1. PURPOSE. This advisory circular (AC) provides suggestions to improve sport parachuting safety and disseminates information to assist all parties associated with sport parachuting to be conducted in compliance with Title 14 of the Code of Federal Regulations (14 CFR) part 105. It also contains information for jumpers and riggers on parachuting equipment, on-airport parachuting operations, jump pilot training, aircraft maintenance programs, parachute rigging, and procedures for Federal Aviation Administration (FAA) authorization for flight operations with a removed or modified door.

2. CANCELLATION. This AC cancels AC 105-2D, Sport Parachuting, dated May 18, 2011.

3. RELATED 14 CFR PARTS AND PUBLICATIONS. The FAA’s primary responsibility with respect to skydiving is the protection of air traffic and persons and property on the ground. Part 105 was developed to accomplish this task.

 a. Title 14 CFR. This paragraph describes the 14 CFR parts that are of interest to skydivers, parachute riggers, and jump aircraft pilots. They may be downloaded from the FAA’s Web site at http://www.faa.gov. Since the Federal regulations and other publications may be amended at any time, all FAA regulations, ACs, and other documents are also available for download from the FAA’s Web site for continued compliance with current requirements.

 (1) Part 65, Certification: Airmen Other Than Flight Crewmembers. Subpart F concerns parachute riggers, their eligibility requirements, privileges, and performance standards.

 (2) Part 91, General Operating and Flight Rules. Parachute operators and jump pilots must comply with all applicable sections of part 91.

 (3) Part 105, Parachute Operations. This part is especially important to parachutists, parachute riggers, and the pilots who fly parachutists, since it contains regulations governing intentional parachute jumping.

 (4) Part 119, Certification. Air Carriers and Commercial Operators (§ 119.1(e)(6)). Pilots who conduct parachute operations within a 25 statute mile (sm) radius of the airport of departure may conduct them as commercial operations under part 91.

 b. Technical Standard Order (TSO)-C23, Personnel Parachutes Assemblies. The TSO-C23 series contains the minimum performance standards for parachute assemblies and components. Manufacturers design and test new parachutes to the most current TSO standards,
although they may continue to produce parachutes approved under earlier TSO standards. The most current TSO-C23 document may be obtained from the FAA Web site, http://www.faa.gov.

(1) Operators conducting parachute operations should report any additions, deletions, or changes to static PAJA data to the FAA air traffic control (ATC) facility with jurisdiction over the affected airspace. Operators should submit changes as outlined in part 105, § 105.15.

(2) ATC facilities that have jurisdiction over the affected airspace should report any additions, deletions, or changes to static PAJA data to AJV-2. At a minimum, include location; distance and radial from the nearest Very High Frequency Omnidirectional Range (VOR); maximum altitude; drop zone radius; day/time of use; and the ATC frequency. Submit static PAJA changes to the National Flight Data Center (NFDC) Web site at http://nfdc.faa.gov.

4. BACKGROUND.

a. Parachuting as an FAA-Recognized Aeronautical Activity. Sport parachuting (skydiving) continues to increase in popularity and is an FAA-recognized aeronautical activity even though parachutists are not certificated airmen. As an FAA-recognized aeronautical activity, regulations require airports that have received FAA funding to accommodate this activity unless the FAA determines that compatibility issues prohibit parachuting operations at a particular airport. FAA Order 5190.6, FAA Airport Compliance Manual, has more information regarding airport obligations.

b. Training, Licensing, and Instructor Rating. Sport parachuting has certain inherent risks for all participants. The FAA encourages sport parachutists to complete formal training courses offered by nationally recognized organizations or organizations that have equivalent training programs. The United States Parachute Association (USPA) is an FAA-accepted, nationally recognized skydiving organization that licenses skydivers in the United States. Many local skydiving clubs, schools, and drop zone operators (DZO) require documentation of experience and competency before using their equipment and/or parachuting facilities. This documentation usually consists of a logbook with endorsements and/or a skydiving license issued by a nationally recognized organization.

c. Parachute Equipment. Parachuting as a sport depends on equipment manufacturers, materials suppliers, parachute riggers, government and military agencies, and other industry professionals. The Parachute Industry Association (PIA) is an international trade association that brings all of these interests together for the purpose of advancing the technology and safety of parachutes and parachuting activities. The PIA creates, publishes, and maintains materials, technical, and certification standards relating to parachutes, accessible on their Web site: http://www.pia.com.
5. SKYDIVER SAFETY.

a. Basic Safety Requirements (BSR). The USPA developed basic safety requirements and information for skydiving activities. These requirements and information are for training, checking equipment, and conducting a wide variety of sport parachuting activities. While not approved by the FAA, the BSRs are considered industry best practices and are widely accepted for use by individuals and parachute centers. The BSRs may be obtained from: The United States Parachute Association, 5401 Southpoint Centre Boulevard, Fredericksburg, VA 22407. The association’s phone number is (540) 604-9740 and the USPA Web site is http://www.uspa.org. The FAA encourages skydivers to use facilities that conduct their operations in accordance with the USPA BSRs or other similar skydiving association best practices.

b. Medical Certificates. While the regulations do not require an FAA medical certification, the FAA urges prospective skydivers to receive a physical examination prior to their first jump and on a periodic basis thereafter. The skydiver should inform the physician of the purpose of the examination.

c. Training Methods. The skydiving industry has developed various methods of first-jump instruction. The FAA recommends that beginning skydivers seek instruction from instructors that have met the qualifications set forth by a nationally recognized parachuting organization.

d. Safety Devices and Equipment.

1) Deployment Assist Device. Section 105.47 requires that all persons making a parachute jump with a static line attached to the aircraft and main parachute use an assist device to aid the pilot chute in performing its function. An assist device is also required if no pilot chute is used in direct deployment of a round, main parachute canopy. The regulations do not require an assist device for direct deployment of a ram-air main parachute canopy.

