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Abstract 
The Federal Aviation Administration (FAA) Office of Aerospace Medicine supports research to 
use available healthcare data to inform policies regarding pilots' medical certifications. The 
MITRE Corporation's Center for Advanced System Development (MITRE CAASD) was asked 
to examine methods in advanced data analytics and machine learning (ML) to inform such risk-
based decision-making. As an initial step in assessing the potential predictive value of 
commercially available healthcare data, the FAA provided MITRE CAASD the IBM 
MarketScan dataset—a large set of commercial healthcare claims records. Using this dataset, we 
developed methods for identifying health status and changes in health status across conditions; 
for measuring changes in health status among enrollees with diabetes mellitus (DM); and for 
measuring the onset of new cases of DM, traumatic brain injury, sleep apnea, and chronic 
obstructive pulmonary disease. We developed a repeatable workflow and modeled these 
conditions using a wide range of ML methods. We conclude that ML-based predictive modeling 
of health conditions from IBM MarketScan data is feasible and informative. However, additional 
clinical information from commercially available electronic health records would likely improve 
accuracy and more closely align with future FAA needs.  
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Executive Summary 
The MITRE Corporation's Center for Advanced Aviation System Development (MITRE 
CAASD) was tasked to examine methods in advanced data analytics and machine learning (ML) 
to inform a next-generation pilot medical certification safety management system. As an initial 
step in assessing the potential predictive value of commercially available healthcare data, the 
Federal Aviation Administration (FAA) provided MITRE with the IBM MarketScan dataset—an 
extensive set of commercial healthcare claims. Using this dataset, we developed methods for 
identifying health status and changes in health status across conditions; for measuring changes in 
health status among enrollees with diabetes mellitus (DM); and for measuring the onset of new 
cases of DM, traumatic brain injury (TBI), sleep apnea, and chronic obstructive pulmonary 
disease (COPD).  
We developed a repeatable workflow and modeled these conditions using a wide range of ML 
methods, including individual and ensemble methods, and examined their accuracy using 
multiple criteria. Our primary finding is that these predictive models replicate or exceed existing 
models based on claims data; however, they generally have poor precision and recall statistics as 
measured by well-known metrics such as the F1 and Matthews Correlation Coefficient scores. 
Area Under the Receiver-Operating Characteristics Curve (AUC) scores, which measure the 
overall ability of the model to correctly classify cases at different threshold levels, varied from 
0.67 (TBI) to 0.844 (COPD). 
We also examined Airman Medical Certification forms, but because the integration of these data 
would necessitate a significant degree of natural language processing (NLP) and because NLP is 
beyond the scope of work, we did not include these in our preliminary analyses. Instead, MITRE 
CAASD focused on the immediate problem of representing and modeling healthcare outcomes 
from claims and eligibility data.  
We conclude that ML-based predictive modeling of health conditions from MarketScan data is 
feasible and informative. However, additional information from electronic health records and the 
ability to more closely link clinical conditions to pilot medical certification would likely improve 
accuracy and more closely align with future FAA needs.  
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 Introduction 
The Federal Aviation Administration's (FAA's) Office of Aerospace Medicine (AAM) is actively 
engaged in activities with numerous challenges that demand better use of medical data for 
timely, risk-based pilot medical certification decision-making in an environment of rapid change 
in both healthcare and aerospace operations. In particular, the AAM is aligning its practices with 
FAA's Safety Management System (SMS) policy.  
To implement SMS and conduct risk-based decision-making, policymakers require risk 
assessments of identified hazards. AAM must manage the risk that a pilot determined to be fit for 
duty for the certification period will instead become medically unfit during that period. At a 
more granular level, a concern is that a pilot's chronic condition or set of conditions is such that 
there is an unacceptably high likelihood of a health episode that could impact pilot performance 
during the certification period.  
Safety risk assessment requires estimates of likelihood. FAA Order 8040.4 includes proposed 
likelihood definitions for large commercial and small aircraft categories of operations. FAA 
encourages using quantitative methods for their objectivity, although qualitative data and expert 
judgment are acceptable. Qualitative judgment varies from person to person, which can introduce 
variance and uncertainty in decision-making. Quantitative analysis, on the other hand, minimizes 
subjective analytical variation and is suitable for cases where the outcome of interest can be 
modeled, and data support that model.  
AAM seeks to research, develop, and validate tools, techniques, and procedures—particularly in 
big data and machine learning (ML)—that will form the technological foundations to implement 
a next-generation pilot medical certification safety management system. This research leverages 
large commercially available healthcare datasets and current big data analytics to enable 
precision-based aeromedical risk assessments that cannot be developed from existing agency 
medical certification data that are limited in quantity and quality.  
As an initial step in assessing the potential value of commercially available healthcare data, 
MITRE Corporation's Center for Advanced Aviation System Development (MITRE CAASD) 
was tasked to develop and evaluate models to predict changes in pilot health status using medical 
claims data. MITRE CAASD developed methods for identifying changes in health status, 
modeled these outcomes using a wide range of ML methods, and generated prediction models at 
the individual level for overall chronic health status change, the onset of specific conditions, and 
the increasing severity of specific conditions. 
In this preliminary analysis, we used commercial claims data from the IBM MarketScan dataset 
for our models. We demonstrated that claims data can be used in conjunction with ML methods 
to predict the onset and changes in severity in some conditions of interest, including diabetes 
mellitus (DM), traumatic brain injury (TBI), obstructive sleep apnea (OSA), and chronic 
obstructive pulmonary disease (COPD). 
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 Literature Review 
A substantial body of research now exists on the application of ML in predicting individual 
medical outcomes from administrative claims, electronic health records (EHRs), and other 
clinical data sources. These models show promise, with some outcomes, data types, and 
modeling methods proving more challenging than others.  
In general, model performance depends on the medical outcome of interest. Models predicting 
unanticipated inpatient and emergency department visits show a poorer fit in all data and 
modeling environments, especially when compared to those predicting near-term mortality. 
Predictions of the onset of new conditions or increasing disease complexity or severity of 
existing conditions yield results between these two extremes. Modelers have pursued numerous 
feature selection and dimensionality reduction techniques, although none exhibit definitively 
superior performance. Although modeling techniques and methods vary, XGBoost showed the 
most promising results in terms of area under the receiver operating characteristic curve (AUC, 
or C-score), a commonly used metric of model goodness-of-fit and discriminatory power. 
Adding EHR or other clinical data generally improved model performance, although Desai et al. 
(2020) found slight improvement in some scores for heart failure modeling. A summary of select 
current models and methods is shown in Table 1.  

