This advisory circular (AC) provides guidance for the initial and follow-on installations of Automatic Dependent Surveillance – Broadcast (ADS-B) In systems supporting ground and airborne traffic applications. These applications are defined in TSO-C195b, *Avionics Supporting Automatic Dependent Surveillance – Broadcast (ADS-B) Aircraft Surveillance Applications (ASA)*. If you have any suggestions for improvements or changes, you may use the template provided at the end of this AC.

Susan J. M. Callor
Acting Manager, Design, Manufacturing, & Airworthiness Division
Aircraft Certification Service
Table of Contents

<table>
<thead>
<tr>
<th>Paragraph</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 1. General Information</td>
<td>3</td>
</tr>
<tr>
<td>1-1. Purpose</td>
<td>3</td>
</tr>
<tr>
<td>1-2. Audience</td>
<td>3</td>
</tr>
<tr>
<td>1-3. Scope</td>
<td>3</td>
</tr>
<tr>
<td>1-4. Background</td>
<td>4</td>
</tr>
<tr>
<td>Chapter 2. ADS-B In System Installation Guidance</td>
<td>6</td>
</tr>
<tr>
<td>2-1. System Overview</td>
<td>6</td>
</tr>
<tr>
<td>2-2. Equipment Classes</td>
<td>6</td>
</tr>
<tr>
<td>2-3. ADS-B Applications</td>
<td>8</td>
</tr>
<tr>
<td>2-4. CDTI</td>
<td>10</td>
</tr>
<tr>
<td>2-5. Alerts</td>
<td>12</td>
</tr>
<tr>
<td>2-6. Airborne Surveillance and Separation Assurance Processing (ASSAP)</td>
<td>13</td>
</tr>
<tr>
<td>2-7. ADS-B In Receiver and Antenna</td>
<td>13</td>
</tr>
<tr>
<td>2-8. Integration Considerations</td>
<td>13</td>
</tr>
<tr>
<td>Chapter 3. Test and Evaluation</td>
<td>17</td>
</tr>
<tr>
<td>3-1. General</td>
<td>17</td>
</tr>
<tr>
<td>3-2. Ground Tests</td>
<td>17</td>
</tr>
<tr>
<td>3-3. Flight Tests</td>
<td>19</td>
</tr>
<tr>
<td>Appendix A Latency Analysis</td>
<td>23</td>
</tr>
<tr>
<td>1. Purpose</td>
<td>23</td>
</tr>
<tr>
<td>2. Analysis</td>
<td>23</td>
</tr>
<tr>
<td>3. Traffic Latency Analysis</td>
<td>23</td>
</tr>
<tr>
<td>4. Traffic Time of Applicability Analysis</td>
<td>23</td>
</tr>
<tr>
<td>5. Own-Ship Position Latency Analysis</td>
<td>24</td>
</tr>
<tr>
<td>6. Own-Ship Position Time of Applicability</td>
<td>24</td>
</tr>
<tr>
<td>Appendix B Symbol Requirements for the CDTI</td>
<td>26</td>
</tr>
<tr>
<td>1. Traffic Symbols and Variations</td>
<td>26</td>
</tr>
<tr>
<td>2. Alerts</td>
<td>28</td>
</tr>
<tr>
<td>3. TCAS Alert Symbology for TCAS/ASA-Integrated Systems</td>
<td>31</td>
</tr>
<tr>
<td>Appendix C ATAS Integration with existing Traffic Alerting Avionics</td>
<td>33</td>
</tr>
<tr>
<td>Appendix D Definitions, acronyms, and related documents</td>
<td>35</td>
</tr>
<tr>
<td>1. Definitions. The following are definitions of terms used in this document</td>
<td>35</td>
</tr>
<tr>
<td>2. Acronyms</td>
<td>42</td>
</tr>
<tr>
<td>Appendix E Related Documents</td>
<td>44</td>
</tr>
<tr>
<td>1. FAA Documents</td>
<td>44</td>
</tr>
<tr>
<td>2. RTCA, Inc. (RTCA DO) Documents</td>
<td>45</td>
</tr>
</tbody>
</table>
List of Tables

1. ADS-B In Equipment Classes ... 7
2. Traffic Alerting Capability of Ownship ... 16
3. ITP Maneuver Criteria ... 22

List of Figures

1. ADS-B In System Overview ... 4
2. Traffic Latency Block Diagram .. 24
3. Own-Ship Latency Block Diagram Simple Architecture 25
4. Own-Ship Latency Block Diagram Alternate Architecture 25
5. Basic Directional Symbol ... 26
6. Directional and Non-directional On-ground Traffic Symbols 28
7. Basic Surface Vehicle Symbol ... 28
8. Proximate Directional and Non-directional Proximate Traffic Symbols 30
9. Directional and Non-directional Designated Traffic Symbols 31
10. Traffic Advisory Symbols ... 32
11. Resolution Advisory Symbols ... 32
12. Integration of TAS/TCAS I/TCAS II and ATAS 33
13. Examples of invalid TCAS I/TAS with ATAS installations 33
14. Integrated configuration ... 33
Chapter 1. General Information.

1-1. Purpose.

a. This advisory circular (AC) provides guidance material for the installation of ADS-B In technology in aircraft. ADS-B In includes reception of ADS-B, Traffic Information Services-Broadcast (TIS-B) and Automatic Dependent Surveillance – Rebroadcast (ADS-R) messages, but does not include reception of Flight Information Service – Broadcast (FIS-B) messages.

b. The installation of ADS-B In avionics provides the pilot(s) with supplemental information. No existing responsibility is changed by virtue of installation of this equipment and application(s). The situation awareness applications defined in TSO-C195b supplement, but do not replace, a pilot’s see-and-avoid responsibility, as required by Title 14 of the Code of Federal Regulations (14 CFR) 91.113(b).

c. This AC is not mandatory and does not constitute a regulation. This AC describes an acceptable means, but not the only means, to install ADS-B In equipment. However, if the means described in this AC are used, it must be followed it in its entirety. The term “must” is used to indicate mandatory requirements when following the guidance in this AC. The terms “should” and “recommend” are used when following the guidance is recommended but not required to comply with this AC. A list of definitions and acronyms relevant to this AC can be found in Appendix D.

d. This AC provides guidance information intended for new approvals. This AC is not intended to modify, change or cancel existing equipment design or airworthiness approvals. Equipment with existing approvals can continue to be installed within the provisions of their original design and airworthiness certification.

This AC is for installers of ADS-B In equipment, and can assist in obtaining design approval for installation. The installed design can be approved under any means acceptable to the administrator including a type certificate (TC), supplemental type certificate (STC) including approved model list supplemental type certificate (AML-STC), amended type certificate (Amended TC), or amended supplemental type certificate (ASTC).

This AC addresses initial and follow-on installations of ADS-B In systems that comply with TSO-C195b, _Avionics Supporting Automatic Dependent Surveillance – Broadcast (ADS-B) Aircraft Surveillance Applications (ASA)_ Data from a previously approved installation design may be used to fulfill some of the data requirements for a follow-on installation design as appropriate. For example, the latency analysis between a GPS position source and the ADS-B equipment may be reused on a follow-on installation provided that the hardware and software part numbers for both units are identical. Modifications to previously approved hardware or software must be evaluated to determine data applicability. All installations of ADS-B In should either include ADS-B Out or supplement an existing installed ADS-B Out capability. Full ADS-B In benefits can only be realized when installed in conjunction with a compliant ADS-B Out function. Installation guidance for ADS-B Out can be found in AC 20-165A, _Airworthiness Approval of Automatic Dependent Surveillance - Broadcast (ADS-B)_
Out Systems. Installation guidance for FIS-B applications that make use of the Surveillance and Broadcast Services (SBS) ground system as well as third-party providers can be found in AC 20-149(), *Installation Guidance for Domestic Flight Information Services – Broadcast*. A list of related documents can be found in Appendix E of this AC.

1-4. Background.

a. The ADS-B In system overview, shown in Figure 1, is a next generation surveillance technology that provides the flight crew with an accurate picture of surrounding traffic. ADS-B Out aircraft provide broadcast messages of their identification, position, altitude, velocity, and other information. Aircraft equipped with ADS-B In capability can “see” these broadcasts from other ADS-B equipped aircraft and display them to improve the pilot’s situation awareness of other traffic, both airborne and on the ground. Suitably equipped surface vehicles may also be visible to ADS-B In capable aircraft. Aircraft that transmit on an alternate link or are transponder equipped are tracked by the FAA ADS-B ground system network and uplinked as ADS-R or TIS-B respectively.

![Figure 1. ADS-B In System Overview](image)

b. ADS-B Out refers to an appropriately equipped aircraft broadcasting own-ship information. ADS-B In refers to an appropriately equipped aircraft’s ability to receive and display other aircraft’s
ADS-B information and ground station broadcast information, such as TIS-B and ADS-R. The TIS-B service provides traffic based on ground surveillance of transponder equipped aircraft. The ADS-R service provides traffic from aircraft equipped with an alternate ADS-B link.

c. There are two ADS-B link options: 1090 extended squitter (1090ES) and universal access transceiver (UAT). The 1090ES equipment operates on 1090 MHz and has performance requirements specified in TSO-C166b, *Extended Squitter Automatic Dependent Surveillance - Broadcast (ADS-B) and Traffic Information Service - Broadcast (TIS-B) Equipment Operating on the Radio Frequency of 1090 Megahertz (MHz)*. The UAT operates on 978 MHz and has performance requirements specified in TSO-C154c, *Universal Access Transceiver (UAT) Automatic Dependent Surveillance – Broadcast (ADS-B) Equipment Operating on Frequency of 978 MHz*.
Chapter 2. ADS-B In System Installation Guidance.

2-1. System Overview.

ADS-B In refers to an appropriately equipped aircraft’s ability to receive and display other aircraft’s ADS-B information and ground station broadcast information, such as TIS-B and ADS-R. The information can be received by an appropriately equipped aircraft on either or both of two radio frequency (RF) links: 1090 ES or 978 MHz UAT. The received information is processed by onboard avionics and presented to the flight crew on a display. In this AC, guidance is provided for the display of traffic information while on the airport surface and while airborne. This information supports the applications defined in TSO-C195b. This AC will be updated to add appropriate guidance for additional applications as they mature.