2) Automatic Activation Device (AAD). An AAD is a self-contained mechanical or electromechanical device attached to the parachute container that automatically releases the parachute closing system when it meets specific parameters, such as exceeding a specific vertical velocity and being at or below a specific altitude. Parachutists may attach this device to the main, reserve, or both. However, it is normally only attached to the reserve. An AAD does not physically open the parachute container or deploy the canopy, but rather initiates the container opening by pulling the ripcord pin or by cutting the container closing loop, allowing the canopy to deploy in a similar manner as when pulling the ripcord manually.

(a) The FAA requires that all tandem parachutes have an AAD installed on the reserve parachute. Many skydiving schools and clubs follow USPA BSRs and require the use of an AAD for all unlicensed skydivers.

(b) The FAA has not established minimum operational performance standards (MOPS) or a TSO for AADs. Therefore, the FAA recommends that anyone using an AAD review manufacturer’s reports conforming to the PIA Technical Standard TS-120, AAD Design and Testing Report Format, and independent third-party reports attesting to the AAD’s performance standard in order to make an educated decision prior to the use of any particular make or model AAD. The FAA recommends that jumpers using AADs to satisfy the
requirements set forth in part 105 purchase them from manufacturers who provide such reports. Each parachute manufacturer approves the installation of the AAD on their equipment.

(c) Users of AADs should be aware of the device’s level of reliability and its operating limitations, be knowledgeable about the various parameters of the device, and be trained on the specific use and setting for the particular AAD. Users should be well informed about the use of the AAD and have access to the manufacturer’s instructions.

(d) Users should understand that AADs are strictly backup devices and are not intended to replace training or timely manual execution of emergency procedures. AADs may or may not initiate reserve parachute deployment at a sufficient altitude, depending upon various combinations of circumstances.

(e) Jumpers should make a pre-jump check using the manufacturer’s recommended procedures for proper setting, arming, and operational status verification to ensure the proper functioning of the AAD. This pre-jump check is usually made prior to boarding the aircraft to ensure that it is set at the proper altitude and under current weather conditions to aid in accuracy. This is especially important when using an AAD that has selectable or adjustable activation settings, or when the intended landing area is at an elevation different from that of the departure airfield.

(f) AADs may have selectable or adjustable altitude activation settings. Some AADs are preset for the intended type of operation (e.g., Tandem or Student), while others may be user-selectable. The model, version, and settings, must be appropriate for the particular type of equipment and jump. Different manufacturers may have different arming altitudes, as well as different activation altitudes and vertical speeds for the similar settings.

(g) Since body position and other factors may cause a delay in the actual parachute opening altitude, the devices should only be used as a backup to manually deploying the reserve parachute. When the situation requires the use of the reserve parachute, the jumper should always manually pull the reserve ripcord using the established procedures for reserve deployment before ever reaching AAD activation altitude. The procedures for deployment of the reserve parachute are usually the same whether an AAD is installed or not.

(h) AAD malfunctions and activations should be reported to the AAD and container manufacturers, as well as to the USPA.

e. **Weather.** Strong or gusty winds can be dangerous, especially to student jumpers. In addition, skydivers and pilots should ensure adequate ceiling and visibility to maintain the required weather minimums.

f. **Parachute Landing Areas.** The FAA recommends that areas used as parachute landing areas remain unobstructed, with sufficient minimum radial distances to the nearest hazard. The guidelines in the USPA’s BSRs can be used in determining if the landing area is adequate.

g. **Water Safety Equipment.** Flotation gear should be worn whenever the intended exit point or landing point of a skydiver is within 1 mile of an open body of water.
h. Advanced Parachuting. Many of the safety suggestions presented in this AC are intended primarily for the student parachutist, who should make all jumps in a controlled training environment. Individual experience and judgment dictate what additional training should be obtained before undertaking more advanced parachuting activities. All parachutists should acquire experience and training before using unfamiliar or high-performance equipment.

i. Pre-Jump Equipment Checks. The parachute system user has primarily responsibility for the airworthiness of his equipment at the time of use. Prior to each jump, the user should inspect his equipment for serviceability, including at least general condition, AAD serviceability (see subparagraph 5d(2)), pilot chute bridle routing, main and reserve pin seating, and Reserve Static Line (RSL) routing and connection.

6. PARACHUTE OPERATIONS ONTO AIRPORTS.

a. Stipulations for Landing at or Flying Over an Airport. Most parachute operations take place at airports, including having the parachute landing area located on the airport property. Section 105.23 requires approval from airport management prior to skydiving onto any airport. However, § 105.23(c) allows a parachutist to drift over an airport with an open parachute without airport management approval as long as the parachutist remains at least 2,000 feet above that airport’s traffic pattern. Airport traffic patterns are generally 1,000 to 1,500 feet above ground level (AGL).

b. Additional Aviation Activities. A large number of airports that accommodate parachute operations also have different kinds of aviation activities taking place simultaneously, including flight training, glider and helicopter operations, emergency medical services, sightseeing operations, and aerobatic practice over or in the immediate vicinity of the airport. Many airports accommodate a large volume of transient traffic during skydiving operations.

c. Shared Facility Airports. The FAA recommends that shared facility airports have operating procedures so that each activity can operate safely by knowing the procedures for each of the other activities. Representatives of each type of activity can operate more effectively by knowing the procedures for each of the other activities. Representatives of each type of airport user group should develop procedures specific to their activity and share these procedures with other user groups. Airport management must ensure that airport policies and procedures are kept current, which can be accomplished via regularly scheduled meetings with all airport user groups.

(1) Traffic Patterns. With a minimum parachute opening altitude of 2,000 feet AGL (most parachutists open much higher), parachutes are nearly always open 800 feet or more above the traffic pattern altitude for any airport. Parachutes descend relatively slowly and are easy for pilots to acquire visually. Parachutists and pilots have a shared responsibility to see and avoid each other. Refer to the current edition of AC 90-66, Recommended Standard Traffic Patterns and Practices for Aeronautical Operations at Airports without Operating Control Towers, for information on traffic patterns and parachute operations.

