

Advisory Circular

Subject	Airport Design	Date: Draft Initiated By: AAS-100	AC No: 150/5300-13B Change:		
1	Purpose.				
	This Advisory Circular (AC) standards and recommendation	contains the Federal Aviation as for airport design.	Administration's (FAA)		
2	Cancellation.				
	This AC cancels AC 5300-13A, Airport Design, dated September 28, 2012.				
3	Applicability.				
	civil airports in support of the laconsiders safety, efficiency, caregulation, is not mandatory and relied upon as a separate basis administrative penalty. Except	he standards and guidelines in this FAA's responsibilities to provide pacity and environment. This AC and is not legally binding in its own by the FAA for affirmative enfort for the projects described in subpact is voluntary, and nonconformity statutes and regulations:	an airport system that C does not constitute a n right. It will not be cement action or other paragraphs 2, 3 and 4		
		guidelines are practices the FAA level of safety, efficiency and cap			
	• • • • • • • • • • • • • • • • • • •	not the only, acceptable means of Federal Regulations (CFR) Part	<u> </u>		
		andatory for projects funded und ling the Airport Improvement Pro	_		

4. This AC is mandatory, as required by regulation, for projects funded by the

Passenger Facility Charge (PFC) program. See PFC Assurance #9.

26	4	Related Documents.		
27 28 29		er to paragraph 1.12 for documents referenced to this AC. ACs and FAA Orders renced in the text of this AC do not include a revision letter, as they refer to the t version.		
30	5	Principal Changes.		
31		The AC incorporates the following principal changes:		
32 33 34		1. Restructured the entire document, locating design standards in the chapters with supporting information in the appendices. Chapters and Appendices are organized and updated as follows:		
35		a. <u>Chapter 1</u> , Introduction:		
36		i. Added new paragraphs explaining the meaning of terms for:		
37		1. Standard, paragraph <u>1.2.1.1</u> .		
38		2. Recommended Practice, paragraph <u>1.2.1.2</u> .		
39		3. Requirement, paragraph <u>1.2.1.3</u> .		
40		ii. Added or revised definitions in paragraph 1.5:		
41		1. Commercial Service Airport, item <u>28</u> .		
42		2. Critical Aircraft, item <u>30</u> .		
43		3. Parallel Taxiway, item <u>73</u> .		
44		4. Runway Visual Range, item <u>85</u> .		
45		5. Taxiway Centerline, item <u>93</u> .		
46 47		iii. Separated TDG 2 into TDG 2A and TDG 2B in <u>Figure 1-1</u> and related discussions and tables throughout this document.		
48 49		iv. Removed TDG 7 and revised MGW dimensions for TDG 5 and TDG 6 in <u>Figure 1-1</u> and related discussions and tables throughout this document.		
50		b. <u>Chapter 2</u> , Design Principles (formerly Design Process):		
51 52		i. Expanded discussion for design process in paragraph <u>2.4</u> , and visibility minimums in paragraph <u>2.4.2</u> .		
53		ii. Added paragraph 2.5.2 on Wrong Surface Event.		
54 55 56 57		 iii. Expanded latter portion of chapter to include discussions on Modification to Standards in paragraph 2.6, Safety Management System (SMS) in paragraph 2.7, and Diverse Aeronautical Uses of Airports (operations in the RSA) in paragraph 2.8. 		
58 59		iv. Expanded guidance and information related to diverse aeronautical uses on airports in paragraph <u>2.8</u> .		
60 61		v. Moved Table 2-1, Changes in Airport Design Standards Associated with an Upgrade in the First Two Components (Aircraft Approach Category [AAC]		

62 63 64 65 66		and Airplane Design Group [ADG]) of the Runway Design Code (RDC); Table 2-2, Changes in Airport Design Standards Associated with Lowering the Third Component (Approach Visibility Minimums) of the Runway Design Code (RDC); and Table 2-3, Aircraft Characteristics and Design Components to new <u>Appendix L</u> .
67	c.	<u>Chapter 3</u> , Runway Design:
68		i. Moved Crosswind Component table to Appendix B.
69		ii. Moved runway historical and background information to Appendix I.
70		iii. Moved Declared Distance information to Appendix H.
71		iv. Moved Approach and Departure Code information to Appendix K.
72		v. Revised approach and departure tables in paragraph <u>3.5</u> .
73 74		vi. Updated approach surface discussion in paragraph <u>3.5.1</u> and added New approach obstacle clearance <u>Figure 3-4</u> , <u>Figure 3-5</u> , and <u>Figure 3-6</u> .
75 76 77		vii. Updated departure surface to forthcoming TERPS criteria in paragraph 3.5.2 and revised obstacle clearance surface values in <u>Table 3-1</u> , <u>Table 3-2</u> , <u>Table 3-3</u> , and <u>Table 3-4</u> .
78 79 80		viii. Expanded departure surface guidance in paragraph <u>3.5.2</u> and added new departure obstacle clear area surface <u>Figure 3-8</u> , <u>Figure 3-9</u> , and <u>Figure 3-10</u> .
81		ix. Added new paragraph 3.6.5 on Overlapping Runway Safety Areas.
82		x. Expanded line of sight discussion in paragraph <u>3.7</u> .
83		xi. Added new paragraph 3.8 on Parallel Runway Separation.
84 85		xii. Added new <u>Figure 3-31</u> and expanded discussion on transverse slopes in paragraph <u>3.15.2</u> .
86		xiii. Expanded <u>Table 3-5</u> , Transverse Grades.
87		xiv. Expanded turf runway discussion in paragraph 3.15.6.
88 89 90		xv. Removed Interactive Table 3-5, Runway Design Standards Matrix. This is available online as a design tool at https://www.faa.gov/airports/engineering/airport_design/ .
91 92		xvi. Added new <u>Table 3-7</u> to facilitate locating runway design standards in <u>Appendix G</u> based on AAC and ADG.
93	d.	Chapter 4, Taxiway and Taxilane Design:
94 95 96 97		i. Reduced dimensions for taxilane object free area (TOFA) and taxiway separation (taxiway separation, taxiway centerline to fixed or moveable object, and wingtip clearance) as described in paragraph <u>4.5</u> and shown in revised <u>Table 4-1</u> . Revised these same standards for taxilanes.
98 99		ii. Updated <u>Table 4-2</u> ; Taxiway Edge Safety Margin (TESM) for TDG 5 and TDG 6 is now 14 ft (4.25 m).

100	iii. Updated taxiway turn and intersection criteria in paragraph 4.8.
101 102 103	iv. Updated Taxiway Fillet Design Tool with new criteria in this chapter. This is available online as a design tool at https://www.faa.gov/airports/engineering/airport_design/ .
104	e. <u>Chapter 5</u> , Aprons:
105	i. Expanded discussion on types of aprons in paragraph <u>5.2</u> .
106	ii. Moved information on bridges to Chapter 6.
107 108	f. Chapter 6, Airfield Systems and Facilities (formerly Chapter 6, Navigation Aids (NAVAIDs) and On-airport Air Traffic Control Facilities (ATC-F)):
109	i. Consolidated information on NAVAIDs (CSWN) from other chapters.
110 111	ii. Contains information on systems and facilities only as it related to airport design.
112	g. Removed former Chapter 7, Airfield Bridges and Tunnels.
113	h. Appendix A (formerly Appendix 1), Aircraft Characteristics:
114	i. Added new Figure A-3 on folding wingtip aircraft.
115	i. Appendix B (formerly Appendix 2), Wind Analysis, as follows:
116	i. Relocated <u>Table B-1</u> on crosswind component from former Chapter 3.
117	j. <u>Appendix D</u> (formerly Appendix 4), End-Around-Taxiway (EAT) Screens:
118 119	i. Added evaluation by licensed engineer to establish structural integrity of the EAT Screen.
120 121	k. <u>Appendix E</u> (formerly Appendix 5, General Aviation Aprons and Hangars), General Aviation Facilities:
122 123	i. Relocated information from various areas of document on general aviation (GA) facilities to this appendix.
124 125	1. <u>Appendix F</u> (formerly Appendix 6, Compass Calibration Pad), Compass Calibration Pad Survey:
126	i. Consolidated information into this appendix.
127 128	ii. Moved runway historical and background information from former Chapter3.
129	iii. Added Runway Object Clearing information.
130 131	m. New <u>Appendix J</u> (formerly Appendix 8, Taxiway Fillet Design), Taxiway Additional Information.
132	i. Describes examples of taxiway designs with elevated safety risks.
133 134	ii. Removed TDG 7. Separated TDG 2 into TDG 2A (<u>Table J-3</u>) and TDG 2B (<u>Table J-4</u>) and included these additional fillet design dimensions.

135 136		 iii. Added paragraph <u>J.4</u> containing a description of the methodology and calculations used for reductions in taxiway standards. 		
137 138		iv. Added reference to the Taxiway Fillet Design Tool, available online at https://www.faa.gov/airports/engineering/airport_design/ .		
139 140 141		n. New <u>Appendix K</u> , Approach and Departure Reference Codes, containing former paragraph 323, Approach and Departure Reference Codes, and updated as follows:		
142 143		i. Developed new <u>Figure K-1</u> for airplane design group (ADG V-VI Departures.		
144		ii. Updated <u>Table K-1</u> on approach reference code.		
145		iii. Relocated information from former Chapter 3.		
146		2. Revised and updated figures throughout.		
147 148		3. Updated the format of the document in this version and made minor editorial changes throughout.		
149	6	Using this Document.		
150 151 152 153		Hyperlinks (allowing the reader to access documents located on the internet and to maneuver within this document) are provided throughout this document and are identified with underlined text. When navigating within this document, return to the previously viewed page by pressing the "ALT" and "←" keys simultaneously.		
154		Figures in this document are schematic representations and are not to scale.		
155	7	Use of Metrics.		
156 157		Throughout this AC, U.S. customary units are used followed with "soft" (rounded) conversion to metric units. The U.S. customary units govern.		
158	8	Where to Find this AC.		
159		You can view a list of all ACs at		
160 161		https://www.faa.gov/regulations_policies/advisory_circulars/. You can view the Federal Aviation Regulations at https://www.faa.gov/regulations_policies/faa_regulations/.		
162	9	Feedback on this AC.		
163		If you have suggestions for improving this AC, you may use the Advisory Circular		
164		Feedback form at the end of this AC		

John R. Dermody Director of Airport Safety and Standards

165	CONTENTS

166	Paragra	ph	Page
167	CHAPT	ER 1. Introduction	1-1
168	1.1	Policy.	1-1
169	1.2	Standards, Recommended Practices, and Requirements.	1-1
170	1.3	Federal Regulations.	1-3
171	1.4	Environmental Protection.	1-4
172	1.5	Definitions	1-4
173	1.6	Categories and Codes.	1-13
174	1.7	Airport Layout Plan (ALP).	1-15
175	1.8	Airport Data.	1-16
176	1.9	Federal Assistance Program.	1-17
177	1.10	State Role.	1-18
178	1.11	Local Government Role.	1-19
179	1.12	Related Documents and Federal Regulations.	1-19
180	CHAPT	ER 2. Design Principles	2-1
181	2.1	General.	2-1
182	2.2	Airport Planning Relationship to Airport Design.	2-1
183	2.3	Present Needs versus Future Demand	2-1
184	2.4	Design Process.	2-2
185	2.5	Key Safety Considerations for Airport Design.	2-4
186	2.6	Modification of Standards	2-5
187	2.7	Safety Management Systems (SMS).	2-5
188	2.8	Diverse Aeronautical Uses on Airports.	2-6
189	CHAPT	ER 3. Runway Design	3-1
190	3.1	Introduction	3-1
191	3.2	Runway Design Code (RDC)	3-1
192	3.3	Runway Design Concepts and Considerations.	3-1
193	3.4	Runway End Siting Criteria.	3-4
194	3.5	Approach and Departure Surfaces.	3-7

195	3.6	Runway Geometry.	3-18
196	3.7	Runway Line of Sight.	3-23
197	3.8	Parallel Runway Separation.	3-26
198 199	3.9	Runway Safety Area (RSA) / Engineered Materials Arresting Systems (EMAS).	3-31
200	3.10	Obstacle Free Zone (OFZ).	3-34
201	3.11	Runway Object Free Area (ROFA).	3-44
202	3.12	Runway Protection Zone (RPZ)	3-44
203	3.13	Clearway.	3-50
204	3.14	Stopway	3-51
205	3.15	Surface Gradient.	3-52
206	3.16	Turf Runways	3-64
207	3.17	Marking and Lighting.	3-65
208	3.18	Instrument Flight Procedures.	3-65
209	3.19	Jet Blast	3-69
210	3.20	Runway Design Standards Matrix.	3-69
211	CHAPT	ER 4. Taxiway and Taxilane Design	4-1
212	4.1	General.	4-1
213	4.2	Taxiway Design Group (TDG).	4-2
214	4.3	Taxiway and Taxilane Design Method.	4-2
215	4.4	Straight Segment Taxiway/Taxilane Width.	4-8
216	4.5	Taxiway/Taxilane Clearance.	4-9
217	4.6	Parallel Taxiways.	4-18
218	4.7	Taxiway Fillet Design.	4-21
219	4.8	Runway/Taxiway Intersections.	4-24
220	4.9	Holding Bays for Runway Ends.	4-43
221	4.10	Taxiway Turnarounds.	4-45
222	4.11	Apron Taxiways and Taxilanes.	4-46
223	4.12	End-Around Taxiways (EAT)	4-47
224	4.13	Taxiway and Taxilane Shoulders.	4-50
225	4.14	Surface Gradient for Taxiways, Taxilanes, and TSAs	4-51
226	4.15	Taxiway Line of Sight (LOS).	4-53
227	4.16	Taxiway/Taxilane Drainage	4-54

228	4.17	Markings/Lighting/Signs.	4-54
229	4.18	Taxiway Bridges.	4-54
230	4.19	Jet Blast	4-54
231	CHAPT	ER 5. Aprons	5-1
232	5.1	Background.	5-1
233	5.2	Apron Types	5-2
234	5.3	Apron Design Objectives.	5-3
235	5.4	Apron Location.	5-4
236	5.5	Runway Access from Aprons.	5-5
237	5.6	Lateral Object Clearance on Aprons.	5-6
238	5.7	Apron Taxilanes.	5-8
239	5.8	Fueling on Aprons.	5-9
240	5.9	Apron Surface Gradients.	5-10
241	5.10	Apron Drainage	5-11
242	5.11	Apron Snow Removal.	5-12
243	5.12	Apron Markings.	5-13
244	5.13	Apron Signage and Edge Lighting	5-14
245	5.14	Area Lighting on Aprons.	5-14
246	5.15	Apron Security.	5-15
247	5.16	Apron Pavement Design.	5-16
248	5.17	Jet Blast and Propeller Wash on Aprons	5-16
249 250	5.18	Airport Traffic Control Tower (ATCT) Visibility / Line Of Sight (LOS) on Aprons	5-18
251	5.19	Apron Vehicle Service Road	
252		Design Considerations for Specific Apron Types.	
253	CHAPT	ER 6. Airfield Systems and Facilities	6-1
254	6.1	Introduction	6-1
255	6.2	Airfield Bridges and Tunnels	6-1
256	6.3	Airfield Drainage.	6-5
257	6.4	Airfield Pavements	6-6
258	6.5	Airfield Roadways.	6-6
259	6.6	Blast Fences.	6-10

260	6.7	Buildings within AOA.	6-11
261	6.8	Security of Airports.	6-12
262	6.9	Compass Calibration Pad.	6-14
263	6.10	Underground Power, Control and Communications Cables	6-18
264	6.11	CNSW and ATC Facilities and Equipment.	6-20
265	Append	dix A. Aircraft Characteristics	A-1
266	A.1	Basic Aircraft Characteristics.	A-1
267	A.2	Background.	A-2
268	A.3	Aircraft Arranged by Aircraft Manufacturer, and Runway Design Code (RDC)	A-3
269	Append	dix B. Wind Analysis	B-1
270	B.1	Objective.	B-1
271	B.2	Coverage and Orientation of Runways.	B-1
272	B.3	Allowable Crosswind Components.	B-2
273	B.4	Wind Data Sources.	B-5
274	B.5	Analyzing Wind Data.	B-6
275	Append	dix C. The Effects and Treatment of Jet Blast	C-1
276	C.1	Introduction.	C-1
277	C.2	Jet Blast Effects	C-1
278	Append	dix D. End-Around Taxiway (EAT) Screens	D-1
279	D.1	Screen Sizing.	D-1
280	D.2	Screen Construction.	D-2
281	Append	dix E. General Aviation Facilities	E-1
282	E.1	Background.	E-1
283	E.2	General Aviation Apron.	E-1
284	E.3	Hangars.	E-12
285	E.4	GA Terminal Building.	E-16
286	E.5	Airport Support Facilities.	E-17
287	E.6	Fencing for GA Airports.	E-20
288	Append	dix F. Compass Calibration Pad Survey	F-1
289	F.1	Survey of the Compass Calibration Pad.	F-1
290	F.2	Resurvey of In-service Pads	F-1

291	Appen	dix G. Runway Design Standards Tables	G-1
292	Appen	dix H. Declared Distances	H-1
293	H.1	Application	H-1
294	H.2	RSA, ROFA, and RPZ Lengths and Related Nomenclature.	H-2
295	H.3	Background.	H-3
296	H.4	For Takeoff.	H-4
297	H.5	For Landing.	H-15
298	H.6	Notification.	H-20
299	H.7	Documenting Declared Distances.	H-22
300	Appen	dix I. Runway Additional Information	I-1
301	I.1	Runway Safety Area (RSA) Development.	I-1
302	I.2	Runway Protection Zone (RPZ) Background	I-2
303	I.3	Runway as a Taxiway.	I-3
304	I.4	Object Clearing.	I-4
305	I.5	Threshold Displacement on a Visual Runway	I-4
306	I.6	Overlapping RSAs.	I-5
307	Appen	dix J. Taxiway Additional Information	J-1
308	J.1	Purpose.	J-1
309	J.2	Taxiway Fillet and Turn Design.	J-1
310	J.3	TDG Tables for Common Intersection Angles.	J-8
311	J.4	Methodology and Calculations for Reductions in Taxiway Standards	J-12
312	J.5	Taxiway Geometries with Elevated Risk to Safety.	J-15
313	Appen	dix K. Approach and Departure Reference Codes	K-1
314	K.1	General Overview.	K-1
315	K.2	Approach Reference Code (APRC).	K-1
316	K.3	Departure Reference Code (DPRC)	K-3
317 318		dix L. DIfferences in Airport Design Standards and Relationship of Aircraft racteristics to Design COmponents	L-1
319	Appen	dix M. Acronyms	M-1
320	Appen	dix N. Index	N-1

322	FIGURES	
323	Figure 1-1. Taxiway Design Groups (TDGs)	1-15
324	Figure 3-1. Runway Ends	3-5
325	Figure 3-2. Standard Approach Surface	3-9
326	Figure 3-3. Displaced Threshold	3-9
327	Figure 3-4. Visual and Daytime IFR Circling Obstacle Clearance S	urfaces3-10
328	Figure 3-5. Non-Precision and Nighttime IFR Circling Obstacle Clo	earance Surfaces3-11
329	Figure 3-6. APV and PA Instrument Runway Obstacle Clearance S	Surfaces 3-13
330	Figure 3-7. Offset Approach Plane	3-14
331	Figure 3-8. Instrument Departure Runway Obstacle Clearance Surf	ace3-16
332	Figure 3-9. Departure Surface with Clearway	3-17
333	Figure 3-10. Departure Surface – Perspective View	3-17
334	Figure 3-11. Converging Non-Intersecting Runways	3-20
335	Figure 3-12. Intersecting Runways	3-22
336	Figure 3-13. Runway Visibility Zone	3-24
337	Figure 3-14. Runway Visibility Zone – Extended Centerline	3-25
338 339	Figure 3-15. Parallel Runway Separation, Simultaneous Radar-Con Threshold	
340	Figure 3-16. Runway Safety Area (RSA)	3-34
341 342	Figure 3-17. Obstacle Free Zone (OFZ) for Visual Runways and Runways and Runways and Runways and Runways and Runways and Runways (1.2 km) Approach Visibility Minimum	•
343 344	Figure 3-18. OFZ for Operations on Runways by Small Aircraft wi Mile (1.2 km) Approach Visibility Minimums	
345 346	Figure 3-19. OFZ for Operations on Runways by Large Aircraft wi Mile (1.2 km) Approach Visibility Minimums	
347 348	Figure 3-20. OFZ for Operations on Runways by Large Aircraft wi Mile (1.2 km) Approach Visibility Minimums and Di	
349	Figure 3-21. Precision Obstacle Free Zone (POFZ) – No Displaced	Threshold3-41
350	Figure 3-22. POFZ – Displaced Threshold	3-43
351 352	Figure 3-23. Runway Protection Zone (RPZ), Runway Object Free Safety Area (RSA)	•
353	Figure 3-24. Runway with all Declared Distances Equal to the Run	way Length3-48
354 355	Figure 3-25. Approach and Departure RPZs Where the Takeoff Rutthan the Takeoff Distance Available (TODA)	· · · · · · · · · · · · · · · · · · ·