Table 1: Recent Literature on Machine Learning and Predictive Models for Healthcare Outcomes 

Study Outcome Method Result 

Administrative Claims Data 

Croon et al. (2022) Scoping review of 16 
ML models on heart 
failure (HF) 
readmissions 

Review of 16 studies on 
readmission, using 
various models and data 

AUC 0.61–0.79, with the highest 
AUC using features from EHR 
and imaging data; the claims-
based model achieved AUC of 
0.64 

Desai et al. (2020) HF: mortality, high 
cost, hospitalization, 
home days loss 

Compared logistic to 
ML, with gradient boost 
showing best 
performance; added 
EHR data for modest 
gains 

Gradient boost AUC from 
claims: mortality 0.73, 
hospitalization for HF 0.75, high 
cost 0.73, home days loss 0.79 

Lewis et al. (2021) Preventable 
hospitalizations in HF 
patients 

Sequential deep learning 
on tokenized monthly 
vectors 

AUC 0.78 

MacKay et al. 
(2021) 

30-day mortality 
(CMS AI challenge) 

Gradient boost ML on 
Medicare claims data 
using HCC, CCS, DRG 

Mortality: 0.88; 17 adverse 
events 0.88–0.86; 30-day 
rehospitalization 0.73 

Non-traditional Data Sources 

Chang and Chen 
(2021) 

Increase in self-
reported disease 
severity using app 
data from Flaredown 
(Kaggle) 

XGBoost and ensemble 
models 

F1 of 0.93 reported 
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Study Outcome Method Result 

Dinh et al. (2019) Onset of diabetes, 
CVD from NHANES 
survey data including 
lab results 

XGBoost ensemble 
models using survey and 
demographics only, and 
adding lab values 

GBDT diabetes: 0.86 AUC, 0.95 
with labs; Ensemble CVD: 0.83, 
0.84 with labs 

James et al. (2021) Onset of dementia in 
memory clinic 
patients 

NACC uniform data set 
including 
sociodemographics, 
functional status, 
symptoms, 
neuropsychological test 
battery, various models 
including XGBoost 

XGBoost: AUC 0.92, accuracy 
0.92 

EHR Data 

Bose et al. (2021) Pediatric onset of 
chronic asthma 

EHR data, various ML 
models tested 

XGBoost: AUC 0.81  

Molani et al. (2022) COVID-19 severity 
score dichotomized to 
mild/severe 

Logistic Regression, 
Random Forest, GBDT, 
AdaBoost models, all 
had similar AUC 

GBDT AUC 0.78, true positive 
0.75 for younger population, 
AUC 0.81 and true positive 0.73 
for older 

Rajkomar et al. 
(2018) 

In-hospital mortality, 
length of stay (LOS), 
discharge diagnosis 

Vector of time-
sequenced tokens using 
FHIR for each patient 
visit, using all EHR data, 
including free text. Used 
LSTM, TANN, a NN 
with boosted time-based 
decision "stumps"  

In-hospital mortality: AUC 0.95; 
LOS: AUC 0.86; discharge dx 
AUC 0.87 

 
In addition, we examined the current literature on ML analyses for the four specific conditions 
tested in the current study: DM, COPD, OSA, and TBI. Claims-based ML modeling of DM and 
COPD were directly used in designing and considering our model approach. ML uses in OSA 
and TBI tend to focus on clinical data, imaging, monitoring, and other sensor data; only those 
studies directly relating to claims or EHR data are included in Table 2. 

Table 2: Recent Literature on Machine Learning and Predictive Models for Healthcare Outcomes 
in Diabetes, COPD, OSA, and TBI populations  

Study Outcome Method Result 

Diabetes Onset and Severity 

Ravaut et al. (2021) Onset of diabetes Claims data XGBoost AUC 0.80 

Anderson et al. 
(2015) 

Onset of diabetes EHR data ensemble model AUC 0.76 

Tuppad and Patil 
(2022) 

Evaluation of ML in 
diabetes risk 
assessment, diagnosis, 
prognosis/disease 
progression 

Review of 86 articles, 
including claims, EHR, 
clinical data 

Diagnosis: AUC 0.70 to 
0.90 using different data 
and models 
Prognosis: 0.76–0.87 all, 
including clinical features 
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Study Outcome Method Result 

COPD Onset and Severity 

Muro et al. (2021) Onset of COPD from 
employee annual 
checkup medical 
records 

XGBoost on behavioral, 
clinical, lab features 

AUC 0.96 with accuracy 
of 91.7%, sensitivity of 
84.5%, specificity of 96%  

Lu and Uddin (2021) Onset of COPD, CVD 
from Australian claims 
data 

Graph-based weighted 
patient network 
constructed from diagnosis 
codes clustered to 
Elixhauser categories; 
modeled using Graph 
Attention Network 

CVD accuracy 0.93, CPD 
accuracy 0.89 

Goto et al. (2019) COPD readmissions, 
claims 

Logistic regression 
compared with deep neural 
network on claims data 

AUC of 0.61–0.645 

Min et al. (2019)  COPD readmissions, 
claims 

Extensive comparison of 
models and features 
comparing knowledge-
driven clinically derived 
features, and data-mining 
features 

Knowledge features: 
0.61–0.64; data-driven 
features: 0.64-0.65 
  

Sleep Apnea 

Ramachandran and 
Karuppiah (2021) 

Sleep apnea diagnosis 
survey of ML 

Biomedical markers, 
ECG/EEG, etc. outputs 
predominate, e.g., 
Artificial Neural Network 
to model diagnosis from 
ECG signals with 85% 
accuracy  

Survey article 

Mencar et al. (2020) Sleep apnea increase 
in severity 

Demographics, spirometry, 
gas exchange, symptoms 
with dichotomized 
outcome, using random 
forest 

Accuracy of 44.7% 

Traumatic Brain Injury 

Chan et al. (2020)  Total medical expense 
in TBI cohort using 
administrative data 

Linear regression model 
finds importance of pre-
injury health status on 
costs (severity) 

R2 not reported 

Matsuo et al. (2020)  In-hospital mortality 
for TBI patients 

EHR data with many 
clinical features; random 
forest 

0.90 AUC with 100% 
sensitivity and 72.3% 
specificity, 91.7% 
accuracy 

 
A description of the relevant articles with brief summaries of each can be found in Appendix C.
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 Data sources  
3.1 Healthcare Claims Data 
The study used the IBM MarketScan Commercial Claims and Encounters Database of national 
medical claims data for privately insured individuals and their dependents, age 65 or younger,1 
for January 1, 2017, through December 31, 2019. The study population was further limited to 
those aged 18 years and older who were fully covered by their insurance in 2017, 2018, and 
2019. The resulting dataset contains 281,655,673 diagnosis codes, 515,676,057 procedure codes, 
and 125,992,515 prescriptions for 8,119,171 individuals. 
MarketScan is commonly used in research settings to examine questions such as drug utilization, 
clinical care practices, socio-demo-geographic variations in treatment and outcomes, and other 
retrospective analyses. A MedLine search identifies over 800 articles published in 2021 and 2022 
using or referencing MarketScan. 
Healthcare claims data contain billing information for inpatient and outpatient visits, including 
the type of provider, service site, visit date, diagnoses, procedures, and prescriptions. Data are 
encoded according to several standard schemas: diagnoses are indicated using International 
Classification of Diseases, Tenth Revision, Clinical Modification (ICD-10-CM), inpatient 
procedures use the ICD-10 Procedure Coding System (ICD-10-PCS), outpatient procedures use 
Current Procedural Terminology (CPT-4), and prescriptions use the National Drug Code as well 
as therapeutic class and therapeutic group. The MarketScan data also include summary and 
detailed enrollment files that provide details on insurance enrollment coverage, date of birth, and 
patient gender.  
All data are commercially provided and anonymized to comply with Health Insurance Portability 
and Accountability Act requirements. As a result, human subject research review and approval 
by an Institutional Review Board are not required.  