(2) Parachute Landings on Airports. Airports may designate suitable parachute landing areas. While skydivers attempt to land in such areas, at times there may be inadvertent landings
in other grass or hard-surfaced areas. This could include landings on runways, taxiways, and other hard-surfaced areas. Areas such as runways, taxiways, clearways, and Obstacle Free Zones (OFZ) are not prohibited areas but should not be designated as a primary landing area and should be vacated as soon as practical. Flying a parachute over runways at low altitudes should be avoided where possible. The FAA recommends that airport management work with parachute operators to develop standard operating procedures (SOP) for activities conducted by parachutists. Airports that receive or have received Federal funding or grant assurances may have additional requirements or restrictions to parachute landing areas. For additional information, see the current editions of FAA Order 5190.6, FAA Airport Compliance Manual, AC 150/5190-7, Minimum Standards for Commercial Aeronautical Activities; and AC 150/5300-13, Airport Design.

7. **JUMP AIRCRAFT MAINTENANCE AND JUMP PILOTS.** Whenever flights are offered for compensation or hire, the flight is considered a commercial operation under part 91, and Federal regulations require:

 a. **Aircraft Inspections.** The operator must ensure the aircraft is maintained in accordance with part 91, § 91.409 as applicable:

 (1) Section 91.409(a) and (b), annual and 100-hour inspection programs;

 (2) Section 91.409(d), progressive inspection program;

 (3) Section 91.409(f)(3), manufacturer’s inspection program; or

 (4) Section 91.409(f)(4), approved inspection program.

 b. **Aircraft Inspection Quality Assurance (QA).** Aircraft operated commercially under part 91 must be inspected by a person authorized to perform inspections under a 100-hour/annual program or an FAA-approved progressive inspection program consistent with the requirements for part 91 operations. Operators must maintain aircraft operated under 14 CFR part 125 or 135 under an FAA-approved maintenance program. The FAA recommends the use of an aircraft status sheet for QA.

 c. **Additional Information on Acceptable Maintenance Programs.** Anyone conducting parachuting operations should contact his or her local FAA Flight Standards District Office (FSDO) for additional information on acceptable maintenance programs. Reviewing aircraft maintenance records can be simplified by the use of an aircraft status sheet (see Figure 1, FAA Aircraft Status Inspection List Example).
FIGURE 1. FAA AIRCRAFT STATUS INSPECTION LIST EXAMPLE

N____________ S/N_____________ A/C M/M_____________________________

Name of A&P, AI, or FAA Repair Station responsible for the inspection of the aircraft:

A&P or IA Certificate No. or Repair Station No.:_____________________________________

<table>
<thead>
<tr>
<th>Inspection/Item Pending</th>
<th>Hours:/Date</th>
<th>Next Due</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annual or Progressive Inspection</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100-Hour Inspection</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Static System Check</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Altimeter Check</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transponder Check</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ELT Battery</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AD Number</th>
<th>Description</th>
<th>Hours/Date Completed</th>
<th>Next Due</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
8. PILOT RESPONSIBILITIES. The pilot in command (PIC) must adhere to all regulations applicable to the operation conducted. This includes, but is not limited to, the following:

a. Pilot Certification, Experience, and Operating Requirements. The PIC is responsible for meeting the certification, proficiency, operating, and experience requirements of, but not limited to, 14 CFR parts 61, 91, and 105. Pilots conducting flight operations for compensation or hire are required to possess a Commercial Pilot Certificate with the appropriate ratings for the aircraft being flown and must have a current Class 2 medical certificate or equivalent.

b. Jump Pilot Training. For those DZOs and parachuting operations that do not have a nationally recommended jump pilot training program, the FAA recommends that pilots flying aircraft for the purpose of sport parachuting have appropriate initial and recurrent training. The training program should include testing to ensure a high level of competence in the jump aircraft being flown. The training should include at least the following:

 (1) Ground Training.

 (a) Preflight inspection specific to jump aircraft and modifications.

 (b) Aircraft limitations.

 (c) Weight and Balance (W&B).

 1. Takeoff computations.

 2. Weight shift in flight procedures for exiting jumpers.

 3. Landing configuration.

 (d) Low-speed operations for jump runs.

 1. Maneuvering at minimum speed.

 2. Opening and closing jump door, if applicable.

 3. Stall recognition and recovery.

 (e) Emergency procedures.

 2. Emergencies caused by jump activities.

(f) Aircraft airworthiness determination.

1. Maintenance requirements and procedures.
2. Aircraft Status Inspection List (Figure 1).
3. Minimum equipment list (MEL), if applicable.
4. Logging maintenance discrepancies.

(g) Parachute packing in compliance with § 105.43.

(h) Drop zone surface and airspace familiarization.

(i) Descent Procedures.

2. AAD activation considerations with skydivers onboard.

(2) Flight Training.

(a) Takeoffs and landings with representative loads.

(b) Center of gravity (CG) shift with jumper exit.

(c) Stall-spin prevention and recovery.

(d) Configuration for jump run and jumper exit including procedures for tail strike avoidance.

c. W&B Procedures. The PIC is solely responsible for assuring that the aircraft being flown is properly loaded and operated so that it stays within gross weight and CG limitations. The PIC should obtain additional aircraft station position information (loading schedule) for future W&B computations. The PIC is also responsible for reviewing these records and the flight manual to gain familiarity with an aircraft’s W&B procedures and flight characteristics.

d. Computing W&B. The PIC must include the following factors:

(1) The maximum allowable gross weight and the CG limitations.

(2) The currently configured empty weight and CG location.

(3) The weight and CG location prior to each flight.

