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Abstract  

Sleep disruption presents a substantial risk to health and safety, particularly due to the 
risks of performance degradation in safety-critical operations that can result in catastrophic 
injuries or mortality. Federal regulations exist to minimize the risks of fatigue with limitations on 
hours worked and requirements for fatigue risk management plans. Yet, even with workload 
controls and scheduled opportunities for rest, fatigue may be caused by factors such as personal 
and lifestyle choices, illness, and circadian disruption from travel across multiple time zones. 
Complicating risk mitigation is the challenge in identifying and measuring fatigue. Here, we 
report on gene expression biomarkers (biological indicators) for cognitive impairment during 
sleep loss. We observe hundreds of genes whose expression is associated with attention changes 
during one night of sleep loss. Several genes are identified that we previously associated with 
attention impairment in a separate study of sleep loss. The reproducibility of findings may 
indicate the robustness of these candidate fatigue impairment biomarkers. However, some 
biomarker genes only associate with certain tests of impairment (e.g., attention lapses but not 
self-reported fatigue), suggesting that different biomarker panels may be developed to assess the 
particular cognitive domains that need monitoring for a given safety critical operation. We also 
find that using a drug countermeasure (modafinil) not only helps mitigate impairment on tests of 
attention lapses, but also disrupts gene expression associations with attention lapses. Further 
research is needed to confirm whether this represents a unique effect of modafinil administration, 
or emphasizes the need to ensure biomarker validation occurs both in the presence and absence 
of countermeasures. 
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Introduction  

Despite increasing recognition of the importance of sleep, insufficient or mistimed sleep 
continues to present risks to health and safety. During the global severe acute respiratory 
syndrome-coronavirus 2 (SARS-COV-2) pandemic, fatigue received increased attention as both 
a symptom of infection and a consequence of the pandemic’s impact on lifestyles and sleep 
habits. Sleep recently gained recognition as one of “Life’s Essential 8” due to its importance for 
cardiovascular health (Lloyd-Jones et al., 2022). It is recommended that individuals 18 to 60 
years old sleep at least seven hours each night (Consensus Conference Panel, 2015). In addition 
to well-recognized health effects, improper sleep poses serious risks in fields with safety-critical 
operations, such as transportation. It has been shown that 17 to 19 hours without sleep can result 
in performance impairment comparable to or worse than that associated with a blood alcohol 
concentration of 0.05% (Williamson & Feyer, 2000). Altogether, 20% of 182 major National 
Transportation Safety Board (NTSB) investigations from 2001 to 2012 implicated fatigue as a 
finding, contributing factor, or probable cause of the event (Marcus & Rosekind, 2016). More 
recently, a review of NTSB investigations from 2013 to 2019 decreased that percentage to 
approximately 12% for investigations across multiple transportation modes (Parenteau et al., 
2023). However, in aviation fatigue was implicated in 28% of investigations, and overall, 
fatigued operators were more likely to be involved in accidents that led to fatalities or severe 
injuries (Parenteau et al., 2023). 

A major challenge in fatigue management is the complex assortment of factors that can 
lead to fatigue. The U.S. Code of Federal Regulations (CFR) in 14 CFR Part 117.3 defines 
fatigue as “a physiological state of reduced mental or physical performance capability resulting 
from lack of sleep or increased physical activity that can reduce a flightcrew member’s alertness 
and ability to safely operate an aircraft or perform safety-related duties.” Multiple factors, 
including workload, sleep loss, and altered sleep timing or circadian disruption may lead to acute 
or chronic fatigue (Dijk & Swaen, 2003; Phillips, 2015; Shen et al., 2006). The likelihood of 
aircrew experiencing some of these fatigue-inducing factors can be reduced; for example, hours 
of service limitations and flight duty regulations can increase opportunities for rest and recovery. 
Another safety mechanism is individuals’ subjective assessments of their own fatigue levels and 
fitness for duty, as explained in 14 CFR Part 117.5. However, self-reported fatigue does not 
always correspond with objective assessments (Ganesan et al., 2019; Lauderdale et al., 2008; 
McCauley et al., 2021), and operators may overestimate or underestimate fatigue risks. 

In addition to the complex assortment of factors that can induce fatigue, individuals also 
vary in their responses to sleep disruption, further complicating fatigue risk management. 
Variation among individuals in the response to sleep loss has been recognized for decades 
(Wilkinson, 1961). Attention lapses, as measured by the Psychomotor Vigilance Test, or PVT, 
show a strong impact of sleep disruption in some individuals and little to no impact following 
experimental sleep deprivation in others (St. Hilaire et al., 2019; Tkachenko & Dinges, 2018; 
Van Dongen et al., 2004). A metric capturing changes in neurobehavioral performance rather 
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than rest opportunities could vastly improve the ability to tailor fatigue mitigation approaches to 
the unique needs of individual operators. Neurobehavioral performance tests like the PVT can be 
used to monitor aspects of cognitive impairment. However, time may not always be available for 
operators to conduct extended neurobehavioral test batteries, and their completion is impossible 
in some situations, such as postmortem accident investigations. 

One aim of the Functional Genomics Research Team at the Federal Aviation 
Administration (FAA) Civil Aerospace Medical Institute (CAMI) is the development of novel 
fatigue impairment indicators to address the gap in metrics, specifically identifying ribonucleic 
acid (RNA) gene expression biomarkers of current impairment status. The definition proposed 
by the Biomarkers Definition Working Group (2001), as convened by the National Institutes of 
Health, is applied to describe a biomarker as “a characteristic that is objectively measured and 
evaluated as an indicator of normal biological processes, pathogenic processes, or pharmacologic 
responses to a therapeutic intervention.” The FAA CAMI’s Forensic Sciences Section conducts 
toxicological analyses on U.S. civilian pilot fatalities, testing for medications, drugs, 
glucose/glycated hemoglobin (HbA1c), ethanol/volatiles, and combustion gases to aid in aviation 
accident investigation (Cliburn et al., 2020). A genetic biomarker test on autopsy samples could 
augment biochemical toxicology analyses and provide further insights into possible impairment 
during an accident. Additionally, such biomarkers could provide an objective metric to aid 
accident prevention and fatigue risk management. 

The present report is part of a series of FAA investigations into genetic changes 
associated with sleep disruption. This study was made possible by collaboration with the Naval 
Medical Research Unit – Dayton (NAMRU-D) Fatigue Assessment and Countermeasures team. 
The NAMRU-D team recruited volunteers to experience two separate instances of total sleep 
deprivation, one with the countermeasure drug modafinil and one with the administration of a 
placebo. Modafinil alleviates excessive sleepiness from sleep disorders and conditions, such as 
narcolepsy, and may have use as a potential fatigue countermeasure in military operations 
(Caldwell et al., 2020; Wingelaar-Jagt et al., 2022). Neurobehavioral performance was assessed 
throughout the study, as previously reported by NAMRU-D (Caldwell et al., 2020). The authors 
showed that modafinil administration helped mitigate decreases in performance following a night 
of sleep loss. The mitigating effect of modafinil was particularly noticeable for fatigue 
susceptible individuals who experienced greater impairment during sleep loss. Blood samples 
were collected from participants every four hours and provided to the FAA CAMI’s Functional 
Genomics Research Team for gene expression analyses. Here, we report gene expression 
changes related to neurobehavioral performance with and without modafinil administration. 