2-2. Equipment Classes.

TSO-C195b defines minimum performance standards that provide a basis for installation of ADS-B In equipment in aircraft. The TSO defines four avionics equipment classes: (A) cockpit display of traffic information (CDTI) (surface only); (B) CDTI; (C) airborne surveillance and separation assurance processing (ASSAP); and (D) ADS-B Traffic Advisory System (ATAS) Annunciator Panel. Class A equipment is intended to support the display of ADS-B traffic while own-ship is on the surface and moving slower than 80 knots. Class A equipment must deactivate the CDTI when airborne or at speeds greater than 80 knots. Class B equipment supports the display of ADS-B traffic when airborne as well as on the ground. Class C equipment processes ADS-B messages to generate traffic data for a CDTI. Class D equipment supports an aural only implementation. Currently, this is only available for one application. Table 1 shows which applications are supported by the four equipment classes. With the exception of the ATAS application, an installation requires both the CDTI and ASSAP functions, which are explained in paragraphs 2-4 and 2-6 of this AC, respectively.
Table 1. ADS-B In Equipment Classes

<table>
<thead>
<tr>
<th>Application</th>
<th>Criticality</th>
<th>Equipment Class</th>
<th>CDTI (Surface Only) (A)</th>
<th>CDTI (B)</th>
<th>ASSAP (C)</th>
<th>Annunciator Panel (D)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Enhanced Visual Acquisition (EVAcq)</td>
<td>Minor</td>
<td>Major</td>
<td>Not Permitted</td>
<td>B1</td>
<td>C1</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>(2) Basic Surface (SURF) (Runways)</td>
<td>Minor</td>
<td>Major (> 80 Knots) Minor (< 80 Knots)</td>
<td>A2</td>
<td>B2</td>
<td>C2</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>(3) Basic Surface (SURF) (Runways + Taxiways)</td>
<td>Minor</td>
<td>Major (> 80 Knots) Minor (< 80 Knots)</td>
<td>A3</td>
<td>B3</td>
<td>C3</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>(4) Visual Separation on Approach (VSA)</td>
<td>Minor</td>
<td>Major</td>
<td>Not Permitted</td>
<td>B4</td>
<td>C4</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>(5) Basic Airborne (AIRB)</td>
<td>Minor</td>
<td>Major</td>
<td>Not Permitted</td>
<td>B5</td>
<td>C5</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>(6) In-Trail Procedures (ITP)</td>
<td>Minor</td>
<td>Major</td>
<td>Not Permitted</td>
<td>B6</td>
<td>C6</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>(7) ADS-B Traffic Advisory System (ATAS)</td>
<td>Minor</td>
<td>Major</td>
<td>Not Permitted</td>
<td>B7</td>
<td>C7</td>
<td>D7</td>
</tr>
<tr>
<td>(8) CDTI Assisted Visual Separation (CAVS)</td>
<td>Minor</td>
<td>Major</td>
<td>Not Permitted</td>
<td>B8</td>
<td>C8</td>
<td>Not Applicable</td>
</tr>
</tbody>
</table>
2-3. ADS-B Applications.

a. ADS-B In avionics enable one or more of the following aircraft surveillance applications: enhanced visual acquisition (EVAcq); basic airborne (AIRB); visual separation on approach (VSA), basic surface (SURF) (runways and taxiways, or runways only); In-Trail Procedures (ITP), ADS-B Traffic Advisory System (ATAS), and Cockpit Display of Traffic Information (CDTI) Assisted Visual Separation (CAVS). Refer to Table 1 to see which applications are supported by the four equipment classes.

b. The basic airborne application (AIRB) displays ADS-B traffic on a plan view (bird's eye view) relative to own-ship. This application is the minimum requirement for installations that implement other applications such as VSA or ITP. Each aircraft symbol displayed conveys position, direction, and altitude information. Optionally, additional information, like identity, may be displayed. The traffic information assists the flight crew in visually acquiring traffic out the window while airborne. This application improves both safety and efficiency by providing the flight crew with enhanced traffic awareness. Installations that provide in-flight moving map displays in addition to traffic should comply with TSO-C165a, Electronic Map Display Equipment for Graphical Depiction of Aircraft Position.

c. The enhanced visual acquisition application (EVAcq), also displays ADS-B traffic on a plan view (bird's eye view) relative to own-ship. This application is designed to support only the display and alerting of ADS-B traffic, including ADS-R, TIS-B, and TCAS derived traffic. Implementations that include application classes other than EVAcq and ATAS must use the AIRB application instead. The traffic information assists the flight crew in visually acquiring traffic out the window while airborne. EVAcq does not relieve the pilot of see and avoid responsibilities under 14 CFR 91.113b. This application is expected to improve both safety and efficiency by providing the flight crew enhanced traffic awareness. Installations that provide in-flight moving map displays in addition to traffic should comply with TSO-C165a.

d. The visual separation on approach (VSA) application builds upon the basic airborne application (AIRB). It allows the pilot to select an aircraft to follow on approach. Additional information about the selected aircraft, including range and ground speed, is displayed to enhance the pilot’s situation awareness. The CDTI display is used to assist the flight crew in acquiring and maintaining visual contact during a visual approach. The application improves both the safety and the performance of visual approach operations. The VSA application should not be confused with creating a new approach operation. No operational responsibility is changed when using the VSA application.

e. The basic surface application (SURF) with runways and taxiways displays ADS-B traffic on a plan view (bird's eye view) relative to own-ship, superimposed on a map of the airport surface. This map consists of all runways at supported airports and includes taxiways when that data is available. Aircraft on-ground and in-air as well as properly equipped surface vehicles are differentiated by symbols to aid the pilot in visual acquisition. The surface application improves flight crew situation awareness during taxi, takeoff, and landing phases of flight. This application reduces the possibility of runway incursion and collision. These installations should also comply with TSO-C165a Electronic Map Display Equipment for Graphical Depiction of Aircraft Position for airport moving map displays. The SURF
application with runways only does not display taxiways.

f. The In-Trail Procedure (ITP) application enables aircraft that desire flight level changes in procedural airspace to achieve these changes on a more frequent basis, thus improving flight efficiency and safety. The ITP achieves this objective by permitting a climb-through or descend-through maneuver between properly equipped aircraft, using a new distance-based longitudinal separation minimum during the maneuver. The ITP requires the flight crew to use information derived on the aircraft to determine if the initiation criteria (see Table 2, Section 3-3) required for an ITP are met. The initiation criteria are designed such that the spacing between the estimated positions of ownship and surrounding aircraft exceed the separation minima with acceptable probability throughout the maneuver. ITP requires specific application-unique processing and display parameters. In addition, ITP will require an operations approval by the FAA Flight Standards Service (AFS). Guidance for this operations approval is contained in AC 90-114A, Automatic Dependent Surveillance-Broadcast (ADS-B) Operations.

g. ADS-B Traffic Advisory System (ATAS) is an Automatic Dependent Surveillance-Broadcast (ADS-B) In application intended to reduce the number of mid-air collisions and near mid-air collisions involving general aviation aircraft. Previously known as Traffic Situation Awareness with Alerts (TSAA), the name ATAS has been used in this AC as well TSO-C195b to be more consistent with existing traffic advisory systems. ATAS provides voice annunciators to flight crews to draw attention to alerted traffic and also adds visual cues to the underlying basic traffic situation awareness application (e.g., Enhanced Visual Acquisition [EVAcq] or Basic Airborne Situation Awareness [AIRB]) in installations where a Traffic Display is available. The ATAS application uses ADS-B information, and where available Automatic Dependent Surveillance-Rebroadcast (ADS-R) and Traffic Information Service-Broadcast (TIS-B) information to provide the flight crew with indications of nearby aircraft in support of their see-and-avoid responsibility. ATAS is the only ADS-B application with an aural-only implementation (via an annunciator panel). All other applications require a traffic display as defined by the CDTI requirements.

h. The CDTI Assisted Visual Separation (CAVS) application is designed for use on approach procedures when visual separation is approved by ATC. CAVS requires the flight crew to visually acquire the preceding aircraft out the window during approach procedures. After visual acquisition is established, the flight crew will cross-check the information on the CDTI with what they see out of the window. Once the preceding aircraft is identified on the CDTI, the flight crew is allowed to use the CDTI to continue visual separation even if visual contact out the window is lost, for example, due to glare from rising or setting sun, or against a background of lights at night. CAVS does not aim to modify Visual Meteorological Conditions (VMC) minima as defined by ICAO (see Appendix A.2). Guidance for this operation is contained in AC 90-114A, Automatic Dependent Surveillance-Broadcast (ADS-B) Operations.

The displayed ADS-B information addressed by this AC is not intended for maneuvering based solely on presence or absence of traffic on the display. As future applications are fielded, we expect that certain maneuvers may be found to be safe and acceptable. The analysis and safety studies to justify such procedures are not yet completed. When those activities are concluded and the maneuvers are shown to be safe and acceptable in the national airspace system (NAS),
appropriate maneuvers are expected to be allowed based in part on the displayed ADS-B In information. We will revise this guidance accordingly at that time. Operational guidance will be published by AFS.

