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Infrared radIatIon transmIttance and PIlot VIsIon 
through cIVIlIan aIrcraft WIndscreens

INTRODUCTION

An a�rcraft’s w�ndsh�eld (�.e., w�ndscreen) �s v�tal 
for enhanc�ng and protect�ng the p�lot’s v�s�on. The 
transm�ttance of a w�ndscreen mater�al can affect v�sual 
performance wh�le prov�d�ng protect�on from harm-
ful electromagnet�c rad�at�on. Transm�ttance may be 
determ�ned by calculat�ng the rat�o of the total radiant 
or luminous flux that �s transm�tted to that wh�ch �s 
�nc�dent on the surface of the w�ndscreen. A h�gh rat�o 
�nd�cates that �nc�dent rad�at�on �s transm�tted effic�ently 
through the w�ndscreen, wh�le a low rat�o denotes lesser 
transm�ss�on. 

Opt�cal rad�at�on �s defined as the part of the elec-
tromagnet�c spectrum that �ncludes ultrav�olet (UV), 
v�s�ble, and �nfrared (IR) rad�at�on. The Comm�ss�on 
Internat�onalè de l’Ecla�rage (CIE) Comm�ttee on Pho-
tob�ology has prov�ded spectral band des�gnat�ons that 
are conven�ent for d�scuss�ng b�olog�cal effects. These 
d�v�s�ons �n the opt�cal spectrum are �llustrated �n F�gure 
1. Opt�cal rad�at�on can also be d�v�ded �nto two general 
reg�ons w�th respect to the�r potent�al for eye damage: the 
ret�nal hazard reg�on and the non-ret�nal hazard reg�on. 
The wavelengths of the ret�nal hazard reg�on �nclude v�s-
�ble l�ght (380 – 780 nm) and near IR (780 – 1400 nm) 
or IR-A rad�at�on. The ret�nal hazard reg�on �dent�fies 
those bandw�dths that are transm�tted through the opt�cal 

med�a of the eye (cornea, aqueous humor, crystall�ne 
lens, and v�treous humor) and focused onto the ret�na. 
The non-ret�nal hazard reg�on refers to wavelengths that 
are mostly absorbed by anter�or ocular t�ssues, w�thout 
s�gn�ficant transm�ss�on to the ret�na. These bandw�dths 
�nclude UV rad�at�on from 100 nm to 380 nm (UV-C, 
UV-B, and UV-A) and the IR bands w�th wavelengths 
greater than 1400 nm (IR-B and IR-C).

Excess�ve exposure to opt�cal rad�at�on �s a concern to 
�ndustr�al hyg�en�sts, safety eng�neers, and publ�c health 
offic�als for the�r potent�al as a hazard to health and 
safety. As�de from natural sources of rad�at�on, such as 
the sun and cosm�c background rad�at�on, many man-
made sources of opt�cal rad�at�on ex�st and are becom�ng 
�ncreas�ngly access�ble to the general publ�c. Excess�ve 
exposure to these sources can also lead to adverse phys�-
olog�cal consequences. Examples of these sources �nclude 
lasers, mercury-vapor and xenon halogen lamps, weld�ng 
dev�ces, and �nfrared and germ�c�dal lamps. These sources 
are frequently found �n office sett�ngs, water treatment 
plants, hosp�tals, research laborator�es, photo-etch�ng 
product�on l�nes, graph�c arts fac�l�t�es, mach�ne shops, 
tann�ng salons, and even �n homes. 

Much has been wr�tten about the dangers assoc�ated 
w�th exposure to excess�ve levels of v�s�ble and UV rad�a-
t�on �n the Nat�onal A�rspace System (NAS) (1,2,3). L�ttle 
has been reported concern�ng the potent�al hazards from 

Figure 1. Optical radiation spectral bandwidths (CIE, 1970).
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exposure to h�gh levels of IR rad�at�on. Th�s �s l�kely due 
to the percept�on that there �s m�n�mal r�sk of �njury to 
av�ators and the fly�ng publ�c from art�fic�al and natural 
sources of IR rad�at�on �n the NAS. Th�s �s generally true 
for natural sources of IR rad�at�on, �nclud�ng the sun. 
Most of the sun’s ultrav�olet rad�at�on below 300 nm �s 
absorbed by atmospher�c ozone (O

