GPSS COMPUTER SIMULATION OF AIRCRAFT
PASSENGER EMERGENCY EVACUATIONS

J. D. Garner
R. F. Chandler
Civil Aeromedical Institute
and
E. A. Cook
Data Services Division
Federal Aviation Administration
Oklahoma City, Oklahoma

June 1978

Document is available to the public through the
National Technical Information Service,
Springfield, Virginia 22161

Prepared for
U.S. DEPARTMENT OF TRANSPORTATION
FEDERAL AVIATION ADMINISTRATION
Office of Aviation Medicine
Washington, D.C. 20591
GPSS COMPUTER SIMULATION OF AIRCRAFT PASSENGER EMERGENCY EVACUATIONS

J. D. Garner, R. F. Chandler, and E. A. Cook

FAA Civil Aeromedical Institute
P.O. Box 25082
Oklahoma City, Oklahoma 73125

Office of Aviation Medicine
Federal Aviation Administration
800 Independence Avenue, S.W.
Washington, D.C. 20591

Research leading to preparation of this report was conducted under Task AM-B-77-PRS-53.

Abstract

The costs of civil air transport emergency evacuation demonstrations using human subjects have risen as seating capacities of these aircraft have increased. Repeated tests further increase the costs and also the risks of injuries to participants.

A method to simulate such evacuations, by use of a computer model based on statistics from measured components of the escape path, has been developed. This model uses the General Purpose Simulation System (GPSS) computer programing language to represent various features of the escape process; e.g., seating and exit configurations, passenger mix, door-opening delays, time on escape slides, slide capacity, and redirection of passengers to equalize escape lines.

Results of simulated evacuations from the DC-10, L-1011, and B-747 aircraft and a military aircraft are reported. These results have been compared with results of certification demonstrations from the DC-10, L-1011, and B-747. Comparisons of exit size substitutions were evaluated as a means of estimating differences in escape potential for exit design optimization.
GPSS COMPUTER SIMULATION OF AIRCRAFT
PASSENGER EMERGENCY EVACUATIONS

I. Introduction.

The first two aircraft computer evacuation simulations using the General Purpose Simulation System (GPSS) language, developed by the IBM Corporation, were reported in September 1972 (1). The report contained the fundamental computer flow diagram of GPSS evacuations and results of simulated evacuations of 124 and 234 passengers from a narrow-bodied civil air transport.

Development and refinement of the model have progressed through the simulation of the DC-10 (with passenger complements of 355, 375, and 391), the L-1011 (356 and 411 passengers), the B-747 (527 passengers), and a military command post aircraft (114 passengers). Furthermore, a series of nine comparative evacuations was made on proposed exit design configurations of three Type A exits per side relative to one Type I and two Type A exits. The model has been enlarged to encompass redirection of passengers within the cabin to equalize evacuate lines to the exits. Such passenger redirection is significant on aircraft with different size exits or when natural flow rate variations occur from the same size exits.

Representative passenger flow rates for specific exits must be determined by the user of the evacuation simulation model. Selection of quantitative values that are representative of passenger movements along other segments of the evacuation path must also be made for input to the model. The utility and accuracy of the model will depend to a great extent on the realistic selection of these parameters. This report illustrates the ability of the model to predict the results of evacuation demonstrations and describes how the model can be used in preliminary design analysis to study the effects of alternative exit configurations.

The GPSS is composed of a vocabulary and operating mechanics unique to this system. It is a specialized system and thus is somewhat at a disadvantage because GPSS is not widely known or used, particularly within the engineering disciplines. To understand the simulation processes, a user must become familiar with the system as described in the IBM, Inc., User's Manual (2). The GPSS evacuation simulation model is one of two models available for analysis of an air carrier aircraft evacuation. The other model, initially supported by task assignment under the FAA Office of Aviation Medicine, was developed in Fortran computer language (3).

II. General Features of the GPSS Computer Simulation Model of Aircraft Passenger Emergency Evacuation.

Passenger Emergency Evacuation. The versatility of GPSS programing allows entries of statistical functions to control passenger movements and to advance time related to each event in order to estimate and analyze the
escape process in detail. Basic statistical information to be provided by
the computer is derived from experimental data on each segment of the evacu-
ation process. Additional tests or actual evacuations may furnish data to
maintain and update the model.