2-4. CDTI.

a. Displays. The ADS-B In system includes at least one flight deck traffic display (i.e., CDTI) depicting the relative position and related information of ADS-B equipped aircraft in a plan view (bird's eye view), with the exception of audio only ATAS installations. The CDTI display may be presented on a dedicated display or integrated into and presented on an existing display (e.g., electronic flight information system (EFIS), multi-function display (MFD)). CDTI equipment should be compliant with the Class A or Class B requirements of TSO-C195b. Class A equipment supports only the Basic Surface application. CDTI equipment should be installed in accordance with manufacturer instructions. Installation in a forward position requiring minimum head and eye movement (14 CFR 23.1321, 25.1321, 27.1321, and 29.1321) will provide the best traffic situation awareness and support subsequent upgrades to other ADS-B applications. Side-mounted displays are acceptable for the basic situation awareness applications and ITP, but have limited potential to support more advanced applications. The display must be installed such that the pilots have an unobstructed view of the display when seated in their normal position. For general installation guidance on displays, refer to AC 25-11B, Electronic Flight Displays and AC 23.1311-1C, Installation of Electronic Display in Part 23 Airplanes.

b. ITP Installations. ITP installations must include a traffic display mounted in the forward position or as a side mounted display. The traffic display (plan view) must be visible during the ITP vertical maneuver. It is recommended but not required that a graphical vertical/profile view of the traffic be available for flight crews to aid in assessing initiation criteria. This is particularly helpful in situations where there is a significant angle between the track of the own aircraft and the ITP Traffic aircraft (the angle can be any value less than 45 degrees and still be a valid ITP situation). In these cases, relative geometry (ahead of or behind) may not be intuitive.

c. Traffic Symbols. The FAA worked closely with industry to standardize the ADS-B In symbols and features. The resulting symbols are provided in Appendix B. The traffic display should depict the symbols, features, and information defined in the appendix. However, manufacturers may propose alternate symbols in order to integrate ADS-B with existing flight deck symbology. These alternate symbols will need to be justified by human factors analysis as part of the certification process. Alternate symbol sets are not allowed without additional justification. There is one exception to this guidance. It is acceptable to pair a TSO-C195b Class C ASSAP unit with an existing certified traffic display using legacy symbols (e.g., TCAS, TAS) when either the AIRB or EVAcq application are installed. Minor TSO changes or enhancements may be made to the previously approved traffic display without requiring the equipment to be made fully compliant to TSO-C195b requirements. This exception only applies to previously approved traffic displays. If any other applications beyond EVAcq or AIRB are installed, the display must be fully compliant with TSO-C195b.
Traffic Symbol and Ownship Symbol Reference Point. The airplane or rotorcraft flight manual or pilot’s guide for the ADS-B equipment must specify the location of the horizontal position reference point on the traffic symbols and the ownship symbol. For example, this position may be the center of the symbol or the tip of the traffic directional arrow. The ownship horizontal position reference point should be consistent with the existing flight deck philosophy. The traffic and ownship symbols are an abstract representation and are not required to reflect the physical extent of the aircraft. This becomes more evident when implementing the surface application with the underlying airport map.

d. CAVS Installations. For installations that include the CAVS application, Differential Ground Speed (when aircraft are in-trail) and Digital Traffic Range must be displayed in the primary field of view to facilitate pilot monitoring. Traffic Identification, Ownship Ground Speed, and Traffic Ground Speed should be displayed in the primary field of view, but may be displayed in a forward position requiring minimum head and eye movement. Refer to AC 25-11B. CAVS installations must include a means to designate traffic for CAVS.

e. Required Controls. The CDTI control panel may be a dedicated control panel or it may be incorporated into another control, such as a multifunction control display unit (MCDU) or Flight Management Computer (FMC) control display unit (CDU). CDTI controls must be readily accessible from the normal seated position. Pilot controls for the ADS-B In equipment must be provided as follows:

(1) A means to adjust the display range between the minimum and maximum values.

(2) A means to adjust the altitude band between the minimum and maximum values.

(3) A means to adjust the brightness of the display.

f. Optional Controls. The following optional controls may be provided:

(1) A means to select between display of relative and actual altitude.

(2) A means to select at least one traffic element.

(3) A means to select alternate display criteria (e.g., filters and vertical views).

(4) A means to declutter, which removes optional traffic information when display of the information is not desired. If decluttering is implemented,

(a) A means must be provided for the flight crew to control the decluttering.

(b) The flight crew must be able to perform the declutter operation by a simple action.
(c) The flight crew should be able to return to the previous state by a simple action.

(d) If automatic decluttering is implemented, a means should be provided for the flight crew to control the automated decluttering function.

(e) An indication that decluttering is active must be provided.

(5) A means to pan the view. If panning is implemented:

(a) There must be a means to control panning.

(b) There must be a means to return to the original view with a simple action.

(6) A means to designate traffic for an application (e.g. CAVS).

2-5. Alerts.

a. Alerts should be consistent with the flight deck alerting system and philosophy, and should not interfere with higher priority alerts. Advisory Circular 25.1322-1, Flightcrew Alerting, contains guidance for flight crew alerting functions.

b. Each ATAS alert must include a visual caution level alert either on the Traffic Display or on an annunciator panel in an aural-only implementation.

c. Each ATAS aural alert should be announced by a dedicated voice message consistent with the requirements in TSO-C195b. The voice message will be announced over a cockpit speaker and through a headset/helmet at a volume adequate for clear understanding at high cockpit noise levels, but not excessively loud at low noise levels. The evaluation of the message announced through a cockpit speaker includes the case where a flight crew member is wearing a headset covering the outboard ear, when appropriate. ATAS aural alerts provide bearing, range, relative altitude, and optionally, a vertical sense of the alerted traffic. Vertical sense of the alerted traffic can be of three types: climbing, descending, or level.

d. ATAS installations must include a means to acknowledge an alert in progress that causes the aural to be discontinued.

e. ATAS installations must include a means to request an update of the aural alert to announce the new traffic state (bearing, range, relative altitude).

f. Aural alerts must be automatically inhibited by all higher priority alerts including alerts issued by TCAS II, if so equipped. Inhibit priorities for TCAS are established in Advisory Circular 20-151, Airworthiness Approval of Traffic Alert and Collision Avoidance Systems (TCAS II), Versions 7.0 & 7.1 and Associated Mode S Transponders.
2-6. Airborne Surveillance and Separation Assurance Processing (ASSAP).

The ASSAP subsystem accepts data from one or more sources including ADS-B reports, TIS-B reports, ADS-R reports, and TCAS tracks (if installed). ASSAP correlates data from these sources, generates tracks, and performs application-specific processing. Surveillance tracks and application-specific alerts or guidance are output by ASSAP to the CDTI function. The ASSAP equipment must be compliant with the Class C requirements of TSO-C195b and should be installed in accordance with manufacturer instructions. TCAS processors track transponder-equipped aircraft. Therefore, TSO-C195b equipment requires installations with TCAS to provide these tracks to the ASSAP equipment to complete the traffic picture. TCAS in this AC is meant to apply to all versions of certified traffic advisory system (TAS) or TCAS compliant with TSO-C147(), TSO-C118(), or TSO-C119(). Hybrid surveillance TCAS are included. For aircraft installations without TCAS, the TIS-B service provides tracks of transponder-equipped aircraft.

2-7. ADS-B In Receiver and Antenna.

The installation must include a UAT (per TSO-C154c) or a 1090 ES (per TSO-C166b) receiver. Ideally, installation of a dual-band receiver would allow for dual-link interoperability where ADS-R coverage is not provided. The ASSAP equipment may interface with the ADS-B receiver equipment or it may be integrated. If TCAS is installed, the ADS-B In equipment must contain or interface with the TCAS equipment so that the TCAS tracks may be used. Guidance material concerning the installation of the UAT or 1090ES equipment, and associated antenna(s), is provided in AC 20-165A.

2-8. Integration Considerations.

 a. System Definition. ADS-B In installations include the ADS-B In receiver, antennas, traffic processor, control panels, audio system, and display components. All of these component part numbers must be identified as part of the integrated system. Any change to any of the components’ hardware or software requires evaluation of the potential impact to the ADS-B In function.

 b. Equipment Compatibility Requirements. A critical component of the ADS-B In system is the position sensor. Compatibility between the sensor and the surveillance processor must be established by the equipment manufacturer(s) and detailed in an installation manual or supplement. Position source compatibility should consider the position source requirements in AC 20-165A. Compatibility between all other system components should be documented in an installation manual or supplement.

 c. Aircraft Integration with ADS-B In System.

 (1) Provide electrical power and grounding in accordance with the manufacturer’s installation manual. Conduct an electrical load analysis to verify that there is adequate power capacity for the ADS-B In equipment.
(2) The total latency to receive, process, and display traffic data must be less than 3.5 seconds. The traffic time of applicability must be within 1 second of the time of display. The total latency of own-ship position at the display must be less than 3.5 seconds. The ownship time of applicability must be within 1 second of the time of display. Perform a latency analysis in accordance with Appendix A to demonstrate compliance. The total latency figures here are to be interpreted to mean when an ADS-B message is received. They do not address data age issues while the system is waiting to receive the next position report for an existing track. Data age and timeout requirements are handled separately for each application in TSO-C195b compliant equipment.

(3) The same position source used to provide ownship data for transmission on ADS-B Out should be used to provide position to the ASSAP equipment. Position sources interfaced to the ASSAP equipment must meet the quality metric requirements in DO-317B, section 2.2.4. Further guidance on integration with ADS-B position sources can be found in AC 20-165A. Future applications may require that ASSAP and the ADS-B Out equipment use the same position source. The FAA encourages applicants to plan accordingly to prevent extensive future redesign. An alternate position source may be used to provide ownship position to the CDTI display, but the accuracy, latency, and display time of applicability requirements still apply (refer to Appendix A). Provide connections in accordance with the manufacturer’s installation manual.

(4) The manufacturer’s instructions for strapping and/or programming of configurable aircraft parameters should be followed. Manufacturers are highly encouraged to provide instructions to installers for setting the global navigation satellite system (GNSS) antenna offset parameter during installation. The GNSS antenna offset information can be extremely valuable for ADS-B In surface situation awareness and future surface collision alerting applications on large aircraft with GNSS antenna far from the nose.

(5) Verify the equipment’s environmental qualifications (e.g., environmental categories of RTCA/DO-160 Environmental Conditions and Test Procedures for Airborne Equipment) are suitable for the aircraft type and equipment location.

(6) Record any limitations associated with use of the ADS-B In equipment in the Aircraft Flight Manual.