Materials and Methods  

Sample collection and processing 

Male subjects were exposed to one night of total sleep deprivation in two separate 
randomized study runs by NAMRU-D, differing by administration of 200 mg modafinil or a 
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placebo at midnight. Details of human recruitment and overall study design have been reported 
previously (Caldwell et al., 2020). Neurobehavioral tests comprised the number of attention 
lapses on the 10-minute Psychomotor Vigilance Test (PVT), the number correct in the Delayed 
Match to Sample (MTS), reaction time for correct responses in the Rapid Decision Making Test 
(RDM), and subjective self-report ratings of fatigue-inertia on a Profile of Mood States 
Questionnaire (POMS-F) (Caldwell et al., 2020). Although additional subjective and objective 
neurobehavioral measures were conducted, analyses focused on PVT, MTS, RDM, and POMS-F 
due to work by NAMRU-D indicating these test results changed with prolonged sleep 
deprivation. The current report supplements prior work with the addition of genetics analyses 
relative to these metrics, as described below. 

During the study, eight consecutive blood draws were conducted at a frequency of one 
draw every four hours, beginning between approximately 12:00 and 13:00 hours on the first day 
and ending between ~16:00 and 17:00 hours on the second study day. A sample of 2.5 mL whole 
blood was collected into a PAXgene RNA blood tube (BD Biosciences, 762165) at each 
timepoint. Immediately after collection, PAXgene RNA blood tubes were inverted 10 times, then 
frozen at -80 ºC until RNA extraction at the FAA CAMI. Total RNA was extracted with the 
PAXgene Blood miRNA kit (QIAGEN, 763134) using a QIAGEN QIAcube robotic workstation, 
eluted in RNAse-free water, and manually purified with Agencourt® RNAclean XP beads 
(Beckman Coulter, A63987). 

Purified total RNA was provided to the Baylor College of Medicine Human Genome 
Sequencing Center for library preparation and sequencing. Stranded total RNA-Sequencing 
libraries were made using the Illumina TruSeq Stranded Total RNA with Ribo-Zero Globin kit 
(20020612, Illumina Inc.). Preparation followed the manufacturer’s instructions (Illumina 
Truseq® Stranded Total RNA Sample Preparation Guide; RS-122-9007DOC, Part # 15031048 
Rev. E, October 2013). To improve ribosomal RNA/globin removal, the incubations of RNA 
with the ribosomal RNA/globin removal mix were increased to 68 ºC for 10 minutes followed by 
five minutes at room temperature, and the incubation with ribosomal RNA/globin removal beads 
was increased to five minutes at 50 ºC. During fragmentation, samples were incubated for three 
minutes at 94 ºC. Libraries were sequenced on an Illumina NovaSeq 6000 with the S4 reagent kit 
and 300 cycles to generate 2x150 nucleotide paired-end reads. To target 100 million forward 
plus reverse sequence reads each, 35 samples were pooled per lane. 

Differential expression analyses 

Demultiplexed fastq sequence files returned from Baylor College of Medicine Human 
Genome Sequencing Center to FAA CAMI were inspected for quality before and after trimming 
using FastQC version 0.11.9 (Andrews, 2010) and MultiQC version 1.10 (Ewels et al., 2016). 
Trimming of adapters and low-quality data was done with Trimmomatic version 0.39, 
specifically trimming the forward (R1) and reverse (R2) reads with the command java -jar : < 
Path> -threads 6 -phred33 -trimlog trimfile1 $R1 $R2 $R1paired $R1unpaired $R2paired 
$R2unpaired ILLUMINACLIP:< Path>/adapters/TruSeq3-PE-2.fa:2:30:10:8:TRUE 
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LEADING:20 TRAILING:5 SLIDINGWINDOW:5:20 MINLEN:50 (Bolger et al., 2014). 
Trimmed paired reads were mapped and counted using Rsubread version 2.4.2 set for reverse 
stranded paired reads, based on the GENCODE release 37 (GRCH38.p13) reference sequence 
for the primary assembly and the comprehensive annotation files (PRI file 
GRCh38.primary_assembly.genome.fa.gz and CHR GTF file gencode.v37.annotation.gtf.gz) 
(Frankish et al., 2020; Liao et al., 2019). Mapping was performed with the buildindex and align 
functions; settings primarily were left as defaults, except the align ‘unique’ argument was set to 
TRUE to remove multi-mapping reads. The Rsubread featureCounts function was used to 
produce count data for meta-features (genes), using the GENCODE GTF and primarily default 
settings, but modifying the argument countChimericFragments to FALSE in order to exclude 
chimeric fragments mapping to distinct chromosomes. Before differential expression analysis, 
subjects were removed from the dataset if they yielded results for fewer than nine blood draw 
timepoints. Also, samples that yielded low count data (sum of raw expression across all genes in 
the sample, more than two standard deviations below the average for all samples sequenced) 
were removed as potential outliers. 

After subject and sample outlier removal, models were run to test for differential gene 
expression. First genes with low expression were removed from analysis, herein defined as genes 
with less than one count per million in at least 19 samples (selected due to having 19 replicate 
subjects). Then library size was normalized using the default trimmed mean of M-values (TMM) 
approach. Negative binomial generalized linear models were constructed with the R 
Bioconductor package edgeR version 3.38.1-3.38.4, with quasi-likelihood F-tests (Gentleman et 
al., 2004; Law et al., 2020; McCarthy et al., 2012; Robinson et al., 2009). All modeling was done 
with additive fixed effect terms. 