3
) and oxygen (O

2
), 

wh�le most of the v�s�ble and IR rad�at�on str�k�ng the 
earth’s atmosphere reaches the surface. The earth’s surface 
absorbs v�s�ble l�ght and re-em�ts much of the energy 
as IR rad�at�on back �nto the atmosphere (4). Certa�n 
gases �n the atmosphere, ch�efly water vapor (H

2
O) and 

carbon d�ox�de (CO
2
), absorb IR and re-rad�ate �t �n all 

d�rect�ons (5). W�thout the atmosphere to capture ther-
mal energy from v�s�ble and IR rad�at�on, the est�mated 
average temperature of the earth would be a fr�g�d 0º F, 
rather than a comfortable 59º F (6).

Under normal c�rcumstances, naturally occurr�ng at-
mospher�c IR rad�at�on �s generally safe for ocular t�ssues 
and sk�n. Prolonged and/or repeated exposure to �ntense 
sources of IR, however, can result �n ret�nal, corneal, and 
sk�n burns, as well as IR-�nduced cataracts. For normal 
outdoor act�v�t�es, appropr�ate sunglasses and sunscreen 
�s all that �s necessary; however, w�th extreme exposure, 
spec�al precaut�ons are requ�red. For example, astronomers 
are adv�sed to never v�ew a solar ecl�pse w�thout a filter that 
attenuates all UV rad�at�on, 99.997% of v�s�ble l�ght, and 
99.5% of IR-A (7). Glassblowers and anyone rout�nely 
work�ng w�th molten mater�als should take s�m�lar precau-
t�ons to protect the�r eyes from excess�ve exposure to IR 
rad�at�on (8,9). It �s commonly accepted that commerc�al 
p�lots who fly at h�gh alt�tudes for prolonged per�ods of 
t�me should �nvest �n sunglasses that protect the�r eyes 
from exposure to both UV and excess�ve amounts of 
�ntense v�s�ble l�ght (10,11). Ongo�ng sc�ent�fic research 
and emerg�ng technolog�es that employ IR lasers for use 
�n the NAS have ra�sed concerns about the poss�b�l�ty 
of av�at�on personnel and the publ�c be�ng acc�dentally 
exposed to harmful levels of IR rad�at�on. 

The Department of Homeland Secur�ty (DHS) 
Counter-Man Portable A�r Defense System (MANPADS) 
Spec�al Project Office requested that the C�v�l Aerospace 
Med�cal Inst�tute’s (CAMI) V�s�on Research Team evalu-
ate the potent�al hazards to av�at�on personnel and the 
general publ�c posed by the IR rad�at�on em�tted from 
these Counter-MANPADS systems. The measurement 
of a�rcraft w�ndscreen transm�ttance was part of th�s 
laser safety assessment. Sc�ent�sts from the Un�ted States 
Army Center for Health Promot�on and Prevent�ve 
Med�c�ne (CHPPM), Aberdeen Prov�ng Ground, MD, 
were enl�sted to prov�de techn�cal support. Based on 
the data prov�ded by the CHPPM (12), an FAA report 
was publ�shed descr�b�ng w�ndscreen transm�ttance for 

UV rad�at�on and v�s�ble l�ght (13). The current report 
documents transm�ttance propert�es of a set of a�rcraft 
w�ndscreens through the IR reg�on (780 – 4000 nm) of 
the electromagnet�c spectrum.

METHOD

Several a�rcraft w�ndscreens were sh�pped from var�ous 
a�rcraft ma�ntenance fac�l�t�es to CAMI’s V�s�on Research 
Laboratory. E�ght w�ndscreens were selected from those 
ava�lable for test�ng. Three were from large commerc�al 
jets (MD 88, A�rbus A320, and Boe�ng 727/737), one was 
from a smaller pr�vate jet (Raytheon A�rcraft Corporat�on 
Hawker Hor�zon), two were from commerc�al, propeller-
dr�ven passenger planes (Fokker 27 and the ATR 42), and 
two were from smaller, s�ngle-eng�ne propeller general 
av�at�on planes (Beech Bonanza and the Cessna 182). The 
Beech and Cessna w�ndscreens were full w�ndsh�elds and 
made of a s�ngle-layer polycarbonate mater�al, rather than 
the lam�nated glass that compr�sed the other s�x.