(7) ITP requests and clearances can only be granted using Direct Controller Pilot Communication (DCPC). Although it may be possible to perform ITP requests and clearances via voice communications, in most non-radar regions this means requests and clearances will be accomplished using Controller Pilot Datalink Communications (CPDLC). ITP requests can be lengthy and prone to typographical errors. It is recommended that ITP designs integrate the CDTI and data link systems in order to populate ITP requests automatically. An alternative is to provide the request text on the CDTI so that the flight crew can reference the text while entering the information manually. This reduces the possibility of human error while entering the ITP request. Examples of standardized free text CPDLC message formats for an ITP request (downlink message) can be found in Change 1 to RTCA/DO-306.
When integrating TCAS II and ADS-B, design controls so that an operator can disable TCAS on the ground— as is currently required by TCAS operational guidance (AC 120-55(), *Air Carrier Operational Approval and Use of TCAS II*)—while maintaining SURF ADS-B IN/CDTI functionality in an operational state.

d. **System Safety Analysis.** Unannunciated failures and hazardously misleading data must be improbable/remote for Class B and C equipment; but can be probable for Class A equipment. Loss of function can be probable for all classes. This can be shown using the methods described in AC 25.1309-1(), *System Design and Analysis*, AC 23.1309-1(). *System Safety Analysis and Assessment for Part 23 Airplanes*, AC 27-1B, *Certification of Transport Category Rotorcraft, Change 3*, or in AC 29-2C, *Certification of Normal Category Rotorcraft, Change 3* as appropriate.

e. **ATAS Installed In An Aircraft Equipped with a TCAS or TAS System.**

(1) For aircraft equipped with either TCAS I, TCAS II, or TAS (hereafter just referred to as TCAS in this section unless context requires otherwise) and ATAS, consideration must be given to the encounters between ownship and an intruder(s) which could generate traffic alerts by both the TCAS equipment and the ATAS application for the same intruder. A matrix depicting traffic alerting capability of ownship that is possible when equipped with TCAS or ATAS independently is presented in Table 2. Operations both inside and outside of a TIS-B/ADS-R service volume are depicted for the two ADS-B links. Note that the table depicts traffic alerting capability that is independent of integration, i.e. when only TCAS or ATAS is installed. This table is meant to demonstrate the need for integration, not establish equipment design requirements.
Table 2. Traffic Alerting Capability of Ownship

<table>
<thead>
<tr>
<th>Intruder</th>
<th>TCAS variant</th>
<th>Ownship Functional Capability</th>
<th>1090 ES ADS-B In w/ATAS</th>
<th>UAT ADS-B In w/ATAS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TCAS I ------or------ TCASII ------or------ TAS</td>
<td>Own is inside TIS-B/ADS-R service volume</td>
<td>Own is outside TIS-B/ADS-R service volume</td>
<td>Own is inside TIS-B/ADS-R service volume</td>
</tr>
<tr>
<td>Mode C</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mode S</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1090 ES</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UAT</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>TIS-B</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>ADS-R</td>
<td>X (Note 3)</td>
<td></td>
<td>X (Note 4)</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. An “X” indicates that the equipment will issue traffic alerts against that source.
2. The matrix depicts traffic alerts that ownship could generate.
3. Own receives UAT ADS-B out data via ADS-R.
4. Own receives 1090 ES ADS-B out data via ADS-R.

(2) When inside a TIS-B/ADS-R service volume, both TCAS and ATAS systems could issue alerts against intruders not equipped with ADS-B out avionics. Those alerts could occur in close succession or perhaps even simultaneously. If the aural traffic alerts for TCAS I, TCAS II, TAS and ATAS are not integrated when these systems are installed together, it could lead to pilot confusion. Therefore, when an ASA system is installed in aircraft equipped with TCAS, the systems must be integrated together to ensure that only one traffic system is alerting for a given aircraft. Appendix C contains examples of acceptable TCAS and ATAS configurations and an example of an invalid configuration.
Chapter 3. Test and Evaluation.

3-1. General.

Installation of an ADS-B In system should be accomplished on an aircraft with an ADS-B Out system. ADS-R and TIS-B services are only provided to aircraft that indicate, in their ADS-B Out messages, that they are an ADS-B In aircraft. This chapter assumes that the ADS-B Out system complies with AC 20-165A, and defines tests for the installed system.

3-2. Ground Tests.

a. Ground tests should be conducted on each aircraft installation. Ground tests should include the verification that ADS-B Out, ADS-R, and TIS-B message elements can be accurately received and processed. If ADS-B In equipment is integrated with TCAS, then TIS-B reception is not required for airborne traffic. However if the surface applications are implemented, TIS-B surface targets must be processed even by an installation that includes TCAS. Ground tests should include verification of the integration with a position sensor, since own-ship state data is used to generate the displayed data. In addition, any message elements that are presented on the CDTI display should be verified for accuracy. See AC 20-165A for a list and detailed explanation of each of the message elements. Ground test equipment should be capable of generating all of the different types of messages, including ADS-B Out, ADS-R, and TIS-B messages. If targets of opportunity are available to validate the ADS-B In functionality, they may be used in lieu of dedicated test equipment. Verify that the system receives and displays the following traffic information when stimulated appropriately:

(1) Relative horizontal position.

(2) Ground speed of traffic (if implemented).

(3) Directionality (Heading or Track Angle).

(4) Pressure altitude of airborne traffic relative to own-ship.

(5) Vertical trend of airborne traffic.

Note: ASSAP must indicate a climb/descent when traffic vertical velocity exceeds 500 feet per minute (fpm). Indication of vertical trend is allowed to occur at smaller vertical rates.

(6) Air/Ground status of traffic.

(7) Flight ID (if implemented).

(8) TIS-B/ADS-R service status (when not installed with TCAS).
(9) Differential ground speed (if implemented).

b. TCAS-equipped aircraft provide inputs to ASSAP. Verify that the system receives and displays the following information when stimulated appropriately:

(1) Traffic range.

(2) Traffic bearing.

(3) Traffic pressure altitude.

(4) Traffic vertical trend.

(5) TCAS alert status (i.e., no threat, proximity traffic, traffic advisory, or resolution advisory).

c. If the ADS-B In system supports the surface application, verify that the airport runways are depicted accurately. If taxiway data is available, verify that the airport taxiways are depicted accurately.

d. Evaluate simulated failures of the aircraft sensors integrated with the ADS-B In equipment to determine that the resulting system failure state agrees with the predicted results. All system failures should be indicated clearly. The effects of system failures should be described in a manual.

e. Observe all of the electronic systems on the flight deck to determine that the ADS-B equipment is not a source of interference (conducted or radiated) to previously installed systems or equipment, and that operation of the ADS-B In equipment is not adversely affected by the previously installed systems and equipment.

f. Evaluate the general arrangement and operation of controls, displays, circuit breakers, indicators, and placards of the ADS-B In and CDTI equipment.

(1) Evaluate the ADS-B In system controls to determine that they are appropriately designed and located to prevent inadvertent actuation. Pay close attention to line select keys, touch screens, or cursor-controlled trackballs, as these can be susceptible to unintended mode selection resulting from their location in the flight deck (for example, proximity to a foot rest or adjacent to a temporary stowage area).

(2) Evaluate the CDTI display to ensure that all information is, at a minimum, legible, unambiguous, and attention-getting (as applicable).

(3) Evaluate the traffic symbols presented on the CDTI display for compliance with the standard recommended symbols from RTCA/DO-317B, which are summarized in Appendix B of this AC.
g. Evaluate the ADS-B In self-test features.

h. If possible, verify the dynamic performance of displayed traffic by observing any available ADS-B Out, ADS-R, TCAS (if installed), or TIS-B traffic in the area.

i. Evaluate the overall CDTI system installation for satisfactory accessibility and visibility under all lighting conditions.

j. For ATAS and CAVS installations, verify that aural alerts can be inhibited by higher priority alerts (e.g. TAWS, Windshear).

k. If implemented, evaluate selection and designation functionality.

l. For CAVS installations, the following data must be displayed in the pilot’s primary field of view:

 (1) Differential Ground Speed (when aircraft are in-trail).
 (2) Digital Traffic Range.

m. For CAVS installations, the following data should be displayed in the pilot’s primary field of view, but may be displayed in a forward position requiring minimum head and eye movement:

 (1) Traffic Identification.
 (2) Ownship Ground Speed.
 (3) Traffic Ground Speed.

n. For CAVS installations, evaluate the adjustable Range Indication alert function.

o. For CAVS installations, verify that for CAVS designated traffic less than 1.4 NM horizontal range causes a caution alert. Evaluate the visual and aural alert. Note that both ownship and traffic aircraft will need to be “in-air” for this alert to trigger.

a. Flight tests must be conducted for each initial installation of a unique configuration of ADS-B In receiver, position sensor, ASSAP, and CDTI equipment. Flight test data from a different aircraft may be used to establish suitability in follow-on installations. Flight testing must be conducted in the range of an ADS-B Out-equipped aircraft. Flight testing should be conducted within TIS-B and ADS-R coverage. The flight test should verify the following:

 (1) The other aircraft flight identification (if implemented).
(2) The ability to select a desired target aircraft (if implemented).

(3) The ability to display ground speed of the selected target aircraft (if implemented).

(4) The bearing from own-ship to the other aircraft.

(5) The distance from own-ship to the other aircraft.

(6) The relative altitude of the other aircraft.

(7) The direction of travel (ground track) of the other aircraft.

(8) The ground speed of the other aircraft (if implemented).

(9) The targets are appropriately displayed during maneuvers throughout the normal flight envelope.

(a) Movement of displayed target information should not result in objectionable jitter, jerkiness, or ratcheting effects.

(b) Movement of displayed target information should not blur, shimmer, or produce unintended dynamic effects such that the information becomes distracting or difficult to interpret.

(c) Filtering or coasting of data intended to smooth the movement of CDTI displayed target information should not introduce significant positioning errors or create system lag that makes it difficult to perform the intended task.