The GPSS model design simulates 5 exit pairs (10 exits) that represent
the largest number of cabin exits on current civil air transports. However,
only five exits are normally programmed into the model, based on the assumption
that half the exits may be unusable in an emergency. To simulate smaller
aircraft with fewer exits and lower seating capacities, appropriate operational
statements within the model can bypass program statements for nonapplicable
exits while leaving the basic model intact. When this is done, less computer
core is required during the computation.

To use the model, specific numbers of "passengers" are assigned to seat-
ing areas and are initially designated to leave by the nearest logical exit.
Each passenger is assigned to a specific seat in a specific row according to the num-
ber of seats per row according to the simulated aircraft configuration. A
passenger mix of 5 percent under 12 yr of age and 10 percent over 60 yr of
age, 30 percent female and 55 percent male, has been provided in the passenger
distribution, but no differentiating values are available to use as factors
influencing the evacuation rate. The seating instructions can assign a per-
son, or a group, specific time delays that may represent interior cabin
obstacles, physical incapacitation of a passenger, mothers with infants, etc.,
by reference to parameter functions. However, simulations have not yet used
interior delays because of a lack of quantitative time values associated with
these events. Moreover, available data indicate that evacuation times are
determined by movement through exits following door preparation and slide
deployment and thus delays inside the aircraft are not a limiting factor.
This situation will probably change as more test data become available on
adverse interior conditions; e.g., heavy smoke or debris in the exit path-
way. Such data are limited. These factors must be carefully considered in
selecting criteria for computer validation.

The simulated evacuation process begins with a time interval that
includes door and slide preparation. During this time, passengers form
queues at exits. Specific door preparation times can be assigned for each
exit, or all exits can be assigned the same time interval. When the exits
are ready, passengers escape through these exits at rates determined by
random selection from a distribution function designated for each exit or
evacuation segment. The distribution function is calculated from a known
escape rate and its standard deviation by the method of moments. An example
of the forward Type I exit function is shown in Figure 1. This function is
a cumulative probability distribution of time vs. frequency of occurrence.
Numbers to the left of the decimal found between the slash marks (ranging
from 0.0 to 1.0) represent frequency of occurrence of the event, and numbers
to the right of the decimal are time increments of 20-ms intervals from 0.0
to 700. A plot of these two variables would follow the Gaussian cumulative
distribution "S" curve except for the skewness reflecting evacuation data
MEAN = 1.57 SD = 0.76 \hspace{1cm} \text{FORWARD EXIT TIME FUNCTION}

1 FUNCTION RN3,C32 \hspace{1cm} \text{FORWARD EXIT FUNCTION (TYPE I)}
0,0/.00132,20/.01662,40/.06162,60/.13949,80/.24221,100/.35722,120
.47262,140
.99254,400/.99500,420/.99667,440/.99779,460/.99854,480/.99904,500/
.99937,520/.99959,540/.99974,560/.99983,580/.99989,600/1.0000,700
* MEAN = 1.73 SD = .45 \hspace{1cm} \text{FORWARD SLIDE TIME}

Figure 1. Example of the forward Type I exit function.

that elongates the top of the curve. Each evacuation pathway segment in the
model references similar functions for random selection of passenger movement;
i.e., time in each segment, until the passenger is on the ground.

The model limits the number of passengers allowed to occupy specific
escape slides at one time to three on a single-lane slide, six on a double-
lane slide, or to other numbers designated by the user. The length of an
escape slide corresponds to the time-on-the-slide function in the model and,
consequently, a delay could result in the rate at which passengers may enter
the top of the slide.

The model has the capability to use differing mathematical routines, if
needed, although none were used in this report. Such routines would be
entered into the input listings along with the functions now used.

Transactions are accumulated in counting blocks that register passenger
times, numbers of occupants using a facility (door, slide, etc.), and cumu-
lative data during evacuations for each segment of the escape route. These
data are then printed out in tabular or graphic form. The redirection of
passengers in the cabin from longer waiting lines to an adjacent exit with
shorter queues depends on the number programmed for the shorter line to con-
tain before transfers take place. The model assumes that passengers reach
the shorter exit line before a gap in the escape line occurs. This exit
reassignment is similar to volunteer passenger transfers that take place in
evacuation demonstrations.