To test for genes related to attention impairment, models were run on data across eight 
timepoints per study run, with terms to represent the individual subject participant effect, PVT 
lapses, and circadian rhythms specified as sin(2*pi*hour/24) + cos(2*pi*hour/24) (Table 1). 
Circadian rhythm modeling was based on the approach Law et al. (2020) recommended, with 
hour designating the hour of the day (0 for midnight, through 23 for 23:00 hours). Models with 
subject, PVT, and the circadian rhythm terms were tested separately, first on the study run with 
the administration of a placebo only, a second time with data from the study run with the 
administration of modafinil, and a third time combining the data from both placebo and 
modafinil study runs. In the models with data from both placebo and modafinil study runs, a 
binary factor term countermeasure was included to differentiate data at times after modafinil use 
(four to 16 hours after modafinil administration) from those without the drug (modafinil study 
run up to midnight, and all timepoints from the placebo run). Analyses of results focused on 
genes significantly related to the model term of PVT lapses with a threshold False Discovery 
Rate (FDR) of less than 0.05, based on Benjamini-Hochberg correction. In one case the genes 
related to the binary countermeasure term also were examined (Table 1). Although fold change 
can be used to further restrict gene lists, this is not always done (Koch et al., 2018). Here, we 
elected not to apply a fold change cutoff due to use of covariate model terms, and the desire to 
maximize the detected pool of candidate biomarker genes in this biomarker discovery research. 
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Additional models were run to test for associations of gene expression with MTS, RDM, 
and POMS-F, for which data were only available across five timepoints. For comparison, tests 
with PVT were re-run on the corresponding five timepoints. For these model runs, data were 
available at the third through seventh timepoint (every four hours starting at approximately 20:00 
hours on the first day of the study run). Models were constructed as noted above, either including 
a term for PVT lapses or replacing this term with the number correct for MTS, reaction time for 
correct responses for RDM, or subjective self-report ratings of fatigue-inertia for POMS-F 
(Table 1). However, circadian rhythm terms were not included. When preliminary tests included 
circadian rhythms, no differentially expressed genes were found at FDR<0.05 related to PVT, 
MTS, RDM, or POMS-F in tests of the placebo run, modafinil run, or the joint dataset combining 
information from both runs. 
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Table 1. Summary of models and terms1 utilized to identify differential gene expression. 

Model 
Abbreviation 

Supplementary
Table 

Study
Run 

Measurement 
Times 

Model Term 
Tested 

Genes 
FDR<0.05 
for Term 
Tested 

Additional 
Model Terms 

P8T 1 Placebo 8 Timepoint 3719 
Subject, 

Circadian 

M8T 2 Modafinil 8 Timepoint 3455 
Subject, 

Circadian 

B8T 3 Both 8 Timepoint 6049 

Subject, 
Circadian, 

Countermeasure 

P8P 4, 9 Placebo 8 PVT 232 
Subject, 

Circadian 

M8P none Modafinil 8 PVT 0 
Subject, 

Circadian 

B8P 5, 9 Both 8 PVT 248 

Subject, 
Circadian, 

Countermeasure 

B8P 6 Both 8 Countermeasure 198 
Subject, 

Circadian, PVT 
P5P 7, 9, 10, 13 Placebo 5 PVT 1169 Subject 
M5P 11 Modafinil 5 PVT 0 Subject 

B5P 8, 9, 12, 14 Both 5 PVT 1406 
Subject, 

Countermeasure 
P5F 10 Placebo 5 POMS-F 3 Subject 
M5F 11, 15 Modafinil 5 POMS-F 418 Subject 

B5F 12 Both 5 POMS-F 110 
Subject, 

Countermeasure 
P5S 10 Placebo 5 MTS 1 Subject 
M5S 11, 16 Modafinil 5 MTS 596 Subject 

B5S 12 Both 5 MTS 108 
Subject, 

Countermeasure 
P5R 10 Placebo 5 RDM 0 Subject 
M5R 11 Modafinil 5 RDM 0 Subject 

B5R 12 Both 5 RDM 4 
Subject, 

Countermeasure 

Note: FDR = False Discovery Rate; PVT = Psychomotor Vigilance Test; POMS-F = Profile of Mood States 
Questionnaire – Fatigue, MTS = Match to Sample; RDM = Rapid Decision Making Test. 

1The binary model term ‘countermeasure’ differentiated timepoints ≥4 hours after administration of modafinil, from all 
placebo times and from times up to midnight in the modafinil run. The circadian term consisted of sin(2*pi*hour/24) + 
cos(2*pi*hour/24), where hour designated the hour of the day (0 for midnight, through 23 for 23:00 hours). 

Efforts were made to compare significantly differentially expressed genes in the current 
study at FDR<0.05, with a prior microarray study that had found 28 genes related to PVT lapses 
during total sleep deprivation at a less stringent cutoff of FDR<0.1 (Uyhelji et al., 2018). To 
improve compatibility with the current work, the microarray Affymetrix Transcript Cluster list 
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was submitted to biomaRt (http://useast.ensembl.org/biomart/martview) to check for annotation 
updates. Prior annotation of Transcript Cluster ID 8129428 as an uncharacterized locus or FK506 
binding protein was updated to the annotation of FKBP prolyl isomerase 1A (FKBP1A). Also, 
Transcript Clusters were updated from annotation as other members of the Speedy family to 
Speedy/RINGO Cell Cycle Regulator Family Member E16 (SPDYE16) and Speedy/RINGO Cell 
Cycle Regulator Family Member E2B (SPDYE2B), and the previously unannotated 8180341, 
8180342, and 8180343 Transcript Clusters were annotated as Rac family small GTPase 1 
(RAC1). Finally, Transcript Cluster 7977454 annotated as various members of the POTE family 
assumed an annotation of POTE ankyrin domain family member G (POTEG). However, 
SPDYE16, SPDYE2B, and POTEG were not detected at levels passing the low-expression 
filtering and thus were not tested for differential expression in the current study, reducing the 
number of genes compared from 28 to 25 (Table 2).  

Functional enrichment analyses 

Functional enrichment analyses were conducted to improve understanding of the 
biological meaning of differentially expressed genes. Annotation information corresponding to 
the Ensembl v103 release was accessed using the R package biomaRt version 2.54.0 (Durinck et 
al., 2009). Unless otherwise indicated, gene annotations are based on the Ensembl gene identifier 
(e.g., ENSG00000127954.13), with HUGO Gene Nomenclature Committee or HGNC gene 
symbols included when available (e.g., Six-Transmembrane Epithelial Antigen of the Prostate 4, 
STEAP4). The R Bioconductor package goseq version 1.50.0 was used to test for enriched gene 
ontology categories (FDR<0.05) among genes related to variables of interest (PVT, MTS, RDM, 
POMS-F). Runs of goseq were conducted individually on the significantly differentially 
expressed genes from each of the separate model runs (Table 1) (Young et al., 2010). For this, 
annotations from biomaRt were used along with the gene lengths generated by featureCounts 
mapping with Rsubread. For the one gene that had two version identifiers, Colony stimulating 
factor 2 receptor subunit alpha (CSF2RA) with identifiers ENSG00000198223.17 and 
ENSG00000198223.17_PAR_Y), the version ENSG00000198223.17_PAR_Y was removed 
from the dataset before running goseq. 