3.2 Common Data Model 
We tested the mapping of MarketScan data elements to the Observational Medical Outcomes 
Partnership (OMOP) Common Data Model (CDM).2 The CDM aligns disparate datasets into 
standard vocabularies so that research is comparable, generalizable, and yields reproducible 
results. CDM datasets can be easily expanded to include additional data elements from other 
sources, such as laboratories, eligibility files, pharmacy files, or EHRs. The contents of CDM 
data types can be mapped to known dictionaries to create clinically meaningful insights and 
analyses, for example, National Drug Codes to drug ingredients.  

 
1 See https://www.ibm.com/products/marketscan-research-databases 
2 See Voss EA, Makadia R, Matcho A, Ma Q, Knoll C, Schuemie M, DeFalco FJ, Londhe A, Zhu V, Ryan PB. Feasibility and 

utility of applications of the common data model to multiple, disparate observational health databases. J Am Med Inform 
Assoc. 2015 May;22(3):553-64. doi: 10.1093/jamia/ocu023. Epub 2015 Feb 10. PMID: 25670757; PMCID: PMC4457111. 
The effort is further described at https://ohdsi.github.io/CommonDataModel/. Note that the Common Data Model should not 
be confused with the acute inpatient charge data master which also uses the abbreviation, “CDM;” the latter is the basis of 
facility pricing for services, the former is a data management framework.  

 

https://ohdsi.github.io/CommonDataModel/
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Despite these potential benefits, translating MarketScan to the OMOP CDM requires third-party 
support; we determined that the cost of such support outweighs the value of our specific research 
objectives.3  

3.3 Feature Selection 
In this initial phase, we used ICD-10-CM diagnosis codes, CPT-4 procedure codes, and National 
Drug Codes directly as binary (on/off) indicators and used the publicly available Healthcare Cost 
and Utilization Project (HCUP) Clinical Classification Software (CCS; beta-version) tools to 
reduce the dimensionality of the extensive diagnosis and procedure code space.4 
The CCS tool maps over 70,000 specific ICD-10-CM diagnosis codes and over 10,000 CPT-4 
procedure codes into clinically meaningful aggregate categories. We used a Python 
implementation of these tools (the package hcuppy) to generate approximately 300 CCS 
treatment features from CPT-4 procedure codes and approximately 500 CCS clinical features 
from ICD-10-CM diagnosis codes.5 We used therapeutic groups to aggregate individual 
prescription drugs, as provided in the MarketScan dataset. 
The HCUP groupings of diagnosis codes greatly reduced the computational and time 
requirements for model training and tuning. We performed several specific tests comparing 
models trained directly with ICD-10 and CPT-4 procedure codes with those trained using HCUP 
groups and found similar model performance. As such, this report focuses on models trained 
with HCUP features. 

 
3 Examples of MarketScan data mapped to CDM include Molinaro A, DeFalco F. Empirical assessment of alternative methods 

for identifying seasonality in observational healthcare data. BMC Med Res Methodol. 2022 Jul 2;22(1):182. doi: 
10.1186/s12874-022-01652-3. PMID: 35780114; PMCID: PMC9250712; Khera R, Schuemie MJ, Lu Y, Ostropolets A, Chen 
R, Hripcsak G, Ryan PB, Krumholz HM, Suchard MA. Large-scale evidence generation and evaluation across a network of 
databases for type 2 diabetes mellitus (LEGEND-T2DM): a protocol for a series of multinational, real-world comparative 
cardiovascular effectiveness and safety studies. BMJ Open. 2022 Jun 9;12(6):e057977. doi: 10.1136/bmjopen-2021-057977. 
PMID: 35680274; PMCID: PMC9185490; Williams RD, Reps JM, Kors JA, Ryan PB, Steyerberg E, Verhamme KM, 
Rijnbeek PR. Using Iterative Pairwise External Validation to Contextualize Prediction Model Performance: A Use Case 
Predicting 1-Year Heart Failure Risk in Patients with Diabetes Across Five Data Sources. Drug Saf. 2022 May;45(5):563-570. 
doi: 10.1007/s40264-022-01161-8. Epub 2022 May 17. PMID: 35579818; PMCID: PMC9114056. Note that all these studies 
explicitly combine and compare data from multiple databases and sources. 

4 The software tools can be found at the AHRQ HCUP site, https://www.hcup-us.ahrq.gov/tools_software.jsp 
5 The python hcuppy package documentation can be found at https://pypi.org/project/hcuppy/ 
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 Modeling Approaches 
For this work, we focused on three categories of outcomes: the onset of specific chronic 
conditions, the relative change in severity for specific conditions, and the change in cumulative 
chronic conditions. We examined these outcomes in four specific conditions: DM, TBI, OSA, 
and COPD. 
A variety of modeling approaches are available for predicting condition onset and severity. 
Several modeling techniques were evaluated for this project, including the following: 

• Event history analysis: Also known as cross-sectional, time series, or panel data analysis, 
this approach has its roots in biomedical engineering and mechanical engineering and reflects 
the marriage of ordinary least squares (OLS) regression and time-series modeling.  

• Auto-regressive integrated moving averages (ARIMA): This simple yet powerful 
approach creates a linear equation that describes and forecasts time series data. 

• Linear classification algorithms such as Poisson regression and logistic regression: These 
techniques can be used to categorize the presence or absence of an outcome, such as a new 
disease state or multiple disease states.  

• Product-limit analysis, also known as the Kaplan-Meier approach: This descriptive 
method of survival analysis generates a population survival curve and essential statistics such 
as the median survival time.  

There are various reasons why the above models were not selected for use. In general, these 
models were not chosen for adoption because of one or more of the following:  

• The model may not perform well with sparse or missing data.  

• The relationship between the outcome of interest and the covariates cannot be assumed 
linear; in such cases, the OLS estimator is biased and does not meet maximum likelihood 
criteria.  

• There may be a lack of appropriate "time-to-failure" outcomes in the data for survival 
analysis. 