The time at which the last person reaches the ground at each exit is
defined as the evacuation time, and the time at the exit with the longest
evacuation time is defined as the total escape time. A number of runs on a
particular configuration can be made to permit random selections to represent
human performance variables on each run and to enable statistical statements
of evacuation predictions. Runs of 10, 20, 40, 50, and 100 repeated model
evacuations were examined to assess the number of runs needed to confidently
display the built-in randomness. The optimum number of runs to allow ade-
quate distribution appears to be between 20 and 40. For each configuration,
20 evacuations were made during the majority of the developmental simulations;
this number appeared to provide satisfactory results.
Model Input Data Sources. A central source to obtain all evacuation
data relating to transport aircraft does not exist. The aircraft manu-
facturers, airlines, FAA headquarters and field offices, the National Transpor-
tation Safety Board, and the Evacuation Research Unit at the Civil Aeromedical
Institute (CAMI) each have limited information. The largest publication thus
far is of data assembled by the Aerospace Industries Association (AIA) in
their study of evacuations in 1967–68 (4). Assembly and publication of
similar data since 1968 has not been accomplished but would be desirable to
support the selection of quantitative data for computer inputs. This is
especially true since most wide-bodied aircraft were evacuation certified during
the early 1970's and are not included in the earlier AIA report.

Passenger flow rates through Type I (24 x 48 in) and Type A (42 x 72 in)
 exits, described in the Federal Aviation Regulations (25.807), and used in
the GPSS model, were derived from the results of an evaluation performed by
CAMI in Oklahoma City (5). Overall flow rates through Type I exits averaged
46.8 passengers/min or 1.28 s/passenger. The overall rate for the Type A
exit averaged 126.2 passengers/min or 0.48 s/passenger. A ratio of 2.6 has
been used for Type A exit escape rates and appears in the GPSS as 10/26.
The computer derives the Type A flow rate by dividing the mean Type I flow
rate, entered as parameter function 1 (1.57 s/passenger), by 2.6, which
maintains the ratio. The resulting Type A flow rate is 0.60 s/passenger and
remains in use in the GPSS program until a more representative rate is estab-
lished for validation of the model.

Calculation of passenger flow rates during the evacuations can be per-
formed either by using the total time from test start to the last out or by
considering the time from the first passenger out until the last has
 evacuated.

Thus, the overall flow rate for an exit is defined by the following ratio:

\[
\text{Time (s) from start signal to last passenger on ground} = \frac{\text{Average overall flow rate}}{\text{No. passengers evacuated}} (\text{s/passenger})
\]

Continuous flow rate is defined as:

\[
\text{Time (s) from first passenger on ground to last passenger on ground} = \frac{\text{Average continuous flow rate}}{\text{No. passengers} - 1} (\text{s/passenger})
\]

GPSS General Format. Appendix A is a typical GPSS evacuation program
showing the analysis of 527 passengers evacuating a B-747 aircraft through
five Type A exits. The first entries in Appendix A, four statements of model
operational instructions, are followed by seven Function entities. The
Functions permit computations of discrete functional relationships between an
independent variable and dependent values of the function. For the B-747
evacuation, these functions are probabilistic distributions from which random
generators select values for exit flow rates, time for each passenger on an escape slide and the overwing ramp, age/sex passenger distributions, and door-opening and slide-delay times. Following the Functions are the Variable entities that permit the computation of arithmetical combinations of standard numerical attributes. These Variable expressions, called operands, are Fortran-type arithmetical operations with either a floating decimal (Fullword variables) or whole-number (Halfword) variables.

The Generate block initiates the evacuation model program by the entry of the 527 passengers and notes that 10 parameters may apply to each passenger during the course of the evacuation. From this point, each passenger is considered a transaction in the GPSS language. As each transaction moves through the program, it passes through blocks in which transactions are acted on according to programed instructions for each block. Blocks are numbered consecutively beginning with the Generate block, and a transaction continues from block to block through block 141 where transactions are terminated as evacuation from the aircraft is completed. Provisions are contained in the program to account for the statistics, contents, and transaction times occurring within each block. Instructions on which of these data are desired as printout information permit selection of evacuation segment information and graphic or tabular displays of the results.

As transactions move from blocks 2 through 42, passenger seating areas and nearest logical exit assignments are performed and parameter values are assigned to each block. The program arguments are presented by conditions of the argument. For instance, a transaction in an exit block will have instructions to test if there are six or less in the next block (on the slide block). If this condition is met, the transaction moves onto the slide at that exit.