Instrumentat�on for test�ng �ncluded:

1) EG&G model 580 spectro-rad�ometer systems 
(w�th UV, v�s�ble, and IR grat�ngs and hous�ngs); 
sort�ng filters; models 580-22A, 580-23A, and 
580-25A photod�ode detectors; and Palentron�c 
AR582F �nd�cator un�t.

2) Internat�onal L�ght Model 1700 rad�ometer w�th 
SED 623 broadband detector.

3) Oph�r LaserStar rad�ometer system, w�th model 
3A-P-SH thermop�le detector.

4) Narrow pass filters: 1450 nm, 1540 nm, 1940 
nm, 2050 nm, 2100 nm, 2200 nm, 2300 nm, 
and 2380 nm.

5) Long pass filters: 1600 nm and 2500 nm.
6) Sapph�re w�ndow: transm�ss�on from UV to 4000 

nm.
7) L�ght sources: deuter�um lamp, 100-watt �ncan-

descent l�ght, 250-watt heat lamp.
8) L�ght box and a�rcraft w�ndscreen cart.
9) M�scellaneous laboratory mounts, filters, filter 

holders, and equ�pment.
10) Perk�n Elmer UV/VIS/NIR model Lambda 900 

spectrometer system.
11) Cold m�rror and extended-range hot m�rror.

Transm�ss�on measurements on the var�ous w�ndscreens 
were performed �n a sem�-darkened room. Two large tables 
were used: one for the l�ght sources and the other to place 
the var�ous opt�cal detectors. A custom-made w�ndscreen 
cart (F�gure 2) was used to sl�de the w�ndscreens �n and 
out of the beam path between the two tables separat�ng 
the l�ght sources and detectors. 
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Three monochromator systems were placed s�de-by-
s�de and al�gned w�th the appropr�ate l�ght source, wh�ch 
was placed �n a metal enclosure (F�gure 3). For each 
w�ndscreen and each spectral reg�on, a basel�ne measure-
ment was made w�th the w�ndscreen moved to one s�de 
and then repeated w�th the w�ndscreen placed between 
the l�ght source and the detector. To confirm the data 
collected by the EG&G spectro-rad�ometers, the two 
polycarbonate (plast�c) w�ndscreens were cut and tested 
�n a Lambda 900 spectrometer, result�ng �n good agree-
ment. An attempt was made to cut a sample from the 
compos�te glass w�ndscreens, but craz�ng of the sample 
made transm�ss�on measurements �mposs�ble. 

For v�s�ble and near-�nfrared transm�ss�on (400 – 1250 
nm) measurements, an ord�nary �ncandescent 100-watt 
l�ght bulb was suffic�ent for an �llum�nat�on source due 
to the h�gh transm�ss�on of the w�ndscreens for v�s�ble 
and near-IR rad�at�on. For wavelengths farther �n the 
�nfrared, a 250-watt heat lamp was used for an �llum�na-
t�on source. The EG&G Model 580-22A detector was 
used for measurements �n the spectral reg�on (400 – 800 
nm), and the Model 580-23A detector was used �n the 

spectral reg�on (800 – 1400 nm). For wavelengths longer 
than 1400 nm, a sapph�re w�ndow and a ser�es of narrow 
pass filters were employed w�th a thermop�le detector. 
Narrow pass filters were not ava�lable from 1550 nm to 
1950 nm. Due to heat�ng of components �n the opt�cal 
l�ne of s�ght between the source and detector, not all 
background rad�at�on could be el�m�nated. Therefore, 
the reported results for very low values of transm�ss�on, 
espec�ally those for wavelengths greater than 2100 nm, 
reflect a max�mum transm�ss�on, rather than an actual 
transm�ss�on measurement.