(d) False or redundant tracks should not occur regularly during the flight. This would indicate that the track correlation is not performing properly. This could indicate that the TCAS antenna bearing is performing poorly, as an example.

b. If implemented, verify that the information provided on the CDTI display is suitable for the surface application. Depending upon which surface class has been installed, either runways only will be depicted or both runways and taxiways will be depicted.

c. If ITP is installed, evaluate the ITP functionality. The intent of ITP flight testing is to validate that the equipment functions properly when installed on the aircraft. It is not the intent of the ITP flight test to exhaustively test ITP geometries. Individual ITP scenarios to test each ITP geometry may be performed in a conformed ground simulator environment. The scenarios below were chosen to be representative of key operational ranges at which the equipment operates differently. The TCAS validation functionality in particular is difficult to test adequately on ground or in a laboratory environment. This is due to the challenge of creating an RF simulation that accurately reflects the in-flight environment and aircraft installation effects. A flight test of ITP should successfully demonstrate the three scenarios below. For each of the scenarios, perform the steps in this paragraph. Verify that the reference traffic is being
displayed as a valid reference aircraft for the ITP application. Verify that the reference aircraft is shown on the ADS-B traffic display and any dedicated ITP display. This indicates that the ADS-B surveillance portion of ITP is functioning successfully. Verify that the ITP distance computed agrees with the planned value for the flight profile. The computed value may vary from the planned value due to variations from planned aircraft speeds, range, and position. Differences should be documented and investigated after the flight for correctness. Enter CPDLC commands for an ITP request using either automatically generated messages or manually through free-text input by the pilot. If automatically generated, verify that the CPDLC text accurately represents the ITP reference aircraft information. If the local air traffic facility is equipped and able to receive the CPDLC message successfully, then exercise the CPDLC link and request an acknowledgement from ATC. If the local air traffic facility is not equipped, then the CPDLC link does not need to be exercised. CPDLC installation guidance is covered in AC 20-140() Guidelines for Design Approval of Aircraft Data Link Communication Systems Supporting Air Traffic Services (ATS). During any or all of the scenarios, alter the position, altitude, or ground speed of the aircraft in order to violate the ITP initiation criteria (refer to Table 3 below). Verify that the ITP equipment indicates that an ITP maneuver is not possible. If implemented, verify that the proper reason is indicated for the ITP maneuver not being available.

(1) **Scenario 1 ITP Reference aircraft ≤ 30 NM**: Perform a flight test with two aircraft, one being the Ownship aircraft and the other being the Reference aircraft. Position the aircraft so they are in-trail between 20 and 30 nautical miles and within 15 knots of ground speed. The ITP equipment will use TCAS measurements (range, bearing, and altitude) to validate ADS-B position.

(2) **Scenario 2 ITP Reference aircraft > 30 NM**: Position the aircraft so they are in-trail greater than 30 nautical miles, but within the capability of the manufacturer’s TCAS to get occasional replies, and within 15 knots of ground speed. The ITP equipment will use TCAS measurements of opportunity (range, bearing, and altitude) to validate ADS-B position when able. At this range, TCAS may not be able to sustain a track due to spotty transponder replies. It is the responsibility of the TCAS manufacturer to provide the approximate maximum range at which TCAS measurements are still available.

(3) **Scenario 3 ITP Reference aircraft outside of TCAS range**: Position the aircraft so they are on similar tracks (within 45 degrees), outside of the manufacturer provided TCAS measurement range, and within 15 knots of ground speed. In this geometry, TCAS validation will be unavailable.
Table 3. ITP Maneuver Criteria

| ITP Speed/Distance Criteria | ITP Distance \(\geq 15 \) NM and Closing Ground Speed Differential \(\leq 20 \) knots
or
ITP Distance \(\geq 20 \) NM and Closing Ground Speed Differential \(\leq 30 \) knots |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Relative Altitude Criteria</td>
<td>Difference in altitude between the ITP and Reference Aircraft is less than or equal to 2000 feet</td>
</tr>
<tr>
<td>Similar Track Criteria</td>
<td>Difference in track angles between ITP and Reference Aircraft less than (\pm 45) degrees</td>
</tr>
<tr>
<td>Position Accuracy for ITP and Reference Aircraft</td>
<td>ITP and Reference Aircraft data with horizontal position accuracies of at least 0.5 NM (95%)</td>
</tr>
<tr>
<td>Position Integrity for ITP and Reference Aircraft</td>
<td>ITP and Reference Aircraft data with horizontal position integrity bounds of 1.0 NM @ 1x10E-05</td>
</tr>
<tr>
<td>Velocity Accuracy for ITP and Reference Aircraft</td>
<td>ITP and Reference Aircraft data with horizontal velocity accuracies of at least 10 m/s (19.4 knots) 95%</td>
</tr>
<tr>
<td>Closing Mach Differential (ATC Crosscheck)</td>
<td>Closing Mach Differential equal or less than 0.06 Mach</td>
</tr>
</tbody>
</table>

d. If CAVS is installed, evaluate the CAVS functionality. The intent of CAVS flight testing is to validate that the equipment functions properly when installed on the aircraft and is suitable for operational use. Perform at least 5 visual approaches within 5 to 10 miles of a leading aircraft. Evaluate that the required display data (refer to paragraph 3-21) is suitable for monitoring while performing a visual approach. During the approach, designate the lead aircraft for CAVS and select an appropriate Range Indication alert value. Verify that the range indication is displayed when closing within the designated range value and evaluate for suitability. The CAVS equipment can and will use TCAS measurements (range, bearing, and altitude) if available to validate ADS-B position.

e. If ATAS is installed, evaluate the ATAS functionality. The intent of ATAS flight testing is to validate that the equipment functions properly when installed on the aircraft. Flight testing of ATAS may include a cooperative aircraft or traffic of opportunity.

1. Evaluate the visual alerts for suitability.

2. Evaluate aural messages for acceptable volume and intelligibility during both low and high cockpit noise levels with and without headsets/helmets as appropriate.

3. Before any cooperative flight tests at any altitude, fly both aircraft in close formation to ensure matched altimetry readouts. These checks should be flown at the speeds and altitudes to be used for the tests.
Appendix A Latency Analysis

1. Purpose.

The purpose of this appendix is to provide guidelines on accomplishing a latency analysis of your ADS-B In system to demonstrate that it complies with the end-to-end budget for ADS-B applications. It is important to minimize latency and the uncertainty of latency (i.e., how the latency differs between updates) at the system integration level. The easiest way to ensure this design goal is met is to provide a direct connection between the position source and the ADS-B equipment. Any other system blocks between them will increase latency and uncertainty. In some cases, an increase in uncertainty can have a more detrimental effect than the latency itself. Refer to RTCA/DO-317B, Appendix J for additional information on the interfaces described below.

2. Analysis.

For ADS-B In installations, the latency analysis consists of two parts; the traffic latency analysis and the own-ship position latency analysis. Together, these analyses must show:

 a. That the total latency allowance is not exceeded, and
 b. The own-ship position and traffic positions are estimated to a time of applicability within 1 second of the time of display.

 Note: Manufacturers should ensure installation instructions adequately address latency to assist the installer.

3. Traffic Latency Analysis.

Figure A-1 depicts a block diagram of the ADS-B In system and the recommended latency budget allocated to each block. To demonstrate that the system does not exceed the total latency budget, determine the applicable latencies for each component and total all of the individual component latencies. You must include all sources of latency, including, but not limited to: the ADS-B receiver, the ASSAP equipment, the CDTI equipment, and any intermediary devices. The total for your system between interface D and interface G must not exceed 3.5 seconds. It is acceptable for a manufacturer to allocate the total budget among their system components as needed. However, this design choice will limit the flexibility of pairing their equipment with other manufacturers. In calculating worst case latency, the traffic latency analysis must assume the simultaneous processing of the maximum number of traffic symbols the system is designed to support.

Demonstrate by analysis that the traffic displayed to the flight crew has been estimated forward to be within 1 second of the time of display. For instance, if the latency analysis in the previous paragraph comes to 2.6 seconds, the traffic will need to be estimated forward 2.6 seconds +/- 1
second by the system prior to displaying that traffic. The actual estimate for each individual piece of traffic will vary as the received ADS-B messages arrive asynchronously. The analysis must demonstrate that this variation is handled appropriately. The analysis must also demonstrate that any variation in the latency due to processes within the equipment chain does not cause the time of applicability to violate the 1 second tolerance. If different vendors’ equipment is paired together to create a complete system, latency performance data for each system component must originate with the component manufacturer. Reverse engineering another vendor’s latency performance is not an acceptable means of compliance. Manufacturers are encouraged to include their individual component latency performance in an installation manual to facilitate proper ADS-B system integrations.

Figure A-1. Traffic Latency Block Diagram

![Traffic Latency Block Diagram](image)

5. Own-Ship Position Latency Analysis.

Refer to Figures A-2 and A-3 which depict block diagrams of two potential implementations of ADS-B In system architectures with recommended latency budgets allocated to each block. For either architecture, the ASSAP equipment must receive the own-ship position data with less than 600 ms of compensation error and less than 1 second of total latency. For this portion of the analysis, total latency starts at the time of measurement of the position source (A3) and ends when ASSAP has received the complete position update (B3). Own-ship total latency at the time of display (G) must not exceed 3.5 seconds.

Demonstrate by analysis that the own-ship position displayed to the flight crew has been estimated forward to be within 1 second of the time of display. The 1 second tolerance must include any compensation error present in the system between interfaces A3 and G. Determine the total latency from the position source time of measurement (A3) to the time of display (G). This latency will depend on the path of own-ship position data and vary by system architecture. Refer to Figures A-2 and A-3 for examples of two potential architectures. The analysis must demonstrate that any variation in the latency due to processes within the equipment chain does not cause the time of applicability to violate the 1 second tolerance. If different vendors’
equipment is paired together to create a complete system, data for each system component must originate with the component manufacturer. Reverse engineering another vendor’s latency performance is not an acceptable means of compliance. Manufacturers are encouraged to include their individual component latency performance in an installation manual to facilitate proper ADS-B system integrations.

Figure A-2. Own-Ship Latency Block Diagram Simple Architecture

![Simple Architecture Diagram](image)

Figure A-3. Own-Ship Latency Block Diagram Alternate Architecture

![Alternate Architecture Diagram](image)
Appendix B Symbol Requirements for the CDTI

The “basic” traffic symbol is used to depict airborne traffic. Traffic symbols can be modified from the basic symbol to provide special status information, such as on-ground, selected, designated, and alerted. The symbols depicted are examples. The line width, physical size, and hue of the figures are not requirements. The requirements are stated in the associated text.

a. Basic Directional (see Figure B-1).

 (1) If directionality is valid, the basic directional traffic symbol must be depicted with an arrowhead shape oriented by the directionality.

 (2) The color must be cyan or white.

 (3) The color must be the same color as the basic non-directional symbol.

 (4) The color should not be the same color as the own-ship symbol.

 (5) For displays that do not integrate aircraft surveillance applications system (ASA) with TCAS, the symbol may be filled or unfilled.

 (6) For TCAS/ASA-integrated systems and ATAS implementations, the symbol must be unfilled.

b. Basic Non-Directional (see Figure B-2).

 (1) If directionality is invalid, the basic non-directional traffic symbol must be depicted with a diamond shape.

 (2) The color must be cyan or white.