III. Results.

Evacuation Simulations From Wide-Bodied Aircraft. Simulations of evacuations have been performed from the DC-10, L-1011, and B-747 wide-bodied-transport configurations. These transports were undergoing evacuation certifications during this period, thus giving the authors a chance to compare simulation results with the evacuation demonstration times.

Research tests and evacuation demonstrations show that passengers usually reach the exits before gaps occur in escape lines at exits because the delay to ready the door and slide allows passengers to gather at the exits ready to escape. Quantitative research data have shown an average rate of movement down the aisle by physically unimpaired passengers of 8 ft/s, by 10 elderly passengers of 3.6 ft/s, and by 21 blind passengers of 3.3 ft/s, all under the same test conditions (6). Rates of movement under adverse conditions have not been evaluated.

An example of a series of GPSS model simulations is shown in Table 1 that represents 20 evacuations of 527 passengers from a B-747 through five
Type A exits. The model provided for passenger reassignment in the cabin to equalize escape lines to exits. The different times shown in Table 1 for the last passenger out of each exit result from the selection of different points from the probabilistic distribution function for passenger flow rates and escape times on each evacuation. The total evacuation time for each run is determined by the exit having the longest escape time and represents the last passenger to be evacuated. The majority (all but 2) of 20 simulated evacuations show the last passenger out the overriding exit (Exit No. 3), which has a longer path to reach the ground via the overriding ramp.

TABLE 1. Results of 20 Computer Evacuations of 527 Passengers From a B-747 Aircraft

<table>
<thead>
<tr>
<th>Exit 1</th>
<th>Exit 2</th>
<th>Exit 3</th>
<th>Exit 4</th>
<th>Exit 5</th>
<th>Total Evacuation Time*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time</td>
<td>Time</td>
<td>Time</td>
<td>Time</td>
<td>Time</td>
<td>Total Evacuation Time*</td>
</tr>
<tr>
<td>Last</td>
<td>Last</td>
<td>Last</td>
<td>Last</td>
<td>Last</td>
<td>Total Evacuation Time*</td>
</tr>
<tr>
<td>1</td>
<td>78.5</td>
<td>110</td>
<td>80.6</td>
<td>105</td>
<td>80.3</td>
</tr>
<tr>
<td>2</td>
<td>75.7</td>
<td>108</td>
<td>77.2</td>
<td>101</td>
<td>83.0</td>
</tr>
<tr>
<td>3</td>
<td>76.3</td>
<td>104</td>
<td>77.9</td>
<td>105</td>
<td>82.7</td>
</tr>
<tr>
<td>4</td>
<td>79.4</td>
<td>102</td>
<td>79.6</td>
<td>111</td>
<td>80.8</td>
</tr>
<tr>
<td>5</td>
<td>78.4</td>
<td>107</td>
<td>81.9</td>
<td>110</td>
<td>87.5</td>
</tr>
<tr>
<td>6</td>
<td>78.6</td>
<td>105</td>
<td>81.2</td>
<td>111</td>
<td>81.7</td>
</tr>
<tr>
<td>7</td>
<td>82.7</td>
<td>106</td>
<td>80.1</td>
<td>111</td>
<td>86.9</td>
</tr>
<tr>
<td>8</td>
<td>75.6</td>
<td>106</td>
<td>74.3</td>
<td>110</td>
<td>81.5</td>
</tr>
<tr>
<td>9</td>
<td>78.8</td>
<td>102</td>
<td>80.0</td>
<td>110</td>
<td>85.0</td>
</tr>
<tr>
<td>10</td>
<td>78.4</td>
<td>104</td>
<td>77.4</td>
<td>113</td>
<td>82.3</td>
</tr>
<tr>
<td>11</td>
<td>78.4</td>
<td>102</td>
<td>79.9</td>
<td>103</td>
<td>81.7</td>
</tr>
<tr>
<td>12</td>
<td>84.5</td>
<td>108</td>
<td>83.1</td>
<td>114</td>
<td>87.3</td>
</tr>
<tr>
<td>13</td>
<td>82.5</td>
<td>115</td>
<td>83.7</td>
<td>105</td>
<td>86.0</td>
</tr>
<tr>
<td>14</td>
<td>79.4</td>
<td>101</td>
<td>79.4</td>
<td>110</td>
<td>81.2</td>
</tr>
<tr>
<td>15</td>
<td>80.7</td>
<td>109</td>
<td>81.1</td>
<td>109</td>
<td>87.8</td>
</tr>
<tr>
<td>16</td>
<td>80.5</td>
<td>101</td>
<td>80.6</td>
<td>106</td>
<td>82.2</td>
</tr>
<tr>
<td>17</td>
<td>84.1</td>
<td>108</td>
<td>80.9</td>
<td>106</td>
<td>87.0</td>
</tr>
<tr>
<td>18</td>
<td>80.4</td>
<td>105</td>
<td>81.9</td>
<td>105</td>
<td>85.6</td>
</tr>
<tr>
<td>19</td>
<td>80.3</td>
<td>108</td>
<td>82.5</td>
<td>107</td>
<td>87.0</td>
</tr>
<tr>
<td>20</td>
<td>78.2</td>
<td>103</td>
<td>76.8</td>
<td>105</td>
<td>80.7</td>
</tr>
</tbody>
</table>