356	Figure 3-26. Clearway	3-51
357	Figure 3-27. Stopway	3-52
358	Figure 3-28. Alternate Runway Cross Sections	3-55
359	Figure 3-29. Longitudinal Grade Limitations for Aircraft Approach Categories A and B	3-56
360	Figure 3-30. Longitudinal Grade Limitations for Aircraft Approach Categories C, D, and	E3-57
361	Figure 3-31. Transverse Grade Limitations	3-62
362	Figure 3-32. RSA Grade Limitations Beyond 200 feet (61 m) from the Runway End	3-63
363	Figure 3-33. Airport Layout Example	3-72
364	Figure 4-1. Three-Path Concept Taxiway Intersection	4-4
365	Figure 4-2. Apron-Taxiway Transition	4-7
366	Figure 4-3. Apron-Runway Transition	4-8
367	Figure 4-4. Taxiway Edge Safety Margin (TESM) – Straight Segment	4-9
368	Figure 4-5. Wingtip Clearance – Parallel Taxiways/Taxilanes	4-11
369	Figure 4-6. Wingtip Clearance from Taxiway	4-13
370	Figure 4-7. Taxilane Separations and Clearances	4-14
371	Figure 4-8. Wingtip Clearance from Apron Taxilane	4-17
372	Figure 4-9. TSA and TOFA at Taxiway Intersections	4-18
373	Figure 4-10. Parallel Taxiways	4-19
374	Figure 4-11. Parallel Taxiway Offset	4-20
375	Figure 4-12. Taxiway Turn – 90 Degree Delta	4-22
376	Figure 4-13. Taxiway Turn – less than 90 Degree Delta	4-23
377	Figure 4-14. Taxiway Turn – greater than 90 Degree Delta	4-23
378	Figure 4-15. Entrance Taxiway	4-27
379	Figure 4-16. Bypass Taxiway Bay Configuration	4-30
380	Figure 4-17. High-Speed Exit – TDG 5	4-37
381	Figure 4-18. High-Speed Exit – Reverse Turn	4-38
382	Figure 4-19. Right-Angled Exit Taxiway	4-39
383	Figure 4-20. High-Speed Exit Separation	4-39
384	Figure 4-21. Crossover Taxiway where Direction Reversal is Needed Based on TDG	4-41
385	Figure 4-22. Crossover Taxiway where Direction Reversal is Needed Based on ADG	4-41
386	Figure 4-23. Crossover Taxiway Without Direction Reversal Between Taxiways	4-43
387	Figure 4-24. Holding Bay Configuration	4-44
388	Figure 4-25. Holding Bay – Alternate Configuration	4-45

389	Figure 4-26. Taxiway Turnaround	4-46
390	Figure 4-27. End-Around Taxiway (EAT) – ADG-II	4-48
391	Figure 4-28. EAT – ADG-III	4-49
392	Figure 4-29. Taxiway Transverse Gradients	4-53
393	Figure 5-1. Types of Aprons	5-3
394	Figure 5-2. Parking Position Clearance	5-8
395	Figure 5-3. Passenger Terminal Gate Area	5-23
396	Figure 6-1. Shoulder Markings for Taxiway Bridges	6-4
397	Figure 6-2. Compass Calibration Pad	6-17
398	Figure 6-3. Typical Communications, Navigation, Surveillance and Weather (CNSW)	6-21
399	Figure 6-4. Two Frangible Connections	6-25
400	Figure 6-5. Remote Transmitter/Receiver (RTR) Communication Facility	6-26
401	Figure 6-6. Airport Surveillance Radar (ASR) Steel Tower (17 feet [5 m] high)	6-27
402	Figure 6-7. Approach Lighting System (ALS) with Sequenced Flashers II (ALSF-2)	6-29
403	Figure 6-8. Simplified Short Approach Light System with Runway Alignment (SSALR)	6-30
404 405	Figure 6-9. Medium Intensity Approach Lighting System (MALS) with Runway Alignme Indicator Lights (MALSR)	
406	Figure 6-10. MALS	6-32
407	Figure 6-11. MALS with Sequenced Flashers (MALSF)	6-33
408	Figure 6-12. Omnidirectional Airport Lighting System (ODALS)	6-34
409	Figure 6-13. Lead-in Lighting System (LDIN)	6-35
410	Figure 6-14. Runway End Identifier Lighting (REIL)	6-37
411	Figure 6-15. 4-Unit Precision Approach Path Indicator (PAPI)	6-38
412	Figure 6-16. Instrument Landing System (ILS) Localizer (LOC) Siting and Critical Area	6-39
413	Figure 6-17. LOC 8-Antenna Array	6-40
414	Figure 6-18. Glideslope (GS) Siting and Critical Area	6-41
415	Figure 6-19. GS Antenna and Equipment Shelter	6-42
416	Figure 6-20. Distance Measuring Equipment (DME) Antenna	6-42
417	Figure 6-21. Touchdown Runway Visual Range (RVR)	6-43
418	Figure 6-22. Enroute VHF Omnidirectional Range (VOR) Facility	6-44
419	Figure 6-23. TVOR Installation	6-45
420	Figure 6-24. Non-Directional Beacon (NDB) Facility	6-46
421	Figure 6-25. Automated Surface Observing System (ASOS) Weather Sensors Suite	6-47

422	Figure 6-26	. Weather Camera (WCAM) Pole	6-48
423	Figure 6-27	. Weather Equipment Sensor Pole	6-49
424	Figure 6-28	. Low Level Windshear Alert System (LLWAS) Sensor Pole	6-50
425	Figure 6-29	. Automated Dependent Surveillance Broadcast (ADS-B) Ground Station	6-51
426			
427	Figure A-1.	Key Dimensions – Large Aircraft	A-1
428	Figure A-2.	Key Dimensions – Small Aircraft	A-2
429	Figure A-3.	Folding Wingtips	A-3
430			
431	Figure B-1.	Wind Vector Diagram	B-4
432	Figure B-2.	Blank Windrose Graphic Showing Direction and Divisions	B-9
433	Figure B-3.	Completed Windrose Graphic Using Table B-2	B-10
434	Figure B-4.	Windrose Analysis	B-11
435			
436	Figure D-1.	End-Around Taxiway (EAT) Screen Sizing and Location	D-1
437	Figure D-2.	EAT Screen Vertical Dimension Calculation	D-3
438	Figure D-3.	Stop End of the Runway/EAT Elevation Difference	D-4
439	Figure D-4.	Example Visual Screen Structure	D-5
440	Figure D-5.	Example Panel Layout for 13-foot (4 m) High Screen	D-8
441	Figure D-6.	Visual Screen Stripe Orientations	D-9
442			
443	Figure E-1.	Tiedown Layout	E-4
444	Figure E-2.	Tiedown Spacing	E-6
445	Figure E-3.	Nested Tiedowns	E-7
446	Figure E-4.	Single Path Entry/Exit Taxilane	E-9
447	Figure E-5.	Dual Path Entry/Exit Taxilane	E-9
448	Figure E-6.	T-Hangar Complex	E-11
449	Figure E-7.	Standard T-Hangar Layout	E-13
450	Figure E-8.	Nested T-Hangar Layout	E-14
451	Figure E-9.	Separation of Vehicle Parking and Aircraft Pavement	E-18
452			
453	Figure H-1.	Typical Starting Point for ASDA, TODA, and TORA	H-4
454	Figure H-2.	Typical Location for Departure End of TORA	H-5

455	Figure H-3. Modified Departure End of TORA due to Incompatible RPZ Land Use	H-6
456	Figure H-4. Modified TODA and TORA due to Object Penetration of 40:1 Surface	H-7
457	Figure H-5. Extended TODA with Clearway – Shortened TORA	H-8
458	Figure H-6. Typical Location of TODA DER – No Clearway	H-9
459	Figure H-7. Extended TODA with Clearway – Typical TORA	H-10
460	Figure H-8. Typical Location of Stop End of ASDA and LDA	H-12
461	Figure H-9. Adjusted ASDA and LDA Stop End for the RSA	H-13
462	Figure H-10. Adjusted ASDA and LDA Stop End for ROFA	I -14
463	Figure H-11. Stop End of ASDA with Stopway	H-15
464	Figure H-12. Typical Start of LDA	H-17
465	Figure H-13. LDA Starting Point – Displaced Threshold for Obstacle Clearance Surface	H-18
466	Figure H-14. LDA Starting Point – Displaced Threshold for Adjusted RPZ	I -19
467	Figure H-15. LDA Starting Point – Displaced Threshold for Adjusted RSA	H-20
468	Figure H-16. LDA Starting Point – Displaced Threshold for Adjusted ROFA	H-21
469		
470	Figure I-1. Percent of Aircraft Overrun Versus Distance Beyond the Runway End	I-2
471	Figure I-2. Threshold Displacement on a Visual Runway	I-5
472	Figure I-3. Overlapping Runway Safety Areas – Elevated Risk	I-6
473	Figure I-4. Intersecting Runways – Elevated Risk	I-7
474		
475	Figure J-1. Fillet Design Example	. J-2
476	Figure J-2. Angle of Intersection (Delta)	. J-3
477	Figure J-3. Steering Angle of No More Than 50 Degrees	. J-4
478	Figure J-4. Track of the Main Gear is Modeled, Offset by the TESM	. J-4
479	Figure J-5. Minimize Excess Pavement While Providing the Standard TESM	. J-5
480	Figure J-6. Pavement Edge (Main Gear Track + TESM) Offset by 6 inches (15 cm)	. J-5
481	Figure J-7. Detail of Figure J-6	. J-6
482 483	Figure J-8. Taper Selection to Minimize Excess Pavement with Consideration for Constructability	. J-6
484 485	Figure J-9. Establishing Radius of Outer Taxiway Pavement Edge Based on the Centerline Radius and Taxiway Width for Each TDG	. J-7
486	Figure J-10. Dimensioning the Fillet Design	. J-7
487	Figure J-11. Taxiway/Taxilane OFA Width	J-13

488	Figure J-12. Separation Distance between Parallel Taxiways/Taxilanes	J-15
489	Figure J-13. Extra-Wide Pavement Area at Runway Entrance	J-17
490	Figure J-14. Entrance Taxiway Intersecting Runway End at an Acute Angle	J-18
491	Figure J-15. Entrance Taxiway Intersecting Runway End at an Obtuse Angle	J-19
492	Figure J-16. Complex Taxiway Intersection not Meeting the "Three-Path Concept"	J-20
493 494	Figure J-17. Aerial Image of Complex Taxiway Intersection Exceeding the "Three-Path" Concept	J-21
495	Figure J-18. Taxiway Intersection that Coincides with Multiple Runways	J-22
496	Figure J-19. Y-Shaped Taxiway Crossing a Runway	J-23
497	Figure J-20. Apron-Taxiway Configuration – Elevated Risk	J-24
498	Figure J-21. Aerial Image of High-speed Exit Collocated with Connecting Taxiways	J-25
499	Figure J-22. High-Speed Exit Collocated with Connecting Taxiway	J-26
500	Figure J-23. Aerial Image of High-speed Exit Leading to Another Runway	J-27
501	Figure J-24. Parallel Taxiway Adjacent to Apron Pavement	J-28
502	Figure J-25. Aerial Image of Short (Stub) Taxiway Connection to a Runway	J-29
503	Figure J-26. Poor Holding Bay – Moderate Risk Configuration	J-30
504	Figure J-27. Poor Holding Bay – Elevated Risk Configuration	J-30
505	Figure J-28. Collocated High-Speed Runway Exit Taxiways	J-31
506	Figure J-29. Taxiway Fillet Pavement for Uncommon Turn	J-32
507	Figure J-30. Aligned Taxiway and Corrected Design	J-33
508	Figure J-31. Taxiway Connections to V-shaped Runways	J-34
509	Figure J-32. Taxiways to Converging, Non-Intersecting Runways	J-34
510	Figure J-33. Parallel Taxiway/Runway Intersection – Elevated Risk	J-35
511	Figure J-34. Parallel Taxiway/Runway Intersection – Optimum Configuration	J-36
512		
513	Figure K-1. ADG V-VI Departures	K-5
514		
515	TABLES	
516	Table 1-1. Aircraft Approach Category (AAC)	1-13
517	Table 1-2. Airplane Design Group (ADG)	1-14
518	Table 1-3. Visibility Minimums	1-14

519	Table 3-1. Visual and Daytime IFR Circling Obstacle Clearance Surfaces	3-10
520	Table 3-2. Non-Precision and Nighttime IFR Circling Obstacle Clearance Surfaces	3-11
521	Table 3-3. APV and PA Instrument Runway Obstacle Clearance Surfaces	3-12
522	Table 3-4. Instrument Departure Runway Obstacle Clearance Surface	3-16
523	Table 3-5. Transverse Grades	3-59
524	Table 3-6. Criteria to Support Instrument Approach Procedure Development ¹	3-68
525	Table 3-7. Runway Design Standards Lookup Table	3-71
526	Table 4-1. Design Standards Based on Airplane Design Group (ADG)	4-12
527	Table 4-2. Design Standards Based on Taxiway Design Group (TDG)	4-12
528 529	Table 4-3. Dimensions for Runway Entrance/Exit Taxiways with TDG 1A, 1B, 2A, or 2 (Where the Two 90-Degree Turns are Nonstandard)	
530 531	Table 4-4. Dimensions for Runway Entrance/Exit Taxiways with TDG 3, 4, 5, or 6 (Wh Two 90-Degree Turns are Nonstandard)	
532	Table 4-5. ADG Cumulative Runway Exit	4-33
533	Table 4-6. AAC Cumulative Runway Exit Probability	4-34
534 535	Table 4-7. Runway to Taxiway Separation for Reverse Turns from a High-Speed Exit B Taxiway Design Group (TDG)	
536	Table 4-8. Crossover Taxiways with Direction Reversal Between Taxiways Based on T	DG4-40
537	Table 4-9. Crossover Taxiways with Direction Reversal Between Taxiways Based on A	DG . 4-42
538	Table 5-1. Parking Position Clearance.	5-8
539	Table 6-1. Fixed-by-function Designation for CNSW Equipment	6-23
540	Table B-1. Allowable Crosswind Component per Runway Design Code (RDC)	В-3
541	Table B-2. Standard Wind Analysis Results for ALL_WEATHER	B-8
542	Table D-1. Aircraft Characteristics	D-4
543	Table D-2. Notes for Figure D-4 – High Frame Elevation	D-6
544	Table D-3. Notes for Figure D-4 – Intermediate Frame Elevation	D-6
545	Table D-4. Notes for Figure D-4 – Low Frame Elevation	D-6
546	Table D-5. International Committee of Illumination (CIE) Chromaticity Coordinate Lin	nits D-9
547 548	Table D-6. Minimum Coefficient of Retroreflection Candelas/Foot Candle/Square Foot/Candelas/Lux/Square Meter	D-10
549	Table D-7. Visual Screen Panel Wind Loads	D-10
550	Table E-1. Parking Position Sizing	E-2

551	Table J-1. Taxiway Intersection Dimensions for TDG 1A
552	Table J-2. Taxiway Intersection Dimensions for TDG 1B
553	Table J-3. Taxiway Intersection Dimensions for TDG 2A
554	Table J-4. Taxiway Intersection Dimensions for TDG 2B
555	Table J-5. Taxiway Intersection Dimensions for TDG 3
556	Table J-6. Taxiway Intersection Dimensions for TDG 4
557	Table J-7. Taxiway Intersection Dimensions for TDG 5
558	Table J-8. Taxiway Intersection Dimensions for TDG 6
559	Table J-9. Taxiway OFA Calculations (feet)
560	Table J-10. Taxilane OFA Calculations (feet)
561	Table K-1. Approach Reference Code (APRC)
562	Table K-2. Departure Reference Code (DPRC)
563	
564 565	Table L-1. Differences in Design Standards with Upgrade in Aircraft Approach Category (AAC) and Airplane Design Group (ADG)L-1
566 567	Table L-2. Differences in Airport Design Standards with Lowering Approach Visibility MinimumsL-3
568	Table L-3. Relationship of Aircraft Characteristics to Design ComponentsL-4

569		CHAPTER 1. Introduction
570	1.1	Policy.
571 572 573		The FAA has statutory responsibilities to serve the public's interest by developing a national aviation system that is safe, secure and efficient. Per Title 49 United States Code (USC), Chapter 401, General Provisions, Section (§) 40101(d):
574 575 576 577 578 579		"[T]he [FAA] Administrator shall consider the following matters, among others, as being in the public interest: (1) assigning, maintaining, and enhancing safety and security as the highest priorities in air commerce, (2) regulating air commerce in a way that best promotes safety and fulfills national defense requirements, (3) encouraging and developing civil aeronautics, including new aviation technology."
580 581 582 583 584	1.1.1	Policy for Airport Development. The FAA has specific responsibilities related to development and improvement of airports. These responsibilities establish the purpose and need for airport design standards. Title 49 USC Chapter 471, <i>Airport Development</i> , establishes the following objectives, in part, as policy:
585		1. Safe operation of the airport system
586		2. Minimize noise impact on nearby communities
587		3. Enhance development of cargo hub airports
588		4. Serve passengers and cargo efficiently and effectively
589		5. Promote economic development
590 591		6. Provide for protection and enhancement of natural resources and quality of the environment
592 593		7. Enhance safety and capacity to maximum extent feasible by increasing efficiency and decreasing delays
594 595		8. Ensure non-aviation usage of the navigable airspace does not decrease the safety and capacity of the airport and surrounding airspace
596		9. Encourage use of innovative technology to promote safety, capacity and efficiency.
597	1.2	Standards, Recommended Practices, and Requirements.
598		The use of the standards and recommendations contained in this advisory circular (AC)
599 600		support the FAA's statutory responsibilities. These standards and recommendations represent the most effective means to meet aviation demand in a manner consistent with
601		national policy. Implementation of these standards and recommendations does not limit
602		or regulate the operations of aircraft.

603	1.2.1	Meaning of	Terms.
604 605 606 607 608 609		1.2.1.1	Standard. A physical characteristic, quality, configuration, function, operation or procedure established by the FAA as a benchmark for uniformity, safety, capacity, performance, economy and environmental quality. The FAA standards serve a prominent role in fulfilling the FAA's statutory responsibilities summarized in paragraph 1.1.1.
610 611 612 613 614		1.2.1.2	Recommended Practice. Supplemental measures and guidelines the FAA recognizes as being beneficial towards enhancing safety, capacity or efficiency. Recommended practices imply discretionary application to address a site-specific condition.
615 616 617 618 619		1.2.1.3	Requirement. A condition or action that establishes an obligation to conform. Mandatory language such as "must", "shall", "required" or "requirements" used in this AC describe obligations that originate in either federal statutes or regulations. This AC does not establish or modify any requirements.
620 621 622		1.2.1.4	Design Consideration. Additional factors to take into account during airport design that may influence application of a standard or recommended practice.
623 624 625 626 627 628 629	1.2.2	The standard performance development safety that e	of Airport Design Standards. ds and recommendations in this AC cover a wide range of size and e characteristics of aircraft anticipated to operate at an airport. Airport t conforming to the standards of this AC establish an acceptable level of insures optimum operation of the critical aircraft without individual or location-specific encumbrances affecting utility and efficient airport
630 631 632 633 634 635 636	1.2.3	The standard airport even sub-standard airport stand	Exceeding Airport Standards. ds in this AC do not prevent, regulate or control operation of aircraft at an though the physical characteristics of the runways, taxiways and aprons are I for a particular aircraft operation. While an aircraft operation exceeding lards is not inherently unsafe, such operations have potential to introduce risks to the pilot as well as other aircraft, vehicles, individuals and facilities rt.
637 638 639 640 641		1.2.3.1	Specific operational controls may be necessary in order to establish an acceptable level of safety for operation of aircraft that exceed the standards at the airport. As applicable, consult with the appropriate FAA office (e.g. Airports, Flight Technologies and Procedures Division (AFS-400), Air Traffic Organization) to identify potential adjustments to

642 643 644		operational procedures that can accommodate these operations. Refer to <u>AC 150/5000-17</u> , <i>Critical Aircraft and Regular Use Determination</i> , for guidance related to critical aircraft.
645	1.3	Federal Regulations.
646 647		The following federal regulations have a prominent role for development of an airport. This listing is not inclusive of all federal regulations that have applicability at an airport.
648 649	1.3.1	Title 14 CFR Part 77, Safe, Efficient Use and Preservation of the Navigable Airspace (Part 77).
650 651		Part 77 requires proponents of construction or alteration on or near an airport to give timely notification to the FAA. This notification serves as the FAA basis for:
652 653 654		1. Evaluating the effect of the proposed construction or alteration on safety in air commerce and the efficient use and preservation of the navigable airspace and of airport traffic capacity at public use airports;
655 656		2. Determining whether the effect of proposed construction or alteration is a hazard to air navigation;
657 658		3. Determining appropriate marking and lighting recommendations, using <u>AC 70/7460-1</u> , <i>Obstruction Marking and Lighting</i> ;
659 660		4. Determining other appropriate measures to be applied for continued safety of air navigation; and
661 662 663 664 665 666		5. Notifying the aviation community of the construction or alteration of objects that affect the navigable airspace, including the revision of charts, when necessary. The FAA Obstruction Evaluation/Airport Airspace Analysis (OE/AAA) website https://oeaaa.faa.gov/oeaaa is available for electronic submission of this notice. FAA Order JO 7400.2 , <i>Procedures for Handling Airspace Matters</i> , establishes the FAA's policy for processing airspace matters.
667	1.3.2	Title 14 CFR Part 139, Certification of Airport (Part 139).
668 669 670 671 672		Part 139 regulates airports having scheduled air carrier operations with more than nine passenger seats or unscheduled air carrier operations with more than 30 passenger seats. This includes "joint-use airports" (also known as "shared-use airports"). This AC, along with other applicable ACs, contains methods and procedures acceptable to the FAA Administrator that certificate holders may use to comply with Part 139 requirements.
673 674	1.3.3	<u>Title 14 CFR Part 157, Notice of Construction, Alteration, Activation and Deactivation of Airports (Part 157).</u>
675 676 677 678 679 680		<u>Part 157</u> establishes standards and notification requirements for anyone proposing to construct, alter, or deactivate a civil or joint-use (civil/military) airport. This regulation also addresses proposals that alter the status or use of an airport. This notification serves as the FAA basis for evaluating the effects of the proposed action on the safe and efficient use of airspace by aircraft and the safety of persons and property on the ground. Notification allows the FAA to identify potential aeronautical hazards in

advance, thus preventing or minimizing the adverse impacts to the safe and efficient use of navigable airspace.