(4) The weight and location of jumpers during each phase of the flight in order to ensure that the aircraft stays within CG limits. The PIC must remain aware of CG shifts and their effects on aircraft controllability and stability as jumpers move into position for exiting the aircraft and as they exit.
e. **Operational Requirements.** The PIC is solely responsible for the operational requirements of parts 91 and 105, including compliance with the special operating limitations and placards required for flight with the door open or removed. The PIC is also responsible for ensuring that each occupant has been briefed on operation of his or her restraint system, procedures for ensuring aircraft W&B stays within limits while jumpers exit, and procedures to avoid tail strikes.

f. **Suitable Placards.** Placards should be located in the aircraft to help the pilot inform jumpers of the maximum approved loading and weight distribution. These placards should be located where anyone boarding the aircraft can see them. They should also clearly show the maximum approved seating capacity and the load distribution.

g. **Seatbelts and Approved Loading.** Section 91.107(a)(3)(ii) permits persons aboard an aircraft for the purpose of participating in sport parachuting activities to use the floor of the aircraft for a seat. However, among jump aircraft there are a wide variety of seats, benches, troop seats, and floor seating arrangements. In all cases, each person must have access to an installation-approved seatbelt. See Appendix 3, Seats and Restart Systems, for additional information describing seat and restraint system configurations. The maximum number of skydivers is determined by that aircraft’s W&B limitations, as long as there is a seatbelt or restraint for each skydiver. The approved number of skydivers that each aircraft can carry for parachute operations will most commonly be found on FAA Form 337, Major Repair and Alteration (Airframe, Powerplant, Propeller, or Appliance), used for field approvals, or an aircraft Supplemental Type Certificate (STC).

h. **Oxygen.** Pilots must use oxygen when flying above 14,000 feet mean sea level (MSL). Operators must provide oxygen to occupants when the jump plane is above 15,000 feet MSL. Above 25,000 feet MSL, occupants should use pressure-demand oxygen systems. High-altitude jumps should be made only after becoming familiar with the problems and hazards created by low temperatures, lack of oxygen, and the various types of oxygen equipment. Jumpers should not attempt high-altitude jumps without an adequate supply of breathing oxygen (refer to § 91.211). Also, pilots must use oxygen while flying between 12,500 to 14,000 feet MSL for a duration of over 30 minutes.

i. **Altitude Reporting.** Pilots report altitudes in feet above MSL.

9. **PARACHUTE OPERATIONS IN DESIGNATED AIRSPACE.** Section 105.25 contains information on the ATC authorization and notification process (see Appendix 1, Table of Location of Jump Authorization or Notification).

a. **Parachute Operations Restrictions.** No person may conduct a parachute operation, and no PIC of an aircraft may allow a parachute operation to be conducted from that aircraft:

 (1) Over or within a restricted or prohibited area, unless the controlling agency of the area concerned has authorized that parachute operation;

 (2) Within or into a Class A, B, C, or D airspace area without, or in violation of the requirements of, an ATC authorization issued under § 105.25; or
(3) Within or into a Class E or G airspace area (except as provided in subparagraphs 9c and 9d), unless the ATC facility that has jurisdiction over the airspace at the first intended exit altitude receives notification of the parachute operation no earlier than 24 hours before and no later than 1 hour before the parachute operation begins.

b. Request for a Parachute Operation Authorization or Notification. Submit each request for a parachute operation authorization or notification required under this section to the ATC facility that has jurisdiction over the airspace at the first intended exit altitude and include the information prescribed by § 105.15(a).

c. Notification of Parachute Operations. For the purposes of subparagraph 9a(3), ATC facilities may accept a written notification from an organization that conducts parachute operations and lists the scheduled series of parachute operations over a period of time not longer than 12 calendar-months. The notification must contain the information prescribed by § 105.15(a) (see Appendix 1).

d. Armed Force. Subparagraph 9a(3) does not apply to a parachute operation conducted by a member of a Department of Defense (DOD) armed force within a restricted area that extends upward from the surface when that area is under the control of the DOD armed force.

10. JUMPS OVER AND INTO CONGESTED AREAS AND OPEN-AIR ASSEMBLIES OF PERSONS.

a. Off-Airport Jumps. A skydiver may make parachute jumps away from the usual on-airport parachute school, club, or center location, as long as landowner permission is obtained for the off-airport location.

b. Certificate of Authorization (COA). Section 105.21(a) requires an FAA COA in order to conduct a parachute operation over or into a congested area of a city, town, or settlement, or an open-air assembly of persons. The responsible person of the proposed jump must obtain this COA from the FAA FSDO that has jurisdiction over the site where the jump is proposed by submitting an application, FAA Form 7711-2, Certificate of Waiver or Authorization Application. A copy of FAA Form 7711-2 and information on filling out this form can be obtained from the local FSDO or downloaded from http://www.faa.gov. An application for a COA should be submitted at least 10 working days in advance of the intended jump date to allow time for processing. Approval or denial of the application must be completed within 5 working days of receipt by the FSDO.

11. AUTHORIZATION AND NOTIFICATION REQUIREMENTS FOR PARACHUTE OPERATIONS. Whether regulations require verbal or written authorization or a COA (FAA Form 7711-1, Certificate of Waiver or Authorization) for a parachute operation depends upon the type of airspace involved and the area where the parachutist intends to land. The airspace and landing area will determine the requirements. Parachutists and pilots can use Appendix 1 to determine what authorization or notification requirements are necessary for various types of jumps. The FAA recommends that anyone establishing a permanent drop zone or a temporary jump site contact the ATC facilities nearest the site as early as possible. ATC personnel are in the best position to provide information on arrival and departure routes, airspace
classifications, and other airspace operations that may affect the safe and efficient flow of a parachuting operation. If you are uncertain of the requirements after looking at Appendix 1, contact your local FSDO and/or ATC facility for additional information.

12. EXHIBITION JUMPS AT OFF-AIRPORT LOCATIONS.

a. Parachute Landing Areas. The FAA requires the following size areas when issuing a COA for parachuting operations conducted over or into a congested area or an open air assembly of persons.

 (1) Open Field. An open area, no less than 500,000 square feet (e.g., approximately 710 feet by 710 feet, or dimensions with a sum total that equals or exceeds 500,000 square feet) that will accommodate landing no closer than 100 feet from spectators. Allows a jumper to drift over the spectators with sufficient altitude (250 feet) so as to not create a hazard to persons or property on the ground.

 (2) Level I. An open area that will accommodate a landing area no smaller than 250,000 square feet (e.g., approximately 500 feet by 500 feet, or dimensions with a sum total that equals or exceeds 250,000 square feet) and which will accommodate landing no closer than 50 feet from spectators. Allows a jumper to pass over the spectators no lower than 250 feet, including the canopy and all external paraphernalia. Many open field athletic areas and airport operational areas constitute Level I landing areas.