For this report, we focused on two problem formulations using claims data aggregated within 
each year for each patient: (continuous) regression and binary classification. To evaluate 
multiple modeling approaches, we utilized the MITRE high-performance computing 
environment and the AutoML package autoGluon. AutoGluon enables easy-to-use and 
easy-to-extend AutoML with a focus on automated stack ensembling, deep learning, and real-
world applications spanning image, text, and tabular data.6  

4.1 Modeling Overall Change in Severity  
For modeling overall changes in individual health status, we focused on modeling the yearly 
change in the number and severity of chronic conditions. We created a weighted chronic 
condition score based on the HCUP groupings of diagnosis codes. For each HCUP group, we 

 
6 https://auto.gluon.ai/stable/index.html 
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referred to the clinical expertise of the team to select the groups that represent chronic conditions 
and to assign each group a severity score between one and three. For example, the presence of a 
condition in HCUP group Cancer of the Prostate was given a weight of 3, while the group 
Asthma was given a weight of 2. This approach is intended as a proof of concept for measuring 
cumulative health of individuals and was used to assess the overall disease burden faced by an 
individual and to measure changes in that burden over time.  
To model severity over time, we evaluated two approaches: predicting an individual's severity 
yearly and predicting a new measure called delta-severity that we defined to capture the relative 
change in an individual's number and severity of chronic conditions each year. Formally, delta-
severity is defined as 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 − 𝑠𝑠𝑑𝑑𝑠𝑠𝑑𝑑𝑠𝑠𝑠𝑠𝑑𝑑𝑠𝑠(𝑠𝑠𝑑𝑑𝑑𝑑𝑠𝑠) =
𝑁𝑁𝑁𝑁(𝑠𝑠𝑑𝑑𝑑𝑑𝑠𝑠) − 𝑁𝑁𝑁𝑁(𝑠𝑠𝑑𝑑𝑑𝑑𝑠𝑠 − 1)

𝑁𝑁𝑁𝑁(𝑠𝑠𝑑𝑑𝑑𝑑𝑠𝑠 − 1) ∗
𝑆𝑆𝑁𝑁(𝑠𝑠𝑑𝑑𝑑𝑑𝑠𝑠) − 𝑆𝑆𝑁𝑁(𝑠𝑠𝑑𝑑𝑑𝑑𝑠𝑠 − 1)

𝑆𝑆𝑁𝑁(𝑠𝑠𝑑𝑑𝑑𝑑𝑠𝑠 − 1) , 

where 𝑁𝑁𝑁𝑁(𝑠𝑠𝑑𝑑𝑑𝑑𝑠𝑠) is the cumulative number of chronic conditions for an individual for all years, 
including 𝑠𝑠𝑑𝑑𝑑𝑑𝑠𝑠, and 𝑆𝑆𝑁𝑁(𝑠𝑠𝑑𝑑𝑑𝑑𝑠𝑠) is the cumulative severity. 

For example, if an individual had two chronic conditions with total severity 5 in 2017 and had a 
new chronic condition with severity 2 in 2018, their delta-severity score would be 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 − 𝑠𝑠𝑑𝑑𝑠𝑠𝑑𝑑𝑠𝑠𝑠𝑠𝑑𝑑𝑠𝑠 =
3 − 2

2
∗

7 − 5
5

= 0.20. 

As this measure captures the number of new conditions that have developed over time and the 
change in severity from one year to the next, we could track and model the progression of 
disease with a single value.  
For severity modeling, we computed the cumulative number of chronic conditions and their 
severity for each of the three years of the dataset, then used those values to compute the delta 
severity measure described above for three models: 

1. Predict delta severity for 2017–2018 based on 2017 data 
2. Predict delta severity for 2018–2019 based on 2018 data 
3. Predict delta severity for 2018–2019 based on 2017 and 2018 data 

This task was treated as a regression problem, where models were tuned based on mean absolute 
error. Each dataset was split for 75% training and 25% testing. The autoML package auto 
gluon was used to train, tune, and evaluate multiple types of models.  

Results for the delta-severity measure are shown in Table 3, and results for chronic condition 
severity are shown in Table 4. In both cases, models were compared with dummy classifiers. For 
delta-severity, we found that our models did not outperform a dummy classifier that predicts the 
median value for all individuals; in addition, the very low r2 values for all models, including the 
dummy median classifier indicates overall poor fit and possible non-linearity in explanatory 
variables.  

Table 3: Chronic Condition Delta-Severity Best Model Performance  

Dataset Outcome Approach MSE MAE r2 

2017 2018 AutoGluon 187.918 2.265 0.044 

2018 2019 AutoGluon 76.235 1.328 0.021 
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2017, 2018 2019 AutoGluon 83.709 1.108 0.015 

2017 2018 Dummy Median  201.500 2.370 0.030 

2018 2019 Dummy Median 78.920 1.060 0.010 

2017, 2018 2019 Dummy Median 86.180 1.130 0.010 

 
We also developed models to predict an individual's severity level in each year, given their 
previous severity level. Models were compared against a dummy classifier that predicted each 
individual's severity level would not change. As shown in Table 4, our models outperformed the 
best dummy variable models, and all models showed a high r2 goodness-of-fit measure. 

Table 4: Chronic Condition Severity Best Model Performance 

Dataset Outcome Approach MSE MAE r2 

2017 2018 AutoGluon 36.685 4.389 0.770 

2018 2019 AutoGluon 29.441 3.826 0.856 

2017, 2018 2019 AutoGluon 27.983 3.905 0.865 

2017 2018 Dummy 2017 severity 82.950 6.530 0.480 

2018 2019 Dummy 2018 severity 59.980 5.370 0.710 

2017, 2018 2019 Dummy 2018 severity 58.710 5.280 0.720 

 
The results are not entirely unexpected. Given the nature of chronic disease, the conditions, 
treatment, and prescriptions observed in a previous year provide substantial predictive power in 
chronic conditions observed in the following year. However, these models provide relatively 
little insight into the change in severity level when all possible chronic conditions are considered 
simultaneously in the model. This can be seen by considering the mean absolute error, which 
indicates that the average error in severity is nearly four at best. In the next section, we discuss 
modeling onset and increases in severity for four specific conditions. 

4.2 Modeling Individual Conditions 
Four conditions were selected for analysis: DM, TBI, OSA, and acute myocardial infarction 
(later revised to COPD). Cohorts were selected based on ICD-10-CM diagnosis codes and CPT-4 
procedure codes: 

• Diabetes:7 ICD-10-CM E08xx, E09xx, E10xx, E11xx, E13xx, O24.0, O24.1, O24.3, 
O24.8, Z4681, Z9641, Z86.31 

• TBI:8 ICD-10-CM S02.0, S02.1, S02.3, S02.7, S02.8, S02.9, S06, S06.0, S06.1, S06.2, 
S06.3, S06.4, S06.5, S06.6, S06.8, S06.9, S07, S07.0, S07.1, S07.8, S07.9, S099, T060 

 
7 Based on Glasheen (2017) and extended to include pre-existing conditions, encounters related to insulin pumps, and personal 

history codes 
8 McChesney-Corbeil J, Barlow K, Quan H, Chen G, Wiebe S, Jette N. Validation of a Case Definition for Pediatric Brain Injury 

Using Administrative Data. Can J Neurol Sci. 2017 Mar;44(2):161-169. doi: 10.1017/cjn.2016.419. Epub 2017 Jan 20. PMID: 
28103959. 
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• OSA:9 ICD-10-CM G47.30, G47.31, G47.32, G47.33, G47.34, G47.35, G47.36, G47.38, 
G47.39; CPT-4 G0398, G0399, G0400, A7027, A7028, A7029, A7030, A7031, A7032, 
A7033, A7034, A7035, A7036, A7037, A7038, A7039, A7044, A7046, A4604, E0601, 
E0562, E1356, E1357, E1358, E1390, E1399 

• Acute myocardial infarction: ICD-10-CM I21xx, I22xx 

• COPD: ICD-10-CM J41xx, J42xx, J43xx, J44xx 
We used the cohort definitions for each condition to compute which enrollees met the cohort 
criteria in each of the three calendar years. For onset prediction, we constructed three datasets for 
each condition: 