683 1.3.4 <u>Title 49 CFR Part 1542, Airport Security (Part 1542).</u>

<u>Part 1542</u> is a Transportation Security Administration regulation governing the security of airports that serve air carriers and commercial operations. Compliance with <u>Part 1542</u> satisfies the public protection requirements of § 139.335 from <u>Part 139</u>. Key elements of <u>Part 1542</u> requirements include:

- Airport security program
- Secured area

684

685

686

687

688

689

690

695

696

697 698

699

700

701

702

703

704705

706

708

709

710

711

712

713

714

715

716

717

- Air operations area
- Security identification display area
- Access control systems
- Personnel identification systems.

694 1.4 **Environmental Protection.**

The National Environmental Policy Act (NEPA) requires Federal agencies to disclose to the public a clear, accurate description of potential environmental impacts that a proposed Federal action and reasonable alternatives would cause. Federal assistance in airport development projects and airport layout plan (ALP) approvals are federal actions that require the FAA to follow the procedures of the NEPA in connection with project approval. FAA compliance with NEPA aligns with the FAA's mission to protect and enhance natural resources and the quality of the environment. For additional guidance and information, refer to the following FAA documents:

- 1. <u>FAA Order 1050.1</u>, *Policies and Procedures for Considering Environmental Impacts*.
- 2. <u>FAA Order 5050.4</u>, National Environmental Policy Act (NEPA) Implementing Instructions for Airport Actions.

707 1.5 **Definitions.**

The definitions in this paragraph are relevant to airport design standards.

- 1. Accelerate-Stop Distance Available (ASDA). See Declared Distances.
- 2. *Aeronautical Study*. Process by which the FAA determines the impact of an object on the safe and efficient use of airspace (refer to CFR Part 77) or the impact of an airport proposal (refer to CFR Part 157).
- 3. *Air Operations Area (AOA)*.
 - a. For Part 139 certificated airports, air operations area is that portion of an airport in which security measures of 49 CFR Part 1540 apply. This area includes aircraft movement areas, aircraft parking areas, loading ramps, and safety areas, for use by aircraft regulated under 49 CFR part 1544 or 1546, and any adjacent

areas (such as general aviation areas) that are not separated by adequate security systems, measures, or procedures. Reference 49 CFR § 1540.5.

- b. For non-part 139 airports (e.g. General aviation airports), the air operations area is the paved and unpaved areas of an airport intended to facilitate aircraft movement. Generally, the air operations area encompasses that part of the airport within the perimeter fence.
- 4. Air Traffic Control Facilities (ATC-F). Electronic equipment and buildings aiding air traffic control (ATC) for communications, surveillance of aircraft including weather detection and advisory systems. See Table 1-1.
- 5. *Aircraft*. For this AC, the terms "aircraft" and "airplane" are synonymous, referring to all types of fixed-wing airplanes, including gliders. Unless specifically noted, these two terms exclude powered lift (tilt-rotors) and single rotor and dual rotor helicopters.
- 6. Aircraft Approach Category (AAC). As specified in 14 CFR Part 97 § 97.3, Symbols and Terms Used in Procedures, a grouping of aircraft based on a reference landing speed (V_{REF}), if specified, or if V_{REF} is not specified, 1.3 times stall speed (V_{SO}) at the maximum certificated landing weight. V_{REF}, V_{SO}, and the maximum certificated landing weight are those values as established for the aircraft by the certification authority of the country of registry. In addition, the Operational Specifications under Part 121, Part 129, or Part 135 for a specific operator and aircraft type may specify a minimum approach speed that is the AAC, rather than V_{REF}.
- 7. *Airplane*. A fixed-wing aircraft that is heavier than air and is supported in flight by the dynamic reaction of the air against its wings (see <u>Aircraft</u>).
- 8. Airplane Design Group (ADG). A classification of aircraft based on wingspan and tail height. When the aircraft wingspan and tail height fall in different groups, the higher group applies. See <u>Table 1-2</u>.
- 9. *Airport Elevation*. The highest point on an airport's usable runways expressed in feet above mean sea level (MSL).
- 10. Airport Layout Plan (ALP). A scaled drawing (or set of drawings), in either hardcopy or electronic form, of existing and future airport facilities that provides a graphic representation of the existing and long-term development plan for the airport and demonstrates the preservation and continuity of safety, utility, and efficiency of the airport to the satisfaction of the FAA.
- 11. Airport Reference Code (ARC). An airport designation that signifies the airport's highest Runway Design Code (RDC), minus the third (visibility) component of the RDC. The ARC is for planning and design only and does not limit the aircraft that may be able to operate safely on the airport.
- 12. Airport Reference Point (ARP). The approximate geometric center of all usable runways at the airport.
- 13. *Airport*. An area of land used for or intended for the landing and takeoff of aircraft, including associated buildings and facilities, if any.

- 14. Aligned Taxiway. A non-standard taxiway configuration with the centerline aligned with a runway centerline. Sometimes referred to as an "inline taxiway." Aligned taxiways represent a runway/taxiway configuration that increases the risk of a runway incursion.
- 15. Approach Procedures with Vertical Guidance (APV). An instrument approach based on a navigation system that is not required to meet the precision approach standards of ICAO Annex 10 but provides course and glidepath deviation information.
- 16. Approach Reference Code (APRC). A code signifying the current operational capabilities, within current standards, of a runway and associated parallel taxiway with regards to landing operations.
- 17. *Approach Surface Baseline*. A horizontal line tangent to the surface of the earth at the runway threshold aligned with the final approach course.
- 18. Blast Fence. A barrier used to divert or dissipate jet blast or propeller wash.
- 19. *Blast Pad.* A surface adjacent to the ends of runways provided to reduce the erosive effect of jet blast and propeller wash.
- 20. Building Restriction Line (BRL). For planning considerations, a line identifying suitable and unsuitable locations for buildings on the airport.
- 21. *Bypass Taxiway*. An entrance taxiway used to manage aircraft queuing demand by providing multiple runway access points.
- 22. Category-I (CAT-I). An instrument approach or approach and landing with a HAT or minimum descent altitude not lower than 200 ft (60 m) and with either a visibility not less than ½ statute mile (800 m), or a runway visual range not less than 1800 ft (550 m).
- 23. Category-II (CAT-II). An instrument approach or approach and landing with a HAT lower than 200 ft (60 m) but not lower than 100 ft (30 m) and a runway visual range not less than 1200 ft (350 m).
- 24. *Category-III (CAT-III)*. An instrument approach or approach and landing with a HAT lower than 100 ft (30 m), or no HAT, or a runway visual range less than 1200 ft (350 m).
- 25. Circling Approach. A maneuver initiated by the pilot to align the aircraft with a runway for landing when a straight-in landing from an instrument approach is not possible or is not desirable.
- 26. *Clearway (CWY)*. A defined rectangular area beyond the end of a runway cleared or suitable for use in lieu of runway to satisfy takeoff distance requirements (see also Takeoff Distance Available [TODA]).
- 27. *Cockpit to Main Gear Distance (CMG)*. The distance from the pilot's eye to the main gear turn center.

- 7/2/2020 DRAFT 28. Commercial Service Airport. A public use airport receiving scheduled passenger 798 aircraft service and at least 2,500 annual passenger boardings. Refer to the official 799 the definition of Title 49 USC § 47102. 800 29. Compass Calibration Pad. An airport facility used for calibrating an aircraft 801 compass. 802 30. Critical Aircraft. The critical aircraft is the most demanding aircraft type, or 803 grouping of aircraft with similar characteristics, that make regular use of an airport. 804 Regular use is 500 annual operations, excluding touch-and-go operations. See AC 805 150/5000-17. The critical aircraft determines the applicable design standards for 806 facilities on the airport including runway, taxiway, etc. Previously referred to as 807 "design aircraft". 808 31. Crossover Taxiway. A taxiway connecting two parallel taxiways (also referred to as 809 a "transverse taxiway"). 810 32. Decision Altitude (DA). A specified altitude on a vertically-guided approach at 811 which a pilot initiates a missed approach if the pilot cannot establish the required 812 visual reference to continue the approach. DA is referenced to mean sea level 813 (MSL). 814 33. Declared Distances. The distances the airport owner declares available for an 815 816 817
 - aircraft's takeoff run, takeoff distance, accelerate-stop distance, and landing distance requirements. The distances are:
 - a. Takeoff Run Available (TORA) the runway length declared available and suitable for the ground run of an aircraft taking off;

819

820 821

822 823

824

825

826

827

828

829

830

831

832

833

834

835

- b. Takeoff Distance Available (TODA) the TORA plus the length of any remaining runway or clearway beyond the far end of the TORA; the full length of TODA may need to be reduced because of obstacles in the departure area:
- c. Accelerate-Stop Distance Available (ASDA) the runway plus stopway length declared available and suitable for the acceleration and deceleration of an aircraft aborting a takeoff; and
- d. Landing Distance Available (LDA) the runway length declared available and suitable for landing an aircraft.
- 34. Departure End of Runway (DER). The end of the runway that is opposite the landing threshold. Also known as the stop end of runway.
- 35. Departure Reference Code (DPRC). A code signifying the current operational capabilities, within current standards, of a runway with regard to takeoff operations.
- 36. Displaced Threshold. A threshold that is located at a point on the runway beyond the beginning of the runway. See threshold.
- 37. End-Around Taxiway (EAT). A taxiway designed to cross the extended centerline of a runway, which does not require specific clearance from air traffic control (ATC) to cross the extended centerline of the runway.

- 38. Entrance Taxiway. A taxiway designed for use by an aircraft for direct entry to a runway. An entrance taxiway may also serve as an exit from the runway.
 - 39. Exit Taxiway. A taxiway designed for aircraft exit only from a runway:

- a. Acute-Angled Exit Taxiway A taxiway forming an angle less than 90 degrees from the runway centerline.
- b. *High Speed Exit Taxiway* An acute-angled exit taxiway forming a 30-degree angle with the runway centerline, designed to allow an aircraft to exit a runway quickly without having to decelerate to typical taxi speed.
- 40. Fixed-By-Function Navigation Aid (NAVAID). An air navigation aid positioned in a specific location in order to provide an essential benefit for aviation is fixed-by-function. Table 6-1 gives fixed-by-function designations for various NAVAIDs as they relate to the Runway Safety Area (RSA) and Runway Object Free Area (ROFA).
- 41. *Frangible*. A physical characteristic whereby an object retains its structural integrity and stiffness up to a designated maximum load, but on impact from a greater load, breaks, distorts, or yields in such a manner as to present the minimum hazard to aircraft. See AC 150/5220-23, *Frangible Connections*.
- **42**. *General Aviation (GA)*. All non-scheduled civil flights conducted by non-commercial aircraft. General aviation covers local recreational flying to business transport that is not operating under the FAA regulations for commercial air carriers.
- 43. *General Aviation Airport*. A public-use airport that: 1) does not have scheduled service, or 2) has scheduled service with less than 2, 500 annual passenger boardings. Refer to the official definition at Title 49 USC § 47102. FAA Report, *General Aviation Airports: A National Asset* May 2012, establishes the following classifications of General Aviation airports: National, Regional, local and basic.
- 44. *Glide Path Angle (GPA)*. The GPA is the angle of the final approach descent path relative to the approach surface baseline.
- 45. *Glideslope (GS)*. Equipment in an Instrument Landing System (ILS) that provides electronic vertical guidance to landing aircraft.
- 46. *Hazard to Air Navigation*. An existing or proposed object that the FAA, as a result of an aeronautical study, determines will have a substantial adverse effect upon the safe and efficient use of navigable airspace by aircraft, operation of air navigation facilities, or existing or potential airport capacity.
- 47. *Height Above Airport (HAA)*. The height of the circling approach descent altitude (MDA) above the airport elevation.
- 48. *Height Above Touchdown (HAT)*. The height of the decision altitude or Minimum Descent Altitude (MDA) above the threshold.
- 49. *High-energy area/intersection*. An area or intersection within the middle third of a runway.

- 50. *Hot Spot*. A location on an airport movement area with a history of potential risk of collision or runway incursion, and where heightened attention by pilots/drivers/controllers is necessary.
- 51. *International Civil Aviation Organization (ICAO)*. ICAO is a United Nations specialized agency that manages the administration and governance of the Convention on International Civil Aviation. ICAO works with its Member States and industry groups to reach consensus on international civil aviation Standards and Recommended Practices and policies in support of a safe, efficient, secure, economically sustainable and environmentally responsible civil aviation sector.
- 52. *Instrument Flight Procedure (IFP)*. An instrument flight procedure is a series of predetermined maneuvers for aircraft operating under instrument flight rules, i.e. IFR conditions, when visual flight is not possible due to weather or other visually restrictive conditions. These maneuvers allow for the orderly transition of the aircraft through a particular airspace. The term "instrument flight procedure" refers to instrument approaches, instrument departures, and instrument en route operations.
- 53. *Island*. A non-serviceable paved or grassy area bounded by taxiway, taxilane, or apron pavement.
- 54. *Joint-Use Airport*. An airport owned by the Department of Defense, at which both military and civilian aircraft make shared use of the airfield. Refer to Part 139.
- 55. Landing Distance Available (LDA). See Declared Distances.
- 56. *Large Aircraft*. An aircraft with a maximum certificated takeoff weight of more than 12,500 lbs (5670 kg).
- 57. Low Impact Resistant (LIR) Support. A support designed to resist operational and environmental static loads and fail when subjected to a shock load such as that from a colliding aircraft.
- 58. *Main Gear Width (MGW)*. The distance from the outer edge to outer edge of the widest set of main gear tires.
- 59. *Minimum Descent Altitude (MDA)*. The lowest altitude, expressed in feet above mean sea level (MSL), to which descent is authorized on final approach or during circle-to-land maneuvering in execution of a standard instrument approach procedure where no electronic glideslope is provided.
- 60. *Modification of Standards*. Any approved deviation from published FAA standards applicable to an airport design, construction, or equipment project that is necessary to accommodate an unusual local condition for a specific project while maintaining an acceptable level of safety and performance. See FAA Order 5300.1.
- 61. Movement Area. A designated area consisting of runways, taxiways, taxilanes, and other areas of an airport that are used for taxiing or hover taxiing, air taxiing, takeoff, and landing of aircraft including helicopters and tilt-rotors, exclusive of loading aprons and aircraft parking areas. At airports with operating ATCTs, positive control of aircraft operating in the movement areas is exercised by Air Traffic Control (reference Part 139).

62. *Navigation Aid (NAVAID)*. Electronic and visual air navigation aids, lights, signs, and associated supporting equipment.
63. *Non-movement area*. The areas of an airport that are used for taxiing or hover taxiing, or air taxiing aircraft including helicopters and tilt-rotors, but are not part of the movement area (i.e. the loading aprons and aircraft parking areas).

- 64. *Non-Precision Approach (NPA)*. An instrument approach based on a navigation system that provides course deviation information, but no glidepath deviation information.
- 65. *Non-Precision Runway*. A runway (other than a precision runway) with at least one end having a non-precision approach procedure.
- 66. *Object*. Includes, but is not limited to, above ground structures, Navigational Aids (NAVAIDs), equipment, vehicles, natural growth, terrain, and parked or taxiing aircraft.
- 67. *Object Free Area (OFA)*. An area centered on the surface of a runway, taxiway, or taxilane centerline provided to enhance the safety of aircraft operations by remaining clear of objects, except for objects that need to be located in the OFA for air navigation or aircraft ground maneuvering purposes.
- 68. *Obstacle*. An existing object at a fixed geographical location or which may be expected at a fixed location within a prescribed area with reference to which vertical clearance is necessary during flight operation.
- 69. *Obstacle Clearance Surface (OCS)*. An evaluation surface that defines the minimum required obstruction clearance for approach or departure procedures.
- 70. Obstacle Free Zone (OFZ). The OFZ is the three-dimensional airspace along the runway and extended runway centerline that is clear of obstacles for protection for aircraft landing or taking off from the runway and for missed approaches. The OFZ consist of four distinct surfaces; Runway OFZ, Precision OFZ, Inner-Transitional OFZ, and the Inner-Approach OFZ.
- 71. Obstruction to Air Navigation. An object of greater height than any of the heights or surfaces presented in Subpart C of Title 14 CFR Part 77, Standards for Determining Obstructions to Air Navigation or Navigational Aids or Facilities.
- 72. *Offset approach*. Approach that is conducted at an angle offset from the runway centerline. A typical offset approach is 3 degrees to the right or left of the straight in runway heading.
- 73. *Parallel Taxiway*. A continuous taxiway path that is located laterally to the runway it serves and provides access to one or both runway ends without entering the runway safety area or runway obstacle free zone; it is not necessary for all points along the centerline of a parallel taxiway to be equidistant from the runway centerline.
 - a. *Dual Parallel Taxiways* Two side-by-side taxiways, parallel to each other and the runway (usually called inner parallel and outer parallel taxiway relative to the runway being served).

- b. Full Parallel Taxiway A parallel taxiway extending the full length of the 959 runway to provide access to both runway ends. 960 c. Partial Parallel Taxiway – A parallel taxiway extending less than full length of 961 the runway to provide access to only one runway end. 962 74. Plans-on-File. Plans-on-file represents the airport's future airfield development 963 including, but not limited to, runway extensions or construction of taxiways. 964 Obligated airports submit their plans-on-file to the FAA by way of their Airport 965 Layout Plan, whereas non-obligated airports submits through FAA Form 7480-1 in 966 accordance with 14 CFR Part 157. 967 75. Precision Approach (PA). An instrument approach based on a navigation system 968 that provides course and glidepath deviation information. 969 76. Precision Runway. A runway with at least one end having a precision approach 970 procedure. 971 77. Primary Airport (large hub, medium hub, small hub, non-hub). A commercial 972 service airport with 10,000 annual passenger boardings. Refer to the official 973 definition at Title 49 USC § 47102. 974 78. Public Use Airport. An airport used for public purposes that is 1) under control of 975 or owned by a public agency, or 2) under private ownership that is a reliever airport 976 or has scheduled passenger service with at least 2,500 annual passenger boardings 977 Refer to the official definition at Title 49 USC § 47102. 978 79. Regular Use. As defined in AC 150/5000-17, regular use is 500 annual operations, 979 including both itinerant and local operations, but excluding touch-and-go 980 operations. An operation is either a takeoff or landing. 981 80. Runway (RW). A defined rectangular surface on an airport prepared or suitable for 982 the landing or takeoff of aircraft. 983 81. Runway Design Code (RDC). A code signifying the design standards that apply to 984 an existing or planned runway. 985 82. Runway Incursion. Any occurrence at an airport involving the incorrect presence of 986 an aircraft, vehicle or person on the protected area of a surface designated for the 987 landing and takeoff of aircraft. 988 83. Runway Protection Zone (RPZ). An area at ground level prior to the threshold or 989 beyond the runway end to enhance the safety and protection of people and property 990 on the ground. 991 84. Runway Safety Area (RSA). A defined area surrounding the runway consisting of a 992 prepared surface suitable for reducing the risk of damage to aircraft in the event of 993 an undershoot, overshoot, or excursion from the runway. 994
 - 85. Runway Visual Range (RVR). An instrumentally derived value that represents the horizontal visual range a pilot will see down the runway from the approach end. It is based on the sighting of either high intensity runway lights or on the visual contrast of other targets whichever yields the greater visual range. RVR, in contrast

996

997

to prevailing or runway visibility, is based on what a pilot in a moving aircraft should see looking down the runway.