 (3) The color must be the same color as the basic directional symbol.

 (4) The color should not be the same color as the own-ship symbol.

 (5) For displays that do not integrate ASA with TCAS, the symbol may be filled or unfilled.
(6) For TCAS/ASA-integrated systems and ATAS implementations, the symbol must be unfilled.

Figure B-2. Basic Non-Directional Symbol

- **c. Traffic Directionality.** If the traffic symbol indicates directionality, the directionality of the traffic symbol must be displayed relative to the display orientation.

 Note: The traffic directionality in air is based on traffic ground track angle, and not necessarily traffic heading. This is important for monitoring traffic such as helicopters that can fly backwards and to account for winds.

- **d. Traffic Application Capability.** The traffic symbol may provide an indication of traffic application capability.

 Note 1: Traffic information that does not meet the minimum requirements for enhanced visual acquisition (EVAcq) should not be sent to the CDTI display from ASSAP.

 Note 2: ASSAP may provide TCAS-only data that does not support EVAcq. TCAS data will still be displayed.

- **e. Traffic On-Ground Status (see Figure B-3).**

 (1) If traffic is on-ground, the basic traffic symbol must be modified by changing the color.

 (2) The color may be brown/tan.

 (3) The size of on-ground traffic symbols may be decreased for additional encoding, and/or to reduce clutter.

 (4) The symbol may be filled or unfilled.

 Note: Additionally, altitude information is removed from the data tag.
Figure B-3. Directional and Non-directional On-ground Traffic Symbols

f. Basic Ground Vehicle (See Figure B-4)

(1) The basic Ground Vehicle symbol must be depicted as a top-down wheeled rectangular shape.

(2) The color should be the same as that used for the basic Traffic On-Ground symbol. The color may be brown/tan.

(3) Ground Vehicle directionality may be indicated by adding a triangular shape to one end of the rectangle, and orienting the entire symbol by directionality. Figure 8 provides an example notional depiction.

(4) The symbol may be filled or unfilled.

Figure B-4. Basic Surface Vehicle Symbol

2. Alerts.

The following requirements, per TSO-C195b, apply generally to CDTI-displayed alerts based on both ASA and TCAS systems. Additional TCAS-specific alert symbol requirements are provided in Appendix B, section 3.

a. Traffic that triggers an alert must be indicated on the Traffic Display with a symbol variation. The following requirements only apply to the alerted traffic symbol:

(1) If traffic directionality is valid, directionality information must not be removed during alerts.

(2) The traffic symbol must change to amber/yellow for caution level alerts.

(3) The traffic symbol must change to red for warning level alerts.
(4) For traffic without valid directionality:

(a) If traffic has a caution level alert, the traffic symbol may be modified by changing the shape to a circle.

(b) If traffic has a warning level alert, the traffic symbol may be modified by changing the shape to a square.

(5) For traffic with valid directionality:

(a) If traffic has a caution level alert, the traffic symbol may be modified by changing the shape to a circle with a directional inlay.

(b) If traffic has a warning level alert, the traffic symbol may be modified by changing the shape to a square with a directional inlay.

Note: Caution and warning level alerts may use the same traffic symbols as TCAS traffic advisories and resolution advisories, respectively. (See Appendix B section 3)

(6) For airborne applications, alerting traffic that lies outside the configured traffic display range should be positioned at the measured relative bearing, and at the configured display maximum range (i.e., edge of display), and with a symbol shape modification that indicates that the traffic is off-scale.

Note: A half-symbol at the display edge is one acceptable indication method.

b. Proximate Traffic (see Figure B-5).

(1) For TCAS/ASA integrated systems and systems with ATAS, the traffic symbol must indicate airborne TCAS proximate status.

(2) If proximate traffic is displayed, the basic traffic symbol must be displayed as filled. Figure B-5 provides example notional depictions.

Note: This requirement is to be consistent with TCAS symbol convention.
c. Selected Traffic.

(1) Selected traffic is traffic that is selected by the flight crew. Traffic selection results in display of additional traffic information beyond what is presented in the minimum data tag, and may enable other functions (e.g., designating traffic).

(2) If traffic selection is implemented:

(a) There must be some means of distinguishing the selected traffic from other traffic on the traffic display.

(b) A border must not be used to indicate selected traffic.

 Note 1: A border is a discernable line that surrounds an existing symbol. Border types include fixed-shape or conformal.

 Note 2: Borders are reserved for depicting designated traffic (see Figure B-6).

(3) When traffic is selected, additional information on that traffic must be displayed in a data block or a data tag.

 Note: Generally, selecting traffic will bring up the additional information in a data block, but a data tag can also be used for this purpose.

(4) There must be an indication of off-scale selected traffic.

 Note: A Selected half-symbol at the display edge and appropriate bearing is one acceptable method of indication.

d. Designated Traffic (see Figure B-6).

(1) Designated traffic is traffic upon which a designated application is to be performed. For example, in visual separation on approach (VSA), the traffic to be followed may be displayed as “designated” so that the application and the flight crew both know the
specific traffic upon which to act.

(2) If traffic designation is implemented:

(a) There must be some means of distinguishing the designated traffic from other traffic.

(b) If traffic is designated, the basic traffic symbol should be modified by adding a shape-conforming border. Figure B-6 provides a notional example.

Figure B-6. Directional and Non-directional Designated Traffic Symbols

(c) There must be an indication of off-scale designated traffic.

Note: A half-symbol at the display edge and appropriate bearing is one acceptable method of indication.

(d) The loss of “designated” status (e.g., due to signal loss or invalid data) must be indicated to the flight crew.

a. If traffic directionality is valid, directionality information must not be removed during a TCAS traffic advisory or resolution advisory.

Note: Directionality information, if available, may assist the flight crew in visual search and identification of the alerted traffic.

b. Traffic Advisories (see Figure B-7).

(1) If traffic has a TA, the traffic symbol must be modified by changing the color to amber/yellow, and changing the shape to a circle.

(2) Traffic with valid directionality must include a directional inlay.

(3) The size of TA traffic symbols may be increased to accommodate the shape modification.

(4) Line widths and fill may be changed to improve color interpretation and saliency.
c. Resolution Advisories (RAs) (see Figure B-8).

(1) If traffic has an RA, the traffic symbol must be modified by changing the color to red, and changing the shape to a square.

(2) Traffic with valid directionality must include a directional inlay.

(3) The size of RA traffic symbols may be increased to accommodate the shape modification.

(4) Line widths and fill may be changed to improve color interpretation and saliency.

Note: TCAS aural alerts and resolution guidance are not affected by these requirements or recommendations.
Appendix C ATAS Integration with existing Traffic Alerting Avionics

Figure C-1. Example of an acceptable configuration of TAS/TCAS I/TCAS II and ATAS

Figure C-2. Example of an acceptable integrated configuration
Figure C-3. Example of an invalid TCAS I/TAS with ATAS configuration

Notes: Not permitted due to non-integration.
Appendix D Definitions, acronyms, and related documents

1. Definitions. The following are definitions of terms used in this document.

24-bit Address. Unique address assigned to an aircraft during the registration process.

ADS-B In. Receipt, processing, and display of other aircraft’s ADS-B transmissions. ADS-B In is necessary to utilize airborne applications.

ADS-B Out. Transmission of an aircraft’s position, altitude, velocity, and other information to other aircraft and ATC ground based surveillance systems.

Advisory. The level or category of alert for conditions that require flight crew awareness and may require subsequent flight crew response.

Aircraft Surveillance Applications System (ASAS). An aircraft system based on airborne surveillance that provides assistance to the flight crew in operating their aircraft relative to other aircraft.

Airborne Surveillance and Separation Assurance Processing (ASSAP). The processing subsystem that accepts surveillance inputs (e.g., ADS-B reports), performs surveillance processing to provide reports and tracks, and performs application-specific processing. Surveillance reports, tracks, and any application-specific alerts or guidance are output by ASSAP to the CDTI function. ASSAP surveillance processing consists of track processing and correlation of ADS-B, TIS-B, ADS-R and TCAS reports.

Alert. A general term that applies to all advisories, cautions, and warning information; can include visual, aural, tactile, or other attention-getting methods.

Application. The function(s) for which the ASA system is used.

Aircraft Surveillance Application (ASA). An application that uses aircraft surveillance data to provide benefits to the flight crew (refer to Table 1).

Antenna Offset Parameter. The distance from the nose of the aircraft to the GPS antenna. For large aircraft, this offset is important in accurately placing the aircraft symbol on the airport map.

Automatic Dependent Surveillance-Broadcast (ADS-B). A function on an aircraft or surface vehicle operating within the surface movement area that periodically broadcasts its state vector (horizontal and vertical position, horizontal and vertical velocity) and other information. ADS-B is automatic because no external stimulus is required to elicit a transmission. It is dependent because it relies on on-board navigation sources and on-board broadcast transmission systems to provide surveillance information to other users.

Automatic Dependent Surveillance-Rebroadcast (ADS-R). A service of the ground system that rebroadcasts ADS-B messages from one link technology onto another. For
example, the SBS ground system provides ADS-R service to rebroadcast UAT messages on 1090 MHz and vice versa.

ADS-B Traffic Advisory System (ATAS). An ADS-B In application that augments flight crew traffic situation awareness in support of the see-and-avoid responsibility by providing alerts of traffic that are detected in conflict with ownship. This application is named Traffic Situation Awareness with Alerts (TSAA) in RTCA DO-317B.

Availability. An indication of the ability of a system or subsystem to provide usable service. Availability is expressed in terms of the probability of the system or subsystem being available at the beginning of an intended operation.

Basic Airborne (AIRB). The basic airborne situation awareness application enhances the flight crew’s traffic situation awareness through the provision of an on-board graphical display of surrounding traffic that transmits ADS-B data of a sufficient quality. Pilots will use the CDTI to supplement and enhance out-the-window visual acquisition and listening to radio communications.

Caution. The level or category of alert for conditions that require immediate flight crew awareness and subsequent flight crew response.

Coast Interval. The elapsed time since a report from any source has been correlated with the track.