MEAN 79.57 105.7 79.86 106.5 83.91 105.3 79.71 104.7 78.62 104.90 84.00
S.D. 2.48 3.54 2.35 3.44 2.71 4.22 1.70 4.48 2.39 4.37 2.64

*Time in seconds

Fourteen crewmembers and 527 passengers evacuated a B-747 in 66.2 s on a certification demonstration in 1974. In comparison, the computer model evacuation simulation with 527 passengers resulted in an average total evacuation time of 84 s (ranging from 80.16 to 87.8 s) (Table 1). The passenger flow rates of approximately 0.63 s/pasenger through the exits in the actual demonstration were faster than the simulated evacuation flow rate of 0.80 s/pasenger used in the computations. A highly motivated passenger group, an enthusiastic and efficient cabin crew, and rapid door preparation were apparently factors that contributed to the unexpectedly fast flow rates in the evacuation demonstration.
Table 2 lists results of a series of six simulated evacuations, each the average of 20 runs, on the L-1011 aircraft with 356 or 411 passengers. The objective of the runs was to comparatively evaluate a Type I exit vs. a Type A exit in the aft exit position in combination with three other Type A exits on the L-1011. Three of these simulations were comparable to aircraft evacuation demonstrations, the results of which are noted for comparison in Table 2.

TABLE 2. Evacuation Times and Conditions of GPSS Simulation of an L-1011 Evacuation (20 Computer Runs; Exit-Opening Time = 13 s)

<table>
<thead>
<tr>
<th>No. Pax.</th>
<th>Exits Used</th>
<th>Intracabin Redirection</th>
<th>Average Total Evacuation Time (s)</th>
<th>Average Total Evacuation Time (Range (s))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Yes</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>356</td>
<td>3</td>
<td>1</td>
<td>Y</td>
<td>93.5<sup>1</sup></td>
</tr>
<tr>
<td>356</td>
<td>3</td>
<td>1</td>
<td>N</td>
<td>84.9<sup>2</sup></td>
</tr>
<tr>
<td>356</td>
<td>4</td>
<td>-</td>
<td>Y</td>
<td>83.6</td>
</tr>
<tr>
<td>356</td>
<td>4</td>
<td>-</td>
<td>N</td>
<td>79.6</td>
</tr>
<tr>
<td>411</td>
<td>4</td>
<td>-</td>
<td>Y</td>
<td>83.6<sup>3</sup></td>
</tr>
<tr>
<td>411</td>
<td>4</td>
<td>-</td>
<td>N</td>
<td>79.6</td>
</tr>
</tbody>
</table>

¹Total evacuation time for an actual demonstration was 101.1 s.
²Total evacuation time for an actual demonstration was 82 s.
³Total evacuation time for an actual demonstration was 89.7 s.

Table 3 consists of groups of 20 simulation runs and shows the total average escape times on a DC-10 with 391 passengers with two variables in the simulated conditions. Exit No. 2 (Type A) simulated a delayed exit-opening time of 50 s, with and without redirection of passengers in the cabin. The other variable shown is a blocked aft exit (Type A), with and without redirection.