Due to the we�ght of the w�ndscreens and the need 
to repos�t�on the detectors and l�ght source for var�ous 
spectral reg�ons, a s�ngle basel�ne was not pract�cal. There-
fore, a new basel�ne was usually created for each set of 
measurement cond�t�ons for each w�ndscreen. Measur�ng 
two of the polycarbonate w�ndscreens under both field and 
laboratory cond�t�ons served to val�date the measurement 
method used on-s�te for all w�ndscreens measurements 
and also to �dent�fy potent�al problem areas.

RESULTS

The transm�ttance values for �nd�v�dual glass lam�nate 
w�ndscreens are summar�zed �n F�gure 4 and those for 
the two plast�c w�ndscreens �n F�gure 5.

The average transm�ttance data for both glass lam�nate 
and plast�c w�ndscreens are plotted �n F�gure 6. In the IR-A 
spectral reg�on (780 – 1400 nm), average transm�ttance 
of the two mater�als var�ed (average d�fference = 47.5% 
± 11.7%), w�th glass w�ndscreens cons�stently attenuat-
�ng more IR rad�at�on than the�r plast�c counterparts. 
S�m�larly, the average d�fference �n transm�ttance fluctu-
ated (27.3% ± 15.9%) throughout the first half of the 
IR-B spectrum (1400 – 3000 nm) up to approx�mately 
2200 nm, where the transm�ttance for both mater�als 

Figure 2. Custom-made windscreen cart for 
manipulating aircraft windscreens.

Figure 3. Detector and light source configuration.
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Figure 4. Transmittance of individual glass windscreens.

Figure 5. Transmittance of individual plastic windscreens.
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dropped below 7%. The average transm�ttance for both 
glass and plast�c w�ndscreens gradually decreased unt�l �t 
became v�rtually �mmeasurable from 2800 nm through 
4000 nm.

DISCUSSION

S�nce September 11, 2001, many analysts see the use of 
MANPADS as a terror�st’s weapon of cho�ce for str�k�ng 
U.S. a�rl�nes, espec�ally as �mprovements �n a�rport secur�ty 
reduce the chances for smuggl�ng explos�ves or �ncend�-
ary dev�ces onto planes. There are as many as 500,000 
shoulder-fired m�ss�les �n m�l�tary arsenals around the 
world and from 5,000 to 150,000 �n the hands of up to 
30 non-state organ�zat�ons, accord�ng to a report by the 
Congress�onal Research Serv�ce (CRS) (14). An analys�s by 
the CRS �nd�cates that, �n the last 26 years, MANPADS 
have been used �n attacks on 35 c�v�l�an a�rcraft, of wh�ch 
24 were shot down, k�ll�ng more than 500 people. Most 
of these �nc�dents took place �n war zones, pr�nc�pally 
Afr�ca, Sr� Lanka, and Afghan�stan (15).

M�l�tary a�rcraft have been equ�pped w�th counter-
measures that draw off a m�ss�le’s gu�dance system as �t 
attempts to lock onto the heat s�gnature of the a�rcraft’s 
eng�nes by deploy�ng flares from under the a�rcraft. After 
an Israel� passenger jet surv�ved an attempt by al-Qaeda 
to shoot �t down over Kenya �n 2002, El Al Israel A�rl�nes 
�nstalled flare-based Counter-MANPAD systems on all 
�ts a�rcraft (16). But the fear of collateral damage from 
fires, should the flares be deployed by m�stake, makes 

th�s solut�on less than opt�mal for most c�v�l av�at�on 
author�t�es, �nclud�ng those �n the Un�ted States. 

The Counter-MANPADS program, as �t �s known, 
began �n January 2004 when DHS selected three teams 
from a field of 24 to compete �n a study to determ�ne 
how �nfrared counter measures (IRCM) could be adapted 
for use on large c�v�l�an transport a�rplanes. The systems 
currently under development for U.S. carr�ers are housed 
�n pods mounted on the unders�de of an a�rcraft’s fuselage 
and employ IRCM to d�srupt the gu�dance systems of 
surface-to-a�r m�ss�les (F�gure 7). 