 (3) Level II. An open area that will accommodate a rectangular, square, oval, or round-shaped landing area of approximately 5,000 square feet for no more than four jumpers, with at least 50 feet in width. Also accommodates an additional 800 square feet minimum for each additional jumper over four for any jumper landing within 30 seconds of the last of any four jumpers. This permits jumpers to land no closer than 15 feet from spectators and to pass over the spectators no lower than 50 feet including the canopy and all external paraphernalia.

 (4) Stadium. A level II landing area smaller than 450 feet in length by 240 feet in width and bounded on two sides or more by bleachers, walls, or buildings in excess of 50 feet high.

 (5) Other Landing Area Considerations.

 (a) A landing area that exceeds the maximum dimensions of a Level I landing area, that permits a parachutist to drift over a congested area or open air assembly with a fully deployed and properly functioning parachute (if the parachutist is at sufficient altitude to avoid creating a hazard to persons and property on the ground) and that has no other safety concerns would likely not require a COA as required by § 105.21.

 (b) Any parachute jumping demonstration planned in conjunction with a public aviation event will require a COA with appropriate special provisions as required by § 105.21, even if the landing area exceeds the maximum dimensions for a Level I area. A parachute jumping demonstration planned in conjunction with a public aviation event is one that takes place any time after the first spectator arrives for the event that day.
(6) Tandem Jump Demonstrations. Only tandem instructors, rated by the USPA or authorized by the FAA General Aviation and Commercial Division (AFS-800), Federal Aviation Administration, Flight Standards Service, 800 Independence Avenue, SW, Washington, DC 20591 may conduct tandem demonstrations. Tandem jumps may be authorized as follows:

(a) Tandem jumps into open field and Level I landing areas do not require any previous jump experience for the passenger.

(b) Tandem jumps into Level II areas require the passenger to have a USPA category D license with a Professional Exhibition Rating (PRO).

(7) Alternate Landings Areas. Regardless of the parachutists’ experience, “runoffs” or escape areas must be identified.

(8) Intentional Cutaway. Cutaways may not be performed if the cutaway equipment will drift into the spectator area.

b. Qualification and Currency Requirements. In addition to landing area size requirements, the FAA also imposes qualification and currency requirements. The FAA recognizes and accepts USPA licenses and ratings found in the parachutist’s license and recent experience requirements that are established in the current edition of FAA Order 8900.1, Flight Standards Information Management System (FSIMS), Volume 3, Chapter 6, Section 1, Issue a Certificate of Waiver or Authorization for an Aviation Event, located at http://fsims.faa.gov. In accordance with Order 8900.1, parachutists and instructors who are not members of the USPA and who wish to participate in a demonstration or exhibition jump over or into a congested area must present satisfactory evidence of the experience, knowledge, and skill equivalent to that required by the USPA and must have a letter of approval from AFS-800.

13. PARACHUTE EQUIPMENT RULES.

a. Parachute. Title 14 CFR part 1, § 1.1 defines a parachute as a device used, or intended to be used, to retard the fall of a body or object through the air. For the purposes of this AC, a parachute assembly normally, but not exclusively, consists of the following major components: a canopy, a deployment device, a pilot chute and/or drogue, risers, a stowage container, a harness, and an actuation device (ripcord). There are, of course, some lesser parts associated with these major components such as connector links, bridles, and hardware. The term “pack,” when used in this AC, refers to the complete harness-container system, including the main parachute container, plus the reserve parachute and associated components. Except for an RSL (if installed), it does not include the main canopy, main risers, or components that depart with the main canopy if it is jettisoned. If a container is designed to be easily disconnected from its harness (for storage or transport, for example), the term “pack” refers to the container/canopy assembly by itself, without the harness.

b. Parachute Harness. Section 105.43 requires a solo parachutist making an intentional jump wearing a single-harness dual-pack parachute to have at least one main parachute and one approved reserve parachute. For tandem jumps, the parachute system defined in § 105.3 includes a main parachute, a reserve parachute, a harness and dual parachute container, an AAD, and a forward harness for a passenger parachutist. For both solo and tandem parachutists, the harnesses
(including the forward harness of a tandem system) and reserve parachute packs must be approved types, but the main parachutes do not need approval. The following are examples of approved parachutes as defined in § 105.3:

(1) Parachutes Manufactured under TSO-C23. This TSO prescribes the minimum performance and QA standards for personnel parachutes that are carried aboard civil aircraft or by skydivers for emergency use, including reserve parachutes used for intentional jumps. The manufacturer must meet these standards before labeling its parachute or components as complying with the TSO.

(2) Demilitarized or Military Surplus Parachutes. Military personnel-carrying parachutes (other than high-altitude, high-speed, or ejection kinds) identified by military drawing number, military order number, or any other military designation or specification. These parachutes are often referred to as demilitarized or military surplus parachutes.

c. **Assembly of Major Components.** The assembly or mating of approved parachute components from different manufacturers may be made by a certificated, appropriately rated parachute rigger in accordance with the parachute manufacturer’s instructions and without further authorization by the manufacturer or the FAA. Specifically, when various parachute components are interchanged, the parachute rigger should follow the canopy manufacturer’s instructions as well as the parachute container manufacturer’s instructions. However, the container manufacturer’s instructions take precedence when there is a conflict between the two.

(1) Assembled parachute components must be compatible. Each component of the resulting assembly must function properly and may not interfere with the operation of the other components. For example:

(a) Do not install a canopy of lesser or greater pack volume than the intended design criteria for the specific size of container, since it could adversely affect the proper functioning of the entire parachute assembly.

(b) A TSO’d canopy may be assembled with a demilitarized harness, or vice versa, as long as the assembled components comply with the safety standard of the original design.

(c) In cases where a main canopy that is already mounted on risers is assembled to an existing harness/container system, ensure that the completed assembly functions correctly. Refer to the manufacturer’s instructions to see if and how the RSL (if installed) may be deactivated when equipment configuration does not permit its use.

(2) Any questions about the operation of the assembly should be resolved by actual tests by the rigger to make certain the parachute is safe for emergency use.