1. Predict onset in 2018 based on 2017 data 
2. Predict onset in 2019 based on 2018 data 
3. Predict onset in 2019 based on both 2017 and 2018 data  

For each dataset, we constructed a negative cohort consisting of a random sample of enrolled 
individuals who did not have the condition in either the outcome or predictor years. The dataset 
was then split into 75% training and 25% testing. Models were trained on HCUP-grouped ICD-
10-CM diagnosis codes and CPT-4 procedure codes as well as age, sex, and the therapeutic 
group for all prescribed medications. The autoML package autogluon was utilized for 
training and tuning models automatically, allowing us to evaluate multiple different modeling 
approaches quickly. To measure the performance of classifiers, we focused on the Area under the 
Receiver Operating Characteristics Curve (ROCC, AUC, or C-statistic). We also report the F1 
and Matthews Classification Coefficient (MCC) scores for a prediction threshold of 0.5.10 This 
threshold was chosen arbitrarily to report performance. Future work could include measuring the 
best decision threshold to meet FAA goals concerning false positives and negatives. 

4.2.1 Diabetes  
Diabetes was modeled for both onset of new cases among a cohort without a diabetes diagnosis 
in the previous year and increasing severity in a cohort of patients diagnosed with diabetes. 

4.2.1.1 Diabetes Onset 
For diabetes onset, binary classification models were trained based on the three different datasets 
utilizing the HCUP grouped binary predictor variables. Model performance was tuned and 
measured based on AUC. We found that the AUCs on the holdout test sets were statistically 
equivalent for all three datasets (see Table 5). 

Table 5: Diabetes Onset Best Model Performance  

 
9 Based on https://support.apriadirect.com/hc/en-us/articles/360022526374-What-are-the-HCPCS-CPT-or-billing-codes-related-

to-CPAP-Sleep-Apnea-and-Oxygen- 
10 Given a confusion matrix with True Positives (TP), True Negatives (TN), False Positives (FP), and False Negatives (FN), the 

F1 score is calculated as 2TP/(2TP + FN + FP). The MCC is calculated as ((TN*TP) – (FP*FN)/((sqrt((TN + FN) * (FP + TP) 
* (TN + FP) * (FN + TP)). The latter is preferred when classifying negative values correctly is important. See for example 
Chicco D, Jurman G. The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary 
classification evaluation. BMC Genomics. 2020 Jan 2;21(1):6. doi: 10.1186/s12864-019-6413-7. PMID: 31898477; PMCID: 
PMC6941312. 
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Dataset Outcome AUC F1 MCC 

2017 2018 0.792 0.327 0.348 

2018 2019 0.792 0.323 0.347 

2017, 2018 2019 0.783 0.238 0.275 

 
Furthermore, we can see in Table 6 that model performance is equivalent across model types, 
and ensembling does not improve performance for this task.  

Table 6: Diabetes Onset Predict 2018 Model Performance  

Model AUC 

WeightedEnsemble_L3 0.791974 

XGBoost_BAG_L2 0.791927 

CatBoost_BAG_L2 0.791909 

LightGBMXT_BAG_L2 0.791901 

LightGBMLarge_BAG_L2 0.791897 

LightGBM_BAG_L2 0.791885 

WeightedEnsemble_L2 0.791776 

NeuralNetTorch_BAG_L2 0.791685 

RandomForestEntr_BAG_L2 0.791338 

CatBoost_BAG_L1 0.791097 

RandomForestGini_BAG_L2 0.791043 

 

4.2.1.2 Diabetes Severity 
To measure increases in diabetes severity, we calculated the Diabetes Complications Severity 
Index (DCSI) as implemented in ICD-10 codes by Glasheen et al. (2017). The DCSI is a 
validated and commonly used method for assessing the severity of complications in diabetes and 
has been used to predict or risk-adjust models of costs, hospitalization, and mortality. 
For each enrolled individual that met the diabetes inclusion criteria, we calculated the cumulative 
DCSI score yearly and the change in score between subsequent years (see Figure 1). We then 
constructed models that used the current diabetes severity score, age, sex, the HCUP grouped 
procedure, diagnosis codes, and a therapeutic group for medications as features to predict the 
diabetes severity score in the subsequent year. More specifically, we considered two prediction 
tasks:  

1. Binary Classification: Predict if an individual's severity will increase next year 
2. Regression: Predict an individual's severity score next year 
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Figure 1: Diabetes Severity Score Yearly Changes 

 
For diabetes severity binary classification models (that is, to predict whether diabetes severity 
increased), we trained models based on two different datasets using the HCUP grouped binary 
predictor variables. Model performance was tuned and measured based on AUC. We found that 
the AUCs on the test sets were statistically equivalent for both datasets (see Table 7). As with the 
onset modeling, we found that model performance was equivalent across model types and with 
ensembling. 

Table 7: Diabetes Severity Binary Increase Model Performance 

Dataset Outcome AUC F1 MCC 

2017 2018 0.733 0.930 0.051 

2018 2019 0.727 0.931 0.052 

 
To predict the cumulative diabetes severity using regression models, we trained based on the two 
different datasets using the HCUP grouped binary predictor variables. Model performance was 
tuned and measured based on mean absolute error (MAE). Model performance was compared 
against three dummy classifiers: predict mean diabetes score, median diabetes score, and no 
change in diabetes score. We found that the MAEs for both datasets were statistically equivalent 
to the dummy no-change classifier (see Table 8), suggesting that our ability to predict diabetes 
severity score is no better than predicting that the score does not change.  
 
 

Table 8: Diabetes Severity Regression Model Performance 

Dataset Outcome MAE r2 MSE Model 

2017 2018 0.22 0.63 0.38 autogluon 



4-7 

 

Dataset Outcome MAE r2 MSE Model 

2017 2018 0.81 0.00 1.58 dummy median 

2017 2018 0.82 0.00 1.58 dummy mean 

2017 2018 0.21 0.73 0.43 dummy no change 

2018 2019 0.28 0.76 0.38 autogluon 

2018 2019 0.71 0.04 1.05 dummy median 

2018 2019 0.73 0.00 1.02 dummy mean 

2018 2019 0.20 0.61 0.39 dummy no change 

 

4.2.2 Traumatic Brain Injury  
In the absence of clinical data allowing for the construction of TBI severity indices such as the 
Glasgow Outcomes Scale, we modeled only the onset of new TBI cases.  
Due to the nature of TBI and its relation to physical trauma caused by accidents or other 
unpredictable events, we expected this condition to have the least predictability in the initial 
onset. Indeed, we found the lowest AUC scores for these models and poor F1 and MCC scores, 
as shown in Table 9. Future work should focus on severity and specific health outcomes, such as 
episodes of loss of consciousness or changes in behavior and other personality disorders.  

