td>
<td>3.106</td>
</tr>
<tr>
<td>3000</td>
<td>71.8 ± 1.68</td>
<td>81.6 ± 2.97</td>
<td>9.6</td>
<td>2.728</td>
</tr>
<tr>
<td>4000</td>
<td>67.8 ± 2.91</td>
<td>71.6 ± 3.22</td>
<td>3.8</td>
<td>1.138</td>
</tr>
<tr>
<td>5000</td>
<td>65.1 ± 3.53</td>
<td>63.5 ± 5.44</td>
<td>-2.6</td>
<td>0.87</td>
</tr>
<tr>
<td>1200</td>
<td>66.1 ± 2.44</td>
<td>63.5 ± 3.50</td>
<td>-2.6</td>
<td>0.68</td>
</tr>
<tr>
<td>1400</td>
<td>62.4 ± 3.13</td>
<td>70.5 ± 4.66</td>
<td>8.1</td>
<td>0.64</td>
</tr>
<tr>
<td>2000</td>
<td>68.5 ± 2.09</td>
<td>74.8 ± 3.45</td>
<td>6.3</td>
<td>1.56</td>
</tr>
<tr>
<td>Σ</td>
<td>68.4 ± 2.50</td>
<td>72.5 ± 3.17</td>
<td>4.1</td>
<td></td>
</tr>
</tbody>
</table>

$n = 10$

$^{*}p < .05$

$^{* * }p < .01$

The analyses of the other composite performance measures show essentially the same effect.

Figure 2 presents the data relevant to the first of these interactions; namely, the drug by sessions interaction. Although the overall effect of sessions was significant, it is clear that this is an average effect, and the important performance characteristic is the decline associated with the placebo condition. Individual t tests showed the difference between the drug and placebo condition to be significant ($p \leq .05$) at 0000, 0800, and 1200.

The analyses of the other composite performance measures show essentially the same effect.

Figure 2. Standard Composite MTPS scores through seven sessions ($\overline{X} \pm S.E.M., n=10$). Mean urinary excretion of dextromethorphan (broken line) is read on the right ordinate.
TABLE 3. Abbreviated Summary of analyses of Performance Measures

<table>
<thead>
<tr>
<th></th>
<th>Raw</th>
<th>Drugs</th>
<th>Periods</th>
<th>Sessions</th>
<th>Drugs x Sessions</th>
<th>Drugs x Sessions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Individual Measures</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Red Lights</td>
<td>NS</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>NS</td>
<td></td>
</tr>
<tr>
<td>Green Lights</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>Memory</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>Arithmetic Time</td>
<td>NS</td>
<td>NS</td>
<td>S</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>Arithmetic Percent</td>
<td>NS</td>
<td>NS</td>
<td>S</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>Pattern Identification Time</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>Pattern Identification Percent</td>
<td>NS</td>
<td>S</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>Problem Solving Time</td>
<td>NS</td>
<td>NS</td>
<td>S</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>Problem Solving Percent</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Raw</th>
<th>Drugs</th>
<th>Sessions</th>
<th>Hour</th>
<th>Drugs x Sessions</th>
<th>Drugs x Sessions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tracking Vector Absolute Error</td>
<td></td>
<td></td>
<td>S</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>Tracking MS</td>
<td>NS</td>
<td>NS</td>
<td>S</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>Vector Error</td>
<td>NS</td>
<td>NS</td>
<td>S</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
</tbody>
</table>

Composite Measures						
1st 15 min.	S	S	S	NS	S	NS
2nd 15 min.	NS	S	S	NS	S	NS
4th 15 min.	NS	S	S	NS	S	NS
Overall	NS	S	S	NS	S	S

Note: S indicates significant at .05 level of confidence or better; NS indicates not significant.

and do not warrant separate comment. However, the analyses of the individual measures do suggest a different emphasis. Specifically, it is noted that the significant drug effects were found on only two of the individual measures other than the monitoring task measures. These two measures were "percent correct" on the pattern identification task and "vector absolute error" on the tracking task.