Cockpit Display of Traffic Information (CDTI). The pilot interface portion of the Aircraft Surveillance Applications System. This interface includes traffic display(s) and all the controls that interact with such a display. At a minimum, CDTI includes a graphical plan-view (top down) traffic display. Additional graphical and non-graphical display surfaces may also be included. The CDTI receives position information of traffic and Ownship from the airborne surveillance and separation assurance processing (ASSAP) function. The ASSAP receives such information from the surveillance sensors and Ownship position sensors.

CDTI Assisted Visual Separation (CAVS). The CDTI is used to assist the flight crew in acquiring and maintaining visual contact during visual separation on approach. The CDTI is also used in conjunction with visual, out-the-window contact to follow the preceding aircraft during the approach. The application is expected to improve both the safety and the performance of visual separation on approach. It may allow for the continuation of visual separation on approach even if visual contact out-the-window is momentarily lost.

Conformal. A desirable property of map projections. A map projection (a function that associate points on the surface of an ellipsoid or sphere representing the earth to points on a flat surface such as the CDTI display) is said to be conformal if the angle between any two curves on the first surface is preserved in magnitude and sensed by the angle between the corresponding curves on the other surface.
Correlation. The process of determining that a new measurement belongs to an existing track.

Controller Pilot Data Link Communication (CPDLC). Provides direct data communication between the pilot and the air traffic controller through a data link.

Data Block. A block of information about selected traffic that is displayed somewhere around the edge of the CDTI display, rather than mixed in with the symbols representing traffic in the main part of the display.

Data Tag. A block of information that is displayed next to the traffic symbol in the main part of the CDTI display.

Designated Application. An application that operates only on specifically-chosen (either by the flight crew or automation) traffic. They generally operate only for a specific flight operation.

Designated Traffic. Traffic upon which a designated application is to be conducted.

Desirable. The capability denoted as desirable is not required to perform the procedure, but would increase the utility of the operation.

Direct Controller Pilot Communication (DCPC). Direct communication established between the controller and the pilot without having to relay through another unit or going through a secondary means of delivery for that information. Currently, this is accomplished by conventional voice radio operations or CPDLC.

Differential Ground Speed. Calculated by taking the difference between the magnitude of the ownship ground speed and the designated traffic ground speed. The assumption is that ownship is following the designated traffic approach path over the ground. Positive values indicate closure on the designated traffic.

Display Range. The maximum distance from own-ship that is represented on the CDTI display. If the CDTI display is regarded as a map, then longer display ranges correspond to smaller map scales, and short display ranges correspond to larger map scales.

Enhanced Visual Acquisition (EVAcq). This application is an enhancement for the out-the-window visual acquisition of aircraft traffic and potentially ground vehicles.

Estimation. The process of determining a track’s state based on new measurement information.

Extended Squitter. A long (112 bit) Mode S transmission that is spontaneously produced by the radio as opposed to a response to a Mode S Interrogation. Extended Squitter is the mechanism used to provide ADS-B messages from a Mode S transponder.
Extrapolation. The process of predicting a track’s state forward in time based on the track’s last kinematic state.

Field of View. The field of view of a CDTI is the geographical region within which the CDTI shows traffic. Some documents call this the field of regard.

Flight Information Service Broadcast (FIS-B). FIS-B is a ground broadcast service provided over the UAT data link. The FAA FIS-B system provides pilots and flight crews of properly equipped aircraft with a cockpit display of certain aviation weather and aeronautical information.

Flight Crew. One or more cockpit crew members required for the operation of the aircraft.

Ground Speed. The magnitude of the horizontal velocity vector (see velocity). In these minimum operational performance standards (MOPS) it is always expressed relative to a frame of reference that is fixed with respect to the earth’s surface such as the WGS-84 ellipsoid.

Ground Track Angle. The direction of the horizontal velocity vector (see velocity) relative to the ground as noted in ground speed.

Hazard Classification. Refer to AC 25-1309-1(), System Design and Analysis, or AC 23.1309-1(), System Safety Analysis and Assessment for Part 23 Airplanes, as applicable.

Horizontal Velocity. The component of velocity in a local horizontal plane. For Global Positioning System (GPS) sensors, that plane is tangent to the WGS-84 ellipsoid and is vertically displaced such that it contains the navigation sensors’ reference point. For inertial navigation system (INS) equipment, the local plane is perpendicular to the local gravity vector.

International Civil Aviation Organization (ICAO). A United Nations organization that is responsible for developing international standards, and recommending practices, and procedures covering a variety of technical fields of aviation.

In-Trail Procedure (ITP). A procedure that allows an aircraft to climb-through or descend-through another aircraft’s altitude in order to make a desired flight level change.

Latency. The time incurred between two particular interfaces. Total latency is the delay between the time of a measurement and the time that the measurement is reported at a particular interface (the latter minus the former). Components of the total latency are elements of the total latency allocated between different interfaces. Each latency component will be specified by naming the interfaces between which it applies.

Nautical Mile (NM). A unit of length used in the fields of air and marine navigation. In this document, a nautical mile is always the international nautical mile of 1852 m exactly.
Own-ship. From the perspective of a flight crew, or of the ASSAP and CDTI functions used by that flight crew, the own-ship is the ASA participant (aircraft or vehicle) that carries that flight crew and those ASSAP and CDTI functions.

Pressure Altitude. Altitude reported by a barometric pressure altimeter without corrections for local pressure settings.

Primary Surveillance Radar (PSR). A radar sensor that listens for the echoes of pulses that it transmits to illuminate aircraft targets. PSR sensors, in contrast to secondary surveillance radar (SSR) sensors, do not depend on the carriage of transponders on board the aircraft targets.

Range Reference. The CDTI feature of displaying range rings or other range markings at specified radii from the own-ship symbol.

Reference Aircraft. An aircraft within the ITP geometric criteria for usage as reference when requesting an ITP clearance.

Secondary Surveillance Radar (SSR). A radar sensor that listens to replies sent by transponders carried on board airborne targets. SSR sensors, in contrast to primary surveillance radar (PSR) sensors, require the aircraft under surveillance to carry a transponder.

Selected Traffic. Traffic for which additional information is requested by the flight crew.

Sensor. A measurement device. An air data sensor measures atmospheric pressure and temperature, to estimate pressure altitude, and pressure altitude rate, airspeed, etc. A primary surveillance radar sensor measures its antenna direction and the times of returns of echoes of pulses that it transmits to determine the ranges and bearings of airborne targets. A secondary surveillance radar sensor measures its antenna direction and the times of returns of replies from airborne transponders to estimate the ranges and bearings of airborne targets carrying those transponders.

Separation. The minimum distance between aircraft/vehicles allowed by regulations. Separation requirements vary by factors such as radar coverage (none, single, composite), domain (terminal, en route, oceanic), and flight rules (instrument or visual).

Simple Action. A flight crew action that may be performed within a short period of time and without requiring significant concentration that would distract from the main aviation tasks (e.g., a button press). Please refer to AC 25-11() for more details.

Spacing. A distance maintained from another aircraft for specific operations.

State Vector. An aircraft’s current horizontal position, vertical position, horizontal velocity, vertical velocity, and navigational accuracy and integrity.
SURF (Basic Surface). An ADS-B application that displays traffic over an airport surface map underlay, and is used to support the flight crew in making decisions about taxiing, takeoff, and landing. The underlying map may depict runways only, or runways, taxiways, and other movement areas.

Traffic Selection. Manual process of flight crew selecting a traffic element.

TCAS Potential Threat. Traffic detected by TCAS equipment on board the own-ship, that has met the Potential Threat classification criteria for a TCAS TA and does not meet the Threat Classification criteria for a TCAS RA (RTCA/DO-185B § 1.8). If the ASAS own-ship CDTI display is also used as a TCAS TA display, then information about TCAS potential threats will be conveyed to the CDTI via the ASSAP function.

TCAS Proximate Traffic. Traffic, detected by TCAS equipment on board the own-ship, that is within 1200 feet vertically and 6 NM horizontally of the own-ship (RTCA/DO-185B § 1.8). If the ASA system own-ship CDTI display is also used as a TCAS display, then information about TCAS proximate traffic will be conveyed to the CDTI, possibly via the ASSAP function.

TCAS-Only Traffic. A traffic element about which TCAS has provided surveillance information, but which the ASSAP function has not correlated with traffic from other surveillance sources such as ADS-B, ADS-R, or TIS-B.

Time of Applicability. The time that a particular measurement or parameter is (or was) relevant.

Track. (1) A sequence of reports from the ASSAP function that all pertain to the same traffic target. (2) Within the ASSAP function, a sequence of estimates of traffic target state that all pertain to the same traffic element.

Track Angle. See Ground Track Angle.

Track State. See State Vector.

Traffic. All aircraft/vehicles that are within the operational vicinity of own-ship.

Traffic Element. An aircraft or vehicle.

Traffic Information Service – Broadcast (TIS-B). A surveillance service that broadcasts traffic information derived from one or more ground surveillance sources to suitably equipped aircraft or surface vehicles, with the intention of supporting ASA applications.

Traffic Symbol. A depiction on the CDTI display of an aircraft or vehicle other than the own-ship.
Transponder. A piece of equipment carried on board an aircraft to support the surveillance of that aircraft by secondary surveillance radar sensors. A transponder receives interrogation signals on 1030 MHz and replies on the 1090 MHz downlink frequency.

Traffic-To-Follow. A term used for CAVS which is used to refer to the aircraft preceding ownship.

Universal Access Transceiver (UAT). A wideband multipurpose data link intended to operate globally on a single channel with a channel signaling rate of just over 1Mbps. By design, UAT supports multiple broadcast services including FIS-B and TIS-B in addition to ADS-B. This is accomplished using a hybrid medium access approach that incorporates both time-slotted and random unslotted access.

Visual Separation on Approach (VSA). The CDTI is used to assist the flight crew in acquiring and maintaining visual contact during visual separation on approach. The CDTI is also used in conjunction with visual, out-the-window contact to follow the preceding aircraft during the approach. The application is expected to improve both the safety and the performance of visual separation on approach. It may allow for the continuation of visual separation on approach when they otherwise would have to be suspended due to the difficulty of visually acquiring and tracking the other preceding aircraft.

Velocity. The rate of change of position. Horizontal velocity is the horizontal component of velocity and vertical velocity is the vertical component of velocity.

Warning. The level or category of alert for conditions that require immediate flight crew awareness and immediate flight crew response.
2. Acronyms.