- 86. *Shoulder*. An area adjacent to the defined edge of paved runways, taxiways, or aprons designed to transition between the pavement and the adjacent surface; support aircraft and emergency vehicles deviating from the full-strength pavement; enhanced drainage; and blast protection.
- 87. *Small Aircraft*. For the purpose of this AC, an aircraft with a maximum certificated takeoff weight of 12,500 lbs (5670 kg) or less.
- 88. *Stopway*. An area beyond the takeoff runway, no less wide than the runway and centered upon the extended centerline of the runway, able to support the airplane during an aborted takeoff, without causing structural damage to the airplane, and designated by the airport for use in decelerating the airplane during an aborted takeoff.
- 89. Takeoff Distance Available (TODA). See Declared Distances.
- 90. Takeoff Run Available (TORA). See Declared Distances.
- 91. *Taxilane (TL)*. A defined taxi path designed for low speed and precise maneuvering of aircraft. Taxilanes provide access from taxiway to aircraft parking positions and other terminal areas. Taxi speeds on taxilanes are generally not more than 15 mph (13 kts).
- 92. *Taxiway (TW)*. A defined path established for the taxiing of aircraft from one part of an airport to another. Taxi speeds on taxiways will typically range from 15 mph (13 kts) to 35 mph (30 kts).
- 93. *Taxiway Centerline*. A surface painted marking on the taxiway that provides continuous visual reference for pilot steering of aircraft during taxi operations. On straight taxiway sections, the taxiway centerline represents the physical center of the taxiway width. On curved taxiway sections, the taxiway centerline represents the optimum steering path even though the marking itself may not be located at the physical center of the pavement section.
- 94. *Taxiway Design Group (TDG)*. A classification of airplanes based on outer to outer Main Gear Width (MGW) and Cockpit to Main Gear distance (CMG).
- 95. *Taxiway Edge Safety Margin (TESM)*. The distance between the outer edge of the landing gear of an airplane with its nose gear on the taxiway centerline and the edge of the taxiway pavement.
- 96. *Taxiway/Taxilane Safety Area (TSA)*. A defined surface alongside the taxiway prepared or suitable for reducing the risk of damage to an aircraft deviating from the taxiway.
- 97. *Threshold (TH)*. The beginning of that portion of the runway available for landing. In some instances, the threshold may be displaced. "Threshold" always refers to landing, not the start of takeoff.
- 98. *Threshold Crossing Height (TCH)*. For the purposes of this AC, the TCH is the theoretical height above the runway threshold at which the aircraft's glideslope (GS)

1040 1041 1042		antenna would be if the aircraft maintains the trajectory established by the Instrument Landing System (ILS) GS, or the height of the pilot's eye above the runway threshold based on a visual guidance system.
1043 1044 1045 1046		99. <i>Visibility Minimums</i> . The ability, as determined by atmospheric conditions and expressed in units of distance, to see and identify prominent unlighted objects by day and prominent lighted objects by night. Visibility is reported as statute miles or hundreds of feet.
1047 1048		100. Visual Runway. A runway without an instrument approach or departure procedure, except circling-only approaches.
1049 1050 1051		101. Wingspan. The maximum horizontal distance from one wingtip to the other wingtip, including the horizontal component of any extensions such as winglets or raked wingtips. See <u>Appendix A</u> .
1052	1.6	Categories and Codes.
1053 1054 1055	1.6.1	Aircraft Approach Categories (AAC). A grouping of aircraft related to aircraft approach speed (operational characteristic) per Table 1-1.

Table 1-1. Aircraft Approach Category (AAC)

AAC	V _{REF} /Approach Speed
A	Approach speed less than 91 knots
В	Approach speed 91 knots or more but less than 121 knots
С	Approach speed 121 knots or more but less than 141 knots
D	Approach speed 141 knots or more but less than 166 knots
Е	Approach speed 166 knots or more

1057	1.6.2	Airplane Design Group (ADG).
1058		A grouping of aircraft related to aircraft wingspan or tail height (physical
1059		characteristics), whichever is most restrictive. Refer to see <u>Table 1-2</u> .

Table 1-2. Airplane Design Group (ADG)

Group #	Tail Height (ft [m])	Wingspan (ft [m])
I	< 20' (< 6 m)	< 49′ (< 15 m)
II	20' - < 30' (6 m - < 9 m)	49' - < 79' (15 m - < 24 m)
III	30' - < 45' (9 m - < 13.5 m)	79' - < 118' (24 m - < 36 m)
IV	45' - < 60' (13.5 m - < 18.5 m)	118' - < 171' (36 m - < 52 m)
V	60' - < 66' (18.5 m - < 20 m)	171' - < 214' (52 m - < 65 m)
VI	66' - < 80' (20 m - < 24.5 m)	214' - < 262' (65 m - < 80 m)

1061

1062

1.6.3 Visibility Minimums.

The runway's lowest visibility published on an instrument approach chart expressed by RVR values in feet of 1200, 1600, 2400, 4000, and 5000 per <u>Table 1-3</u>. For visual approach only runway, use "VIS" in lieu of an RVR value.

1066

Table 1-3. Visibility Minimums

RVR (ft) *	Instrument Flight Visibility Category (statute mile)
5000	Not lower than 1 mile
4000	Lower than 1 mile but not lower than 3/4 mile
2400	Lower than 3/4 mile but not lower than 1/2 mile
1600	Lower than 1/2 mile but not lower than 1/4 mile
1200	Lower than 1/4 mile

1067

1069

1070

1071

1072

Note: * RVR values are not exact equivalents.

1068 1.6.4 Runway Design Code (RDC).

A three-component code relating AAC, ADG and approach visibility minimums establishing the design characteristics for a particular runway. The critical aircraft with regular use defines the AAC and ADG components of RDC, whereas the runway's lowest visibility published on an instrument approach chart determines the visibility component. The RDC convention is as follows:

10731074

RDC: AAC-ADG-RVR

1075

Example: D-IV-1200

1076

1.6.4.1 **Application.**

10771078

RDC establishes the standards that apply to a specific runway, existing or future. This can vary per runway. For example, an airport's air carrier

runway may have an RDC of C-IV-1200. The same airport's general aviation runway may have an RDC of B-II-2400. The airport's ALP may show both an existing RDC and future RDC.

1.6.5 Taxiway Design Group (TDG).

TDG is the grouping of aircraft based on undercarriage dimensions. TDG relates the cockpit to main gear dimension and the width of the main gear. The TDG is a primary design factor for taxiway/taxilane width and fillet standards. Under certain conditions where it is critical to maintain a 50-degree nose gear steering angle, the TDG may determine the necessary runway to taxiway and taxiway/taxilane separation values. Separate areas of an airport may have different TDG classifications due to segregation of aircraft types and sizes. See Figure 1-1.

Figure 1-1. Taxiway Design Groups (TDGs)

1.7 **Airport Layout Plan (ALP).**

An ALP is a graphic representation of existing facilities and proposed development plans for an airport. Airports that receive federal assistance accept a grant assurance that obligates it to maintain a current ALP. See paragraph 1.9.1 for additional information on federal obligations. Refer to the FAA's Office of Airport Planning and Environmental (APP-400) guidance for additional information on the development of ALPs.

1.8 **Airport Data.**

Airport planning, design, and evaluation activities require information that accurately describe the location, characteristics and condition of airport facilities, infrastructure and off-airport structures. This information consists of geospatial data collected during the planning, design, and construction phase of airport development. It is paramount for airport operators to accurately collect and report safety-critical data to the FAA in a timely manner.

1109 1.8.1 <u>Aeronautical Studies.</u>

The FAA conducts aeronautical studies of proposed development on and adjacent to airports under Part 77 as described in paragraph 1.1. These studies assess the potential impact on air navigation using the best available data and plans on file. Physical changes to airport elements can adversely affect the accuracy of such studies. The FAA encourages airport operators to submit airfield changes to the FAA as soon as changes are planned. This includes timely submittal of ALP updates. In particular, ensure that the FAA has the latest data on actual and planned facilities for the following elements:

- Runway ends.
- Displaced thresholds.
- High and low points on the runway surfaces.
 - Helipads.

1121 1.8.2 Airport Master Record.

The Airport Master Record (see https://adip.faa.gov/agis/public/#/public) describes the basic operational and services data of the airport. The primary purpose of the Airport Master Record is to identify the minimum data and information about the existing physical infrastructure, characteristics, services, operations, and status of all airports composing the National Airspace System (NAS). Title 49 U.S.C. § 47130 authorizes the FAA to collect and manage this data.

- 1.8.2.1 The FAA uses this data for flight information publications, navigation databases, and various analyses. Airport operators, FAA inspectors and state-sponsored inspectors may collect and submit data for the master record.
- 1.8.2.2 Timely collection and submittal of data reflecting changed conditions enhances the accuracy of aeronautical information. Refer to <u>AC 150/5300-19</u>, *Airport Data and Information Program*, for additional guidance and information.

1.8.3 <u>Aeronautical Surveys.</u>

The FAA uses aeronautical survey data to support development and modification of instrument procedures. The FAA reviews all Instrument Flight Procedures (IFP) on a periodic basis – approximately every two years. The FAA uses this data, in part, to:

1. Protect existing runway approaches from proposed development and discovered obstacles that could create a hazard to air navigation by:

1142		a. Raising approach minima,		
1143		b. Restricting night operations, or		
1144		c. Canceling approach procedures.		
1145 1146		2. Provide for the design and development of new IFPs to the lowest visibility minimums possible,		
1147 1148		3. Provide accurate information for planning studies that assess the impact of airport noise, and		
1149 1150		4. Ensure that review and coordination of on-airport development proposals maintain critical clearance standards for the completed project.		
1151		1.8.3.1 Applicable Advisory Circulars.		
1152 1153 1154		1. <u>AC 150/5300-16</u> , General Guidance and Specifications for Aeronautical Surveys: Establishment of Geodetic Control and Submission to the National Geodetic Survey		
1155 1156		2. <u>AC 150/5300-17</u> , Standards for Using Remote Sensing Technologies in Airport Surveys		
1157 1158 1159		3. <u>AC 150/5300-18</u> , General Guidance and Specifications for Submission of Aeronautical Surveys to NGS: Field Data Collection and Geographic Information System (GIS) Standards		
1160 1161 1162 1163 1164 1165 1166 1167 1168	1.8.4	Plans on File. The information on file with the FAA influences the determination resulting from aeronautical studies. Having an up to date plan-on-file with the FAA ensures proposed airport development receives full consideration during FAA studies. An update to the ALP is the conventional method to transmit development information. Filing notification of proposed development represents another method of establishing a plan-on-file. Keeping plan-on-file data and information current, complete and accurate greatly improves the effectiveness of FAA evaluations. For any new runway, runway extension, or planned runway upgrade, the necessary plan data include as a minimum:		
1169		1. Planned runway end and threshold coordinates and elevation		
1170		2. Proposed type of instrument approach		
1171		3. Desired visibility minimum(s)		
1172 1173		4. Indication of whether the airport will have a designated instrument departure runway.		
1174 1175 1176 1177 1178	1.9	Federal Assistance Program. Title 49 USC § 47104 authorizes the FAA to administer a grant program that provides financial assistance for project grants at public use airports for airport planning and development. Refer to paragraph 3 for applicability of the standards of this AC under financial assistance programs. Refer to FAA Order 5100.38, <i>Airport Improvement</i>		

1179 1180 1181		<i>Program Handbook</i> , or contact the local FAA airports district office (ADO) for specific information on matters concerning project eligibility. This AC does not establish, modify or address project eligibility under the grant program.			
1182 1183 1184 1185 1186 1187 1188 1189	1.9.1	Obligations. Airport sponsors agree to certain obligations when they accept Federal grant funds or Federal property transfers for airport purposes. Conformance to the FAA standards in this AC are a factor in determining an airport's compliance with select obligations. The FAA enforces these obligations through its Airport Compliance Program. More information on the Airport Compliance Program can be found in FAA Order 5190.6, FAA Airport Compliance Manual. For a complete list of assurance obligations, visit the FAA Grant Assurances webpage.			
1190 1191 1192 1193	1.10		s an aeronautical office or similar department that oversees civil aviation ne state. The degree of involvement varies between states. Typical state ude:		
1194		1. Maintaini	ng state aviation system plans		
1195		2. Conductin	ng airport inspections		
1196		3. Updating	Airport Master Records (FAA Form 5010)		
1197		4. Working	with local agencies on airport zoning and environmental matters		
1198		5. Providing supplemental financial assistance.			
1199		6. Protecting environment resources			
1200		7. Promoting aviation education			
1201		8. Licensing	of airports		
1202 1203 1204	1.10.1	State Standards. In limited circumstances, the FAA can approve standards developed by a State for development of non-primary airports.			
1205 1206 1207 1208 1209			Title 49 USC § 47105(c) allows the FAA to approve standards a State prescribes for airport development at non-primary airports. This provision excludes the FAA standards for safety of approaches. Once approved by the FAA, the State's standards apply instead of FAA comparable standards.		
1210 1211 1212 1213 1214			Title 49 USC § 47114(d)(5) prescribes the use of State highway specifications for airfield pavement construction at nonprimary airports serving aircraft not exceeding 60,000 pounds gross weight provided the FAA determines safety is not adversely affected and the expected service life of pavement is not less than what FAA standards provide. Refer to		

1215 1216		AC 150/5100-13, Development of State Aviation Standards for Airport Pavement Construction, for additional details.
1217 1218 1219 1220 1221 1222	1.10.2	State Highway Specifications. As permitted by 49 USC § 47114(d)(5), a state may request use of highway specifications for pavement construction at nonprimary airports serving aircraft that do not exceed 60,000 lbs (27,216 kg). The FAA may approve such use provided safety is not adversely affected and the life of the pavement, with necessary maintenance, is equivalent to the service life expected from FAA standards.
1223 1224 1225 1226 1227 1228 1229	1.11	Local Government Role. A local governmental is typically responsible for the proper maintenance and operation of the airport it owns. Local government units may have regulations and ordinances affecting airport development and operation. Many local governmental units establish zoning ordinances that benefit the protection of airspace surrounding an airport and persons residing close to an airport. Additionally, local rules may exist for storm water management, building codes and fire code.
1230 1231 1232 1233 1234	1.12	Related Documents and Federal Regulations. The following is a list of documents referenced in this AC and additional related information. Most Advisory Circulars, FAA Orders, and Regulations are available online at www.faa.gov. All references to ACs, FAA Orders, and Federal Regulations are to the most recent versions.
1235 1236 1237 1238	1.12.1	Advisory Circulars (ACs). Advisory Circulars are available at https://www.faa.gov/regulations_policies/advisory_circulars/ . 1. AC 43-215, Standardized Procedures for Performing Aircraft Magnetic Compass
1239 1240 1241 1242		 Calibration AC 70/7460-1, Obstruction Marking and Lighting. AC 103-6, Ultralight Vehicle Operations – Airports, ATC, and Weather. AC 90-66, Non-Towered Airport Flight Operations.
1243 1244 1245		 5. AC 105-2, Sport Parachuting. 6. AC 120-28, Criteria for Approval of Category III Weather Minima for Takeoff, Landing and Rollout.
1246 1247 1248 1249		 AC 120-29, Criteria for Approval of Category I and Category II Weather Minimums for Approach. AC 120-57, Surface Movement Guidance and Control System. AC 150/5000-17, Critical Aircraft and Regular Use Determination
1250		10 AC 150/5020-1 Noise Control and Compatibility Planning for Airports

- 1251 11. <u>AC 150/5060-5</u>, *Airport Capacity and Delay*.
- 12. <u>AC 150/5070-6</u>, Airport Master Plans.
- 1253 13. AC 150/5070-7, The Airport System Planning Process
- 1254 14. <u>AC 150/5100-13</u>, Development of State Aviation Standards for Airport Pavement Construction.
- 1256 15. <u>AC 150/5100-17</u>, Land Acquisition and Relocation Assistance for Airport Improvement Program Assisted Projects.
- 1258 16. <u>AC 150/5190-4</u>, A Model Zoning Ordinance to Limit Height of Objects around Airports.
- 1260 17. <u>AC 150/5190-6</u>, Exclusive Rights at Federally Obligated Airports.
- 18. <u>AC 150/5190-7</u>, *Minimum Standards for Commercial Aeronautical Activities*.
- 19. AC 150/5200-33, Hazardous Wildlife Attractants On or Near Airports.
- 1263 20. AC 150/5200-34, Construction or Establishment of Landfills near Public Airports.
- 1264 21. <u>AC 150/5200-35</u>, Submitting the Airport Master Record in Order to Activate a New Airport.
- 1266 22. <u>AC 150/5210-15</u>, Aircraft Rescue and Firefighting Station Building Design.
- 1267 23. AC 150/5210-22, Airport Certification Manual (ACM).
- 1268 24. <u>AC 150/5220-16</u>, Automated Weather Observing Systems (AWOS) for Non-Federal Applications.
- 1270 25. <u>AC 150/5220-18</u>, Buildings for Storage and Maintenance of Airport Snow and Ice 1271 Control Equipment and Materials.
- 1272 26. <u>AC 150/5220-22</u>, Engineered Materials Arresting Systems (EMAS) for Aircraft Overruns.
- 1274 27. AC 150/5220-23, *Frangible Connections*.
- 1275 28. <u>AC 150/5220-26</u>, Airport Ground Vehicle Automatic Dependent Surveillance 1276 Broadcast (ADS-B) Out Squitter Equipment.
- 1277 29. <u>AC 150/5230-4</u>, Aircraft Fuel Storage, Handling, and Dispensing on Airports.
- 1278 30. <u>AC 150/5300-7</u>, FAA Policy on Facility Relocations Occasioned by Airport Improvements or Changes.
- 1280 31. AC 150/5300-14, Design of Aircraft Deicing Facilities.
- 1281 32. <u>AC 150/5300-16</u>, General Guidance and Specifications for Aeronautical Surveys: 1282 Establishment of Geodetic Control and Submission to the National Geodetic Survey.
- 1283 33. <u>AC 150/5300-17</u>, Standards for Using Remote Sensing Technologies in Airport Surveys.

1285 1286 1287		34. <u>AC 150/5300-18</u> , General Guidance and Specifications for Submission of Aeronautical Surveys to NGS: Field Data Collection and Geographic Information System (GIS) Standards.
1288		35. AC 150/5300-19, Airport Data and Information Program
1289		36. <u>AC 150/5320-5</u> (UFC 3-230-01), Surface Drainage Design.
1290		37. AC 150/5320-6, Airport Pavement Design and Evaluation.
1291 1292		38. <u>AC 150/5320-12</u> , Measurement, Construction, and Maintenance of Skid Resistant Airport Pavement Surfaces.
1293		39. AC 150/5320-15, Management of Airport Industrial Waste.
1294		40. AC 150/5325-4, Runway Length Requirements for Airport Design.
1295 1296		41. <u>AC 150/5335-5</u> , Standardized Method of Reporting Airport Pavement Strength – <i>PCN</i> .
1297		42. AC 150/5340 and AC 150/5345 series.
1298		43. AC 150/5340-1, Standards for Airport Markings.
1299		44. AC 150/5340-5, Segmented Circle Airport Marker System.
1300		45. AC 150/5340-18, Standards for Airport Sign Systems.
1301		46. AC 150/5340-30, Design and Installation Details for Airport Visual Aids.
1302		47. AC 150/5345-43, Specification for Obstruction Lighting Equipment.
1303		48. AC 150/5345-44, Specification for Runway and Taxiway Signs.
1304		49. AC 150/5345-52, Generic Visual Glideslope Indicators (GVGI).
1305 1306		50. <u>AC 150/5360-9</u> , Planning and Design of Airport Terminal Facilities at Non-Hub Locations.
1307		51. AC 150/5360-13, Planning and Design Guidelines for Airport Terminal Facilities.
1308		52. AC 150/5370-2, Operational Safety on Airports during Construction.
1309		53. AC 150/5370-10, Standard Specifications for Construction of Airports.
1310		54. AC 150/5370-15, Airside Applications for Artificial Turf.
1311 1312		55. <u>AC 150/5380-9</u> , Guidelines and Procedures for Measuring Airfield Pavement Roughness
1313		56. <u>AC 150/5390-2</u> , <i>Heliport Design</i> .
1314		57. <u>AC 150/5395-1</u> , Seaplane Bases.
1315	1.12.2	Engineering Briefs.
1316 1317 1318		Engineering Briefs cover specific technical areas to supplement Advisory Circulars. Engineering Briefs are available at: https://www.faa.gov/airports/engineering/engineering_briefs/ .

1319 1.12.3 FAA Orders.