D. Physiological and Biochemical Data. The physiological and biochemical data were analyzed by the randomized block factorial method. The paired "t" test was employed to evaluate data during given time intervals. The hourly measurements of HR are shown in Figure 3. Mean rates for the dextroamphetamine condition were significantly higher than the rates for those receiving the placebo only \(p \leq .001 \). Although both curves showed evidence of a circadian rhythm, there were no significant differences over time for either condition.

Rectal temperature as a function of time and drug condition is shown in Figure 4. The drug condition produced internal body temperatures that were significantly higher than those produced by the placebo condition \(p \leq .001 \). The curves for both conditions clearly indicate a 24-hour rhythm, as \(T_e \), decreased in the early morn-

![HEART RATE](image)

Figure 3. Hourly heart rate as a function of time \((\bar{X} \pm \text{R.M.}, n=10) \).
Excretion of 17-KGS and dextroamphetamine is shown in Figure 5. Although the peak for the steroid fraction under the drug condition appears earlier and at a level about 0.1 mg/hr lower than the peak for the placebo condition, the only significant difference for this measure is for time (p≤.001). This generally reflects the expected diurnal rhythm effect.

The curves for urinary excretion of E and the excretion of dextroamphetamine during the drug condition are shown in Figure 6. Epinephrine excretion rates for the drug condition are elevated over those for the placebo condition (p≤.001). The degree of elevation increases over time (p≤.05) for the drug condition but drops to the level of the placebo condition by the end of the 24-hour period. The drug condition by time interaction was also significant (p≤.001).

Figure 7 shows the curves of NE excretion rates for the two conditions and the urinary excretion rate for dextroamphetamine. The curves show the NE excretion levels to be, on the average, higher under the drug condition than under the placebo condition. Although the difference is significant (p≤.05), the excretion pattern is variable. The time course of NE excretion in the drug condition is biphasic, with one peak at 2400 and a second, slightly higher peak at 1200. None of the interaction effects among drugs, groups, and time was statistically significant.

IV. Discussion
A. Fatigue Checklist. The period without sleep led the subjects to describe their general condition as being characterized by moderate fatigue under both the drug and the placebo conditions. The difference of less than one unit on the 0-10-point scale is small (less than 5 percent). It is of interest that the drug did not appear to result in a measurable difference on the fatigue parameter, especially since performance was maintained at a significantly higher level under the drug condition than under the placebo condition. Perhaps the subjective parameter being assessed by the scale was not directed at the proper domain; i.e., greater emphasis should have been placed on the detection of feelings, alertness, or sleepiness rather
than fatigue per se. In any event, the checklist failed to reveal differences under conditions in which objective measures of performance revealed substantially significant differences.

B. Subjective Performance Estimates. The accuracy of the subjects’ estimates of their performance is difficult to ascertain because the method for computing the “true” score necessarily contained some arbitrary elements. Whereas the true score was based on an equal-variance measure of overall performance, it is very unlikely that the subjects had precise feedback on the monitoring tasks; further, since the estimates were made at the end of a session, we would not expect the subjects to remember with any great accuracy the levels of performance maintained.

It is likely that, with appropriate feedback and sufficient training, the subjects could learn to produce rather good estimates during the earlier periods of the session. Thus, the term “overestimate” should be interpreted in a relativistic manner. However, the estimates were generally accurate in that, under both conditions, as the level of performance decreased, the estimate also decreased. Overall, the very small difference in the accuracy of the estimates under the two conditions implies that the drug did not lead to overestimation of performance capabilities.

C. Complex Performance. If we think of the totality of the different task combinations of the MTPB as being a “job” (as the term “job” is used in everyday discourse), then the overall composite score may be thought of as an index of how well that job is performed. Thus, the general finding was that performance of the job was better under the dextroamphetamine condition than under the placebo condition. As shown in Figure 2, performance under the drug condition was better than under the placebo condition from 0400 until the end of the experiment, even though the last dose of drug was ingested at 0400. The continued, though not statistically significant, superiority of the drug condition at 1600 and 2000 may have resulted from the continued presence of the drug in the subjects’ systems, or it may have been the result of the drug’s having allowed a less fatiguing night without sleep. The data do not allow us to assign an assignment of weight to the contribution of these two possible factors.