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC</td>
<td>Advisory Circular (FAA)</td>
</tr>
<tr>
<td>ADS-B</td>
<td>Automatic Dependent Surveillance – Broadcast</td>
</tr>
<tr>
<td>ADS-R</td>
<td>Automatic Dependent Surveillance – Rebroadcast</td>
</tr>
<tr>
<td>AFM</td>
<td>Aircraft Flight Manual</td>
</tr>
<tr>
<td>AIRB</td>
<td>Basic Airborne</td>
</tr>
<tr>
<td>AML</td>
<td>Approved Model List</td>
</tr>
<tr>
<td>ASA</td>
<td>Aircraft Surveillance Applications</td>
</tr>
<tr>
<td>ASAS</td>
<td>Aircraft Surveillance Applications System</td>
</tr>
<tr>
<td>ASSAP</td>
<td>Airborne Surveillance and Separation Assurance Processing</td>
</tr>
<tr>
<td>ASTC</td>
<td>Amended Supplemental Type Certificate</td>
</tr>
<tr>
<td>ATAS</td>
<td>ADS-B Traffic Advisory System</td>
</tr>
<tr>
<td>ATC</td>
<td>Air Traffic Control</td>
</tr>
<tr>
<td>ATCRBS</td>
<td>Air Traffic Control Radar Beacon System</td>
</tr>
<tr>
<td>ATS</td>
<td>Air Traffic Services</td>
</tr>
<tr>
<td>CDTI</td>
<td>Cockpit Display of Traffic Information</td>
</tr>
<tr>
<td>CAVS</td>
<td>CDTI Assisted Visual Separation</td>
</tr>
<tr>
<td>CFR</td>
<td>Code of Federal Regulations</td>
</tr>
<tr>
<td>CPDLC</td>
<td>Controller Pilot Data Link Communication</td>
</tr>
<tr>
<td>DCPC</td>
<td>Direct Controller Pilot Communication</td>
</tr>
<tr>
<td>EFIS</td>
<td>Electronic Flight Instrument System</td>
</tr>
<tr>
<td>EUROCAE</td>
<td>European Organization for Civil Aviation Equipment</td>
</tr>
<tr>
<td>EVAcq</td>
<td>Enhanced Visual Acquisition</td>
</tr>
<tr>
<td>FAA</td>
<td>Federal Aviation Administration</td>
</tr>
<tr>
<td>FIS-B</td>
<td>Flight Information Services - Broadcast</td>
</tr>
<tr>
<td>fpm</td>
<td>Feet Per Minute</td>
</tr>
<tr>
<td>ft</td>
<td>Feet</td>
</tr>
<tr>
<td>GNSS</td>
<td>Global Navigation Satellite System</td>
</tr>
<tr>
<td>GPS</td>
<td>Global Positioning System</td>
</tr>
<tr>
<td>ICAO</td>
<td>International Civil Aviation Organization</td>
</tr>
<tr>
<td>ID</td>
<td>Identification</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>IFR</td>
<td>Instrument Flight Rules</td>
</tr>
<tr>
<td>ITP</td>
<td>In-Trail Procedure</td>
</tr>
<tr>
<td>kts</td>
<td>Knots</td>
</tr>
<tr>
<td>m</td>
<td>meter (or “metre”), the SI metric system base unit for length</td>
</tr>
<tr>
<td>MCDU</td>
<td>Multi-Function Control and Display Unit</td>
</tr>
<tr>
<td>MFD</td>
<td>Multi-Function Display</td>
</tr>
<tr>
<td>MHz</td>
<td>Mega Hertz</td>
</tr>
<tr>
<td>MOPS</td>
<td>Minimum Operation Performance Standards (RTCA documents)</td>
</tr>
<tr>
<td>N/A</td>
<td>Not Applicable or No Change</td>
</tr>
<tr>
<td>RA</td>
<td>Resolution Advisory (TCAS II)</td>
</tr>
<tr>
<td>RC</td>
<td>Radius of Containment</td>
</tr>
<tr>
<td>s</td>
<td>second, the SI metric system base unit for time or time interval</td>
</tr>
<tr>
<td>SAE</td>
<td>Society of Automotive Engineers</td>
</tr>
<tr>
<td>SBS</td>
<td>Surveillance and Broadcast Services</td>
</tr>
<tr>
<td>SC</td>
<td>Special Committee</td>
</tr>
<tr>
<td>SURF</td>
<td>Basic Surface Situation Awareness</td>
</tr>
<tr>
<td>TA</td>
<td>Traffic Advisory (TCAS II)</td>
</tr>
<tr>
<td>TAS</td>
<td>Traffic Advisory System</td>
</tr>
<tr>
<td>TCAS</td>
<td>Traffic Alert and Collision Avoidance System</td>
</tr>
<tr>
<td>TCAS I</td>
<td>TCAS system that does not provide resolution advisories</td>
</tr>
<tr>
<td>TCAS II</td>
<td>TCAS system that provides resolution advisories</td>
</tr>
<tr>
<td>TIS-B</td>
<td>Traffic Information Service – Broadcast</td>
</tr>
<tr>
<td>TSO</td>
<td>Technical Standard Order</td>
</tr>
<tr>
<td>UAT</td>
<td>Universal Access Transceiver</td>
</tr>
<tr>
<td>VSA</td>
<td>Visual Separation on Approach</td>
</tr>
<tr>
<td>WGS-84</td>
<td>World Geodetic System-1984</td>
</tr>
</tbody>
</table>
Appendix E Related Documents

1. FAA Documents.

AC 20-140(), Guidelines for Design Approval of Aircraft Data Link Communication Systems Supporting Air Traffic Services (ATS).

AC 20-149 (), Installation Guidance for Flight Information Service Broadcast (FIS-B)

AC 20-165 (), Airworthiness Approval of Automatic Dependent Surveillance - Broadcast (ADS-B) Out Systems

AC 20-175 (), Controls for Flight Deck Systems.

AC 23.1309-1(), System Safety Analysis and Assessment for Part 23 Airplanes.

AC 23.1311-1(), Installation of Electronic Display in Part 23 Airplanes.

AC 25-11(), Electronic Flight Displays.

AC 25.1302-1(), Installed Systems and Equipment for Use by the Flightcrew.

AC 25-1309-1(), System Design and Analysis.

AC 25.1322-1(), Flightcrew Alerting

AC 27-1(), Certification of Normal Category Rotorcraft.

AC 29-2(), Certification of Transport Category Rotorcraft.

AC 90-114(), Automatic Dependent Surveillance-Broadcast (ADS-B) Operations.

AC 120-55 (), Air Carrier Operational Approval and Use of TCAS II

TSO-C118 (), Traffic Alert And Collision Avoidance System (TCAS) Airborne Equipment, TCAS- I.

TSO-C129(), Airborne Supplemental Navigation Equipment Using the Global Positioning System (GPS).

TSO-C146(), Stand-Alone Airborne Navigation Equipment Using the Global Positioning System (GPS) Augmented by the Wide Area Augmentation System (WAAS).

TSO-C147(), Traffic Advisory System (TAS) Airborne Equipment.

TSO-C154c, Universal Access Transceiver (UAT) Automatic Dependent Surveillance Broadcast (ADS-B) Equipment Operating on the Frequency of 978 MHz.

TSO-C165a(), Electronic Map Display Equipment for Graphical Depiction of Aircraft Position.

TSO-C166b, Extended Squitter Automatic Dependent Surveillance - Broadcast (ADS-B) and Traffic Information Service - Broadcast (TIS-B) Equipment Operating on the Radio Frequency of 1090 Megahertz (MHz).

TSO-C195(), Avionics Supporting Automatic Dependent Surveillance - Broadcast (ADS-B) Aircraft Surveillance Applications (ASA).

TSO-C196(), Airborne Supplemental Navigation Sensors for Global Positioning System Equipment Using Aircraft-Based Augmentation.

2. **RTCA, Inc. (RTCA DO) Documents:**

RTCA/DO-160, Environmental Conditions and Test Procedures for Airborne Equipment

RTCA/DO-178C, Software Considerations in Airborne Systems and Equipment Certification.

RTCA/DO-185, Minimum Operational Performance Standards for Traffic Alert and Collision Avoidance System II (TCAS II) Airborne Equipment

RTCA/DO-254, *Design Assurance Guidance for Airborne Electronic Hardware.*

3. **ARINC Documents:**

ARINC 718A, *Mark 4 Air Traffic Control Transponder (ATCRBS/MODE S).*

ARINC 735B, *Mark 2 Traffic Alert and Collision Avoidance System (TCAS).*

ARINC 738A, *Air Data and Inertial Reference System (ADRS).*

ARINC 743A, *GNSS Sensor.*

4. **SAE Documents.**

5. **How to Get Related Documents:**

 a. You can get copies of the 14 CFR parts referenced in this AC online from the GPO electronic CFR Internet website at www.gpoaccess.gov/cfr/.

d. Order copies of SAE documents from SAE International, 400 Commonwealth Drive, Warrendale, PA 15096-0001, telephone (724) 776-4970, fax (724) 776-0790. Also, order copies online at www.sae.org.

e. Order copies of advisory circulars from the U.S. Department of Transportation, Subsequent Distribution Office, M-30, Ardmore East Business Center, 3341 Q 75th Avenue, Landover, MD 20785. You can also get copies from our website at http://www.faa.gov/regulations_policies/advisory_circulars/ or www.airweb.faa.gov/rgl.
Appendix 1. Advisory Circular Feedback Information

If you have comments or recommendations for improving this advisory circular (AC), or suggestions for new items or subjects to be added, or if you find an error, you may let us know about it by using this page as a template and 1) emailing it to 9-AWA-AVS-AIR500-Coord@faa.gov or 2) faxing it to the attention of the AIR Directives Management Officer at 202-267-3983.

Subject: (insert AC number and title) Date: (insert date)

Comment/Recommendation/Error: (Please fill out all that apply)

An error has been noted:

Paragraph ________________

Page _____

Type of error (check all that apply): Editorial:----- Procedural-----

Conceptual____

Description/Comments:__

Recommend paragraph _____ on page _____ be changed as follows:
(attach separate sheets if necessary)

In a future change to this AC, please include coverage on the following subject: (briefly describe what you want added, attaching separate sheets if necessary)

Name: __________________________