Additionally, the list of genes with FDR<0.05 for PVT lapses from the placebo run of the 
eight-timepoint model (P8P, Table 1) were input to QIAGEN Ingenuity Pathway Analysis (IPA) 
for a Core Analysis – Expression Analysis (Krämer et al., 2014). The log2-fold change values 
from the edgeR differential expression analysis were designated as IPA data type “Expr 
[expression] log ratio”; these values were used as the measurement type for the Core Analysis to 
allow calculations of directionality (z-scores). For the filter cutoff to identify which genes to 
include, genes with FDR<0.05 in relation to the PVT lapses term were selected. The “User 
Dataset” option was selected for the background reference set, representing all genes that passed 
the filtering for low expression in edgeR (18,248 minus 30 that did not generate ‘mapped IDs’ in 
IPA, leaving 18,218 analysis-ready reference genes). Species were limited to mammals (human, 
mouse, rat), and endogenous chemicals were excluded from interaction networks, but otherwise 
settings were left at default. 
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Results  

Differential expression related to time awake 

Based on analyses of genes changing in response to timepoint (i.e., continued 
wakefulness), this study found a substantial impact of sleep loss on gene expression. In the eight-
timepoint models (Table 1), there were 3,719 significantly differentially expressed genes with 
FDR<0.05 related to timepoint in the placebo model run P8T (Supplementary Table 1), 3,455 in 
the modafinil run M8T (Supplementary Table 2), and 6,049 in the analysis of both placebo and 
modafinil study runs with model B8T (Supplementary Table 3). There was substantial overlap 
between the list of significantly differentially expressed genes relative to timepoint and those 
relative to PVT lapses. Of the 232 genes significantly differentially expressed relative to PVT 
lapses in model run P8P (Table 1), only seven were unique to PVT lapses and not found in the 
P8T model run. These were Family with Sequence Similarity 177 Member B (FAM177B); Novel 
Transcript, Antisense to FAM38A; Novel transcript; Tudor Domain Containing 9 (TDRD9); 
Long Intergenic Non-Protein Coding RNA 2432 (LINC02432); Novel Transcript, Sense Intronic 
to TNFSF13B; and CD177 molecule (CD177). Conversely many genes only were related to 
timepoint (3,494) as found in the P8T model, and not related to PVT in the P8P model. However, 
this study aimed to interrogate biomarkers for impairment from sleep loss rather than molecular 
changes from extended wakefulness. Thus, these timepoint-related candidate biomarkers of the 
response to continued wakefulness were not analyzed in detail. 

The correlation between timepoint as an indication of continuous wakefulness and PVT 
lapses was tested in R with the Hmisc version 4.7-0 package (Harrell Jr & Dupont, 2006) using 
the rcorr function. Spearman rank (rho= 0.66) and Pearson (r= 0.55) correlations between PVT 
lapses and the eight timepoints were significant (P<0.001). Thus, timepoint was not included as a 
model term in tests of the relationship of gene expression to PVT, and similarly, it was excluded 
from tests of MTS, RDM, and POMS-F (Table 1). 

Differential expression related to PVT 

Most subjects showed elevated PVT lapses in response to total sleep deprivation. Two of 
the 19 subjects exhibited seven or fewer PVT lapses, possibly indicating a tendency toward 
fatigue resistance. Although two persons is too few for a specific analysis of fatigue resistance, 
for further consideration of resistance, see Caldwell et al. (2020). For the remaining 17 subjects, 
the highest number of lapses observed was 24 ± 8 (mean ± 1 standard deviation) across all data 
points, ranging from 10 to 34 lapses. Generalized linear modeling was used to test for 
significantly differentially expressed genes related to PVT lapses in the full eight-timepoint 
model. Tests yielded 232 significantly differentially expressed genes for the placebo model run 
P8P (185 up-regulated, 47 down-regulated; Supplementary Table 4), but zero genes for the 
modafinil run M8P (Table 1). Modeling data from both placebo and modafinil study runs (B8P; 
Table 1) yielded 248 significantly differentially expressed genes related to PVT lapses (107 up-
regulated, 141 down-regulated; Supplementary Table 5), and 198 related to the binary drug 
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countermeasure usage term (84 up-regulated, 114 down-regulated; Supplementary Table 6). Of 
the 248 genes related to PVT lapses in the B8P model, 99 (approximately 40%) were among the 
232 significantly differentially expressed genes in the placebo run. For tests of expression related 
to PVT (models P8P and B8P testing for the PVT model term, Table 1), down-regulated genes 
(i.e., those with a negative log2-fold change, as reported in Supplementary Table 4-5) are 
inversely related to PVT lapses (i.e., lower gene expression is observed as lapses increase). For 
tests related to the drug usage countermeasure term in the B8P model (Table 1), down-regulated 
genes (negative log2-fold change in Supplementary Table 6) are more highly expressed after 
modafinil use (i.e., higher gene expression four to 16 hours after modafinil administration as 
compared to expression at times prior to or without the drug). 

For the five-timepoint models, there were 1,406 significantly differentially expressed 
genes relative to PVT lapses in the B5P analysis of both placebo and modafinil study runs, and 
1,169 in the placebo-only P5P run (including 806 also significant across the two tests; 
Supplementary Table 7, Supplementary Table 8, Table 1). Yet, similar to the eight-timepoint 
modafinil model, the five-timepoint modafinil-only model M5P yielded zero significant genes 
for PVT. There was overlap in genes with FDR<0.05 for PVT between five and eight-timepoint 
models (Supplementary Table 9). The analysis of data from both placebo and modafinil runs 
yielded 105 genes significantly differentially expressed in both the five and eight-timepoint 
models (FDR<0.05 for PVT lapses in B8P and in B5P). In contrast, analysis of just the placebo 
run resulted in 136 genes differentially expressed that were common to both the five and eight-
timepoint models (P8P and P5P). For example, the gene Six-Transmembrane Epithelial Antigen 
of the Prostate 4 (STEAP4) was differentially expressed in both five and eight-timepoint placebo 
runs (but not analysis of both placebo and modafinil runs). The gene Syndecan Binding Protein 
(SDCBP) was differentially expressed in both five and eight-timepoint placebo runs (P8P and 
P5P), as well as the five-timepoint B5P (but not eight-timepoint B8P) analysis of both placebo 
and modafinil runs. Altogether 47 significantly differentially expressed genes were noted across 
all four tests (analysis of both runs in the five and eight-timepoint models B5P and B8P, plus the 
placebo-only run in the five and eight-timepoint models P5P and P8P). Of the 28 genes 
significantly related to PVT in a prior microarray study of total sleep deprivation (Uyhelji et al., 
2018), the current study identified 11 genes at FDR<0.05 for PVT lapses in P8P, B8P, P5P, 
and/or B5P models (Table 2). 
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Table 2. List of genes associated with PVT lapses during total sleep loss in Uyhelji et al. 2018, and their 
Benjamini-Hochberg corrected P-value (FDR) in the current study models1. 