The IRCM system uses mult�ple-wavelength lasers that 
em�t rad�at�on �n the �nfrared port�on of the electromag-
net�c spectrum. Although the redundant safeguards and 
the relat�vely long exposure t�mes that would be neces-
sary to �nfl�ct �njury reduce the r�sk to p�lots, a�r traffic 
controllers, ground crews, and the publ�c, IR em�ss�ons 
from these laser systems can be hazardous to ocular t�s-
sues and sk�n under certa�n c�rcumstances. The type of 
damage an IR laser may cause depends on several factors, 
�nclud�ng the energy del�vered per un�t area, durat�on of 
exposure, and wavelength. W�th�n the Nom�nal Ocular 
Hazard D�stance, near-�nfrared (IR-A) laser rad�at�on may 
damage the ret�na, wh�le m�ddle- and far-�nfrared laser 
rad�at�ons (>1,400 nm) can �njure the cornea and, to a 
lesser extent, the crystall�ne lens, prov�ded the appl�cable 
max�mum perm�ss�ble exposure (MPE) l�m�t �s exceeded. 
Damage to t�ssue from laser rad�at�on �s usually due to 
heat�ng (thermal effects); however, photochem�cal �njury 
may also occur. Most photochem�cal effects are l�m�ted 

Figure 6. Average transmittance for glass and plastic windscreens.
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to shorter wavelengths; whereas, thermal effects can oc-
cur at any wavelength �n the opt�cal rad�at�on spectrum. 
A summary of the adverse b�olog�cal effects that can 
result from excess�ve exposure to var�ous wavelengths 
of rad�at�on �s �llustrated �n F�gure 8. Only a very small 
percentage of rad�at�on reaches the ret�na beyond 1,400 
nm, due to absorpt�on by t�ssues �n the anter�or port�on 
of the eye. M�d-�nfrared rad�at�on (IR-B) may penetrate 
anter�or t�ssues of the eye deep �nto the crystall�ne lens, 
caus�ng corneal burns and �nfrared cataracts. Far-�nfrared 
rad�at�on (IR-C) �s pr�mar�ly absorbed by the cornea 
and can result �n corneal burns and blurred v�s�on.  The 
major danger to the sk�n from lasers operat�ng �n the IR 
reg�on of the spectrum �s thermal burns. Other poss�ble 
�njur�es �nclude erythema and rad�ant heat stress. In some 
cases, symptoms may appear 6 – 12 hours after exposure 
and d�sappear gradually after 24 – 36 hours, leav�ng no 
permanent damage (8). 

The present study found that w�ndscreens can prov�de 
vary�ng degrees of protect�on from IR rad�at�on exposure 
depend�ng on the type of w�ndscreen mater�al and wave-
length of the rad�at�on. Plast�c mater�al transm�tted up 
to 40% more rad�at�on at 780 nm. In other words, glass 
lam�nate w�ndscreens blocked between 20 and 60% more 
IR rad�at�on than plast�c from 780 nm through 2,100 
nm. Above 2,200 nm, both glass and plast�c w�ndscreens 
reduced IR transm�ss�on to 7% or less, and the d�ffer-
ence became pract�cally �mmeasurable from 2,800 nm 
through 4,000 nm.

The reduced transm�ss�on of w�ndscreen mater�als 
at certa�n wavelengths can help to protect a p�lot from 
ocular t�ssue damage. Opt�cal dens�ty (OD), wh�ch 
can be calculated from transm�ttance (T) (�.e., OD = 
Log

10
(1/T)), �s the capac�ty of an opt�cal element to 

absorb (attenuate) rad�at�on of a g�ven wavelength. 
The opt�cal dens�ty for the average glass (OD

glass
) and 

Figure 7. Conceptual illustration of a civilian Counter-MAN-
PADS deploying (invisible) IRCM to disrupt the guidance 
systems of surface-to-air missiles. 

