Hot-Mix Asphalt
Paving Handbook
2000
Oversight Committee for Hot-Mix Asphalt Paving Handbook 2000

E. Ray Brown, Chairman, National Center for Asphalt Technology, Auburn University, Alabama
Steven L. Brandau, Henry County Highway Department, Cambridge, Illinois
Harry H. Bush, Jr., Vulcan Materials, Inc., San Antonio, Texas
Ervin L. Dukatz, Jr., Mathy Construction Co., Onalaska, Wisconsin
Rita B. Leahy, Fugro-BRE, Inc., Austin, Texas
Bernie M. McCarthy, Asphalt Institute, Bethesda, Maryland
Larry Michael, Maryland Department of Transportation, Hancock, Maryland
Carl L. Monismith, University of California-Berkeley
Robert D. Tholt, Montana Department of Transportation, Helena, Montana

Liaison Representatives
Anthony Giancola, National Association of County Engineers, Washington, D.C.
Kent Hansen, National Asphal Pavement Association, Lanham, Maryland
Gregory W. Hughes, U.S. Army Corps of Engineers, Washington, D.C.
Ken F. Kobetsky, American Association of State Highway and Transportation Officials, Washington, D.C.
Mike Rafałowski, Federal Highway Administration, Washington, D.C.
Jeffrey L. Rapol, Federal Aviation Administration, Washington, D.C.
James Sorenson, Federal Highway Administration, Washington, D.C.

Consultants
James A. Scherocman, Cincinnati, Ohio
Ronald J. Cominsky, Harrisburg, Pennsylvania

TRB Staff
Robert E. Skinner, Jr., Executive Director
Neil F. Hawks, Director for Special Programs
Linda S. Mason, Project Manager
Rona Briere, Editor
Cynthia Baker, Administrative Assistant

Printed in the United States of America
Library of Congress catalog card number LC 00-135314
ISBN 0-309-07157-7
In the year 2000, more than $20 billion will be spent in the United States to construct asphalt pavements for highways and airports. In a period in which pavement performance demands are increasing dramatically, asphalt paving contractors, public agencies, and the pavement research community share the opinion that the utmost care must be taken to construct these pavements properly. It is also important that improvements resulting from significant research findings and technological advances be incorporated into hot-mix asphalt paving practice in a timely fashion. Pavement experts agree, however, that highway and airport agencies and their pavement contractors have difficulty not only in incorporating new technology and research findings into field practice, but also in consistently applying proven procedures from earlier research experience.

Training is also a problem in this decentralized industry, where many producers and contractors operate on too small a scale to make long-term investments in personnel development. As a result, the knowledge and experience of field personnel are often not up to date, and pavement quality frequently may not meet modern performance demands.

Responding to recommendations from industry, government, and academic officials, the first edition of the Hot-Mix Asphalt Paving Handbook was prepared by the Transportation Research Board (TRB) in 1991 with financial support from the American Association of State Highway and Transportation Officials, the Federal Aviation Administration, the Federal Highway Administration, the National Asphalt Pavement Association, and the U.S. Army Corps of Engineers. Although field manuals and handbooks were then available from many sources, none had been adopted by all major industry segments. Since its appearance, the Hot-Mix Asphalt Paving Handbook has been widely accepted as a standard training aid throughout the major segments of the paving industry. As a result, a great deal of confusion among personnel from contractors and specifying agencies regarding paving practices has been alleviated.

In the 1990s, asphalt paving practices evolved rapidly, and TRB has updated the handbook at the request of its sponsors to address this evolution. This second edition of the handbook addresses recent research findings including those of the Strategic Highway Research Program, new paving equipment, the growth in recycling, changes in quality control practices, and the introduction of new techniques from Europe and elsewhere. This edition also uses both the American customary and International System (metric) units of measurement.

As with the first edition, this handbook is being technically approved and distributed as a general guide for asphalt paving construction by its financial sponsors. It is also being made available through the American Public Works Association and the National Association of County Engineers.

This handbook covers the state of the art of asphalt paving, including plant operations, transportation of materials, surface preparation, laydown, compaction, and quality control processes. It is aimed at the field personnel who are responsible for these operations—both contractor personnel who do the work and agency personnel who oversee and inspect the work. It is hoped that the handbook will continue to promote a common understanding of the processes involved and thereby result in improved asphalt pavement construction.

The handbook is not intended to cover administration, contracting procedures, site investigation, geometric design, structural design, or mix design, although some general information is included concerning contract administration and mix design. Therefore, existing agency policies and procedures will have precedence in these areas.

To undertake this update, the National Research Council (NRC) appointed a study committee chaired by E. Ray Brown, Director of the National Center for Asphalt Technology, Auburn University. The committee, with members knowledgeable in the various aspects of asphalt pavement construction practices and representing agencies, producers, and contractors, has prepared this update with the assistance of James A. Scherocman and Ronald J. Cominsky. Mr. Scherocman also participated in the preparation of the first edition of the handbook. The final version of this second edition incorporates changes made in response to comments received from members of the committee, approving organiza-
This handbook has been reviewed in draft form by individuals chosen for their diverse perspectives and technical expertise, in accordance with procedures approved by the NRC’s Report Review Committee. The purpose of this independent review is to provide candid and critical comments that will assist the institution in making the published report as sound as possible and to ensure that the report meets institutional standards for objectivity, evidence, and responsiveness to the study charge. The review comments and draft manuscript remain confidential to protect the integrity of the deliberative process. Appreciation is expressed to the following individuals for their participation in the review of this report: Timothy B. Aschenbrener, Colorado Department of Transportation; Lester A. Hoel, University of Virginia; Gerald Huber, Heritage Research Group; Byron E. Ruth, University of Florida; and Randy C. West, APAC, Inc. While these individuals have provided constructive comments and suggestions, it must be emphasized that responsibility for the final content of this handbook rests entirely with the authoring committee and the institution.