Ensembl Gene ID 
HGNC 

Sybmol P8P B8P P5P B5P M5F M5S 
ENSG00000142634.13 EFHD2 0.767 0.834 0.670 0.639 0.163 0.347 
ENSG00000122417.15 ODF2L 0.560 0.550 0.994 0.938 0.909 0.605 
ENSG00000151151.6 IPMK 0.158 0.129 0.090 0.129 0.145 0.222 
ENSG00000136167.15 LCP1 0.128 0.076 0.044 0.018 0.229 0.046 
ENSG00000100644.17 HIF1A 0.289 0.385 0.032 0.037 0.041 0.058 
ENSG00000103569.10 AQP9 0.065 0.066 0.025 0.014 0.097 0.046 
ENSG00000087253.13 LPCAT2 0.072 0.086 0.020 0.031 0.230 0.158 
ENSG00000189067.14 LITAF 0.152 0.136 0.078 0.061 0.111 0.053 
ENSG00000166747.13 AP1G1 0.436 0.558 0.173 0.053 0.264 0.077 
ENSG00000188895.12 MSL1 0.237 0.183 0.133 0.038 0.145 0.045 
ENSG00000177885.15 GRB2 0.199 0.095 0.096 0.036 0.149 0.045 
ENSG00000180871.8 CXCR2 0.519 0.473 0.336 0.182 0.460 0.045 
ENSG00000163464.8 CXCR1 0.338 0.185 0.221 0.072 0.331 0.047 
ENSG00000157551.19 KCNJ15 0.067 0.200 0.062 0.095 0.190 0.069 
ENSG00000157557.13 ETS2 0.078 0.034 0.030 0.011 0.053 0.046 
ENSG00000075785.14 RAB7A 0.654 0.428 0.741 0.607 0.883 0.212 
ENSG00000113742.14 CPEB4 0.137 0.082 0.020 0.003 0.064 0.044 
ENSG00000113369.9 ARRDC3 0.480 0.884 0.163 0.241 0.265 0.218 
ENSG00000088832.18 FKBP1A 0.997 0.572 0.546 0.475 0.750 0.521 
ENSG00000137312.15 FLOT1 0.672 0.176 0.247 0.056 0.145 0.046 
ENSG00000012660.14 ELOVL5 0.053 0.078 0.043 0.064 0.144 0.046 
ENSG00000127954.13 STEAP4 0.029 0.060 0.042 0.069 0.244 0.106 
ENSG00000137575.12 SDCBP 0.049 0.056 0.023 0.017 0.065 0.046 
ENSG00000047644.19 WWC3 0.845 0.476 0.717 0.616 0.132 0.218 
ENSG00000136238.18 RAC1 0.629 0.635 0.131 0.056 0.289 0.053 

Note: PVT =  Psychomotor Vigilance Test; FDR = False Discovery Rate; HGNC =  HUGO Gene Nomenclature 
Committee.  
1See Table 1 for model  abbreviations. Data are  not shown for P5F, P5S, P5R, B5F, B5S, B5R, M5P, or  M5R, where 
all  25 genes  from  the Uyhelji  et  al.  2018  paper  yielded FDR≥0.05.  

Differential expression related to MTS, RDM, and POMS-F 

In addition to the number of PVT attention lapses, models were run to test for other 
cognitive (RDM and MTS) and subjective (POMS-F) impacts (Table 1). Tests of RDM yielded 
four differentially expressed genes in the B5R model of data from both placebo and modafinil 
study runs (Supplementary Table 12), but zero genes in the separate placebo P5R 
(Supplementary Table 10) or modafinil M5R models (Supplementary Table 11). Differentially 
expressed genes from the B5R model included DNA damage inducible transcript 4 (DDIT4), 
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FKBP prolyl isomerase 5 (FKBP5), RNA, U1 small nuclear 28, (RNU1-28P), and a novel 
transcript (ENSG00000223561) lacking an HGNC symbol at the time of analysis 
(Supplementary Table 12). Testing for genes related to either MTS or POMS-F yielded a 
somewhat opposing trend to PVT (Table 1), with a mere three and one significantly differentially 
expressed genes in the placebo run (P5F, P5S, Supplementary Table 10), >400 genes each 
differentially expressed in the modafinil run (M5F, M5S, Supplementary Table 11), and 108 to 
110 genes differentially expressed in analysis of both placebo and modafinil study runs (B5F, 
B5S, Supplementary Table 12). In analysis of both runs in B5F, B5R, B5S, and B5P models, the 
two genes DDIT4 and FKBP5 were differentially expressed with respect to all four tested terms 
(POMS-F, MTS, PVT, and RDM), and another seven genes had FDR<0.05 for three of the four 
terms (Table 1, Supplementary Table 12). In the placebo P5F, P5R, P5S, and P5P models, three 
genes were differentially expressed for two terms: C-X-C motif chemokine receptor 4 (CXCR4), 
DDIT4, and KLF transcription factor 9 (KLF9). Genes CXCR4 and DDIT4 were differentially 
expressed relative to POMS-F and PVT, while KLF9 was differentially expressed relative to 
MTS and PVT (Supplementary Table 10). For the modafinil models M5F, M5R, M5S, and M5P, 
no genes were significant for three or all four terms of POMS-F, MTS, PVT, and RDM 
(Supplementary Table 11). There were 87 genes differentially expressed relative to both POMS-
F and MTS terms; all other genes were only differentially expressed relative to a single term 
(including DDIT4 and FKBP5, with FDR<0.05 only for POMS-F) or not differentially 
expressed. The gene CXCR4 was differentially expressed relative to POMS-F and MTS, while 
KLF9 was not differentially expressed relative to any of the four tested terms in the modafinil 
models. 

Of the genes previously identified as PVT biomarker candidates in (Uyhelji et al., 2018), 
none were significant at FDR<0.05 for POMS-F, MTS, or RDM in the five-timepoint placebo-
only run, or the analysis of both placebo and modafinil runs. However, in the five-timepoint 
modafinil-only M5F model, HIF1A was significantly associated with POMS-F, and 11 genes 
were significantly associated with MTS in M5S models (Table 2). 

Functional enrichment 

In the eight-timepoint model, goseq functional enrichment tests of the 232 genes 
significant for PVT lapses in the placebo model P8P yielded five over-represented gene ontology 
(GO) functional terms at FDR<0.05. These included one biological process term related to the 
immune system (GO:0043312, neutrophil degranulation) and four cellular components 
(GO:0070062, extracellular exosome; GO:0070821, tertiary granule membrane; GO:0005576, 
extracellular region; GO:0005615, extracellular space). No genes were differentially expressed 
relative to PVT lapses in the modafinil M8P or M5P models, and hence, there was no functional 
enrichment. While there was differential gene expression for the analysis of both placebo and 
modafinil study runs in the B8P model, there was no GO functional enrichment relative to PVT 
lapses at FDR<0.05. However, in that same B8P model, there was functional enrichment of the 
198 genes (Table 1) differentially expressed relative to the countermeasure term reflecting 
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modafinil usage. At an FDR<0.05, significant GO terms included biological processes 
GO:0060337 for type I interferon signaling pathway, GO:0045071 for negative regulation of 
viral genome replication, and GO:0043312 for neutrophil degranulation. The terms related to 
cellular functions were GO:0009986 for cell surface, GO:0005886 for plasma membrane, and 
GO:0070062 for extracellular exosome. The only enriched molecular function was GO:0005102 
for signaling receptor binding. 