(3) For a single-harness parachute system, the strength of the harness must always be equal to or greater than the maximum force generated by the canopy during certification tests. The rigger who assembles the system should record these limits in a place accessible to the user when he or she dons the assembly. Some manufacturers may also specify minimum weights or speeds for safe operation.
(a) The maximum operating weight and maximum pack opening speed of components manufactured under TSO-C23c, TSO-C23d, and TSO-C23f are marked on the components themselves.

(b) In the case where either the harness or canopy of a single-harness system is certified under TSO-C23b and the manufacturer has not specified operating limits, derive the maximum pack opening speed for that component from the strength test table in the National Aerospace Standards Specification (NAS)-804, Parachutes.

1. For the maximum operating weight of the TSO-C23b component, use the highest weight in the table less than or equal to the maximum operating weight of the other component and use the corresponding speed in the table as the maximum pack opening speed of the TSO-C23b component.

2. For the maximum pack opening speed of the TSO-C23b component, use the highest speed in the table less than or equal to the maximum pack opening speed of the other component and use the corresponding weight in the table as the maximum operating weight of the TSO-C23b component.

(4) For tandem systems, there may be additional limits for each harness.

d. AAD Installation. The FAA accepts the installation (addition of pockets, channels, guides, etc., required for the AAD assemblage in the parachute container) of each make/model AAD as part of the paperwork that is submitted by the parachute manufacturer during the TSO approval for parachute harness/container systems. The TSO approval by the FAA and the AAD approval by the manufacturer (mentioned, for example, in § 105.43(b)) are for the installation only, and are based on AAD operation not interfering with normal function of the parachute. A retrofit installation, or installation of a make or model AAD other than those specifically authorized for use by the parachute manufacturer for a particular TSO or Military Specifications (MIL-SPEC)-approved parachute, constitutes an alteration to that parachute (see paragraph 16). Manufacturer and retrofit installation are done in consultation and agreement with the AAD manufacturer, and in accordance with established test procedures such as PIA Technical Standard (TS)-112, Harness/Container - AAD Installation Test Protocol.

e. Instructions for Maintenance, Repair, or Alteration of Specific Parachutes. These instructions may be available by contacting manufacturers. Many manufacturers provide their manuals online through their Web sites. The PIA Web site, http://www.pia.com, provides a good starting point for searches. When such instructions are not available, The Parachute Manual, Volumes I and II (Dan Poynter, 1991) and FAA-H-8083-17, Parachute Rigger Handbook, set out commonly accepted repair practices. The Parachute Manual and The Parachute Rigger Handbook can be purchased from commercial booksellers; The Parachute Rigger Handbook is also available for download at: http://www.faa.gov.

f. Parachutist’s Handling of Equipment. The user of a parachute system may perform simple assembly and disassembly operations necessary for transportation, handling, or storage between periods of use if the parachute’s design simplifies such assembly and disassembly without the use of complex operations.
g. **Removal of Pilot Chute.** A certificated senior or master parachute rigger may remove the pilot chute from a front-mounted (e.g., chest-type) reserve parachute if the canopy does not use a diaper, bag, or other deployment device. When complete, the parachute must have the plain marking, “PILOT CHUTE REMOVED.” This kind of parachute can be used for intentional jumping only.

h. **Extra Equipment.** The FAA does not consider the attachment of an instrument panel, knife sheath, or other material to the exterior of the parachute assembly an alteration. If attaching any extra equipment, take care not to impair the functional design of the system.

14. PARACHUTE PACKING.

a. **Reserve Parachutes.**

(1) A certificated and appropriately rated parachute rigger must pack the reserve parachute.

(2) Visiting foreign parachutists jumping parachute systems that the FAA has not approved must have their reserve parachutes packed by someone acceptable to the foreign parachutist’s Civil Aviation Authority (CAA) or by a FAA-certificated rigger.

(3) The certificated and appropriately rated parachute rigger must pack the reserve parachute within 180 days before the date of use if the parachute system is made of materials substantially resistant to mold, mildew, or other rotting agents, or within 60 days of the date of use otherwise.

(4) A parachute user must ensure that an AAD is maintained in accordance with the AAD manufacturer’s instructions and service requirements. When a rigger packs a reserve parachute, the rigger is only certifying that it meets all safety requirements on the day it is packed; therefore, riggers should note any maintenance or battery replacement due date(s) on the packing data card so that users are able to determine AAD airworthiness and ensure conformance to the regulations. AADs are to be installed in accordance with the harness/container manufacturer’s instructions.

(5) Only the rigger who did the packing, and whose seal is removed to permit scheduled or unscheduled maintenance or repairs to the reserve container, may open, reclose, and reseal it (e.g., AAD service or closing loop adjustment) within the 180-day or 60-day period in subparagraph 14a(3).

b. **Main Parachutes.** Main parachutes must be packed within 180 days before the date of use and be packed by any certificated parachute rigger or a person working under the direct supervision of a certificated parachute rigger. The person making the next jump (including a tandem parachutist in command, but not the passenger parachutist) may also pack the main parachute.
15. PARACHUTE REPAIRS.

 a. Major Repair. A major repair, as defined in § 1.1, is a repair that, if improperly done, might appreciably affect airworthiness.

 b. Minor Repair. A minor repair is a repair other than a major repair.

 c. Major or Minor Repair Determination. When there is a question about whether a particular repair is major or minor, follow the manufacturer’s instructions. In the absence of the manufacturer’s instructions, riggers should use the FAA’s Parachute Rigger Handbook (FAA-H-8083-17) and Poynter’s Parachute Manual Volume I and II as guides. If the procedure calls for a master rigger, it should be considered a major repair. If the procedure allows for a senior rigger, it should be considered a minor repair.

 (1) The same kind of repair may be classed as major or minor depending on size or proximity to key structural components. For example, a basic patch may be a minor repair if it is small and away from seams, but may be a major repair if it is large or adjacent to a seam.

 (2) The same kind of repair may be classed as major or minor depending on whether it is done to an approved or unapproved component. For example, replacement of a suspension line on a reserve canopy is usually a major repair, while replacement of a suspension line on a main canopy is generally considered a minor repair (even if the identical technique is required for both replacements).