Figure 8. Potential adverse biological effects from excessive exposure to optical 
radiation Sliney & Wolbarsht, 1980).
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plast�c (OD
plast�c

) w�ndscreens are presented �n F�gure 9. 
For a part�cular wavelength, a h�gh transm�ttance value 
results �n a low OD. Conversely, an opaque mater�al 
w�th a transm�ttance near 0% would have a very h�gh 
OD. The w�ndscreens exam�ned �n th�s study exh�b�ted 
IR transm�ttance between 1.3 and 91.5%, result�ng �n 
OD values that ranged from 1.9 to 0.04, respect�vely, 
w�th lam�nated glass w�ndscreens attenuat�ng more IR 
rad�at�on than plast�c w�ndscreens. In F�gure 9, two 6th-
order polynom�al approx�mat�ons were ut�l�zed to fill the 
gaps between the spec�fic wavelengths and bandw�dths 
measured us�ng the var�ous �nstruments and filters. It can 
be �nferred that the OD values for wavelengths between 
3,000 nm and 4,000 nm are at least 1.9 and 1.6 for glass 
and plast�c, respect�vely.

Table 1 compares several IR lasers of d�fferent 
wavelengths. All lasers l�sted are repet�t�ve pulsed w�th 
frequenc�es of 15 Hz, average power output of 300 m�l-
l�watts (mW), d�vergence of 1 m�ll�rad�an (mrad), energy 

per pulse of 20 m�ll�joules (mJ), and pulse w�dth of 12 
nanoseconds (ns). The last four columns conta�n the 
Nom�nal Ocular Hazard D�stance (NOHD), Nom�nal 
Sk�n Hazard D�stance (NSHD), and OD values for ocular 
t�ssues (OD

eye
) and sk�n (OD

sk�n
) for these lasers. These 

results were calculated us�ng the LHAZ V4.0 software, 
developed by The A�r Force Research Laboratory, Opt�cal 
Rad�at�on Branch, at Brooks AFB, TX. The NOHD and 
NSHD are the m�n�mum d�stances that must be ma�n-
ta�ned from the laser source to avo�d exceed�ng the MPE, 
respect�vely, for an exposure of up to 10 s. For example, 
a Nd:YAG (1064 nm) laser w�th the output parameters 
l�sted below must be at a d�stance of at least 2,610 m to 
avo�d ocular t�ssue damage from a 10-s exposure (w�th 
atmospher�c attenuat�on �n clear a�r accounted for). Sk�n 
damage from th�s laser would be avo�ded beyond 5.2 m. 
Laser eye protect�on w�th an OD of 4.6 �s requ�red for 
ocular protect�on w�th�n the NOHD, wh�le an OD of 
only 0.5 �s requ�red w�th�n the NSHD. 

Figure 9. Mean OD values for glass laminate and polycarbonate plastic wind-
screens.

Table 1: Optical density values and hazard distances for selected IR lasers.

Laser Type Wavelength 
(nm) 

MPE
(µJ/cm2)

NOHD 
(m) 

NSHD 
(m) ODeye ODskin

GaAs 840 0.2722 5,730 16.6 5.28 0.91
Nd:YAG 1064 1.429 2,610 5.2 4.56 0.49 
Nd:YAG 1330 11.43 938 5.2 3.66 0.49
Cr2+:CdSe 2600 2,857 58.8 37.5 2.95 1.50 
HeNe 3390 2,857 58.8 37.5 2.95 1.50
CO2 10600 2,857 58.8 37.5 2.95 1.50 
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Table 2 �llustrates the reduct�on �n both NOHDs and 
NSHDs for the s�x selected lasers when the average OD 
values for glass and plast�c w�ndscreens were appl�ed to 
the hazard d�stances �n Table 1. Note that attenuat�on 
of IR rad�at�on by plast�c w�ndscreens reduced the NO-
HDs of the three lasers operat�ng �n the ret�nal hazard 
reg�on (< 1,400 nm) by 4 to 28%, wh�le glass reduced 
these d�stances by 35 to 63%. Both glass and plast�c 
w�ndscreens prov�de suffic�ent attenuat�on to el�m�nate 
any ocular and sk�n hazards for the example lasers oper-
at�ng �n the IR-B and IR-C reg�ons (> 1,400 nm) of the 
electromagnet�c spectrum.