- FAA Orders are available at https://www.faa.gov/regulations_policies/orders_notices/.
- 1321 1. Order 1050.1, Policies and Procedures for Considering Environmental Impacts.
- 1322 2. Order 5050.4, National Environmental Policy Act (NEPA) Implementing Instructions for Airport Projects.
- 3. Order 5090.3, Field Formulation of the National Plan of Integrated Airport Systems (NPIAS).
- 4. Order 5100.37, Land Acquisition and Relocation Assistance for Airport Projects.
- 5. Order 5100.38, Airport Improvement Program Handbook.
- 1328 6. Order 5190.6, FAA Airport Compliance Manual.
- 7. Order 5200.8, Runway Safety Area Program.
- 8. Order 5200.9, Financial Feasibility and Equivalency of Runway Safety Area Improvements and Engineered Material Arresting Systems.
- 9. Order 5200.11, FAA Airports (ARP) Safety Management System (SMS).
- 1333 10. Order 5300.1, Modifications to Agency Airport Design, Construction, and Equipment Standards.
- 1335 11. Order 6030.20, Electrical Power Policy.
 - 12. Order 6310.6, Primary/secondary Terminal Radar Siting Handbook.
- 13. Order 6480.4, Airport Traffic Control Tower Siting Criteria.
- 1338 14. <u>Order 6560.10</u>, *Runway Visual Range (RVR)*.
- 1339 15. Order 6560.20, Siting Criteria for Automated Weather Observing Systems (AWOS).
- 1340 16. Order 6560.21, Siting Guidelines for Low Level Windshear Alert System (LLWAS)
 Remote Facilities.
- 1342 17. Order JO 6580.3, Remote Communications Facilities Installation Standards Handbook.
- 1344 18. Order 6700.20, Non-Federal Navigational Aids, Air Traffic Control Facilities, and Automated Weather Systems
- 1346 19. Order 6750.16, Siting Criteria for Instrument Landing Systems.
- 1347 20. Order 6750.36, Site Survey, Selection, and Engineering Documentation for ILS and Ancillary Aids.
- 1349 21. Order 6780.5, DME Installation Standards Handbook Type FA-96-39.
- 1350 22. Order 6820.9, VOR, VOR/DME, VORTAC Installation Standard Drawings.
- 1351 23. Order 6820.10, VOR, VOR/DME and VORTAC Siting Criteria.
- 1352 24. Order JO 6850.2, Visual Guidance Lighting Systems.
- 1353 25. Order 6850.10, Runway End Identifier Lighting (REIL) System Standard Drawings.

1354		26. Order 6850.19, Frangible Coupling.
1355 1356		27. Order 6850.20, Medium Intensity Approach Lighting System Threshold Lighting Backfit
1357		28. Order 6950.23, Cable Loop Communication Systems at Airport Facilities.
1358		29. Order 7110.65, Air Traffic Control
1359 1360		30. Order 7110.104, Non-Federal Automated Weather Observation System (AWOS) Connection to the Weather Messaging Switching.
1361 1362		31. Order 7110.308, Simultaneous Dependent Approaches to Closely Spaced Parallel Runways
1363		32. Order JO 7400.2, Procedures for Handling Airspace Matters.
1364		33. Order 8200.1, United States Standard Flight Inspection Manual.
1365 1366		34. Order 8260.3, United States Standard for Terminal Instrument Procedures (TERPS).
1367		35. Order 8260.43, Flight Procedures Management Program.
1368 1369		36. Other Orders in the 8260 series, https://www.faa.gov/regulations policies/orders notices/.
1370	1.12.4	Federal Regulations.
1371		The Electronic Code of Federal Regulations is available at https://www.ecfr.gov/ .
1372		1. 14 CFR Part 77, Safe, Efficient Use, and Preservation of the Navigable Airspace
1373		2. 14 CFR Part 139, Certification of Airports
1374 1375		3. 14 CFR Part 157, Notice of Construction, Alteration, Activation, and Deactivation of Airports
1376		4. 14 CFR Part 1542, Airport Security
1377	1.12.5	United States Code (U.S.C.).
1378		The United States Code is available at https://www.govinfo.gov/ .
1379		1. 49 U.S.C. Chapter 401, General Provisions.
1380		2. 49 U.S.C. Chapter 471, Airport Development.
1381	1.12.6	FAA Forms.
1382		FAA Forms are located at https://www.faa.gov/forms/ .
1383		1. Form 5010, Airport Master Record.
1384		2. Form 7460-1, Notice of Proposed Construction or Alteration.
1385		3. Form 7480-1. Notice of Landing Area Proposal.

1386	1.12.7	Other FAA Documents.
1387 1388		1. Aeronautical Information Manual (AIM), https://www.faa.gov/air_traffic/publications/ .
1389 1390		2. Aeronautical Information Publication, http://www.faa.gov/air_traffic/publications/media/aip.pdf .
1391 1392 1393		3. <i>U.S. Chart Supplement (formerly known as Airport/Facility Directory)</i> , http://www.faa.gov/air_traffic/flight_info/aeronav/productcatalog/supplementalchart_s/AirportDirectory/ .
1394		4. FAA Airport Diagrams, https://adip.faa.gov .
1395		5. FAA-H-8083, Glider Flying Handbook
1396 1397 1398 1399		6. FAA Memorandum, <i>Interim Guidance on Land Uses Within a Runway Protection Zone</i> , dated 9/27/2012, https://www.faa.gov/airports/planning_capacity/media/interimLandUseRPZGuidance.pdf .
1400 1401 1402		7. FAA/USDA manual, <i>Wildlife Hazard Management at Airports</i> , https://www.faa.gov/airports/airport_safety/wildlife/resources/media/2005_faa_man_ual_complete.pdf .
1403 1404 1405		8. Grant Assurances – Airport Sponsors, https://www.faa.gov/airports/aip/grant_assurances/media/airport-sponsor-assurances-aip.pdf .
1406	1.12.8	Non-FAA Documents.
1407 1408		1. Airport Cooperative Research Program (ACRP) Reports, http://onlinepubs.trb.org/onlinepubs/acrp/ .
1409 1410 1411		2. American Association of State Highway and Transportation Officials (AASHTO) M268, Standard Specification for Retroreflective Sheeting for Flat and Vertical Traffic Control Applications.
1412 1413 1414		3. American Society for Testing and Materials International (ASTM) D4956, <i>Standard Specification for Retroreflective Sheeting for Traffic Control</i> , http://www.astm.org/Standards/D4956.htm .
1415 1416 1417		4. ASTM E810, Standard Test Method for Coefficient of Retroreflection of Retroreflective Sheeting Utilizing the Coplanar Geometry, http://www.astm.org/Standards/E810.htm .
1418 1419		5. Federal Specification FP-85, Standard Specifications for Construction of Roads and Bridges on Federal Highway Projects.
1420 1421		6. Illuminating Engineering Society of North America (IES), <i>Recommended Practice</i> for Airport Service Area Lighting.
1422 1423		7. International Air Transport Association (IATA), <i>Airport Development Reference Manual (ADRM)</i> .

1424 1425	8. NASA/Aviation Safety Reporting System (ASRS) Directline Issue No. 6, August 1993, <i>Ground Jet Blast Hazard</i> ,
1426	http://asrs.arc.nasa.gov/publications/directline/dl6_blast.htm.
1427	9. National Fire Protection Association (NFPA) 407, Standard for Aircraft Fuel
1428	Servicing, http://www.nfpa.org/aboutthecodes/AboutTheCodes.asp?DocNum=407 .
1429	10. NFPA 409, Standard on Aircraft Hangars,
1430	http://www.nfpa.org/aboutthecodes/AboutTheCodes.asp?DocNum=409.
1431	11. NFPA 415, Standard on Airport Terminal Building, Fueling Ramp Drainage and
1432	Loading Walkways,
1433	http://www.nfpa.org/aboutthecodes/AboutTheCodes.asp?DocNum=415.
1434	12. Transportation Security Administration document, Recommended Security
1435	Guidelines for Airport Planning and Construction,
1436	https://www.sskies.org/images/uploads/subpage/PARAS_0004.Recommended_Sec
1437	urity Guidelines.FinalReport.v2.pdf.
1438	13. Transportation Security Administration Information Publication A-001, Security
1439	Guidelines for General Aviation Airports,
1440	https://www.tsa.gov/sites/default/files/2017_ga_security_guidelines.pdf.
1441	14. United States Parachute Association (USPA), Basic Safety Requirements (BSR).

Page Intentionally Blank

CHAPTER 2. Design Principles 1443 General. 2.1 1444 1445 Airport design is a process that involves identifying aeronautical use and needs at an 1446 airport followed by application of FAA standards for various airport elements. The objective is to ensure airport development that meets aviation needs while maintaining 1447 an acceptable level of safety and capacity with appropriate consideration to the 1448 1449 environment. 1450 2.2 Airport Planning Relationship to Airport Design. 2.2.1 Airport design and airport planning are complementary processes. Airport planning 1451 provides a framework to guide future airport development. Airport planning 1452 incorporates FAA design standards in a manner that addresses existing and future 1453 airport needs and demands. 1454 1455 2.2.2 The approved ALP graphically depicts existing airport facilities and infrastructure as well as proposed development. 1456 2.2.3 Related planning guidance: 1457 1458 1. AC 150/5000-17, Critical Aircraft and Regular Use Determination 2. AC 150/5020-1, Noise Control and Compatibility Planning for Airports 1459 3. AC 150/5060-5, Airport Capacity and Delay 1460 4. AC 150/5070-6, Airport Master Plans 1461 2.3 Present Needs versus Future Demand. 1462 2.3.1 The selection of airport design criteria has future implications. Airport designs based 1463 only on existing aircraft currently using the airport can severely limit the airport's 1464 ability to accommodate future operations of more demanding aircraft. Conversely, it is 1465 not practical or economical to base airport design on aircraft that will not realistically 1466 use the airport. 1467 1468 2.3.2 A key factor to consider during airport design is the spatial relationship between a runway and other airport elements, such as taxiways, aprons and airfield structures. 1469 This relationship can affect future growth at the airport. Once constructed, it is very 1470 costly to relocate airfield infrastructure that conflicts with the operation of more 1471 1472 demanding aircraft. This may preclude the airport from benefitting from improved approach procedures. 1473 2.3.3 To prevent constraints to future airport development, consider the separation standards 1474 for the next higher ADG, AAC, TDG and approach visibility minimums during current 1475 airport design activities. Also consider the OFZ needed for aircraft that exceed the 1476

RDC (that will use the runway with less than regular use) in order to avoid possible 1477 operational restrictions. See Appendix L. 1478 2.4 **Design Process.** 1481 The airport design process involves a series of steps that align current airport needs with 1482 appropriate development that satisfies these needs, taking into consideration safety, 1483 capacity, economics and the environment. The steps generally include the following: 1484 1. Identify critical aircraft (size and AAC, ADG, and TDG). 1485 2. Identify reasonably attainable visibility minimums. 1486 3. Establish applicable RDC. 1487 1488 4. Apply appropriate design standards contained in this AC. 2.4.1 Critical Aircraft. 1489 As defined in AC 150/5000-17, the critical aircraft is the most demanding aircraft type, 1490 or grouping of aircraft with similar characteristics, that make regular use of the airport. 1491 Regular use is 500 annual operations, including both itinerant and local operations but 1492 1493 excluding touch-and-go operations. The critical aircraft enables airport planners and engineers to design the airport to meet the operational needs of the aircraft while 1494 applying the applicable standards. The critical aircraft may be a single aircraft or a 1495 composite of several different aircraft having the most demanding characteristic(s) of 1496 each (see paragraph 1.6.2). Table L-3 in Appendix L relates characteristics to various 1497 design components. Refer to AC 150/5000-17 for FAA guidance. Regular-use criteria 1498 apply to the determination of the critical aircraft. 1499 Considerations for Visibility Minimums. 2.4.2 1501 1502 While lower visibility minimums are desirable, runway design factors ranging from obstacles in the approach path to separation and buffers around the runway become 1503 much more restrictive. The determination of the approach visibility minimums for a 1504 runway include the demand for lower minimums, the resulting benefits and the 1505 associated costs. 1506 2.4.3 Visibility Categories. 1507 For purpose of airport design, the following are the four categories of visibility. Note 1508 these categories and definitions do not match with Part 77. 1509 2.4.3.1 Visual (V). 1510 Runways classified as visual are not suitable for Instrument Flight Rules 1511 (IFR) operations. The exception being circling-only approaches. These 1512 runways do not permit a straight-in approach. For the purpose of airport 1513 design, runways with circling-only approaches fall under the visual 1514 visibility category. Visual runways: 1515 1. Support Visual Flight Rules (VFR) operations only, 1516

1517 1518		2. Are unlighted or lighted with Low Intensity Runway Lights (LIRL) or Medium Intensity Runway Lights (MIRL), and
1519 1520		3. Have only visual (basic) runway markings as defined in <u>AC 150/5340-1</u> .
1521	2.4.3.2	Non-Precision Approach (NPA).
1522 1523 1524		A non-precision approach is an instrument approach based on a navigation system that provides course deviation information, but no glidepath deviation information. NPA runways:
1525 1526		1. Only support IFR approach operations to visibilities of 1/2 statute mile (0.8 km) or greater and have a HAT no lower than 250 feet.
1527 1528 1529 1530 1531		2. Rely on NAVAIDs providing lateral only guidance for instrument approaches such as Very High Frequency Omnidirectional Range (VOR), non-directional beacon (NDB), Area Navigation (RNAV) Lateral Navigation (LNAV), localizer performance (LP), localizer (LOC).
1532 1533		3. Generally, have lengths at least 3,200 feet (975 m) long, with a minimum width based on RDC.
1534		4. Have runway edge lights using at least LIRL or MIRL.
1535		5. Have non-precision runway markings as defined in <u>AC 150/5340-1</u> .
1536	2.4.3.3	Approach Procedure with Vertical Guidance (APV).
1537 1538 1539 1540 1541 1542		APV is an instrument approach based on a navigation system that is not required to meet the PA standards of ICAO Annex 10 but provides course and glidepath deviation information. Runways classified as APV handle instrument approach operations where the navigation system provides vertical guidance down to 200 feet HAT and visibilities to as low as 1/2 statute mile. APV runways:
1543 1544 1545 1546		1. May apply to the following approach types: LNAV/ Vertical Navigation (VNAV), Localizer Performance with Vertical Guidance (LPV), or Area Navigation (RNAV)/ Required Navigation Performance (RNP).
1547 1548		2. Typically have a length of at least 3,200 feet (975 m) in length and a typical width of at least 60 feet (18.5 m).
1549 1550		3. Typically have a runway with at least a MIRL and non-precision runway markings as defined in <u>AC 150/5340-1</u> .
1551	2.4.3.4	Precision Approach (PA).
1552 1553 1554 1555		A precision approach is an instrument approach based on a navigation system that provides course and glidepath deviation information. Runways classified as precision handle instrument approach operations supporting an instrument approach with HAT lower than 250 feet and

1556 1557		visibility lower than 3/4 statute mile, down to and including Category (CAT) III. Precision Instrument Runways (PIR):		
1558 1559		 Support IFR operations with visibilities down to and including CAT-III with the appropriate infrastructure. 		
1560 1561 1562 1563		 Have navigational systems capable of supporting precision operations that include ILS and Ground Based Augmentation System (GBAS) Landing System (GLS). (Order JO 6850.2 contains descriptions of various approach lighting systems.) 		
1564		3. Have runways lengths of at least 4,200 feet (1280 m).		
1565 1566		4. Have minimum runway width of at least 75 feet (23 m) with the typical width being 100 feet (30 m).		
1567		5. Are lighted with High Intensity Runway Lights (HIRL).		
1568		6. Have precision runway markings as defined in AC 150/5340-1.		
1569 1570 1571	2.4.4	Establish Applicable RDC. Establishing the critical aircraft and justified visibility minimums establishes the RDC. Refer to paragraph 1.6.4 for further information.		
1572	2.4.5	Apply Applicable Design Standards.		
1573 1574 1575		The RDC determines the applicable standards for the runway design. Each runway will have a specific RDC establishing design criteria such as runway to taxiway separations, safety areas, object free areas and obstacle free zones.		
1576 1577 1578 1579 1580		2.4.5.1 Example. Consider an airport may have a runway for air carrier operations and a runway for GA operations. The runway serving air carrier operations may have an RDC of D-IB-2400 while the runway serving GA operations may have an RDC of B-II-5000.		
1581	2.5	Key Safety Considerations for Airport Design.		
1582	2.5.1	Runway Incursions.		
1583	2.3.1	A runway incursion is any occurrence involving the incorrect presence of an aircraft,		
1584		vehicle or person in a protected area designated for landing or takeoff of aircraft.		
1585		Airfield geometry is a factor affecting the risk associated with runway incursion.		
1586		Appropriate consideration of this aspect during runway and taxiway design can mitigate		
1587		the factors that lead to increased risk of runway incursion. Refer to Chapter 4 and		
1588		Appendix J for taxiway design practices that reduce the risk of runway incursions.		
1589 1590		Certain runway configurations can increase the risk of runway incursions. The list includes, but is not limited to:		
1591		Close proximity of thresholds		
		1		

3. Wide expanses of pavement between intersecting runways.

2.5.2 Wrong Surface Events.

A wrong-surface event is an occurrence when an aircraft lands or departs on the wrong runway or on a taxiway. The causal factors for such events are broad. As it relates to airport design, airfield pavement geometries may contribute to wrong surface events. Some considerations that can increase the risk of wrong-surface events include:

- 1. The width of a parallel taxiway plus its shoulders may visually appear as a runway to a pilot on final approach to the associated runway.
- 2. The presence of wide expanse of pavement at runway approach ends obscures the location of the landing threshold.
- 3. The presence of wide expanse of pavement fillet causing the pilot to mistake inner parallel taxiway as the runway.
- 4. Parallel runways without standard separation distance.
- 5. Close proximity of thresholds of non-parallel runways.

1607 2.6 **Modification of Standards.**

Site-specific conditions may make it impractical to meet fully, all FAA design standards at an airport. The FAA will consider, on a case-by-case basis, modifications to the design standards provided the modification results in an acceptable level of safety and efficiency. Specific operational controls may be necessary to establish an acceptable level of safety for operation of aircraft at the airport. The FAA views approved modifications of standards as interim measures intended to mitigate unique local conditions. Unless the FAA explicitly states otherwise in the approval action, FAA expects airports with approved modifications to pursue ways to meet design standards either incrementally over time or at such time it becomes practical to correct fully the non-standard condition.

1618 2.7 Safety Management Systems (SMS).

FAA <u>Order 5200.11</u> describes the basis for implementing SMS for airports certificated under 14 CFR Part 139. This order also specifies when Safety Risk Management is implemented, including ALP reviews and certain types of Modifications of Standards.

1622 2.8 Diverse Aeronautical Uses on Airports.

Airports can support a diverse range of aeronautical activities. In addition to conventional airplane operations, aeronautical activities may include taildraggers, powered-parachutes, helicopters, parachute drop zones, balloons, gliders, weight-shift-control aircraft, airships, banner towing, and others. Some of these aeronautical activities use non-standard airport surfaces, particularly at general aviation airports. FAA Order 5190.6, Airport Compliance Manual, provides guidance on reasonably accommodating these activities while addressing safety concerns and related considerations, including coordination with other FAA offices such as Flight Standards and the Air Traffic Organization.

1632 2.8.1 <u>Heliports/Helipads.</u>

Refer to <u>AC 150/5390-2</u> for guidance on helicopter facilities on airports. <u>AC 150/5390-2</u> provides recommended distances between the helicopter final approach and takeoff area center to runway centerline as well as safety dimensions for helipads are also discussed.

1637 2.8.2 <u>Light Sport Aircraft and Ultralights.</u>

These aircraft have a maximum takeoff weight under 1,320 lbs (599 kg) and 254 lbs (115 kg) respectively. Their maximum stall speed is not more than 45 knots and 24 knots respectively. Since these aircraft regularly operate on turf runways, follow the guidance in paragraph 3.15.6. Otherwise, use the standards in this AC for small aircraft with approach speeds of more than 50 knots, and less than 50 knots, respectively. Refer to AC 103-6 for further guidance.

1644 2.8.3 <u>Seaplanes.</u>

Refer to AC 150/5395-1.

1646 2.8.4 Parachute Operations.