Table 9: TBI Onset Best Model Performance 

Dataset Outcome AUC F1 MCC 

2017 2018 0.677 0.006 0.042 

2018 2019 0.670 0.012 0.054 

2017, 2018 2019 0.677 0.003 0.029 

 

4.2.3 Sleep Apnea  
As with TBI, in the absence of clinical data (sleep studies, sleep diaries, documentation of 
disturbed sleep patterns and breathing, etc.) used to assess and document the severity of OSA 
cases, we modeled only the initial onset of OSA. The results of our models are shown in Table 
10.  
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Table 10: Sleep Apnea Onset Best Model Performance 

Dataset Outcome AUC F1 MCC 

2017 2018 0.758 0.238 0.220 

2018 2019 0.741 0.158 0.170 

2017, 2018 2019 0.751 0.142 0.163 

 

4.2.4 Chronic Obstructive Pulmonary Disease  
As with TBI and OSA, in the absence of clinical data (spirometry measurement, measures of 
difficulty with exercise or other activities of daily living, etc.) used to measure the severity of 
COPD, we modeled only the initial onset of COPD. Model results are shown in Table 11. 
Although the goodness of fit is reasonably good, the F1 score and MCC are not. 
Tailoring the model to improve its performance depends on the user's tolerance for false positive 
results and on the process by which an automated flag might be used operationally to identify 
patients at risk for developing COPD. Specifically, various other cut points could be used, or a 
measure such as "precision at k" could be used to identify those most at risk. These may prove 
promising avenues for future research. 

Table 11: COPD Onset Best Model Performance 

Dataset Outcome AUC F1 MCC 

2017 2018 0.844 0.183 0.242 

2018 2019 0.844 0.131 0.194 

2017, 2018 2019 0.844 0.132 0.194 

4.3 Measuring Model Performance 
For classification models, AUC scores were the primary methods of comparing performance 
across differing modeling strategies within a condition and for comparing the overall 
effectiveness of predictive modeling across conditions. In keeping with existing literature, we 
found the best-performing models used ensemble or boosting approaches, as seen in diabetes 
onset prediction. We also found that diabetes and COPD had the highest AUC scores for onset 
prediction, compared with OSA and TBI.  
As noted under the COPD results, we will explore other ways of assessing model performance 
that align with how the prediction would be used, as a form of screening tool among many, for 
example, or as a high precision tool that would only identify those most at risk for developing the 
condition or having increased in severity.  
We focused on MAE and the coefficient of determination R squared (R2) for regression models. 
MAE was chosen over mean squared error (MSE) because it is less sensitive to outliers. 

4.3.1 Model Explainability 
In these initial exploratory analyses, we did not focus on interpretability testing. For all models 
trained, we did calculate the permutation importance for each feature. Permutation importance is 
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defined as the decrease in the model score when a particular feature is randomly shuffled. We 
utilized permutation importance as a model validity check, where we looked at the most 
important features to ensure we were not including codes (or groupings of codes) that should 
have been part of the cohort definition.  
Although permutation importance measures how important a feature is to the performance of a 
particular model, it does not necessarily reflect the intrinsic predictive value of the feature itself.  
Future work could include integrating feature importance and model explainability into the 
analytic pipeline. 
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 Lessons Learned 
Medical claims and patient eligibility data, also known as health services utilization data, are 
derived from reimbursement information and are required to determine payment by Medicaid, 
Medicare, or commercial payers. Claims data were not designed to understand the way patients 
and providers make decisions, nor were claims data designed to facilitate the prediction of 
medical outcomes.  
In Appendix A, we provide additional detail on the potential value of incorporating 
commercially available EHR data in the analysis. Briefly, compared with claims data, EHR data 
would provide the following for predictive analytics purposes: 

1. More complete and robust identification of condition onset and condition exacerbation 
2. More timely insights, which would enable early diagnosis of at-risk patients much earlier 

than using claims that have 30-day, or longer, lag times in filing and processing 
3. Richer data about a condition as opposed to just a diagnosis code, including laboratory 

results, results of sleep studies, imaging results and notes, clinical notes, and patient-
based instruments, including activities of daily living, symptoms, behavioral health, pain 
scales, etc. 

4. Richer data about the behavior and degree of compliance of the patient  
5. Clinically relevant information that provides actionable results for patients and providers 

Examples from peer-reviewed research indicate that adding clinical data to claims data related to 
heart failure hospitalizations significantly improved mortality prediction and helped many 
hospitals improve their performance ratings.11  
Lastly, we describe lessons learned and potential next steps in developing predictive health 
outcomes models for FAA. 

5.1.1 Results from Modeling 
While claims data were never designed to be used for predicting clinical outcomes or for 
tracking the changes in health status over time, we did find them to add some degree of insight, 
including:  

• According to standard model performance criteria, claims data are usable in predictive 
ML models.  

• Claims data provide, at best, a proxy for the outcome of interest—the health status of a 
pilot and the impact of health status on flight capabilities. 

• The ICD-10 coding system includes approximately 140,000 codes for procedures and 
diagnoses. Although dimension reduction can be accomplished with various methods, no 
single dominant technique exists. 

 
11 For example, see Hammill BG, Curtis LH, Fonarow GC, Heidenreich PA, Yancy CW, Peterson ED, Hernandez AF. 

Incremental value of clinical data beyond claims data in predicting 30-day outcomes after heart failure hospitalization. Circ 
Cardiovasc Qual Outcomes. 2011 Jan 1;4(1):60-7. doi: 10.1161/CIRCOUTCOMES.110.954693. Epub 2010 Dec 7. PMID: 
21139093. 
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• As estimated here using claims data alone, predictive models had reasonable AUC scores 
but poor F1 and MCC scores using a default threshold of 0.5. MCC scores, which balance 
false negatives and positives, were particularly poor, even with relatively low F1 scores.  

• Existing FAA aeromedical examination data provide an essential end outcome but are not 
currently linkable to any other source of information for predictive modeling purposes. 

5.1.2 Limitations of Existing Data  
An overall discussion on the limits of administrative claims data is presented in Appendix A. The 
claims dataset used in this analysis—the MarketScan dataset—is quite large and robust in terms 
of linkage to inpatient, outpatient, and pharmaceutical claims, along with basic demographic 
information. As noted earlier, over 800 studies in PubMed in the past two years cite or use 
MarketScan data. Nevertheless, detailed aspects of patient demographics—including race, 
income, and place of work—are missing, as are clinical outcomes, vital signs, laboratory results, 
and other potentially valuable indicators. 
Only three years of MarketSscan data were provided in the extract used for this study. This limits 
the ability to track long-term chronic illness or establish a long baseline before the first diagnosis 
of a condition. Additional years are available and would improve on these aspects of analysis. 

5.1.3 Next Steps: Data Augmentation 
Opportunities for augmenting existing data include linking claims data to other data sources, 
including the IBM Explorys EHR data, examining ways of using non-claims data to validate or 
extend findings, and expanding on modeling methods to incorporate other potentially 
informative aspects of existing or linked data. The following section describes some potential 
methods and approaches; it is not intended to be exclusive or prescriptive. 

5.1.3.1 Develop Existing FAA Aeromedical Examination Data 
The primary outcome of interest—pilot capability given health conditions—was not assessed 
directly here. Instead, various proxies were considered, including changes in overall health status 
given a specific diagnosed condition, the initial onset of a condition, and overall health status as 
described by chronic disease conditions. These measures are only indirectly related to pilot 
capabilities on the flight deck. 
The FAA has aeromedical examination information for pilot certification using the FAA-specific 
diagnostic codes. While these data cannot be directly linked to claims information, FAA codes 
could be cross-referenced the ICD-10 coding system. The resulting data set could be used to 
validate the linkages between conditions and pilot certification outcomes. 