 (3) If an operation results in an approved configuration, the operation is considered a repair. For example, if a parachute system is approved with and without an RSL, then removing or replacing RSL components is a repair that may be major or minor depending on whether, if improperly done, it might appreciably affect airworthiness. Similarly, resizing a harness, when the original design permits a range of sizes, is a repair when the resized harness remains within the permitted range.

 (4) Only an appropriately rated master rigger or a manufacturer of approved parachute components may make major repairs. The manufacturer may designate certain repairs to be done only by the manufacturer or the manufacturer’s designee.

16. PARACHUTE ALTERATIONS.

 a. Configuration. Alterations are changes to a parachute system configuration that the manufacturer or the manufacturer’s supervising FAA Aircraft Certification Office (ACO) has not approved. Examples include removing a deployment device from a reserve canopy, adding harness fittings to permit attaching an additional canopy, using nonstandard repair materials or techniques, or installation of a specific make/model AAD when the manufacturer has not authorized such changes. Changes that result in an approved configuration are considered repairs (see paragraph 15).

 b. Approval. An alteration to an approved parachute system must be done in accordance with approved manuals and specifications and only by those with specific authorization to perform that alteration. Specific approval is not needed for the method of altering a non-TSO’d
main parachute canopy. A person seeking authorization to alter an approved parachute system should proceed as follows:

(1) A person qualified to alter a parachute (as listed below) should contact his or her local FAA FSDO inspector to discuss the proposed alteration. The applicant should be prepared to show the inspector the nature of the alteration by using a sample assembly, sketch, or drawing and be prepared to discuss the nature of the tests necessary for showing that the altered parachute meets all applicable requirements.

(2) The inspector will review the proposal with the applicant and a plan of action will be agreed upon.

(3) The applicant will then prepare an application, in the format of a letter, addressed to the local FSDO. Attach all pertinent data. The data should include:

- A clear description of the alteration;
- Drawings, sketches, or photographs, if necessary;
- Information such as thread size, stitch, pattern, materials used, and location of altered components; and
- Some means of identifying the altered parachute (model and serial number).

(4) The FSDO aviation safety inspector (ASI) may send an alteration to the ACO for review if the ASI is not experienced in parachute alterations. When satisfied, the inspector will indicate approval by date stamping, signing, and placing the FSDO identification stamp on the letter of application.

(5) Only a certificated and appropriately rated master parachute rigger, a current manufacturer of approved parachute systems or components, or any other manufacturer the Administrator considers competent may perform alterations to approved parachutes.

17. MATERIALS USED FOR REPAIRS TO TSO-APPROVED COMPONENTS.

a. Material Quality. Materials used for repairs to TSO-approved components including, but not limited to, fabric, suspension line, tape, webbing, thread, and hardware, must meet the same specifications, requirements, and certifications of the original materials used by the manufacturer.
b. **Parachute Fittings.** Hardware may be reconditioned and reused, as long as it complies with subparagraph 17a. However, the plating or replating of load-carrying parachute fittings may cause hydrogen embrittlement and subsequent failure under stress unless the plating is done properly. Chrome- or nickel-plated harness adjustment hardware may also have a smoother finish than the original and may permit slippage.

/s/
John Barbagallo
Director, Flight Standards Service
APPENDIX 1. TABLE OF LOCATION OF JUMP AUTHORIZATION OR NOTIFICATION

<table>
<thead>
<tr>
<th>Location of Jump</th>
<th>Kind of Authorization Required</th>
<th>When to Apply or Notify</th>
<th>Where to Apply or Notify</th>
<th>Title 14 CFR Section Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Over or onto any airport</td>
<td>Prior approval</td>
<td>Prior to jump</td>
<td>Airport management</td>
<td>§ 105.23</td>
</tr>
<tr>
<td>In or into Class E or G airspace</td>
<td>Air Traffic Control (ATC) notification</td>
<td>Between 24 hours and 1 hour prior to jump</td>
<td>ATC facility having jurisdiction</td>
<td>§ 105.25</td>
</tr>
<tr>
<td>In or into Class A, B, C, or D airspace</td>
<td>ATC authorization (see Note 1)</td>
<td>Prior to jump</td>
<td>ATC facility having jurisdiction</td>
<td>§ 105.25</td>
</tr>
<tr>
<td>Over or within a restricted or prohibited area</td>
<td>Prior authorization</td>
<td>Prior to jump</td>
<td>Controlling agency, as noted on sectional chart</td>
<td>§ 105.25</td>
</tr>
<tr>
<td>Over or into a congested area or open air assembly of persons</td>
<td>FAA Form 7711-1, Certificate of Authorization</td>
<td>10 working days prior to jump</td>
<td>Flight Standards District Office (FSDO) having jurisdiction over the area where jump is to be made</td>
<td>§ 105.21</td>
</tr>
</tbody>
</table>

Note 1: Verbal authorization normally issued.
APPENDIX 2. OPERATION OF AIRCRAFT WITH DOOR REMOVED OR MODIFIED FOR PARACHUTING OPERATIONS

1. Operating Limitations Revision. The previous revision, Advisory Circular (AC) 105-2D, Sport Parachuting, Appendix 2, provided a list of aircraft that have Federal Aviation Administration (FAA)-approved door open or removal procedure authorization with operating limitations. That list did not include all the aircraft currently used in skydiving operations. Instead of continuing with the use of that list, contact your local Flight Standards District Office (FSDO) for information on getting an authorization to operate your aircraft with the door removed and/or a door modified to open/close in flight. Aircraft that have approved procedure and operating limitations in their FAA-approved Aircraft Flight Manual (AFM) or a FAA-approved Supplemental Type Certificate (STC) may operate in accordance with those documents.

2. Operation with Modified or Removed Door. Any aircraft type, utility/normal category model that has had FAA-approved data used for skydiving operations or door removal can be considered.

 a. Required Data. It is the responsibility of the applicant to supply the FAA aviation safety inspector (ASI) with any data necessary to have his or her aircraft approved to operate with a door removed or a door modified to open/close in flight during jump operations. If the aircraft is altered and operated in accordance with an STC, no other limitations are required.

 b. Approved Data. Many aircraft have jump door and/or restraint systems approved by type certificate (TC), STC, or field approval. Aircraft that have not been FAA-approved by TC, STC, or field approval must have the required data to address the alteration from a Designated Engineering Representative (DER), Organization Designation Authority (ODA), or other FAA-approved data. This data will allow the owner/operator the ability to apply for a field approval or one-time STC for that aircraft.