In the five-timepoint model of the placebo run, there was no significant GO enrichment 
for POMS-F, MTS, or RDM based on separate goseq tests of the significantly differentially 
expressed genes from P5F, P5S, and P5R models. However, there were 25 over-represented 
terms based on the significantly differentially expressed genes for PVT lapses from the P5P 
model (Supplementary Table 13). These included functions related to the immune system (e.g., 
GO:0043312, neutrophil degranulation) and GO:0007165 signal transduction. In tests of genes 
differentially expressed in B5F and B5R models, there was no functional enrichment relative to 
POMS-F or RDM (FDR>0.4 for all GO terms). However, for the MTS model B5S, there were 
three over-represented cellular components at FDR<0.05: GO:0030863, cortical cytoskeleton; 
GO:0005829, cytosol; and GO:0005737, cytoplasm. There also was one over-represented 
biological process (GO:0043066, negative regulation of apoptotic process) but zero enriched 
molecular functions. There were 23 over-represented gene ontology functional terms for genes 
related to PVT lapses in the five-timepoint model of both runs (Supplementary Table 14), again 
including GO:0043312, neutrophil degranulation and GO:0007165, signal transduction. In the 
five-timepoint model of the modafinil run, there were 13 over-represented terms for POMS-F 
and 36 for MTS (Supplementary Table 15, Supplementary Table 16). There was no differential 
gene expression and, therefore, no functional enrichment for PVT or RDM based on the five-
timepoint modafinil models M5P and M5R. 
Pathway analysis 

Ingenuity pathway analysis predicted many activated or inhibited pathways (positive or 
negative z-score, respectively). Pathway prediction was run on the dataset of 232 genes 
differentially expressed relative to PVT in the eight-timepoint placebo model P8P. The top 
canonical pathway with the lowest P-value (3.43E-04) was Toll like receptor signaling, based on 
six significantly differentially expressed genes: Interleukin 18 (IL18), Interleukin 1 Receptor 
Associated Kinase 3 (IRAK3), Toll like Receptor 2 (TLR2), Toll Like Receptor 4 (TLR4), Toll 
Like Receptor 8 (TLR8), and TNF Alpha Induced Protein 3 (TNFAIP3). Among the upstream 
regulator genes with pathways predicted by upstream analysis, the lowest P-value for overlap 
(7.96E-07) between genes known to be regulated by a transcriptional regulator and dataset genes 
was associated with the upstream regulator Ras Related 2 (RRAS2). This was based on 10 dataset 
genes: ADAM metallopeptidase with thrombospondin type 1 motif 5 (ADAMTS5), Nicotinamide 
phosphoribosyltransferase (NAMPT), Versican (VCAN), CD36 molecule (CD36), Interleukin 18 
(IL18), Myelin protein zero like 2 (MPZL2), Solute carrier family 2 member 3 (SLC2A3), 
Sphingomyelin synthase 2 (SGMS2), Serpin family B member 8 (SERPINB8), and TNF alpha 
induced protein 3 (TNFAIP3). Another upstream regulator was HIF1a, based on a network of 13 
dataset genes (Figure 1). There were 248 causal networks generated by the IPA upstream 
analysis with a P-value<0.05. This included a network with SDCBP as the master regulator in a 
network supported by 19 differentially expressed dataset genes (Figure 2) and an overlap P-value 
of 3.51E-06. 
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Figure 1. Ingenuity Pathway Analysis network pathway with HIF1a as an upstream regulator, based on 
genes differentially expressed relative to PVT lapses in the eight-timepoint placebo-only run. Solid lines 
indicate direct interactions; dashed lines reflect indirect or inferred relationships between molecules. 
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Figure 2. Ingenuity Pathway Analysis causal network pathway with SDCBP as a master regulator, based 
on genes differentially expressed relative to PVT lapses in the eight-timepoint placebo-only run. Solid 
lines indicate direct interactions; dashed lines reflect indirect or inferred relationships between molecules. 

Discussion  
Healthy sleep is vital to overall health, and sleep disruption can reduce safety-critical 

operator performance in fields such as transportation. Individuals respond differently to extended 
periods of wakefulness (St. Hilaire et al., 2019; Tkachenko & Dinges, 2018; Van Dongen et al., 
2004), and thus, a tailored data-driven approach based on performance monitoring may improve 
current approaches to safety risk management. Ultimately, it may be more informative to detect 
performance impairment as the outcome of sleep disruption rather than relying on the 
identification of potential causes of fatigue, such as sleep loss or altered timing of sleep. This 
study advances the aim of developing metrics for fatigue safety risks from sleep loss by reporting 
on gene expression biomarkers associated with impairment in the presence and absence of the 
countermeasure drug modafinil. 
Modafinil and treatment effects 

Modafinil administration seemed to diminish the ability to detect differential expression 
related to some neurobehavioral performance metrics. Analyses of the placebo run alone or joint 
analysis of data from both runs yielded differential gene expression related to neurobehavioral 

15 



 
 

  
   

   
    

   
   

    

  
  

 
  

 
 

  
    

  
  

  
 
 

       
 

  
  

   

  

 
 

   
     

  
 

   
 

   
  

performance impairment. For instance, hundreds of genes were differentially expressed relative 
to PVT lapses in the P8P and B8P models (Table 1). However, analyses of the modafinil run by 
itself (M8P, Table 1) yielded no differentially expressed genes relative to PVT attention lapses. 
For the five-timepoint modafinil models, tests of self-reported fatigue (POMS-F assayed in M5F) 
yielded 418 differentially expressed genes, and tests of the number correct in MTS (M5S model) 
yielded 596 differentially expressed genes (Table 1, Supplementary Table 11). There was no 
differential expression for either PVT lapses (M5P) or reaction time in the RDM test (M5R). 

Differences in separate models of the modafinil and placebo study runs suggest the 
potential for chemical countermeasures, such as modafinil, to alter the relationship between gene 
expression and neurobehavioral performance changes during sleep loss. Future work is needed to 
explore molecular mechanisms. Modafinil has been shown to attenuate performance impairment 
(Caldwell et al., 2020). Modafinil may disrupt associations of gene expression with performance 
seen in placebo models (e.g., P8P vs. M8P; Table 1) due to possible effects of the drug on 
performance, on gene expression, or simultaneous effects on both. This highlights a potential 
need to validate fatigue impairment biomarker candidates in the presence of drugs or 
countermeasures that may be administered. Notably, modafinil is a countermeasure that may 
have additional considerations in a military setting, but at the time of writing, would be 
considered a Do Not Issue or defer exam matter for civilian aviation pilot medical certification as 
a category IV controlled substance (Federal Aviation Administration, 2023). The Fatigue 
Countermeasures Laboratory at NAMRU-D demonstrated that modafinil use more strongly 
mitigated declines in performance among subjects that are more vulnerable to impairment from 
sleep loss, at least for the MTS and PVT assays (Caldwell et al., 2020). Variation in the response 
to the countermeasure among individuals more or less susceptible to fatiguing conditions, could 
perhaps add noise that inhibits the ability to find an overall relationship between performance 
and gene expression in the presence of modafinil. Whether this finding is unique to modafinil or 
could be shared by other fatigue countermeasures, such as caffeine, warrants further research. 