TABLE 3. Evacuation Times and Conditions of GPSS Simulation of a DC-10 (20 Computer Runs; 391 Passengers)

<table>
<thead>
<tr>
<th>Exits Used</th>
<th>Intracabin Redistribution</th>
<th>Average Total Evacuation Time (s)</th>
<th>Average Total Evacuation Time (Range (s))</th>
<th>Exit-Opening Time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Yes</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>-</td>
<td>N</td>
<td>112.0</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>Y</td>
<td>-</td>
<td>92.5</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>Y</td>
<td>-</td>
<td>90.2</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>-</td>
<td>N</td>
<td>85.0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>-</td>
<td>N</td>
<td>144.0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>Y</td>
<td>-</td>
<td>114.0</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>Y</td>
<td>-</td>
<td>82.0</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>Y</td>
<td>-</td>
<td>90.2</td>
</tr>
</tbody>
</table>

*The aft Type A (Exit 4) was blocked.
Table 4 lists three sets of 20 evacuation simulations that compare evacuation times for: (1) 355 passengers through three Type A and either a Type I (24 x 48 in with a single slide) or a Type B (32 x 72 in with a double slide) exit in the forward position, and (2) 375 passengers through three Type A exits and a Type B exit in the forward position.

TABLE 4. Evacuation Times and Conditions of GPSS Simulation of a DC-10 to Compare Type I and Type B Exit Times (20 Computer Runs)

<table>
<thead>
<tr>
<th>Exits Used</th>
<th>No. Intracabin Redirection</th>
<th>Average Total Evacuation Time (s)</th>
<th>Average Total Evacuation Time Range (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I A B² Pax</td>
<td>Yes No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 3 - 355</td>
<td>N</td>
<td>106.0</td>
<td>94.0 - 119.0</td>
</tr>
<tr>
<td>- 3 1 355</td>
<td>N</td>
<td>58.0</td>
<td>55.0 - 61.0</td>
</tr>
<tr>
<td>- 3 1 375</td>
<td>Y N</td>
<td>73.4</td>
<td>67.9 - 79.4</td>
</tr>
</tbody>
</table>

1Single-lane slide used.
2Double-lane slide used.

Special Applications of the GPSS Evacuation Model. The GPSS model was used to simulate a unique evacuation of 114 passengers from a military command post aircraft. In lieu of flight attendants, military personnel working aboard the aircraft at other duties were assigned to prepare the exits for evacuation. The time required for them to reach the exits from their respective work stations was added to door/slide preparation time. Groups of 25 passengers were evacuated from each exit, one exit at a time, to obtain basic input data for statistical controls. The test results (Table 5) were applied to the flow rate determinations for computer functions. Results of simulated evacuations through five and nine Type A exits are shown in Table 6. The total evacuation times and number of passengers out each exit were averaged from 50 computer runs for each exit configuration.
TABLE 5. Evacuation Time-Path Data Obtained From Evacuations of 25 Passengers From a Military Command Post Aircraft

<table>
<thead>
<tr>
<th>Test No.</th>
<th>Exit</th>
<th>Time to Exit (s)</th>
<th>No. Pax Out Exit</th>
<th>Time 4th Pax Out Exit (s)</th>
<th>Time 8th Pax Out Exit (s)</th>
<th>Time Last Pax Out Exit (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>L-2</td>
<td>7.1</td>
<td>9</td>
<td>22.2</td>
<td>25.5</td>
<td>27.0</td>
</tr>
<tr>
<td>2</td>
<td>L-1</td>
<td>6.8</td>
<td>9</td>
<td>22.2</td>
<td>24.6</td>
<td>26.0</td>
</tr>
<tr>
<td>3</td>
<td>R-1</td>
<td>9.2</td>
<td>9</td>
<td>24.0</td>
<td>27.0</td>
<td>28.5</td>
</tr>
<tr>
<td>4</td>
<td>R-2</td>
<td>5.3</td>
<td>16</td>
<td>21.0</td>
<td>24.3</td>
<td>31.5</td>
</tr>
<tr>
<td>5</td>
<td>L-3</td>
<td>9.2</td>
<td>16</td>
<td>25.2</td>
<td>30.6</td>
<td>42.0</td>
</tr>
<tr>
<td>6</td>
<td>R-3</td>
<td>5.4</td>
<td>16</td>
<td>--</td>
<td>20.4</td>
<td>30.0</td>
</tr>
<tr>
<td>7</td>
<td>R-4</td>
<td>6.8</td>
<td>16</td>
<td>23.4</td>
<td>29.4</td>
<td>40.5</td>
</tr>
<tr>
<td>8</td>
<td>L-5</td>
<td>9.6</td>
<td>16</td>
<td>24.0</td>
<td>29.4</td>
<td>40.0</td>
</tr>
<tr>
<td>9</td>
<td>R-5</td>
<td>5.6</td>
<td>9</td>
<td>25.2</td>
<td>31.2</td>
<td>33.0</td>
</tr>
</tbody>
</table>