3. Previously Approved Field Approvals. Applicants can present a previously FAA-approved field approval for jump door, handles, step, and skydiver restraint systems as data for the field approval process if the FAA-approved data are for the same aircraft make, model, and series (M/M/S).

4. Field Approval Process. Applicants need to follow the latest guidance found in FAA Order 8900.1, Flight Standards Information Management System (FSIMS), Volume 4, Chapter 9, Selected Field Approvals, for a field approval process. This guidance can be found at http://fsims.faa.gov. Any changes to the flight manual require FAA and Aircraft Certification Office (ACO) approval. Applicants must include placards and skydiver restraint systems in the continued airworthiness instructions covering the repair of placards, restraint system components, steps, handles, jump doors, etc. Installation, removal, and inspection of installed equipment will be entered in the aircraft maintenance records, including the inspection checklist for the installation and operational check of restraint systems.
APPENDIX 3. SEATS AND RESTRAINT SYSTEMS

1. **Seating Configuration and Restraint System Safety.** Not all seating and restraint system configurations used in jump aircraft provide the same level of safety in the event of an emergency landing. This appendix provides general information concerning the relative safety of commonly used seating configurations and restraint systems. These safety assessments are based on available research data and in-service experience.

2. **General Information.**

 a. **Quick Release Track Fittings.** Single stud quick release track fittings have been shown to release from the track at dynamic loads much lower than their rated strength. Dual stud quick release fittings did not exhibit this behavior in dynamic tests. Therefore, dual stud quick release fittings of the type shown in Figure 2, Dual Stud Quick Release Track Fitting, provide a much more reliable restraint anchorage than single stud fittings.

 b. **Lap Belts.** Lap belts are only effective if there is a solid support surface behind the occupant, such as a seat back, aircraft sidewall, or bulkhead. Otherwise, a tether restraint that attaches to the parachute harness provides more effective restraint.

 c. **Restraint for Aft-Facing Parachutists.** Research has shown that to restrain aft-facing parachutists, the most effective point to attach a tether restraint to a parachute harness is at the junction of the leg straps, main lift web, and the horizontal back strap. Figure 3, Tether Restraint Usage, illustrates this attachment method, in which the tether loop encircles the junction by passing between the main lift web and the horizontal back strap, and between the upper leg strap and the lower leg strap. One way to achieve this is to route the tether loop under the upper leg strap, then under the main lift web before latching the loop, as depicted in Figure 4, Pass Tether Loop Under Upper Leg Strap, Figure 5, Pass Tether Loop Under Main Lift Web, and Figure 6, Latch Tether Loop Around Parachute Harness. Since these two components of the harness are easily accessible by the wearer, this attachment method should not be prone to misuse. It also provides more effective restraint than attaching at other points on the parachute harness since the restraining force is applied near the seated occupant’s center of gravity (CG).

 d. **Restraint Belts or Tethers.** Past experience and testing have shown the validity of attaching a restraint belt(s) or tether(s) to the parachute harness as part of the overall integrated restraint system. However, most manufacturers have not tested their parachute harness configurations to see if they can accept the load vectors that would be experienced during the actual use of this type of restraint configuration. Because of this, any parachute harness that has been subjected to actual use as part of an integrated restraint system must be removed from service and inspected by the manufacturer or a parachute rigger designated by the manufacturer to determine the continued airworthiness of the parachute harness. If the inspection shows that the harness is Airworthy, it may be returned to service.

a. Side-Facing. Conventional side-facing bench seats employing dual point lap belts are a superior means of carrying parachutists in aircraft large enough to accommodate them. They offer the advantages of being simple to use and can be designed to provide significant vertical energy absorption.

b. Rear-Facing Floor Seating.

(1) Restraints are more effective if attached to the floor instead of the sidewall. Only use sidewall attachments if floor attach points are not available.

(2) Effectiveness is increased if overall tether length is kept as short as possible and the tether attachment to the aircraft is aft of the harness attachment point.

(3) Single point, single tether restraints are not recommended.

(4) Dual point, dual tether restraints offer superior restraint compared to single point, single tether restraints. This restraint method consists of two straps, each connecting the parachute harness to the aircraft floor on both sides of the parachutist as shown in Figures 7, Tether Restraint Attachment To Floor For Rear-Facing Floor Seats, Figure 8, Dual Point, Dual Tether Restraint Configuration For Rear-Facing Floor Seats, and Figure 9, Dual Point, Dual Tether Restraint Attachment To Floor For Rear-Facing Straddle.

c. Rear-Facing on Straddle Bench.

(1) Straddle benches can offer more occupant crash protection than floor seating since they can be designed to provide significant vertical energy absorption.

(2) As with floor seating, restraints are more effective if attached to the floor instead of the sidewall.

(3) Restraint effectiveness is improved if the tether strap is attached to the floor such that it is at an approximately 45 degree angle, as shown in Figure 9.

(4) Single point, single tether restraints are not very effective.

(5) Dual point, dual tether restraints offer superior restraint compared to single point, single tether restraints.
FIGURE 2. DUAL STUD QUICK RELEASE TRACK FITTING

FIGURE 3. TETHER RESTRAINT USAGE
FIGURE 4. PASS TETHER LOOP UNDER UPPER LEG STRAP

FIGURE 5. PASS TETHER LOOP UNDER MAIN LIFT WEB
FIGURE 6. LATCH TETHER LOOP AROUND PARACHUTE HARNESS

FIGURE 7. TETHER RESTRAINT ATTACHMENT TO FLOOR FOR REAR-FACING FLOOR SEATS
FIGURE 8. DUAL POINT, DUAL TETHER RERAINT CONFIGURATION FOR REAR-FACING FLOOR SEATS

FIGURE 9. DUAL POINT, DUAL TETHER RERAINT ATTACHMENT TO FLOOR FOR REAR-FACING STRADDLE