Av�at�on personnel who wear correct�ve spectacle 
lenses may add a small amount of m�d-IR attenuat�on 
to that prov�ded by w�ndscreens. The transm�ttance data 

for clear ophthalm�c lens mater�als are plotted �n F�gure 
10 (17). Note that both glass and plast�c lens mater�als 
transm�t approx�mately 90% of IR rad�at�on from 780 
nm to 1,100 nm. Both crown glass and h�gh-�ndex (1.60) 
glass lenses cont�nue to transm�t h�gh levels of IR (> 83%) 
through 2,530 nm. Plast�c lenses (CR-39®, MR-6, and 
polycarbonate) transm�t 80% to 10% of the IR rad�at�on 
from 1,350 nm to 2,300 nm, respect�vely. Ne�ther glass 
nor plast�c ophthalm�c lens mater�als prov�de adequate 
protect�on from IR rad�at�on exposure �n the ret�nal 
hazard reg�on unless spec�al treatments are added to the 
lens mater�al.

Sunglass lenses des�gned for “general-purpose” use, 
made from ophthalm�c glass w�th gray, green or tan t�nts, 
prov�de h�gh IR attenuat�on throughout the ret�nal hazard 

Table 2: The nominal hazard distances considering transmission losses through glass and 
plastic windscreens.

NOHD NSHD Laser
Type Plastic

(m) 
Change 

%
Glass

(m) 
Change 

%
Plastic

(m) 
Change 

%
Glass

(m) 
Change 

%
GaAs 5,490 4 3,740 35 15.5 7 6.1 63
Nd:YAG 2,470 5 1,520 42 3.1 40 0 100 
Nd:YAG 673 28 346 63 0 100 0 100
Cr2+:CdSe 0 100 0 100 0 100 0 100 
HeNe 0 100 0 100 0 100 0 100
CO2 0 100 0 100 0 100 0 100 

Figure 10. Transmittance of selected glass and plastic ophthalmic lens materials 
(adapted from: Torgersen, 1998).
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reg�on (17). These lenses also meet ANSI Z80.3 - 2001 
m�n�mum standards for transm�ttance of v�s�ble l�ght 
and s�gnal l�ght recogn�t�on. Average IR transm�ttance, 
as defined by ANSI Z87.1 – 1989 (780 – 2000 nm), for 
the darker t�nts are 25.4% for tan and 6.1% for both gray 
and green. Some manufacturers offer �nfrared protect�on 
�n “spec�al-purpose” des�gns (�.e., sports, safety, weld�ng, 
etc.) ava�lable under var�ous trade names. Many of these 
lenses, however, are expens�ve and d�fficult for the general 
publ�c to obta�n. 

In summary, the study results �nd�cate that a�rcraft 
w�ndscreens prov�de some protect�on from exposure 
to IR rad�at�on. The amount of protect�on afforded by 
a w�ndscreen �s dependent on the type of mater�al and 
the wavelength of the rad�at�on. Generally speak�ng, 
lam�nated glass w�ndscreens attenuate more IR rad�a-
t�on than plast�c w�ndscreens. Although normal levels 
of most naturally occurr�ng atmospher�c IR rad�at�on 
exposure pose no ser�ous threat, p�lots may w�sh to take 
added precaut�ons to avo�d prolonged exposure to exces-
s�ve levels of IR rad�at�on. The opt�cal dens�t�es of glass 
lam�nate w�ndscreens can substant�ally reduce th�s r�sk. 
A lam�nated glass w�ndscreen and appropr�ate sunglass 
lenses afford good protect�on from excess�ve exposure 
to naturally occurr�ng v�s�ble l�ght and IR rad�at�on. 
Add�t�onal research �s recommended to confirm that the 
measured transm�ttance values for th�s small sample of 
w�ndscreens are typ�cal of all w�ndscreens currently �n 
serv�ce. F�nally, as appl�cat�ons for lasers that could be 
harmful to av�at�on personnel or passengers �ncrease, more 
research may be needed to assess the potent�al hazards 
assoc�ated w�th the�r use and determ�ne how best to 
m�t�gate the�r �mpact on av�at�on safety. 
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