Parachute operations represent an allowable aeronautical activity at federally obligated airports subject to compliance with reasonable terms and regulatory requirements. Per 14 CFR § 105, parachute operations on an airport require prior coordination with the airport operator. Part 105 also establishes requirements to notify Air Traffic and obtain authorizations from Air Traffic and Flight Standards for parachute operations. Federally obligated airports consent to grant assurances when receiving federal assistance. Two assurances of importance as it relates to parachute operations are: 1) a commitment to operate and maintain the airport in a safe and serviceable manner, and 2) an obligation to provide access to all types, kinds, and classes of aeronautical activities without unjust discrimination. Refer to FAA Order 5190.6 for information addressing reasonable accommodation of parachute operations at an airport, safety considerations, and coordination with other appropriate FAA offices. Additional guidance on parachute operations as it relates to airport design include:

- 14 CFR, Part 105, Parachute Operations
- FAA Order 7110.65
 - FAA Order 7210.3, Facility Operation and Administration

• AC 150/5190-7, Minimum Standards for Commercial Aeronautical Activities 1663 AC 105-2, Sport Parachuting 1664 1665 • AC 90-66, Non-Towered Airport Flight Operations • United States Parachute Association (USPA), Basic Safety Requirements (BSR) 1666 2.8.5 Aircraft Operations in the Unpaved Runway Safety Area (RSA). 1667 The primary function of an RSA is to enhance the safety of aircraft that undershoot, 1668 1669 overrun or veer off the runway. Pilots of certain aircraft (such as ultralights, poweredparachutes, helicopters, gliders, agricultural aircraft, etc.) occasionally use the unpaved 1670 1671 portion of the RSA adjacent to a runway for takeoffs, landings or other operations (e.g. banner towing). While aircraft operations from the unpaved portion of an RSA are not 1672 1673 inherently unsafe, such operations have potential to introduce various hazards and risks to the pilot as well as other aircraft, vehicles, individuals and facilities on the airport. 1674 2.8.5.1 Key risk factors to consider include: 1675 1. The separation standards of Tables G-1 through G-12 in Appendix G 1676 do not consider landing and takeoff operations from the RSA adjacent 1677 to the paved runway surface. 1678 2. Aeronautical studies conducted as part of a Part 77 evaluation do not 1679 1680 cover operations to and from a runway safety area. 2.8.5.2 1681 From an airport design perspective, the optimum approach for an airport with a demonstrated need for operations from a turf surface is the 1682 development of a standard turf runway per paragraph 3.15. Runway 1683 justification conditions and regular-use criteria apply if the airport desires 1684 Federal assistance with development of a turf runway. 1685 2.8.5.3 Grant Assurance 19 requires the owner of an airport developed with 1686 federal grant assistance to operate its airport at all times in a safe and 1687 serviceable condition. An airport with operations in the RSA adjacent to 1688 the runway pavement may need to assess the operational safety 1689 implications, with assistance from the FAA, in order to ensure an 1690 1691 acceptable level of safety. Refer to FAA Order 5190.6 for guidance on reasonably accommodating these activities while addressing safety 1692 considerations and coordination with other FAA offices such as Flight 1693 1694 Standards and the Air Traffic Organization. 2.8.5.4 The Flight Standards District Office (FSDO) serves a primary role in 1695 determining an acceptable level of safety for aircraft operations within the 1696 unpaved portion of an RSA. In many cases, existing FAA regulations, 1697 guidance, and operational procedures are sufficient to establish an 1698 acceptable level of safety. In other cases, operational mitigations may be 1699 necessary based on Flight Standards safety assessment and guidance. 1700 Contact the applicable FSDO for questions related to safety of aircraft 1701 operations within the unpaved portion of an RSA. 1702

1703 1704			onsider the following factors when assessing aircraft operations in the nway safety area:
1705 1706		1.	Education of the pilot community to reflect aircraft operations in the RSA represents an operation on the paved runway.
1707 1708 1709		2.	The separation values and hold line locations on the runway side, where RSA operations occur, may be inadequate to mitigate identified risk.
1710 1711		3.	Provision for frequent inspection and maintenance of the RSA to ensure a serviceable condition.
1712 1713		4.	Provision of airport informational notes in the chart supplement and AWOS broadcasts.
1714	2.8.6	Unmanned Airc	raft Systems (UAS).
1715		See https://www	v.faa.gov/uas/ or contact the appropriate FAA Regional or Airports
1716		District Office f	or guidance
17 10		District Office is	of guidance.
1717	2.8.7	Gliders.	or guidance.
	2.8.7	Gliders.	gn standards that apply to powered aircraft apply to gliders as well,
1717	2.8.7	Gliders. The airport designicluding self-la	gn standards that apply to powered aircraft apply to gliders as well, unching gliders. The long wing lengths and low wingtip clearance
1717 1718 1719 1720	2.8.7	Gliders. The airport designicluding self-lacommon with gl	gn standards that apply to powered aircraft apply to gliders as well, nunching gliders. The long wing lengths and low wingtip clearance liders can present conflicts with airport infrastructure (e.g. lights, signs,
1717 1718 1719 1720 1721	2.8.7	Gliders. The airport design including self-lacommon with gleetc.) whenever to	gn standards that apply to powered aircraft apply to gliders as well, nunching gliders. The long wing lengths and low wingtip clearance liders can present conflicts with airport infrastructure (e.g. lights, signs, he glider is not the critical aircraft meeting regular use criteria. Similar
1717 1718 1719 1720 1721 1722	2.8.7	Gliders. The airport design including self-lacommon with gletc.) whenever to an aircraft at a	gn standards that apply to powered aircraft apply to gliders as well, nunching gliders. The long wing lengths and low wingtip clearance liders can present conflicts with airport infrastructure (e.g. lights, signs, he glider is not the critical aircraft meeting regular use criteria. Similar a runway holding position, a glider and its associated tow vehicle may
1717 1718 1719 1720 1721 1722 1723	2.8.7	Gliders. The airport design including self-late common with gletc.) whenever to an aircraft at a stage in a runwar	gn standards that apply to powered aircraft apply to gliders as well, nunching gliders. The long wing lengths and low wingtip clearance liders can present conflicts with airport infrastructure (e.g. lights, signs, he glider is not the critical aircraft meeting regular use criteria. Similar a runway holding position, a glider and its associated tow vehicle may be object free area. However, support equipment such as vehicles,
1717 1718 1719 1720 1721 1722 1723 1724	2.8.7	Gliders. The airport designed including self-laccommon with gleetc.) whenever to an aircraft at a stage in a runwa trailers, stands, of	gn standards that apply to powered aircraft apply to gliders as well, nunching gliders. The long wing lengths and low wingtip clearance liders can present conflicts with airport infrastructure (e.g. lights, signs, he glider is not the critical aircraft meeting regular use criteria. Similar a runway holding position, a glider and its associated tow vehicle may be object free area. However, support equipment such as vehicles, dollies, etc., represent objects that need to be clear of active safety areas,
1717 1718 1719 1720 1721 1722 1723 1724 1725	2.8.7	Gliders. The airport design including self-lated common with gleetc.) whenever to an aircraft at a stage in a runwa trailers, stands, cobject free areas	gn standards that apply to powered aircraft apply to gliders as well, nunching gliders. The long wing lengths and low wingtip clearance liders can present conflicts with airport infrastructure (e.g. lights, signs, the glider is not the critical aircraft meeting regular use criteria. Similar a runway holding position, a glider and its associated tow vehicle may be object free area. However, support equipment such as vehicles, dollies, etc., represent objects that need to be clear of active safety areas, and obstacle free zones. Airports with recurring glider activity can
1717 1718 1719 1720 1721 1722 1723 1724 1725 1726	2.8.7	Gliders. The airport design including self-lated common with gletc.) whenever to an aircraft at a stage in a runwa trailers, stands, cobject free areas ensure safe oper	gn standards that apply to powered aircraft apply to gliders as well, nunching gliders. The long wing lengths and low wingtip clearance liders can present conflicts with airport infrastructure (e.g. lights, signs, he glider is not the critical aircraft meeting regular use criteria. Similar a runway holding position, a glider and its associated tow vehicle may be object free area. However, support equipment such as vehicles, dollies, etc., represent objects that need to be clear of active safety areas, and obstacle free zones. Airports with recurring glider activity can ration of gliders at the airport by assessing available separation
1717 1718 1719 1720 1721 1722 1723 1724 1725	2.8.7	Gliders. The airport design including self-late common with gletc.) whenever to an aircraft at a stage in a runwa trailers, stands, cobject free areas ensure safe oper clearances and entering stands.	gn standards that apply to powered aircraft apply to gliders as well, nunching gliders. The long wing lengths and low wingtip clearance liders can present conflicts with airport infrastructure (e.g. lights, signs, the glider is not the critical aircraft meeting regular use criteria. Similar a runway holding position, a glider and its associated tow vehicle may be object free area. However, support equipment such as vehicles, dollies, etc., represent objects that need to be clear of active safety areas, and obstacle free zones. Airports with recurring glider activity can
1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727	2.8.7	Gliders. The airport design including self-later common with gletc.) whenever to an aircraft at a stage in a runwa trailers, stands, cobject free areas ensure safe oper clearances and edocument FAA-	gn standards that apply to powered aircraft apply to gliders as well, nunching gliders. The long wing lengths and low wingtip clearance liders can present conflicts with airport infrastructure (e.g. lights, signs, the glider is not the critical aircraft meeting regular use criteria. Similar a runway holding position, a glider and its associated tow vehicle may be object free area. However, support equipment such as vehicles, dollies, etc., represent objects that need to be clear of active safety areas, and obstacle free zones. Airports with recurring glider activity can ration of gliders at the airport by assessing available separation ensuring appropriate operational controls are in place. Refer to FAA

1731		CHAPTER 3. Runway Design
1732	3.1	Introduction.
1732	3.1	The runway design standards, recommendations, design considerations, and
1734		requirements in this chapter describe features essential for safe and efficient takeoff and
1735		landing operations. These include, but are not limited to:
1736		Runway design concepts and considerations
1737		 Runway end siting requirements
1738		Runway geometry and layout
1739		• Runway Line of Sight (LOS)
1740		Parallel runway separation
1741		Runway to parallel taxiway separation
1742		Runway Safety Area (RSA) Runway Safety Area (RSA)
1743		Runway Object Free Area (ROFA) Proposed Protection Zene (RPZ)
1744		Runway Protection Zone (RPZ) Dunway Visibility Zone (RVZ)
1745 1746		Runway Visibility Zone (RVZ)Clearways
1740		• Stopways
1748		Surface gradient
1749		• Turf runways
1750		Instrument approach procedures
1751	3.2	Runway Design Code (RDC).
1752		The Runway Design Code (RDC) determines the standards that apply to a specific
1753		runway and parallel taxiway allowing optimal safe operations by the critical aircraft
1754		under desired meteorological conditions. The RDC is based on existing and planned
1755		development and has no operational application. Refer to the online Runway Design
1756		Standards Matrix Tool or Appendix G for specific dimensional design criteria. Except
1757		when noted, dimensional standards are independent of the surface type of the runway.
1758	3.3	Runway Design Concepts and Considerations.
1759	3.3.1	Runway Length.
1760		Use AC 150/5325-4 to determine the runway length for the critical aircraft. Key factors
1761		include:
1762		1. Critical aircraft takeoff and landing distances.
1763		2. Obstacle clearance for all aircraft intended to use the runway.
1764		3. Airport elevation.
1765		4. Airport climate condition.
1766		5. Surface gradient.

1767 1768 1769	3.3.2	Runway Threshold. Runway length, obstructions, and visibility requirements are key factors when locating a runway threshold. 1. The appropriate obstacle clearance surface is clear of obstacles.			
1770		1. The app	propriate obstacle clearance surface is clear of obstacles.		
1771 1772		 Operational mitigations may be necessary to address obstacle penetrations of standard approach surfaces. 			
1773 1774		3. Refer to paragraph 3.5 and <u>Table 3-1</u> , <u>Table 3-2</u> , <u>Table 3-3</u> , and <u>Table 3-4</u> for OCS standards.			
1775	3.3.3	Number of	Runways.		
1776 1777 1778		Runway location and orientation are paramount to airport safety, efficiency, economics, and environmental impact. Capacity and/or wind coverage determine the number of runways needed.			
1779		3.3.3.1	Capacity		
1780			Use AC 150/5060-5 for planning guidance on runway capacity.		
1781		3.3.3.2	Orientation and Wind.		
1782			The primary runway orientation is normally in the direction of the		
1783 1784			prevailing wind. A wind data analysis considers wind speed and direction for existing and forecasted operations for local meteorological conditions.		
1785			1. Refer to Appendix B for wind analysis for airport planning and design.		
1786			2. Design for a crosswind runway when the primary runway orientation:		
1787			a. provides less than 95.0 percent wind coverage, and		
1788 1789			b. regular use for the critical aircraft needing crosswind coverage exists per AC 150/5000-17.		
1790 1791			3. Wind coverage is based on the allowable crosswind component not exceeding the values in <u>Table B-1</u> .		
1793	3.3.4	Airspace A	nalysis and Obstruction to Air Navigation.		
1794		The runway	orientation determines the approach and departure path for the design level		
1795			An obstruction survey identifies objects that may affect aircraft operations		
1796 1797		-	Contact the local FAA Regional Office or Airports District Office for and information regarding the following matters:		
1798		 Existing 	g and planned IFPs		
1799		 Missed 	approach procedures		
1800		-	are procedures		
1801			patterns influencing airport layouts and locations		
1802		• Obstruc	etions to air navigation.		

1803	3.3.5	Environmental Factors.			
1804 1805 1806 1807		An evaluation under the National Environmental Policy Act (NEPA) considers the impact of runway development on existing and proposed land use, noise on nearby residents, air and water quality, wildlife, and historical/archeological features. See FAA Order 1050.1 and FAA Order 5050.4.			
1808	3.3.6	Topography.			
1809		Topography affects:			
1810 1811		1. The amount of grading and drainage work necessary to develop a runway; both existing and long term. See <u>AC 150/5320-5</u> for further guidance.			
1812 1813		2. Instrument Flight Procedures (IFPs) when it is necessary to increase minima to keep flight paths clear of terrain in the approach surfaces.			
1814 1815		a. The presence of precipitous terrain may also result in increased minima to provide additional clearance.			
1816 1817		b. For takeoff, establishing an obstacle departure procedure may be needed when operating under IFR to ensure safe clearance from rising terrain.			
1818	3.3.7	Wildlife Hazards.			
1819 1820		Consider the location of bird and wildlife attractants (e.g. ponds, wetlands, storm water detention, trees, etc.) when establishing runway orientation.			
1821 1822		1. See AC 150/5200-33, AC 150/5200-34, and FAA/USDA manual, Wildlife Hazard Management at Airports.			
1823		2. Guidance is also available through local FAA Airports offices.			
1824	3.3.8	Geospatial Survey.			
1825 1826		Perform surveys in accordance with <u>AC 150/5300-16</u> , <u>AC 150/5300-17</u> , and <u>AC 150/5300-18</u> .			
1827	3.3.9	Runway Markings and Airport Sign Systems.			
1828		1. AC 150/5340-1 addresses runway markings.			
1829		2. AC 150/5340-18 addresses airport sign systems.			
1830		3. AC 150/5340-30 addresses airport lighting.			
1831	3.3.10	Navigation Aids (NAVAIDs).			
1832		NAVAIDs provide desired visual and electronic signals that support visual and			
1833 1834		instrument approach access. <u>Chapter 6</u> provides relevant NAVAID information that support runways.			
1835	3.3.11	Runway Design.			
1836 1837		As a minimum, the design of runways and runway extensions involves an evaluation of the following standards:			
1838		• RSA, paragraph <u>3.9</u> .			

1839 1840 1841 1842 1843 1844 1845 1846		 OFZ, paragraph 3.10. Runway Object Free Area (ROFA), paragraph 3.11. Runway Protection Zone (RPZ), paragraph 3.12. Approach and Departure Surfaces, paragraphs 3.5.1 and 3.5.2. Runway to taxiway separation standards using the online Runway Design Standards Matrix Tool or Appendix G. Runway Line of Sight, paragraph 3.7. Runway Obstacle Clearance Surface (OCS), Table 3-1, Table 3-2, Table 3-3, and Table 3-4. 				
1848 1849 1850	3.3.12	The FAA util	d Departure Imaginary Surfaces. lizes three sets of imaginary surfaces to evaluate and protect the approach e areas of a runway.			
1851		3.3.12.1	14 CFR Part 77.			
1852			1. Provides the standards for identifying obstructions to air navigation.			
1853 1854			2. Consist of the primary, approach, transitional, horizontal, and conical surfaces.			
1855 1856			3. FAA presumes obstructions are hazards to air navigation unless further aeronautical study concludes that the object is not a hazard.			
1857 1858		3.3.12.2	United States Standard for Terminal Instrument Procedures (TERPS).			
1859 1860			1. Prescribes the criteria for designing and evaluating instrument flight procedures (IFPs).			
1861 1862 1863			2. Specifies the minimum measure of obstacle clearance that provides a satisfactory level of vertical protection from obstructions for IFR procedures.			
1864 1865			3. Establishes the standard takeoff and landing minimums for instrument runways.			
1866		3.3.12.3	Runway Obstacle Clearance Surfaces (OCS).			
1867 1868			See paragraph <u>3.5</u> and the dimensional values in <u>Table 3-1</u> , <u>Table 3-2</u> , <u>Table 3-3</u> , and <u>Table 3-4</u> :			
1869 1870			1. Prescribes the criteria for evaluating runways serving only visual operations, and			
1871 1872			2. Provides basic planning surfaces, as it relates to instrument runways, intended to protect select TERPS surfaces.			
1873	3.4	Runway En	l Siting Criteria.			
1874 1875		For runways	with instrument procedures, base the final design on a detailed analysis criteria of FAA Order 8260.3, United States Standard for Terminal			

Instrument Procedures (TERPS). This analysis is typically done by the FAA Flight Procedures Office. Runway ends and runway thresholds are two distinct design elements.

3.4.1 Runway Ends.

1876

1877

1878

1879

1880

1881

1882

The runway ends are the physical ends of a rectangular prepared surface that constitutes a runway. (See Figure 3-1).

Figure 3-1. Runway Ends

1883 1884

1885

Note 1: For runway marking standards, see <u>AC 150/5340-1</u>.

Note 2: For runway lighting standards, see <u>AC 150/5340-30</u>.

1886 1887 1888	3.4.2	Runway Threshold. A standard runway threshold provides obstacle clearance for landing aircraft. The optimum location of a threshold is the beginning of the runway.
1889 1890		3.4.2.1 Standards. Locate the threshold to meet the following criteria:
1891 1892		 No obstacle penetration of the approach surface per <u>Table 3-1</u>, <u>Table 3-2</u>, and <u>Table 3-3</u>.
1893		2. Location allows for standard RSA, ROFA, and OFZ.
1894		3.4.2.2 Design Considerations.
1895 1896		Consider the ultimate approach visibility minimums planned for the runway.
1897 1898 1899 1900 1901 1902 1903 1904	3.4.3	Displaced Threshold. When it is impractical to locate a threshold at the runway end, it may be necessary to apply a displaced threshold. A displaced threshold reduces runway length available for landings in one direction. The portion of the runway prior to the displaced threshold typically remains available for takeoffs. Depending on the circumstances surrounding the displacement, operations from the opposite runway end may or may not be affected. Refer to Appendix H for related information on declared distances. Generally, a runway threshold displacement provides:
1905		1. A means for obtaining additional RSA prior to the threshold.
1906		2. A means for obtaining additional ROFA prior to the threshold.
1907		3. A means for locating the RPZ to mitigate incompatible land uses.
1908		4. Obstacle clearance in the land approach area of a runway.
1909 1910 1911		5. Increased arrival capacity with certain parallel runway approach procedures. See <u>FAA Order 7110.308</u> , Simultaneous Dependent Approaches to Closely Spaced Parallel Runways.
1912		3.4.3.1 Design Considerations.
1913		Consider a displaced threshold only after a full evaluation establishes that
1914 1915		displacement is the best available alternative. While threshold displacement is often a convenient solution for constrained airports, the
1916 1917		evaluation needs to weigh the trade-offs and consequences of a displaced threshold. These include factors such as:
1918		1. Approach light systems and NAVAIDs may require relocation.
1919 1920 1921 1922 1923		2. Threshold displacement may result in existing taxiways, holding bays and aprons now being located forward of a runway threshold thus creating potential situations where taxiing aircraft may penetrate a protected surface such as an approach surface or a Precision Obstacle Free Zone (POFZ).

1924 1925		 Additional holding positions may be necessary to keep aircraft clear of approach and departure surfaces.
1926 1927		4. Threshold displacement may result in holding positions on the parallel taxiways where pilots may not expect to encounter a holding position.
1928	3.4.4	Departure End of the Runway.
1929 1930 1931		When a clearway is not present, the departure end of the runway indicates the end of the prepared runway surface (e.g. full-strength pavement) available and suitable for departure.
1932	3.4.5	Establishing and Protecting Runway Ends.
1933		When establishing runway ends, ensure:
1934 1935		1. All applicable approach surfaces of <u>Table 3-1</u> , <u>Table 3-2</u> , <u>Table 3-3</u> , and TERPs surfaces of <u>Table 3-6</u> associated with the threshold are clear of obstacles.
1936 1937		2. The 40:1 departure surface associated with the ends of designated instrument departure runways are clear of obstacles per paragraph 3.5.2.
1938		3. Standard dimensions for the RSA and ROFA are available.
1939		4. Incompatible objects and activities remain clear of the RPZ per paragraph 3.12.
1940 1941		5. Controls in the form of land-use restriction, zoning, easements or acquisition are in place to protect approach and departure surfaces from adverse conditions such as:
1942		a. proposed development, or
1943		b. natural vegetation growth.
1944 1945 1946		6. Critical area and obstacle clearance surface associated with electronic and visual NAVAIDs such as a Visual Glideslope Indicator (VGSI), ALS, or Instrument Landing System (ILS) remain clear of interfering sources.
1947	3.5	Approach and Departure Surfaces.
1948		Table 3-1, Table 3-2, Table 3-3, and Table 3-4 present the dimensional standards
1949		applicable to varying runway types based on normal conditions (e.g. standard 3-degree
1950		glidepath angle). Meeting the criteria of this table will protect the use of the runway in
1951 1952		both visual and instrument meteorological conditions near the airport while ensuring maximum runway utility. Final published visibility minimums are determined, in part,
1953		by applying the criteria described in FAA Order 8260.3.
1955	3.5.1	Approach Surfaces.
1956		The approach surfaces defined in this paragraph are distinct from the approach surfaces
1957		defined in Part 77. The FAA determines final published visibility minimums by
1958		applying the criteria prescribed in TERPS. The specific size, slope and starting point of
1959		the surface depend upon the visibility minimums and the type of procedure associated
1960		with the runway end.