TABLE 6. GPSS Computer Model Evacuation Simulation Results: Escape by 114 Passengers From a Command Post Aircraft via 5 and 9 Exits

<table>
<thead>
<tr>
<th>Exit No.</th>
<th>Total Evacuation Time (s)</th>
<th>Average No. Evacuees Through Exit</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-1</td>
<td>35.34</td>
<td>23.1</td>
</tr>
<tr>
<td>R-2</td>
<td>36.72</td>
<td>25.5</td>
</tr>
<tr>
<td>R-3</td>
<td>39.45</td>
<td>23.2</td>
</tr>
<tr>
<td>R-4</td>
<td>34.70</td>
<td>22.9</td>
</tr>
<tr>
<td>R-5</td>
<td>32.47</td>
<td>19.3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exit No.</th>
<th>Total Evacuation Time (s)</th>
<th>Average No. Evacuees Through Exit</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-1</td>
<td>28.90</td>
<td>12.4</td>
</tr>
<tr>
<td>R-2</td>
<td>31.49</td>
<td>11.4</td>
</tr>
<tr>
<td>R-3</td>
<td>36.33</td>
<td>11.8</td>
</tr>
<tr>
<td>R-4</td>
<td>28.37</td>
<td>12.7</td>
</tr>
<tr>
<td>R-5</td>
<td>28.37</td>
<td>13.2</td>
</tr>
<tr>
<td>L-1</td>
<td>28.10</td>
<td>13.2</td>
</tr>
<tr>
<td>L-2</td>
<td>28.82</td>
<td>13.4</td>
</tr>
<tr>
<td>L-3</td>
<td>35.88</td>
<td>12.6</td>
</tr>
<tr>
<td>L-5</td>
<td>28.80</td>
<td>13.3</td>
</tr>
</tbody>
</table>
A second use of the GPSS evacuation model was as a new aircraft design tool. Two exit configurations and three passenger loads for each configuration were presented for exit optimization in a new civil air transport aircraft. The existing five-exit model program was adjusted to a three-exit program by bypassing operational statements for two nonessential exits. Three Type A exits, and one Type I and two Type A exits in combination, were evaluated, each with 208, 248, or 309 passengers. Table 7 displays the evacuation times for the exit combinations and load factors given. It can be seen that 30 percent less time was required for evacuation with the three Type A exits.

<table>
<thead>
<tr>
<th>Exits Used</th>
<th>Average Evacuation Times (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No. Pax 208</td>
</tr>
<tr>
<td>1 2</td>
<td>87.19 99.70</td>
</tr>
<tr>
<td>0 3</td>
<td>62.89 70.49</td>
</tr>
</tbody>
</table>

The chart listing the number of passengers using each exit demonstrates the effect of passenger transfers to exits with faster escape rates. The transfers are particularly evident with the smaller Type I exit in the forward position combined with two Type A exits when compared with the configuration of three Type A exits as shown in Table 8.

<table>
<thead>
<tr>
<th>No. Pax</th>
<th>Exits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3 Type A</td>
</tr>
<tr>
<td></td>
<td>Forward</td>
</tr>
<tr>
<td>208</td>
<td>68.65</td>
</tr>
<tr>
<td>248</td>
<td>82.48</td>
</tr>
<tr>
<td>309</td>
<td>102.48</td>
</tr>
<tr>
<td>1 Type I and 2 Type A</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Forward</td>
</tr>
<tr>
<td>208</td>
<td>42.75</td>
</tr>
<tr>
<td>248</td>
<td>51.00</td>
</tr>
<tr>
<td>309</td>
<td>63.68</td>
</tr>
</tbody>
</table>
IV. Discussion.

The program of civil air transport evacuation simulation was undertaken to provide a better understanding of the factors that influence evacuation. Existing certification procedures for demonstrating the safe evacuation potential of an aircraft have proven costly and may result in injury to the participants. The present simulation model program is designed with the exit and slide segments of an evacuation as the major determining factors for total evacuation times. In addition, redistribution or reassignment of passengers to equalize waiting lines to escape contributes significantly to the total evacuation time and this is included in the program. The effects of adverse conditions, such as smoke, fallen ceiling panels, and debris in the aisles, on evacuation times have not been simulated because of the lack of available data for any specific condition.