5.1.3.2 Improve Feature Set and Model Disease Severity by Incorporating Electronic 
Health Record Data 

As noted in Appendix A, EHRs have a wealth of structured and unstructured clinical data 
extensively used in predictive modeling and research. EHR data are particularly useful for 
predicting severity changes and incorporating lifestyle and other data elements not captured in 
claims. A summary of potential ways EHR data could be used for modeling is shown in Table 
12. 
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Table 12: Potential Methods for Incorporating EHR Data into Predictive Models 

Condition EHR Data Elements Purpose in Modeling 

Any 
Condition 

Blood pressure; body mass index; history of smoking, alcohol use, 
exercise; clinical notes, discharge summaries, other free text 

Features, risk adjustment, 
severity 

OSA Results of sleep studies; home sleep tests including blood oxygen, 
airflow, breathing patterns; sleep diaries or other self-reported data 

Severity 

Diabetes HbA1c score, comprehensive metabolic panel results, microalbumin 
urine test results, presence of neuropathy and vision problems 

Severity 

TBI Glasgow Coma Scale score, Glasgow Outcome Score, Glasgow 
Outcome Score Extended, Activities of Daily Living, other 
instruments, e.g., Minnesota Multiphasic Personality Inventory, 
Patient Health Questionnaire-9, etc.  

Severity 

COPD Global Initiative for Chronic Obstructive Lung Disease (GOLD) 
score by spirometric readings; Age Dyspnea, and Airflow 
Obstruction (ADO) index; Modified Medical Research Council 
(mMRC) dyspnea scale and FEV1 via spirometry. 

Severity 

5.1.3.3 Link Claims Data to Other Sources 
A variety of external data sources have been incorporated into claims-based modeling. A 
commonly used method is to attach geographically based social determinants of health indicators 
to individuals residing in particular Zip Codes, using US Census American Community Survey 
and other data sources.12 Other data linkages, for example, to Centers for Medicare and Medicaid 
Services (CMS) hospital star ratings, are also possible.13 However, these general geographic 
methods would fail to provide individual-level data for pilot health state predictive modeling. 

5.1.3.4 Leverage Temporal Nature of Diagnoses and Conditions 
Multiple approaches have been applied to leverage information from the temporal order of 
events documented in the EHR. Two potential methods are a Reverse Time Attention (RETAIN) 
model using a time-decay to weight more recent visits in a sequence of visits as recorded in the 
EHR (over 900 citations) and the more recent BEHRT (Bidirectional Encoder Representations 
from Transformers for EHRs) with over 100 citations.14 In each case, EHR events (diagnoses, 

 
12 See for example Chen M, Tan X, Padman R. Social determinants of health in electronic health records and their 

impact on analysis and risk prediction: A systematic review. J Am Med Inform Assoc. 2020 Nov 1;27(11):1764-
1773. doi: 10.1093/jamia/ocaa143. PMID: 33202021; PMCID: PMC7671639. Blewett LA, Call KT, Turner J, 
Hest R. Data Resources for Conducting Health Services and Policy Research. Annu Rev Public Health. 2018 Apr 
1;39:437-452. doi: 10.1146/annurev-publhealth-040617-013544. Epub 2017 Dec 22. PMID: 29272166; PMCID: 
PMC5880724. 

13 See for example Kurian N, Maid J, Mitra S, Rhyne L, Korvink M, Gunn LH. Predicting Hospital Overall Quality 
Star Ratings in the USA. Healthcare (Basel). 2021 Apr 20;9(4):486. doi: 10.3390/healthcare9040486. PMID: 
33924198; PMCID: PMC8074583. 

14 The RETAIN model was first described in Choi E, Bahadori MT, Kulas JA, Schuetz A, Stewart WF, Sun J. RETAIN: An 
Interpretable Predictive Model for Healthcare Using Reverse Time Attenuation Mechanism. Adv Neaural Inf Process Syst. 
2016 Jan. 30th Annual Conf on Neural Inf Process Syst. https://arxiv.org/abs/1608.05745 and 
https://github.com/mp2893/retain. The BEHRT model is described in Li Y, Rao S, Solares JRA, Hassaine A, Ramakrishnan R, 

 

https://arxiv.org/abs/1608.05745
https://github.com/mp2893/retain
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treatments, etc.) are featurized, encoded, and arrayed in time-order, so existing techniques for 
modeling event data in time or sequence can be modified and applied.  
Other approaches, including graph and embedding techniques, have also been used and could be 
explored further in the EHR and claims data. 

 
Canoy D, Zhu Y, Rahimi K, Salimi-Khorshidi G. BEHRT: Transformer for Electronic Health Records. Sci Rep. 2020 Apr 
28;10(1):7155. doi: 10.1038/s41598-020-62922-y. PMID: 32346050; PMCID: PMC7189231 with code in the repository 
https://github.com/deepmedicine/BEHRT 
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 Conclusion 
Overall, we demonstrated that we can intake and use a large commercial claims database for ML, 
and claims data can support usable predictive models to inform risk analysis during aeromedical 
certification decision making. We were able to construct prediction models for overall chronic 
disease burden and the onset of diabetes, TBI, OSA, and COPD with varying degrees of success. 
Diabetes and COPD were particularly amendable to predictive modeling of onset. We also found 
success in predicting increases in diabetes comorbidities and severity. We believe this initial 
exploratory work provides a solid foundation for future work in predicting disease onset and 
impacts on health outcomes that could pose aeromedical hazards, especially as we can link 
additional data for feature development and measurement of severity at the individual level.  
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Appendix A Value of Incorporating EHR Data 

Administrative claims data represent only the tip of the iceberg, analytically speaking. The 
additional incremental predictive value would be provided by EHR, sociodemographic, and 
consumer transactional data.  
Table A-1 below gives a side-by-side comparison of medical admin claims and EHR data. 

Table A-1: EHR and Administrative Claims Data Comparisons 

 EHR Data Admin Claims Data 

Data Limited: Captures only the portion of 
care provided by doctors using the 
EHR 

Broad: Captures information from all 
doctors/providers caring for a patient 

Patients All patients (including uninsured) Captures insured patients only 

Pharmacy Contains on that a physician prescribed 
a drug but not whether or not it was 
filled/refilled 

An accurate record of all prescriptions 
that were filled including dates of refills 

Non-Prescription Drugs Present Not present 

Data Richness Rich: Lab results, vital signs, patient 
surveys, habits (smoking, etc.), 
problem list, etc. 