1961	3.5.1.1	Standard.
1962 1963		Approach surfaces protect runway use for both visual and instrument aircraft operations.
1964		1. Visual runway (<u>Table 3-1</u>) approach surfaces are clear of obstacles.
1965 1966		2. Instrument runway (<u>Table 3-2</u> and <u>Table 3-3</u>) approach surfaces are clear of obstacles.
1967 1968		3. The approach surface has a trapezoidal shape per <u>Figure 3-2</u> and <u>Table 3-1</u> , <u>Table 3-2</u> , and <u>Table 3-3</u> .
1969 1970 1971		4. If necessary to avoid obstacles, the instrument approach surface may be offset as shown in <u>Figure 3-7</u> . Contact the Flight Procedures Team for more information on offset instrument approaches.
1972	3.5.1.2	Design Considerations.
1973 1974 1975		1. Evaluate any obstacle penetrating the approach surfaces in <u>Table 3-1</u> , <u>Table 3-2</u> , and <u>Table 3-3</u> through the Obstruction evaluation/Airport Airspace Analysis (OE/AAA) process.
1976 1977 1978 1979		2. The instrument approach surfaces in <u>Table 3-2</u> and <u>Table 3-3</u> are for airport planning purposes and reflect the visual segment of an instrument approach procedure as defined in TERPS. Other TERPS criteria may apply.
1980 1981		3. Ensure protection of runway ends from proposed development or natural vegetation growth that could penetrate the approach surfaces:
1982 1983		a. Protection measures include land use restrictions and zoning, easements, and property acquisitions (see <u>AC 150/5020-1</u>).
1984 1985 1986 1987		b. Refer to Engineering Brief No. 91, Management of Vegetation in the Airport Environment, for information on the removal or topping of vegetation as well as the collection, submission, and management of data regarding vegetation on and around airports.
1988 1989 1990		4. Consider operational surfaces associated with electronic and visual NAVAIDs such as a Visual Glideslope Indicator (VGSI), Approach Lighting System (ALS), or Instrument Landing System (ILS).
1991 1992		5. For planning purposes, ensure objects remain clear of the OCS prescribed in <u>Table 3-1</u> , <u>Table 3-2</u> , and <u>Table 3-3</u> .
1993 1994 1995		6. For instrument runways, the FAA mitigates existing obstacles that penetrate an instrument OCS and cannot be removed, relocated, or lowered by adjusting minima.
1996 1997		7. Displacing the threshold may mitigate obstacle(s) penetrating the approach surface. See <u>Figure 3-3</u> .
1998 1999		8. The FAA will not issue a modification of standard for standards prescribed in <u>Table 3-1</u> , <u>Table 3-2</u> , and <u>Table 3-3</u> .

Figure 3-2. Standard Approach Surface

2001 2002 2003

Note 1: The starting elevation of the approach slope is the elevation of the runway threshold.

Note 2: Refer to Figure 3-3 for a displaced threshold.

Figure 3-3. Displaced Threshold

2005 2006

Note 1: The starting elevation of the approach slope is the elevation of the runway displaced threshold.

Table 3-1. Visual and Daytime IFR Circling Obstacle Clearance Surfaces

ocs	Runway Type	Dimensio	Slope			
		A	В	C	D	
OCS 1	Approach end of runways serving small airplanes with approach speeds less than 50 knots.	120 (37)	300 (91)	500 (152)	2,500 (762)	15:1
OCS 2	Approach end of runways serving small airplanes with approach speeds of 50 knots or more.	250 (76)	700 (213)	2,250 (686)	2,750 (838)	20:1
OCS 3	Approach end of runway serving large airplanes	400 (122)	1,000 (305)	1,500 (457)	8,500 (2591)	20:1

2008 2009 **Note 1:** Table is applicable to visual day or night runways and day-time only circling. For runway ends authorized for night circling, see Table 3-2.

2010

Note 2: Refer to the published instrument approach charts to determine if circling is available.

2011

Note 3: Approach surface begins at the runway threshold.

2012

Figure 3-4. Visual and Daytime IFR Circling Obstacle Clearance Surfaces

2013 2014 2015

Note 1: Refer to Table 3-1 for dimensional values.

Note 2: Surface slopes upward from starting point.

Table 3-2. Non-Precision and Nighttime IFR Circling Obstacle Clearance Surfaces

ocs	Runway Type	Visibility minimums	Dimensional Standa Feet (Meters)				Slope
			A	В	C	D	
	Approach end of runways that supports nighttime IFR circling procedures and procedures only providing lateral guidance (VOR, NDB, LNAV, LP, and LOC).	≥ ¾ statute mile	200 (61)	400 (122)	3,400 (1036)	10,000 (3048)	20:1
OCS 4		< 3⁄4 statute mile	200 (61)	400 (122)	3,400 (1036)	10,000 (3048)	34:1

- **Note 1:** See Appendix L for acronym list on IFR procedure names.
- **Note 2:** Dimension A is relative to the runway threshold.
- **Note 3:** Refer to the published instrument approach charts to determine if nighttime circling is available.
- **Note 4:** See Table 3-6 for standards for instrument approach procedures.
- **Note 5:** Table represents the TERPS visual portion of the final approach segment.
- **Note 6:** Table is applicable to circling approaches that are available at night. For day-time only circling, refer to the applicable approach surface from <u>Table 3-1</u>.
- **Note 7:** For airport planning purposes. Final visibility minimums is determined by Flight Procedures evaluating criteria in FAA <u>Order 8260.3</u> and FAA Order 8260.58. Flight Procedures conducts a full IFP evaluation via an aeronautical study.
- **Note 8:** Marking and lighting of obstacle penetrations to this surface or the use of a Visual Guidance Lighting System (VGLS) may mitigate displacement of the threshold. Contact the Flight Procedures Team if existing obstacles penetrate this surface.
- **Note 9:** 10,000 feet (3048 m) represents a nominal value for planning purposes. The length is dependent on the Visual Descent Point (VDP) location.

Figure 3-5. Non-Precision and Nighttime IFR Circling Obstacle Clearance Surfaces

Note: Refer to Table 3-2 for dimensional values.

2034 2035

2016

2017

2018 2019

2020

2021

2022

2023

2024

2025 2026

2027

2028

2029

2030 2031

2032

2037

2038

2039

2040

2041

20422043

2044

2045

2046

2047

2048

2049 2050

Table 3-3. APV and PA Instrument Runway Obstacle Clearance Surfaces

ocs	Runway Type	Visibility	Dimensional Standards Ft (M)			Slope	
		Minimums	A	В	C	\mathbf{D}^7	
OCS 5	Approach end of runways providing ILS, MMLS, PAR,	≥ ¾ statute mile	200 (61)	400 (122)	3,400 (1036)	10,000 (3048)	20:1
	and LDA with glidepath, LPV, LNAV/VNAV, RNP, or GLS.	< 3⁄4 statute mile	200 (61)	400 (122)	3,400 (1036)	10,000 (3048)	34:1
OCS 6	Approach end of runways providing ILS, MMLS, PAR, and LDA with glidepath, LPV, LNAV/VNAV, RNP, or GLS.	All	0	Runway Width	1,520 (463)	10,000 (3048)	30:1

Note 1: See Appendix L for acronym list on IFR procedure names.

Note 2: Dimension A is relative to the runway threshold.

Note 3: See <u>Table 3-6</u> for standards for instrument approach procedures.

Note 4: OCS 5 represents the TERPS visual portion of the final approach segment. OCS 6 represents the TERPS Vertical Guidance Surface (VGS). Both surfaces apply for APV and PA procedures. Contact the Flight Procedures Team if existing obstacles penetrate this surface.

Note 5: For airport planning purposes. Final visibility minimums are determined by Flight Procedures evaluating criteria in FAA <u>Order 8260.3</u> and FAA Order 8260.58. Flight Procedures conducts a full IFP evaluation via an aeronautical study.

Note 6: The FAA assesses TERPS final approach segment OCS criteria (i.e. W, X, Y surfaces) for all runway ends authorized for ILS, MMLS, PAR, and LDA with glide slope, LPV, and GLS procedures. Refer to FAA <u>Order 8260.3</u> for additional information on TERPS surfaces.

Note 7: 10,000 feet (3048 m) represents a nominal value for planning purposes. The actual length is dependent on the precision final approach fix.

Figure 3-6. APV and PA Instrument Runway Obstacle Clearance Surfaces

2052 2053

Note: Refer to <u>Table 3-3</u> for dimensional values.

Figure 3-7. Offset Approach Plane

2055 2056

2057 2058

2059

20602061

2062

2063

2064

20652066

2067

2068

2069

2070

- **Note 1:** Refer to for all applicable dimensional standards and slopes.
- **Note 2:** The offset area is defined by the perimeter 1-6-3-4-5-1.

Note 3: α = angle of the offset final approach (angle formed by the intersection of the offset final approach course with the extended runway centerline).

3.5.2 <u>Departure Surfaces.</u>

Clear departure surfaces allow pilots to follow standard instrument departure procedures, which assist pilots in avoiding obstacles during the initial climb from the terminal area. These procedures are published in the U.S. Terminal Procedures Publication (TPP). The departure surface applies to all runways unless otherwise specified in the TPP. The airport operator in coordination with the FAA identifies runway ends without an instrument departure surface as not available (for IFR departures). For runway ends that are visual and/or without a published instrument departure procedure, the application of the 40:1 instrument departure surface is desirable where practicable. There can be valid reasons for an airport operator to not protect the visual runway for the instrument departure surface, in the interest of other

2071 2072		relopment on or near the airport. Refer to <u>Appendix H</u> for the effect declared nay have on departure surfaces.
2073	3.5.2.1	Standards.
2074 2075		1. The departure surface starts at the departure end of the runway elevation and matches the width of the usable runway.
2076 2077		a. From the edge of the usable runway, the surface tapers upward to 150 feet at 500 feet on either side of the runway centerline.
2078 2079		b. The surface slopes along the extended runway centerline at 40:1 until reaching 304 feet.
2080 2081		c. Upon reaching 304 feet, the surface is level until the end of the departure surface.
2082 2083		2. See <u>Figure 3-8</u> for standard size, shape and orientation of the departure surface.
2084 2085 2086 2087		3. Maintain the 40:1 instrument departure surface associated with the ends of runways with published instrument departure procedures to be clear of obstacles, or with applicable mitigation as identified in paragraph 3.5.2.2.
2088	3.5.2.2	Design Considerations.
2089 2090 2091		 Evaluate any obstacle that penetrates the 40:1 departure surface through the Obstruction Evaluation/Airport Airspace Analysis (OE/AAA) process.
2092 2093		2. Ensure protection of runway ends from proposed development or natural vegetation growth that could penetrate the departure surfaces:
2094 2095		a. Protection measures include land use restrictions and zoning, easements, and property acquisitions (see <u>AC 150/5020-1</u>).
2096 2097 2098 2099		b. Refer to Engineering Brief No. 91, Management of Vegetation in the Airport Environment, for information on the removal or topping of vegetation as well as the collection, submission, and management of data regarding vegetation on and around airports.
2100 2101		3. If penetrations exist to the departure surface, the departure procedure may require a(an):
2102		a. Non-standard climb gradient, and/or
2103 2104		 Increase in the standard takeoff minimums, departure minimums, and/or
2105		c. Reduction in takeoff length.

Table 3-4. Instrument Departure Runway Obstacle Clearance Surface

ocs	Runway Type	Dim	ensional S	Slope			
		A	В	C	\mathbf{D}^2	E	
OCS 7	Runways providing instrument departure operations.	Runway Width (RW)	500 (152) – ½ RW	7,512 (2290)	12,152 (3704)	6,152 (1875)	40:1

2107 2108 2109

2110 2111 2112

2113 2114 2115

2116

above DER elevation then that part of Section 2 that leveled off continues at a 40:1 slope. Note 2: The following formula determines the half width, y, of Section 1 from a distance, x, from the departure end of runway. $Y = (\frac{1}{2} * Runway Width) + (Tan 15° * X)$

Note 1: Section 1 OCS starts at DER elevation for the width of the runway and rises along the extended runway

centerline at 40:1. Section 2 starts at an equal elevation to the adjoining Section 1. Section 2 continues until reaching 304 ft and then levels off until reaching the line where Section 1 and Section 2 reach 304 ft

Note 3: The start of the surface is relative to the departure end of the runway. Runways with published declared distances, the TODA indicates the beginning of the OCS. See Figure 3-9.

Note 4: 12,152 feet (3704 m) represents a 2 nm nominal value for planning purposes.

Figure 3-8. Instrument Departure Runway Obstacle Clearance Surface

2117 2118 2119

Note 1: The half-width of Section 1 is calculated by the formula: Section $1_{\text{Half Width}} = (1/2 \text{ RWY Width}) + (\text{Tan } 15^{\circ} * \text{X})$, where X = distance from stop end.

Figure 3-9. Departure Surface with Clearway

2121 2122 2123

Note 1: The half-width of Section 1 is calculated by the formula: Section $1_{Half \ Width} = (1/2 \ RWY \ Width) + (Tan 15° * X)$, where X = distance from stop end.

2124

Figure 3-10. Departure Surface – Perspective View

2126	3.6	Runway Geometry.						
2127 2128 2129 2130	3.6.1	Runway Length. Runway length accommodates landing and departure length needed by the critical aircraft. AC 150/5325-4 describes applicable methodologies for determining runway length.						
2131 2132 2133	3.6.2	Runway Width. Appendix G and the online Runway Design Standards Matrix Tool present runway width standards based on Runway Design Code (RDC).						
2134 2135 2136 2137 2138 2139	3.6.3	Runway Shoulders. Runway shoulders provide resistance to jet blast erosion. Appendix G and the online Runway Design Standards Matrix Tool provide runway shoulder width standards. Refer to Figure 3-31 for a graphic depiction of runway shoulders. See Appendix C for additional information on jet blast. See AC 150/5320-6 for design procedures for paved airfield shoulders.						
2140		3.6.3.1 Standards.						
2141 2142		 Provide paved shoulders for runways serving the critical aircraft of Airplane Design Group (ADG) IV and larger. 						
2143		2. Design shoulder pavement to support:						
2144		a. The occasional veer-off from the runway of the critical aircraft.						
2145		b. Passage of emergency and maintenance vehicles.						
2146 2147 2148		3. Provide turf, aggregate-turf, soil cement, lime or bituminous stabilized soil adjacent to runways serving the critical aircraft of ADG-I, ADG-II, and ADG-III.						
2149		3.6.3.2 Recommended Practices.						
2150		Provide paved shoulders for:						
2151		1. runways with ADG-III as the critical aircraft,						
2152		2. runways experiencing erosion of soil adjacent to the runway,						
2153 2154		3. runways with soil not suitable for turf establishment (see <u>AC 150/5320-6</u>).						
2155 2156 2157 2158 2159 2160 2161	3.6.4	Runway Blast Pads. Runway blast pads provide resistance to jet blast erosion beyond runway ends. Appendix G and the online Runway Design Standards Matrix Tool contain the standard length and width for blast pads for takeoff operations requiring blast erosion control. Blast pads are not stopways, though a paved stopway can serve as a blast pad. Refer to Figure 3-16, Chapter 6, and Appendix C. See AC 150/5320-6 for design procedures for blast pads.						

2162		3.6.4.1	Standards.
2163 2164			1. Design blast pad pavement similar to runway pavement to support occasional passage of:
2165			a. critical aircraft
2166			b. emergency and maintenance vehicles.
2167 2168			2. Design to the same longitudinal and transverse grades as the safety area.
2169 2170 2171 2172 2173 2174 2175	3.6.5	Runway safe landing and intersect, thu acceptable le potential ope	ety areas (see paragraph 3.9) represent a safety measure for aircraft during takeoff operations. When two or more runways converge but do not as creating overlapping RSAs, apply the standards of 3.6.5.1, to establish an evel of safety in this area. Overlapping RSAs introduce safety risks and erational limitations. Refer to paragraph 1.6 for information on the risk with overlapping RSAs.
2176		3.6.5.1	Standards.
2177 2178			1. Configure runway ends, taxiways and holding positions to allow taxiing and holding aircraft to remain clear of all RSAs.
2179 2180 2181			2. Configure runway ends to facilitate holding positions that allow holding aircraft to be perpendicular to the runway centerline per Scenarios #1 and #2 of Figure 3-11.
2182 2183			3. For existing configurations not meeting standards, develop a strategy to meet standards either:
2184			a. Incrementally over time, or
2185 2186			b. At such time it becomes practical to correct fully the non-standard condition.
2187		3.6.5.2	Recommended Practices.
2188 2189			1. For multiple runways that converge but do not intersect, configure runway ends for the optimum condition of independent RSAs.
2190 2191 2192 2193			2. When the most demanding aircraft using the airport is not the critical aircraft with regular use, configure the runway ends, taxiways and holding positions, if practical, to preclude the need for operational controls.
2194		3.6.5.3	Design Considerations.
2195 2196			1. Overlapping runway safety areas may create conditions resulting in holding positions on taxiways that do not lead directly to a runway.

2. Overlapping runway safety areas can present an elevated risk for wrong runway departures when an aligned taxiway is present. See Appendix I.

2200

Figure 3-11. Converging Non-Intersecting Runways

2202	Note	es for Figure 3-11:	
2203 2204 2205 2206		(Appe Note 2: The n	num distance is the standard runway centerline to taxiway centerline separation endix G) minus ½ taxiway width. ninimum separation value is the necessary distance to allow an aircraft to hold without aching upon an RSA.
2207	3.6.6	Intersecting Ru	unways.
2208 2209 2210		efficiency. Th	on of two or more runways creates risks to airport safety and operational e degree of risk will vary depending on the intersection location for each paragraph <u>I.6</u> for additional information on the associated risk.
2211		3.6.6.1 S	tandards.
2212 2213		1	. Configure runways ends, taxiways and holding positions such that taxiing and holding aircraft remain clear of all RSAs.
2214 2215 2216		2	. Configure runway ends to facilitate holding positions that allow holding aircraft to be perpendicular to the runway centerline per <u>Figure 3-12</u> .
2217 2218		3	. For existing configurations not meeting standards, develop a strategy to meet standards either:
2219			a. Incrementally over time, or
2220 2221			b. At such time, when it becomes practical to correct fully the non-standard condition.
2222		3.6.6.2 F	Recommended Practices.
2223 2224		1	. Configure runways that intersect to eliminate the need to adjust aiming point markings and/or remove touchdown zone markings.
2225 2226 2227 2228		2	When the most demanding aircraft using the airport is not the critical aircraft with regular use, configure the runway ends, taxiways and holding positions, if practical, to preclude the need for operational controls.
2229		3.6.6.3 I	Design Considerations.
2230 2231		1	. Intersecting runways with runway ends in close proximity present an elevated risk for wrong runway departures. See <u>Appendix I</u> .
2232 2233 2234		2	be necessary for the lesser order runway as specified in <u>AC 150/5340-1</u> .
2235 2236 2237		3	. It is possible to locate the intersection between two precision instrument runways at an angle of as little as 33 degrees while maintaining standard markings.

Figure 3-12. Intersecting Runways

- Note 1: Minimum distance: standard runway centerline to taxiway centerline separation plus ½ taxiway width.
- Note 2: The minimum separation distance is the necessary distance to allow an aircraft to hold without
- encroaching upon an RSA.
- 2243 **Note 3:** Refer to paragraph <u>3.6.6.2</u>.
- Note 4: See Appendix G for runway-taxiway separation value.