The knowledge gained from the evacuation demonstrations and accident histories has provided a valuable source of information on which judgments for simulation can be based. Criteria must be determined for the simulation that will provide assurance of adequate escape potential from civil transport aircraft and detect factors iminical to escape and survival. The GPSS-language computer model has the potential to simulate much more sophisticated entities than are shown in this report. An example is the inclusion of the effects of crew effort on evacuation times. Graded on a scale from 1 to 10, a Factor could be entered that would directly influence passenger flow rates through an exit. Computer runs could be made with both easy and low effort (grade 1) to the most enthusiastic effort (grade 10) to evaluate the effects of crew effort. Of course, data would be required to establish the delay function of the Factor. Another example would relate to exit design evaluations to establish optimum distances between exits while considering exit capacities to provide optimization of a total aircraft exit configuration. Until encumbrances on passenger movement to exits override the limiting flow rates, modeling exit flow and escape slide patterns will provide adequate evacuation performance evaluations. Although some rudimentary information is available on interior cabin movement by individual passengers, group tests will be required to substantiate data for more precise simulations.

V. Conclusions.

1. The capability and potential of the GPSS evacuation model have reached the stage in development that allows it to closely simulate actual evacuations from current transport aircraft. With refined inputs, based on additional test results, the model may provide a valid means to certify evacuation systems or evaluate escape system designs while the aircraft are in the early planning stages.

2. A group knowledgeable in evacuation simulation should develop a program to provide the data and formulate simulation criteria for potential use as a certification and/or design tool.
3. All evacuation tests, research, and actual performance data should be assembled at one source and analyzed to obtain pertinent material for model input functions.

4. A final model should be refined and subjected to a rigorous validation process.

5. A practical, validated, evacuation simulation model should then be considered for acceptance as a certification and/or design tool.
REFERENCES

APPENDIX A

TYPICAL GPSS EVACUATION PROGRAM

1 GENERATE 1,127,110
2 TRANSFER .200, MIDA FIRSTANCE TYPE A EXIT EXPECTS 1/5
3 TRANSFER .250, MIDA SECOND TYPE A EXIT EXPECTS 1/5
4 TRANSFER .333, MIDA THIRD TYPE A EXIT EXPECTS 1/5
5 TRANSFER .400, AFTI FOURTH TYPE A EXIT EXPECTS 1/5
6 TRANSFER .45, AFTI FIFTH TYPE A EXIT EXPECTS 1/5
7 MIDA ASSIGN 4,11 FIRST EXIT, SLIDE NR ASSIGNED P5
8 ASSIGN 5,12 OPPosite SIDE & NR ASSIGNED P6
9 ASSIGN 6,11
10 ASSIGN 7,12
11 ASSIGN 8,22
12 ASSIGN 9,11
13 TRANSFER ,EXIT
14 MIDA ASSIGN 2,7
15 ASSIGN 3,12
16 ASSIGN 4,12
17 ASSIGN 5,12
18 ASSIGN 6,12
19 ASSIGN 7,12
20 TRANSFER ,EXIT
21 AFTI ASSIGN 2,7 OVERWING RAMP PATH IS NUMBERED 6 IN F7
22 ASSIGN 3,12
23 ASSIGN 4,12
24 ASSIGN 5,12
25 ASSIGN 6,12
26 ASSIGN 7,12
27 ASSIGN 8,12
28 TRANSFER ,EXIT
29 AFTI ASSIGN 2,11 OVERWING RAMP PATH IS NUMBERED 6 IN F7
30 ASSIGN 3,11
31 ASSIGN 4,11
32 ASSIGN 5,11
33 ASSIGN 6,11
34 ASSIGN 7,11
35 ASSIGN 8,11
36 ADOL ASSIGN 4,13
37 ASSIGN 5,14
38 ASSIGN 6,14
39 ASSIGN 7,33
40 ASSIGN 8,34
41 ASSIGN 9,5
42 TRANSFER ,EXIT
43 EXIT TEST GE N2, 114 ENTER AISLES AWAITING DOORS
44 BEGIN ENTER P4
45 ADVANCE FN2 DOOR-MECHANISM DELAY, USING P4 ALSO
46 LEAVE P4
47 QUEUE P9
48 LINK PL, FI, FJ, AAA