The Transportation Research Board is a unit of the National Research Council, which is the principal operating agency of the National Academy of Sciences and the National Academy of Engineering. The National Research Council provides independent advice on scientific and technical matters under a congressional charter granted to the National Academy of Sciences, a private, nonprofit institution dedicated to the advancement of science and technology and to their use for the general welfare.
PART I Project Organization, Mix Design, and Quality Control

1 INTRODUCTION 3
 Purpose and Organization of Handbook 3
 Hot-Mix Asphalt Defined 3
 Workmanship 6

2 PROJECT ORGANIZATION 7
 Project Documents 7
 Preconstruction Conference 8
 Ongoing Communication 8
 Project Records 9
 Safety 12

3 MIX DESIGN AND THE JOB-MIX FORMULA 14
 Asphalt Cement: Grading Systems and Properties 14
 Aggregate Characteristics and Properties 15
 Mix Design Procedures 19
 Laboratory and Plant-Produced Mixes 23
 Summary 26
 References 26

4 QUALITY CONTROL/QUALITY ASSURANCE 28
 Definitions 28
 Method Specifications 29
 Quality Control/Quality Assurance Specifications 32
 Summary 38
 References 38

PART II Hot-Mix Asphalt Plant Operations

5 TYPES OF ASPHALT PLANTS: OVERVIEW 41
 Batch Plants 41
 Parallel-Flow Drum-Mix Plants 42
 Counter-Flow Drum-Mix Plants 47

6 AGGREGATE STORAGE AND HANDLING 50
 Aggregate Stockpiles 50
 Cold-Feed Systems for New Aggregate 52
CONTENTS

Cold-Feed Systems for Reclaimed Asphalt Pavement 57
Addition of Hydrated Lime 59
Calibration 59
Summary 60

7 ASPHALT CEMENT SUPPLY SYSTEM 62
Storage Tanks 62
Pump and Meter System 63
Calibration 65
Addition of Liquid Antistrip Materials 66
Summary 66

8 BATCH PLANTS 67
Aggregate Handling 67
Asphalt Cement Supply System 68
Aggregate Heating and Drying 68
Screening and Storage of Hot Aggregate 69
Mixing of Aggregate and Asphalt Cement 72
Production of Recycled Mix 75
Loading in Truck or Silo 77
Emission Control 78
Calibration 78
Summary 79

9 PARALLEL-FLOW DRUM-MIX PLANTS 80
Aggregate Entry 80
Burner System 80
Heat Transfer Process 82
Asphalt Cement Injection 85
Mineral Filler and Baghouse Fines Feed System 86
Reclaimed Asphalt Pavement Recycling Systems 88
Production Rates 89
Plant Efficiency 91
Summary 92

10 COUNTER-FLOW DRUM-MIX PLANTS 93
Aggregate Entry, Heating, and Drying 93
Mixing Unit 94
Summary 95

11 SURGE AND STORAGE SILOS AND TRUCK-LOADING TECHNIQUES 96
Types of Silos and Silo Designs 96
Mix Delivery 98
Loading of Trucks from Silos 100
Summary 103

12 EMISSION CONTROL 105
Dry Collector 105
Wet Collector 106
Baghouse 108
Fugitive Dust 112
Summary 112
PART III

Hot-Mix Asphalt

Laydown and Compaction

13 MIX DELIVERY 115
Unloading of Mix 115
Hauling Procedures 118
Summary 120

14 SURFACE PREPARATION 122
Base Preparation for New HMA Pavements 122
Preparation of Existing Surfaces for HMA Overlays 123
Summary 128

15 MIX PLACEMENT 130
Tractor Unit 130
Screed Unit 137
Summary 150

16 AUTOMATIC SCREED CONTROL 152
Manual Versus Automatic Screed Control 152
Grade Control 154
Slope Control 159
Yield, Minimum Thickness, and Screed Controls 160
Summary 161

17 JOINT CONSTRUCTION 162
Transverse Joints 162
Longitudinal Joints 168
Summary 174

18 COMPACTION 175
Definitions 175
Factors Affecting Compaction 175
Compaction Variables Under Operator Control 185
Determination of Rolling Pattern 188
Summary 192

19 MAT PROBLEMS 194
Surface Waves 194
Tearing (Streaks) 196
Nonuniform Texture 197
Screed Marks 198
Screed Responsiveness 199
Surface (Auger) Shadows 200
Poor Precompaction 200
Joint Problems 201
Checking 202
Shoving and Rutting 205
Bleeding and Fat Spots 206
Roller Marks 208
CONTENTS

Segregation 209
Poor Mix Compaction 211
Other Pavement Problems 212

GLOSSARY OF ACRONYMS AND ABBREVIATIONS 213

BIBLIOGRAPHY 214