If we consider the elements of the task complex, we see that there is a large variation in the susceptibility of the individual to the possible deleterious effects of sleep loss and, by inference, the alleviation of those effects by dextroamphetamine. The most sensitive tasks appear to be the lights and meters tasks, both of which involve performance of monitoring. In addition, the tracking task and the pattern identification task were performed significantly better under the drug condition than under the placebo condition. Considering first the monitoring tasks, it should be noted that these tasks require systematic scanning of the performance panel to achieve good performance. Good monitoring performance generally depends on the ability of the subject to divert his attention from ongoing tasks requiring relatively sustained attention (such as mental arithmetic) and his ability to rapidly detect and respond to “abnormal states” of the monitoring tasks. The structure of the pattern identification task requires a good sense of timing. The standard pattern (a six-bar histogram graph) is present for 5 seconds and each of two comparison patterns is present for only 2 seconds. Thus, the subject must divert his attention from whatever other tasks are active to the pattern identification display at specific times if the briefly presented problem elements are to be seen and identified. Similarly, the subject must be able to shift his attention back and forth between the tracking task display and the other tasks in order to
maintain good performance. In contrast, the presentation of a problem on the arithmetic task is accompanied by a rather loud noise produced by the resetting of the logs of the response mechanism as well as the onset of the nine, rather bright Nixie tubes used to present the problem elements. On the group problem-solving task, although the feedback lights are no more visible than the nonfeedback lights, the group nature of the task tends to compel the typical subject to attend to this task with some care; namely, all of the subjects are—or, if they pay attention, can be—aware of how each individual subject is performing on this task. Thus, a certain amount of group pressure is exerted on individual subjects to perform well. In fact, occasionally a subject is found who, if he is poor on one or more of the other tasks, will simply let those tasks go in order not to be obviously poor on the group problem-solving task. Another factor to be considered in evaluating the individual tasks is the consistently observed tendency of subjects to attach different priorities to the different tasks. As noted above, the problem-solving task is given rather high priority, as is the arithmetic task; in this latter case the reason is, perhaps, that many people feel a need to demonstrate that they are reasonably proficient at carrying out simple addition and subtraction.

Performance of the task complex as a whole requires skill in the domain of time sharing. The subject, to perform well, must be able to shift his attention rapidly from one type of activity to another. In this sense, the monitoring tasks can be thought of as providing an index of the "channel capacity" that the subject has to spare after giving what he considers to be adequate attention to the major tasks; i.e., those tasks to which he gives priority. Pursuing this line of reasoning to its conclusion, then, we would say, at the descriptive level, that the dextroamphetamine mitigates the performance effects of the period of sleep loss by preventing the repletion of the subject's channel capacity.

These general findings are clearly in line with those of previous investigators as reviewed by Weiss and Latten. Thus, the major contribution of the present study, with respect to performance measures, lies in the methodological refinement permitted by the MTPB; namely, the MTPB brought out the differential effects of sleep loss as affected by dextroamphetamine in relation to the nature of the task demands.

D. Physiological and Biochemical Effects. Stelman and Stewart report that the amphetamines reach a maximum excretion rate between 3 and 12 hours after ingestion and that an average of 29 percent of the dose is excreted in 24 hours, but there is a wide individual variation in excretion rate. The mean total excretion of dextroamphetamine for the subjects in this experiment was 15.6 percent, ranging from a low of 9.6 percent to a high of 43.3 percent in the 24-hour period for which measurements were made. The average rate of excretion of the drug remained at an elevated level throughout the study, and the post-drug levels did not go below that observed in the samples taken 4 hours after ingestion of the first capsule. When this finding is considered in conjunction with the data of Stolman and Stewart, it would appear that (on the average) substantial amounts of the unmetabolized drug could remain in the subjects' systems at the end of the experiment.