Biomarkers for time awake and attention impairment 

Total sleep deprivation resulted in thousands of differentially expressed genes relative to 
time awake. This finding was expected, as it is well-known that sleep deprivation and circadian 
disruption influences gene expression (Arnardottir et al., 2014; da Costa Souza & Ribeiro, 2015; 
Laing et al., 2018; Möller-Levet et al., 2013). Due to the correlation between PVT lapses and 
hours of wakefulness (timepoint), tests for the primary variables of interest (PVT, POMS-F, 
MTS, and RDM) did not include a model term for timepoint. Indeed, of the 232 genes 
differentially expressed relative to PVT lapses in the eight-timepoint placebo run P8P, a separate 
model run testing for timepoint revealed all but seven of the 232 genes also were significantly 
associated with study timepoint in the P8T model. Again, this inter-relationship was anticipated, 
as prior work has indicated continued wakefulness leads to increased attention lapses in most 
individuals (Uyhelji et al., 2018). Furthermore, studies have indicated relationships between gene 
expression and circadian rhythms, including disruption of rhythmic gene expression from 
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insufficient sleep (Möller-Levet et al., 2013). Thus, initial models with the full eight-timepoint 
dataset included terms to address the circadian component. However, with only five timepoints 
of data, analyses of MTS, RDM, and POMS-F were limited to excluding the circadian 
component (Table 1). 

Among the genes differentially expressed with relation to PVT lapses, both analyses of 
individual genes and functional enrichment implicate changes in the immune system. Well-
known associations of sleep, circadian rhythms, and the immune system support the present 
study’s findings (Besedovsky et al., 2012; Foo et al., 2019; Irwin, 2019). Gene ontology analyses 
revealed functional enrichment of categories related to neutrophil degranulation, the cellular 
response to diacyl bacterial lipopeptide, and the Toll like receptor TLR6:TLR2 signaling 
pathway. Partial sleep deprivation has previously been shown to result in TLR4 stimulating an 
increase in monocyte production of Interleukin 6 and Tumor Necrosis Factor (Irwin, 2019). Here 
individual genes with known roles in the immune response, including chemokine receptors and 
interleukins, were among those differentially expressed relative to PVT lapses. Indeed C-X-C 
motif chemokine receptor 4 (CXCR4) was significantly related to PVT lapses in the placebo run 
and in the analysis of both placebo and modafinil runs, for both five and eight-timepoint models 
(P8P, B8P, P5P, B5P). Interleukin 18 (IL18) was related to PVT lapses in the placebo run and in 
the analysis of both placebo and modafinil runs for the eight-timepoint model (P8P and B8P), 
and in the placebo run for the five-timepoint model (P5P). These findings are congruent with 
previous reviews reporting a relationship between cytokines and sleep (Haspel et al., 2020; 
Krueger, 2008; Liu et al., 2021; Opp, 2005). 

Additionally, there is an implication of the hypoxic response, with current and prior 
results (Uyhelji et al., 2018) indicating that HIF1a is differentially expressed following sleep loss 
in association with attention impairment. In the present study, the transcription factor HIF1a was 
significantly related to PVT lapses in the five-timepoint models of the placebo run (P5P) and the 
analysis of both placebo and modafinil runs (B5P; Table 2). Although it was not significantly 
differentially expressed in the eight-timepoint models that included terms for circadian 
rhythmicity, HIF1a was an upstream regulator predicted by IPA Core Analysis of the 232 genes 
related to PVT in the eight-timepoint placebo run (Figure 1). Other authors have suggested that 
sleep loss may influence the response to environmental hypoxia, and even increase the risk of 
experiencing acute mountain sickness (Fabries et al., 2022). Review articles also have proposed 
bidirectional relationships between the circadian clock and responses to hypoxia (Gabryelska et 
al., 2022; Peek, 2020). If sleep loss and/or circadian disruption (e.g., jet lag) interacts with 
physiological and molecular responses to hypoxic exposure at altitude, sleep disruption may 
have nuanced effects on frequent flyers and aircrew. Aircrews in the civilian or military sector 
may experience mild hypoxia (Nicholson et al., 2021; Shaw et al., 2021). Further research is 
needed to explore the relationship between sleep disruption and hypoxia. 

Substantial overlap between genes related to PVT lapses in the current and prior research 
(Uyhelji et al., 2018), presents strong evidence of reproducible molecular changes that may be 
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used as a fatigue impairment metric. Indeed, some genes significantly related to PVT lapses in 
the current study were found not only in the prior microarray study by Uyhelji et al. with linear 
modeling (Table 2), but also in a re-analysis of data from that prior study employing a 
hierarchical clustering approach (Satterfield et al., 2019). Genes detected in the re-analysis 
include the following five genes: Lysophosphatidylcholine acyltransferase 2 (LPCAT2), ETS 
proto-oncogene 2, transcription factor (ETS2), ELOVL fatty acid elongase 5 (ELOVL5), 
STEAP4, and SDCBP. Although this reproduction of results appears to indicate biomarker 
robustness, little research exists relating molecular changes such as gene expression levels to 
neurobehavioral performance decrements during sleep disruption. Some studies have been 
conducted of genetic variants such as single nucleotide polymorphisms that may indicate an 
inherited greater resistance to the impairing effects of sleep loss. However, such possible 
biomarkers of predisposition may not indicate current impairment status as studied here. For 
example, it has been suggested that variants of the gene Adenosine A2a receptor (ADORA2a) 
may be associated with resistance to attention lapses during total sleep loss (Erblang et al., 2021). 
Yet this gene was not differentially expressed relative to PVT lapses in any of the eight timepoint 
models, and was not significantly related to PVT, POMS-F, RDM, or MTS in the five timepoint 
models of placebo, modafinil, or both runs. 

The five genes currently and previously related to PVT lapses have immune regulation 
and signaling roles. The product of gene LPCAT2 interacts with Toll like receptors to mediate an 
immune inflammatory gene expression response to bacterial antigens such as 
lipopolysaccharides (Abate et al., 2020). In a study of patients with depression, those who 
responded to a therapeutic exposure to sleep deprivation showed differential expression of 
LPCAT2 as compared to non-responders (Foo et al., 2019). The gene ETS2 is a member of the 
E26 transformation-specific family of transcription factors, which have roles in processes such as 
normal cell development, but whose dysregulation is associated with cell proliferation in cancer 
(Fry & Inoue, 2018; Gutierrez-Hartmann et al., 2007). The ELOVL5 gene product is an enzyme 
involved in the regulation of lipogenesis and synthesis of polyunsaturated fatty acids (Shikama et 
al., 2015). Another fatty acid elongase gene, ELOVL2, has been associated with self-reported 
sleep duration in a genome-wide association study (Scheinfeldt et al., 2015). The gene Six-
transmembrane epithelial antigen of the prostate 4 (STEAP4) encodes a metalloreductase with 
proposed roles in responding to inflammatory stress (Scarl et al., 2017). More recent work has 
indicated a possible association with restless leg syndrome (Tilch et al., 2020). The gene SDCBP, 
also known by gene synonyms Melanoma differentiation associated gene-9 (MDA9) or Syntenin, 
encodes a scaffolding protein with roles in cell signaling and cancer progression (Boukerche et 
al., 2008). It further appeared as a master regulator of a causal network predicted by IPA Core 
Analysis in the current study (Figure 2). 