Limited: Diagnosis, procedures 

 

A.1 The Value of Administrative Claims Data 
Administrative claims data provide value in health services research across a range of attributes:  
Clinical Validity. Claims data contains information about covered services used by members in 
a program or line of business. Examples include admission and discharge dates, diagnoses, and 
procedures. 
Source of Care. Demographic data, such as age, date of birth, race, place of residence, and date 
of death, are also included in these administrative datasets and are mainly considered reliable and 
valid. Files containing this information about all enrolled beneficiaries are known as 
"denominator" files. 
Cost Effectiveness. Conducting research using claims data is a cost-effective way to analyze a 
large population segment, especially when considering the alternative of requesting individual 
patients' medical charts. The data also allow access to claims information across multiple 
providers for a given beneficiary while providing a consistent reporting format. 
Ability to Link to External Data Sources. Below is a list of some external datasets that can be 
linked to the utilization and enrollment data. Because of privacy concerns, the typical linkage 
mechanism occurs at the U.S. Zip Code level: 

• U.S. Census 

• Cancer registries (e.g., Surveillance, Epidemiology, and End Results Program) 

• Other providers (e.g., VA, Medicaid) 
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• National death index/State vital statistics 

• Surveys (e.g., Health and Retirement Study) 

• Provider information 

Depending on the availability of identifying/common variables, other external data sources may 
be linked to the data. Linking can occur either at the group level (based on geography, place of 
service, etc.) or at the person level (through Social Security Number or other identification). 
Data Availability. Medicare and commercial data files are complete and available relatively 
quickly after the close of a given calendar or fiscal year. For example, enrollment information for 
each calendar year contained in the Master Beneficiary Summary File is generally available the 
following fall. Similarly, calendar year utilization files are more than 98% complete by the 
summer of the following year and available for release soon after. 

A.2 The Limitations of Administrative Claims Data  
Record of Care Received. Conditions must be diagnosed to appear in the utilization files; 
however, some diseases, such as hypertension, depression, and diabetes, are often 
underdiagnosed. In addition, while the files provide a reliable record of the care received by the 
beneficiary, they do not provide information on the care needed. It is difficult to study disease 
recurrence in detail since all the data may reveal is the start of a new treatment. Another critical 
point is that services that providers know in advance will be denied may be inconsistently 
submitted as bills and, therefore, inconsistently recorded in the files. 
Diagnosis Information. In some cases, diagnosis information may not be comprehensive 
enough to allow detailed analysis. For example, a cancer diagnosis can be found as an ICD-9 
diagnosis code in the data (e.g., lung cancer is 162.xx), but no information on stage or histology 
is included in the claims data. While the data contain information on chronic diseases, knowing 
that someone has a chronic disease does not reveal how long they have had the condition 
(incidence vs. prevalence) or the severity of their condition. 
Lack of Diagnosis Codes in Prescription Drug Event Files. Another limitation related to 
diagnosis information is that prescription drug event (PDE) files contain no diagnosis codes. 
Because many drugs and procedures have multiple indications, it can be challenging to interpret 
the reason for a given prescription. 
Procedures by Care Setting - Inconsistencies in Use of Coding. Different care settings use 
different coding systems for procedures treated in inpatient and outpatient settings. For example, 
inpatient care is coded using ICD-10-PCS procedure codes, while physician/supplier and durable 
medical equipment data are coded using CPT and Healthcare Common Procedure Coding 
System (HCPCS) codes. Furthermore, hospital outpatient care is coded as a mix of CPT and 
revenue center (hospital billing center) codes. Currently, there exists a less-than-perfect 
crosswalk between ICD-10-PCS codes and CPT codes. 
Limited Clinical Information. Physiological measurements such as blood pressure, pulse, and 
cardiac ejection fraction are absent from the utilization files. In addition, results of common tests 
such as prostate screens, angiography, and pathological tests are not included. Exact timing of 
events can be difficult to discern. Specifically, the time from admission to a given event or 
timestamps for dates of service cannot be found in the data. 
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Exclusions in Utilization Data. Outlined below are several types of services and care that are 
not contained in the claims data: 

• Covered services for which claims are not submitted and, therefore, not included in the 
data (e.g., immunizations provided through a grocery-store chain or an employer-wellness 
clinic).  

• Some services are not covered and would, therefore, not be included.  

• Prior to the release of Medicare Advantage, encounter data contained little information 
(and of largely unknown quality). 

• Encounter data reflect capitated arrangements and do not include information on 
payments to providers. 

A.3 Incremental Value of EHR Data 
So then, exactly what incremental value does the EHR data add beyond claims data?  

• More complete and robust condition identification. 

• More timely insights enable early diagnosis of at-risk patients much earlier than using 
claims. 

• Sentinel monitoring, which entails post-approval safety of medications. 

• Richer data about a condition as opposed to just a diagnosis. 

• Richer data about the behavior and degree of compliance of the patient.  

• A higher degree of actionable information from which to initiate and monitor treatment. 
Healthcare organizations traditionally rely on EHR and medical/pharmacy claims data to 
generate insights into patient populations and treatment utilization in the real world. These real-
world data are then used to guide the development, launch, and commercialization of new 
therapeutics and medical devices. However, while claims data capture care utilization across the 
healthcare system, it does not include information regarding treatment outcomes, details of 
diagnostic evaluations, or the patient experience. 
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Appendix B Abbreviations and Acronyms 

Term Definition 
AAM Aerospace Medical Research Division 
ADO Age Dyspnea, and Airflow Obstruction 
AI Artificial Intelligence 
ARIMA Auto-Regressive Integrated Moving Averages 
AUC Area Under the Curve 
AUPRC Area Under Precision-Recall Curve 
BEHRT Bidirectional Encoder Representations from Transformers  
CAASD Center for Advanced System Development 
CCS Clinical Classification Software 
CDM Common Data Model 
CMS Centers for Medicare & Medicaid Services 
COPD Chronic Obstructive Pulmonary Disease 
COVID-19 Coronavirus Disease 2019 
CPT Current Procedural Terminology 
CVD Cardiovascular Disease 
DCSI Diabetes Complications Severity Index 
DM Diabetes Mellitus 
DRG Diagnosis Related Group 
ECG Electrocardiogram 
EEG Electroencephalogram 
EHR Electronic Health Record 
FAA  Federal Aviation Administration 
FHIR Fast Healthcare Interoperability Resources 
GBDT Gradient Boosting Decision Tree 
GOLD Global Initiative for Chronic Obstructive Lung Disease 
HbA1c Glycated Hemoglobin 
HCC Hierarchical Condition Category 
HCUP Healthcare Cost and Utilization Project 
HF Heart Failure 
ICD International Classification of Diseases 
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LOS Length of Stay 
LSTM Long Short-Term Memory 
MAE Mean Absolute Error 
MCC Matthews Classification Coefficient  
ML Machine Learning 
MSE Mean Squared Error 
mMRC Modified Medical Research Council 
NACC National Alzheimer's Coordinating Center 
NHANES National Health and Nutrition Examination Survey 
NLP Natural Language Processing 
NN Neural Network 
OLS Ordinary Least Squares 
OMOP Observational Medical Outcomes Partnership 
OSA Obstructive Sleep Apnea 
PDE Prescription Drug Event 
RETAIN Reverse Time Attention 
ROCC Receiver Operating Characteristics Curve 
SMS Safety Management System 
TANN Time Aware Neural Network 
TBI Traumatic Brain Injury 
WHO World Health Organization 
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mortality, hospitalization, top cost, home days loss greater than 25%, modeled using 
logistic and a variety of ML models. Only marginally better than logistic; Gradient Boost 
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