The data indicate that dextroamphetamine is sympathomimetic, particularly evidenced by the cardiovascular and the temperature regulation systems. Wurtman, in reviewing the results of a number of investigators, describes the role of the catecholamines in the mechanisms of the physiological effects of amphetamine on the central nervous system. Amphetamine liberates stored NE from nerve endings in the brain. However, the amine thus released is not metabolized before it leaves the nerve ending, and thus it is able to exert continuing physiologic effects. The uptake of H1-norepinephrine is blocked by amphetamine. Since uptake appears to be a major mechanism for catecholamine inactivation in adrenergic nerves, this blockade in the brain probably lengthens the period that NE molecules released at central synapses remain effective. Amphetamine may also interfere with the metabolism of catecholamines by monoamine oxidase. The definitive increases in urinary E (Figure 6) and NE (Figure 7) levels with dextroamphetamine over those of the placebo condition level lend support to this interpretation. The substantially higher value of T, under the drug condition than under the placebo condition (Figure 4) probably occurs because the amphetamine decreases perspiration and increases vasocostriction, both of which conserve
heat, and also because it increases muscle tone for greater heat production. Further, relatively large amounts of NE may be released from the hypothalamus, the site of central regulation of body temperature. The myocardium contains numerous sympathetic nerve endings and can take up significant quantities of catecholamines. The elevated HR (Figure 3) with dextroamphetamine may reflect the role of the catecholamines in augmenting cardiac output under stress.

Differences in the excretion patterns of E and NE may be traced to the anatomical sites at which each was secreted. Most of the E originates in the adrenal medulla, where it is secreted sporadically, the quantities related to the intensity of the stimulus, while most of the NE is stored in adrenergic vesicles located in the several organs containing sympathetic innervation. Thus, the rate of release and subsequent excretion of NE may differ from one organ to another, resulting in the irregular pattern through time.

Dextroamphetamine has little apparent effect on 17-KGS excretion (Figure 5), since the excretion rate with the placebo is not different from that with the drug and excretion patterns under both conditions are probably the result of diurnal variation.

V. Summary and Conclusions.

Performance of a complex task was maintained at a significantly higher level during a period of 24 hours without sleep when subjects were given 15 mg of dextroamphetamine sulfate in three 5-mg doses at 4-hour intervals. However, subjective measures showed that neither feelings of fatigue nor the accuracy of self-estimates of performance efficiency were significantly affected by the administration of the drug as compared to a placebo control condition. Increases were found in the levels of HR, T_m, and urinary catechola-

mine excretion. Excretion of urinary dextroamphetamine reached a peak about 4 hours after administration of the third and final drug capsule, but excretion levels were still quite elevated at the end of the study. Presumably because of the continued presence of the drug, the various biochemical and physiological parameters showed effects for 8 to 16 hours after the last drug capsule was administered, and performance was also maintained at a higher level throughout the withdrawal period.

The results of this study should not be interpreted to suggest that the detrimental effects of sleep loss can be prevented by the administration of dextroamphetamine sulfate. Although the difference between the pre-sleep loss and the sleep loss conditions was not statistically significant, performance under the drug condition during the morning and afternoon hours of the second day suggested some loss of efficiency. The only inference permitted by a strict interpretation of the results is that performance would be expected to be maintained at a higher level under dextroamphetamine than without it. It should also be noted that, since dextroamphetamine is generally regarded as one of the most effective stimulants, more common, legal stimulants (such as caffeine) would not be expected to insure satisfactory performance levels under conditions of sleep loss.

In the realm of methodology, the detailed analysis of the performance data suggests that monitoring tasks embedded in a task complex provide the most sensitive indicators of the impact of stresses such as sleep loss. The implication of this finding is that tasks that would typically be regarded as peripheral to the main duties of the operator, and are thus assigned a lower priority, are likely to suffer even though the major, high priority tasks appear to be unaffected by sleep loss.
REFERENCES