Biomarkers across measures of fatigue impairment 

Of the possible biomarker genes related to PVT lapses, there was partial overlap with 
lists of genes related to other cognitive and subjective variables in the five-timepoint model tests. 
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Those genes that respond to tests of PVT as well as either RDM and/or MTS may be associated 
with overall neurobehavioral performance inhibition. Yet the fact that many genes respond 
uniquely to one or the other variable suggests the potential to develop distinct panels of genes to 
target the specific types of performance most relevant to a given operational setting. The POMS-
F is a subjective self-report of fatigue, and it is interesting to find minimal overlap between genes 
responding to PVT and POMS-F. In the placebo run, of the 1,169 genes related to PVT lapses, 
only two were related to POMS-F (CXCR4 and DDIT4) and one to MTS (KLF9). Of course, with 
zero genes related to PVT lapses in the modafinil models (M8P and M5P), there was no overlap 
to investigate. For analysis of data from both placebo and modafinil study runs, of the 1,406 
genes significant for PVT lapses, 69 were significant for POMS-F, 68 for MTS, and four for 
RDM. This included KLF9, again significant for PVT and MTS, as well as CXCR4 and DDIT4, 
again significant for PVT and POMS-F. The gene FKBP5 was not significantly related to PVT 
lapses in the eight-timepoint models (P8P, M8P, B8P). In the five-timepoint models, it was 
related to POMS-F, MTS, PVT, and RDM in the analysis of both runs, only to PVT in the 
placebo run, and only to POMS-F in the modafinil run. Low levels of overlap between genes 
related to POMS-F with the more objective performance metrics PVT, MTS, and RDM is 
consistent with self-reported fatigue not always corresponding to objective metrics of 
neurobehavioral performance. 

For those genes differentially expressed across multiple model terms, known functions 
often were related to the immune system, corticosteroid signaling, and circadian rhythms. 
Glucocorticoids are hormones that suppress inflammation (Irwin, 2019). The gene DDIT4 has 
previously been identified as a potential biomarker of melatonin phase and is associated with 
human circadian rhythms (Foo et al., 2019; Laing et al., 2018). The DDIT4 gene (also known as 
Regulated in development and DNA damage response 1 or REDD1) is involved in the response 
to stressors such as hypoxia, with a role in regulating the activity of the mammalian target of 
rapamycin (mTOR) (Tirado-Hurtado et al., 2018; Zhidkova et al., 2022). The gene KLF 
transcription factor 9 (KLF9, also known as Basic transcription element-binding protein 1 or 
BTEB1) belongs to the Krüppel-like family of transcription factors. The KLF9 gene encodes a 
transcription factor regulated by electrical activity, corticosterone, and thyroid hormone T3 
(Moore et al., 2011). It has been suggested that KLF9 in the human epidermis may influence 
circadian expression of target genes (Spörl et al., 2012), and that it is a key regulator of 
glucocorticoid signaling (Gans & Coffman, 2021). Also important to glucocorticoid responses is 
the gene FKBP5, itself regulated by environmental stressors (Gans & Coffman, 2021; Zannas et 
al., 2016) and a possible circadian phase biomarker (Laing et al., 2017). Chemokine receptor 
CXCR4 is part of a superfamily of G protein-coupled receptors and regulates biological 
processes ranging from the immune response to organogenesis (Busillo & Benovic, 2007). 
Roughly a decade ago, research supported a role for cortisol inducing CXCR4 upregulation and 
mediating immune system rhythmicity, particularly a morning decrease in circulating T cells 
(Besedovsky et al., 2014). More recently, work in mice demonstrated increased levels of CXCR4 
on B cells within blood and brain associated with sleep deprivation (Korin et al., 2019). 
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Of genes previously related to PVT lapses by Uyhelji et al. (2018), one gene (HIF1a) was 
related to POMS-F in the modafinil-only run M5F (Table 2). Another 13 genes were related to 
MTS in the modafinil only run M5S: Lymphocyte cytosolic protein 1 (LCP1), Aquaporin 9 
(AQP9), MSL complex subunit 1 (MSL1), Growth factor receptor bound protein 2 (GRB2), C-X-
C motif chemokine receptor 2 (CXCR2), C-X-C motif chemokine receptor 1 (CXCR1), ETS 
proto-oncogene 2, transcription factor (ETS2), Cytoplasmic polyadenylation element binding 
protein 4 (CPEB4), ELOVL fatty acid elongase 5 (ELOVL5), Syndecan binding protein 
(SDCBP), and flotillin 1 (FLOT1). None were significantly related to POMS-F, MTS, or RDM in 
the placebo run or in tests of both runs. Different results with modafinil vs. placebo 
administration again may be a feature unique to modafinil or underlie the importance of 
considering countermeasure use in developing biomarker panels for fatigue impairment. 
However, the limited number of timepoints for MTS, POMS-F, and RDM hindered the ability to 
use models that explicitly incorporated terms for circadian rhythms. Thus, some of the 
biomarkers related to variables tested in the five-timepoint models possibly could represent 
genes affected by circadian rhythms, including genes related to PVT in the five but not eight-
timepoint models, such as FKBP5. 

Conclusion  

Several lists of candidate biomarker genes for fatigue impairment were generated in this 
study. These included biomarkers for subjective self-reported fatigue as measured by the POMS-
F assay, and those for objective cognitive performance tests with the PVT, RDM, and MTS 
assays. For the civilian aviation sector, genes found in placebo runs without a drug 
countermeasure may be the most applicable candidates. Nonetheless genes significant in tests of 
both placebo and modafinil study runs also may be informative. The subset of genes related to 
PVT lapses in this study, that also were found in prior investigation of gene expression changes 
related to PVT during sleep loss, may represent robust biomarker candidates for fatigue-related 
attention impairment. Future work is needed to validate these candidate genes outside sleep 
clinics and in operational settings. Considering that variation in biomarker detection may depend 
on which cognitive or subjective test is used (PVT, RDM, MTS, POMS-F), another critical need 
is to identify aspects of cognition and physiology most important to operational safety. This will 
facilitate the development of biomarker panels for application to fatigue risk mitigation. 
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