3.7 Runway Line of Sight. 2245 The runway line of sight standards reduce conflicts among aircraft, and between aircraft 2246 and vehicles operating along active runways. The pilots on the runway can visually 2247 verify the location and actions of other aircraft and vehicles on the ground. 2248 2249 3.7.1 Individual Runways. 3.7.1.1 Standards. 2250 1. For runways without full parallel taxiways, ensure any point 5 feet 2251 (1.5 m) above the runway centerline is mutually visible with any other 2252 point 5 feet (1.5 m) above the runway centerline. 2253 2254 2. For runways with a full parallel taxiway, ensure any point 5 feet (1.5 m) above the runway centerline is mutually visible with any other 2255 2256 point 5 feet (1.5 m) above the runway centerline that is located at a distance that is less than one half the length of the runway. 2257 3.7.2 Intersecting Runways. 2258 The Runway Visibility Zone (RVZ) is an area formed by imaginary lines connecting 2259 two physically intersecting runways' line of sight points. A clear line-of-sight 2260 precludes buildings, structures and parked aircraft within the RVZ from blocking the 2261 2262 pilots view to the intersecting runway. The RVZ allows for pilot situational awareness to avoid conflict with aircraft operating on an intersecting runway. 2263 3.7.2.1 Standards. 2264 The following standards apply to airports without an airport traffic control 2265 tower (ATCT) and airports with part-time ATCT operations. 2266 2267 1. Ensure any point 5 feet (1.5 m) above runway centerline and in the runway visibility zone (Figure 3-13) is mutually visible with any other 2268 point 5 feet (1.5 m) above the centerline of the crossing runway and 2269 inside the runway visibility zone. 2270 2. Locate the runway line of sight points as follows: 2271 a. The end of the runway if runway end is located within 750 feet 2272 (229 m) of the crossing runway centerline. 2273 b. A point 750 feet (229 m) from the runway intersection (or 2274 extension) if the end of the runway is located within 1,500 feet 2275 2276 (457 m) of the crossing runway centerline or extended centerline. See Figure 3-14. 2277 c. A point one-half of the distance from the intersecting runway

extended centerline. See Figure 3-14.

centerline (or extension), if the end of the runway is located at least

1,500 feet (457 m) from the crossing runway centerline or

2278

2279

2282	3.7.2.2	Recommended Practices.
2283		For airports with a 24-hour ATCT, apply the RVZ criteria to intersecting
2284		runways as a supplemental safety measure.
2285	3.7.2.3	Design Considerations.
2286		Design apron layout to preclude aircraft parking positions that reside
2287		within an RVZ. Refer to the area of potential conflict shown on Figure
2288		<u>3-13</u> .

Figure 3-13. Runway Visibility Zone

2289

Note 1: **Dimensions:**

When $A \le 750$ ft (229 m), then ① to ② = distance to the end of the runway.

2293

When B < 1500 ft (457 m) but > 750 ft (229 m), then ① to ③ = 750 ft (229 m).

2294

When $C \ge 1500$ ft (457 m), then ① to ④ = $\frac{1}{2}$ C.

2295

d. When $D \ge 1500$ ft (457 m), then ① to ⑤ = $\frac{1}{2}$ D.

2296

2297

Note 2: RVZs that include apron areas create potential line of sight conflicts whenever parked aircraft or hangar structure is present.

Figure 3-14. Runway Visibility Zone – Extended Centerline

2300 **Dimensions for Figure 3-14:** 2301 a. When the separation distance "X" <750 ft (229 m), then the ① to ② value equals distance to the 2302 end of the runway. 2303 b. When the separation distance "X" \geq 750 ft (229 m) but < 1500 ft (457 m), then the ① to ② value 2304 equals 750 ft (229 m). 2305 c. When the separation distance "X" ≥ 1500 ft (457 m), then the ① to ②value equals ½ distance to 2306 the end of the runway. 3.7.3 Converging Non-Intersecting Runways. 2307 2308 The "See and Avoid" concept of 14 CFR part 91 is the primary safeguard for collision avoidance for separate aircraft operating on runways that converge but do not physically 2309 intersect. Airports can facilitate pilot vigilance by adapting a version of the RVZ as a 2310 supplemental safety measure. 2311 2312 3.7.3.1 **Recommended Practice.** For runways that converge but do not intersect, provide a clear line-of-2313 2314 sight five feet above the pavement within an area bounded by select points on each runway to form a triangular visibility zone. Locate the line-of-2315 sight points as follows: 2316 1. The end of the runway if the runway end is located within a distance 2317 equal to 0.4 x Runway Length from the intersection with the 2318 converging runway centerline (actual or extension), or 2319 2. A distance of $0.4 \times \text{Runway}$ Length from the intersection with the 2320 2321 converging runway centerline (actual or extension). 3.8 Parallel Runway Separation. 2322 This section provides an overview of the basic separation criteria between parallel 2323 runways. The FAA continues to refine parallel runway separation standards for various 2324 2325 operational scenarios as part of modernization efforts for the NAS, including the Next Generation Air Transportation System (NextGen). Consult the latest updates and 2326 notices for <u>FAA Order 7110.65</u>, *Air Traffic Control*, for specific operational procedures 2327 2328 normally authorized for parallel runways, including information on relevant dependencies with aircraft avionics and NAS automation equipment. While referencing 2329 FAA Order 7110.65 is normally sufficient for conceptual airport layout, additional 2330 coordination with Flight Standards, Flight Procedures and Technologies Division (AFS-2331 410) is necessary for development of detailed operational procedures and requirements 2332 2333 for parallel runway procedures at a specific airport. 3.8.1 Basic Principles. 2334 To attain IFR capability for simultaneous independent landings and takeoffs on parallel 2335 runways, the lateral separation between aircraft operating to parallel runways replaces, 2336 in whole or in part, the aircraft-to-aircraft separation necessary for single runway 2337 operations. For parallel runways having sufficient centerline-to-centerline separation, 2338 the FAA can authorize simultaneous operations during visual or instrument weather 2339

2340 2341 2342 2343 2344 2345		dependent Helipads has Generally, operations	opera ave u depa crite	allel runways with less than the necessary separation distance will have ations, with reduced capacity as compared to independent operations. nique criteria for separation from runways and other helipads. rture operations follow criteria in paragraph 3.8.4. Arrival and mixed ria vary. See FAA Order 7110.65 for applicable operating criteria which ate the helipad.
2346	3.8.2	Visual Flig	ht Ru	ules (VFR).
2347		3.8.2.1	St	andards.
2348 2349 2350 2351			1.	For simultaneous independent landings and takeoffs using VFR, the minimum separation between centerlines of parallel runways is 700 feet (213 m) at a towered or non-towered airport (also when the tower is not operating).
2352 2353 2354			2.	With an operating control tower, the minimum separation between centerlines of parallel runways for dependent landings and takeoffs using VFR can be not less than 300 feet (91 m).
2355		3.8.2.2	De	esign Considerations.
2356			W	ith a narrow runway separation of 300 feet, preventing problematic
2357			tax	tiway geometry requires special attention. However, the 300-foot
2358				nfiguration may be suitable for a pair of pavement and turf runways.
2359				is avoids operating in the RSA of the paved runway for aircraft that
2360			-	efer to use a grass surface. See paragraph <u>2.8.5</u> for discussion on
2361			op	erations within an RSA.
2362	3.8.3	Simultaneo	us In	strument Flight Rules (IFR) Arrival Operations.
2363		It is a cond	ition	of the separation criteria that the arriving aircraft establish itself on an
2364				ria apply with ATC automation (in the Terminal Radar Approach
2365		Control Fac	cilitie	es [TRACON]), surveillance update rates, and ATC staffing for
2366		approach m	nonite	oring.
2367		3.8.3.1	St	andards.
2368 2369			1.	For dual simultaneous instrument approaches for airports below 2,000 feet (610 m) elevation:
2370 2371 2372				a. For straight-in approaches, the minimum parallel runway centerline separation between adjacent runways is 3,600 feet (1097 m).
2373 2374				b. Separation of 3,000 feet (914 m) between adjacent runways is allowable with an offset approach to one runway end.
2375 2376 2377 2378			2.	For dual simultaneous instrument approaches for airports above 2,000 feet (610 m) elevation, the minimum parallel runway centerline separation of 4,300 feet (1097 m) between adjacent runways when straight-in approaches are used.

2379 2380			3.	For adjacent runways with runway centerline separation of less than 4,300 feet (1097 m):
2381 2382 2383				a. Other simultaneous approach capabilities are possible with high update surveillance and/or use of Simultaneous Offset Instrument Approaches (SOIA).
2384 2385				b. Contact the applicable FAA Airports Regional or District Office to initiate applicable FAA coordination.
2386 2387			4.	For triple simultaneous instrument approaches for airports below 2,000 feet (610 m) elevation:
2388 2389 2390				a. The minimum parallel runway centerline separation of 3,900 feet (1189 m) between adjacent runways when straight-in approaches are used.
2391 2392 2393				b. A separation of 3,000 feet (1189 m) between adjacent runways is allowable with an offset approach to an applicable outboard runway.
2394			5.	For quadruple simultaneous instrument approaches:
2395				a. This capability does not currently exist in the NAS.
2396 2397 2398				b. Development of quadruple approach capabilities will involve a site-specific study by Flight Technologies and Procedures Division (AFS-400) with guidance implementation by ATO.
2399	3.8.4	Simultaneo	ous IF	R Departures or Mixed Operations.
2400 2401 2402 2403		monitor air	craft under	perations normally involve radar surveillance provided by ATC to separation. ATC treats such operations on runways with centerline 2,500 feet (762 m) as dependent runway operations when wake actor.
2404		3.8.4.1	Sta	andards.
2405			1.	Simultaneous departures:
2406 2407				a. With the parallel runway centerline separation of at least 2,500 feet (762 m).
2408 2409				b. In non-radar airspace, with the parallel runway centerline separation of at least 3,500 feet (1067 m).
2410 2411 2412			2.	Simultaneous radar-controlled approaches and departures (mixed operations) require the following parallel runway centerline separations:
2413				a. When the thresholds are not staggered, at least 2,500 feet (762 m).
2414 2415 2416				b. When the thresholds are staggered and the approach is to the near threshold, reducing the 2,500-foot (762 m) separation by 100 feet (30 m) for each 500 feet (152 m) of threshold stagger to a

2417 2418		minimum separation of 1,000 feet (305 m) is allowable. See <u>Figure 3-15</u> .
2419		c. When the thresholds are staggered and the approach is to the far
2420		threshold, increase the separation distance from the minimum
2421		2,500-foot (762 m) by 100 feet (30 m) for every 500 feet (152 m)
2422		of threshold stagger. See <u>Figure 3-15</u> .
2423	3.8.4.2	Recommended Practices.
2424		1. The recommended minimum runway centerline separation distance for
2425		ADG-V and ADG-VI runways is 1,200 feet (610 m).
2426		2. The increased separation allows for holding aircraft between the
2427		runways in the interest of safety (preventing incursions) and
2428		efficiency.
2429		3. Terminal area space needs may dictate greater parallel runway
2430		separation than required for simultaneous IFR operations. Where
2431		practical, a parallel runway separation on the order of 5,000 feet (1524
2432		m) provides efficient surface operations to and from a terminal located
2433		between the runways.
2434		4. Provide a separation distance that permits future development (i.e.
2435		parallel taxiway) without causing relocation of a runway.

Figure 3-15. Parallel Runway Separation, Simultaneous Radar-Controlled Approach – Staggered Threshold

2438 2439 2440

24412442

2443

- **Note 1:** Figure illustrates parallel runway separation adjustments from the standard 2,500 ft (762 m) for simultaneous radar-controlled approaches.
- **Note 2:** Reduce the standard 2,500 ft (762 m) separation by 100 ft (30.5 m) for each 500 ft (152 m) of threshold stagger.
- **Note 3:** Increase the standard 2,500 ft (762 m) separation by 100 ft (30.5 m) for each 500 ft (152 m) of threshold stagger. Figure illustrates parallel runway separation adjustments from the standard 2,500 ft (762 m) for simultaneous radar-controlled approaches.

2446 2447 2448 2449	3.9	The RSA en runway, and	fety Area (RSA) / Engineered Materials Arresting Systems (EMAS). hances the safety of aircraft that undershoot, overrun, or veer off the it provides greater accessibility for fire fighting and rescue equipment incidents. Figure 3-16 depicts the RSA. See Appendix I for historical and
2450		_	information.
2451	3.9.1	Standards.	
2452 2453 2454		3.9.1.1	Location. The RSA is symmetrical to the runway centerline and runway extended centerline.
2455 2456 2457		3.9.1.2	Dimensions. Appendix G and the online Runway Design Standards Matrix Tool present RSA dimensional standards.
2458 2459		3.9.1.3	Grading. Provide an RSA that is:
2460 2461			 Cleared and graded with no potentially hazardous ruts, humps, depressions, or other surface variations;
2462			2. Drained by grading or storm sewers to prevent water accumulation;
2463 2464 2465 2466			3. Capable, under dry conditions, of supporting snow removal equipment, Aircraft Rescue and Fire Fighting (ARFF) equipment, and the occasional passage of aircraft without causing major damage to the aircraft;
2467			4. Graded to the longitudinal and transverse grades in paragraph <u>3.15.6</u> .
2468		3.9.1.4	Object Clearing.
2469 2470			Provide RSA free of objects excluding those objects that need to reside in the RSA because of function (i.e. fixed-by-function).
2471 2472			1. Configure airfield geometries to keep the RSA clear during an aircraft operation of:
2473			a. All portions of a holding or taxiing aircraft.
2474			b. All portions of a holding or moving ground vehicle.
2475 2476 2477			2. Design objects in the RSA higher than 3 inches (76 mm) above surrounding grade to have a frangible point no higher than 3 inches (76 mm) above surrounding grade. See <u>AC 150/5220-23</u> .
2478 2479			3. Design other objects such as manholes and inlets that need to reside in the RSA:
2480 2481			a. To be capable of supporting SRE vehicles, ARFF vehicles and occasional passage of the most demanding aircraft.

2482 2483			b. To the lowest possible height (e.g. at grade) but in no case exceeding 3 inches (76 mm) above surrounding grade.
2484 2485			4. Locate objects outside the RSA if it is not essential for the object to reside within the RSA.
2486 2487 2488			Do not install objects, including NAVAIDs not fixed-by-function, inside the standard RSA dimensions even when the RSA does not meet the dimensional standards.
2489		3.9.1.5	Construction.
2490 2491 2492 2493 2494			Comply with compaction criteria in Specification P-152, Excavation, Subgrade and Embankment, found in <u>AC 150/5370-10</u> . Refer to <u>AC 150/5320-6</u> for design guidance for foundations, inlets, and manholes located with the RSA to support occasional loads by the most demanding aircraft.
2495	3.9.2	Design Con	nsiderations.
2496		3.9.2.1	Non-Standard Runway Safety Areas.
2497 2498 2499 2500 2501			In accordance with FAA <u>Order 5300.1</u> , the FAA will not consider a "modification of standard" to address non-standard RSA dimensions. RSA dimensional standards remain in effect regardless of the presence of natural or man-made objects or surface conditions that preclude meeting full RSA standard dimensions.
2502 2503 2504 2505			1. While an EMAS system represents a supplemental measure that provides a level of safety equivalent to a standard RSA, the presence of an EMAS does not diminish or negate the standard RSA dimensional values.
2506 2507 2508			2. Evaluate all practicable alternatives and opportunities to improve a non-standard RSA until it meets all standards for grade, construction, and object frangibility.
2509 2510			3. Identify on the ALP future development necessary to attain a standard RSA.
2511 2512			4. FAA Order 5200.8 explains the runway safety area determination process for assessing non-standard runway safety areas.
2513		3.9.2.2	NAVAIDs.
2514 2515			As part of RSA design, consider the impact NAVAIDs have on the effectiveness of the RSA.
2516 2517 2518			1. Evaluate practicable RSA construction at a grade that will preclude the need for non-frangible towers for portions of approach lighting systems or the localizer antenna array.
2519 2520			 Non-frangible towers pose a hazard risk to aircraft and may represent a potential interference source to LOC performance.

2521 2522		 b. Construction to a lesser grade may allow installation on frangible or low impact resistant structures.
2523 2524 2525		2. When practical, grade beyond the standard RSA dimensions to avoid abrupt drop-offs that can affect the location and performance of ILS components (glideslopes [GSs] and LOCs).
2526 2527		a. GS facilities generally require a graded area in front of the antenna to serve as a reflective surface for the signal.
2528 2529		b. Extend the RSA if needed to avoid placing the localizer within the RSA limits.
2530	3.9.2.3	Engineered Materials Arresting Systems (EMAS).
2531		The optimum RSA is one that meets the standards for dimensions and
2532		grade. When it is not practical to meet fully the dimensional standards for
2533		an RSA, the airport may consider various alternatives to achieve an
2534		acceptable level of safety. FAA Order 5200.8 addresses various factors to
2535		consider when evaluating the various alternatives. The installation of an
2536		EMAS system is an acceptable alternative when it is not practical to meet
2537		standard RSA dimensions or to implement other alternatives. A properly
2538		designed EMAS decelerates an aircraft during an excursion incident
2539		without damaging the landing gears thus providing an equivalent level of
2540		safety to a standard RSA. The presence of an EMAS system does not
2541		negate or diminish standard RSA dimensions. Refer to AC 150/5220-22
2542		for guidance on planning, design, installation and maintenance of EMAS.
2543		Refer to FAA Order 5200.9 to determine the best practical and financially
2544		feasible alternative. Key design considerations for EMAS performance
2545		include:
2546		1. Aircraft weight, landing gear configuration, tire pressure, and entry
2547		speed.
2548		2. Stopping the "EMAS critical aircraft" upon exiting the runway at 70
2549		knots is a primary design condition.
2550		3. Application of a standard EMAS may maximize the available runway
2551		length.

2552 Figure 3-16. Runway Safety Area (RSA)

Note 1: The width and length beyond the runway end vary per the Runway Design Code. See Appendix G.

3.10 **Obstacle Free Zone (OFZ).**

2553 2554

2555

2556

2557

2558

25592560

2561

25622563

The OFZ is a design and an operational surface kept clear during operations. This clearing standard does not allow aircraft and other object penetrations, except for locating frangible NAVAIDs in the OFZ because of their function. OFZ surfaces cannot be modified. The OFZ, when applicable, is composed of four components:

- 1. the Runway OFZ (ROFZ),
- 2. the Precision Obstacle Free Zone (POFZ),
- 3. the inner-approach OFZ (IA-OFZ), and
- 4. the inner-transitional OFZ (IT-OFZ).

2565	3.10.1	Recommended Practice.
2566 2567		Construct a runway to taxiway separation sufficient to protect the OFZ of a more demanding RDC for aircraft that, within reason, have occasional use at the airport.
2568	3.10.2	Design Considerations.
2569 2570		1. Use the most demanding anticipated aircraft operation when selecting the applicable OFZ for runway design.
2571 2572		2. The OFZ for a specific aircraft operation may not be the same shape as that used for design purposes.
2573 2574 2575 2576 2577		3. Procedures to protect the OFZ during operations by aircraft/operations more demanding than used for the design of the runway are beyond the scope of this AC. (Consultation with the appropriate offices of the FAA Office of Airports, Flight Technologies and Procedures Division (AFS-400), and/or ATO will identify any applicable adjustments to operational procedures.)
2578 2579		4. See <u>Figure 3-17</u> , <u>Figure 3-18</u> , <u>Figure 3-19</u> , and <u>Figure 3-20</u> for various OFZ based on aircraft size and visibility minimums.
2580	3.10.3	Runway Obstacle Free Zone (ROFZ).
2581 2582 2583		The ROFZ is a defined volume of airspace centered on the runway centerline, whose base elevation is that of the highest runway elevation at that particular location. The ROFZ extends 200 feet (61 m) beyond each end of the runway.
2584		3.10.3.1 Standards.
2585		1. For operations by small aircraft:
2586 2587		 a. 300 feet (91 m) for runways with lower than 3/4 statute mile (1.2 km) approach visibility minimums.
2588 2589		b. 250 feet (76 m) for operations on other runways by small aircraft with approach speeds of 50 knots or more.
2590 2591		c. 120 feet (37 m) for operations on other runways by small aircraft with approach speeds of less than 50 knots.
2592		2. 400 feet (122 m) for operations by large aircraft.
2593 2594 2595 2596 2597 2598	3.10.4	Inner-approach OFZ (IA-OFZ). The inner-approach OFZ is a defined volume of airspace centered on the approach area. It applies only to runways with an ALS. The inner-approach OFZ begins 200 feet (61 m) from the runway threshold at the same elevation as the runway threshold and extends 200 feet (61 m) beyond the last light unit in the ALS. Its width is the same as the ROFZ and rises at a slope of 50 (horizontal) to 1 (vertical) from its beginning.
2599 2600 2601	3.10.5	Inner-transitional OFZ (IT-OFZ). The inner-transitional OFZ is a defined volume of airspace along the sides of the ROFZ and inner-approach OFZ. It applies only to runways with lower than 3/4 statute mile

2603

2604

2605

2606

2607

2608

2609

2610

2611

2612

(1.2 km) approach visibility minimums. Aircraft tails may not violate the inner-transitional OFZ. It is not acceptable to apply the OFZ criteria as support to decrease a runway-to-taxiway separation from the standard value.

3.10.5.1 For operations on runways by small aircraft, the inner-transitional OFZ slopes 3 (horizontal) to 1 (vertical) out from the edges of the ROFZ and inner-approach OFZ to a height of 150 feet (46 m) above the established airport elevation.

Figure 3-17. Obstacle Free Zone (OFZ) for Visual Runways and Runways with Not Lower Than 3/4 Statute Mile (1.2 km) Approach Visibility Minimums

Note 1: Refer to paragraphs <u>3.10.3</u>, <u>3.10.4</u>, and <u>3.10.5</u> for dimensional values.

3-36

Figure 3-18. OFZ for Operations on Runways by Small Aircraft with Lower Than 3/4 Statute Mile (1.2 km) Approach Visibility Minimums

Note 1: Refer to paragraphs 3.10.3, 3.10.4, and 3.10.5 for dimensional values.

Note 1: Refer to paragraphs 3.10.3, 3.10.4, and 3.10.5 for dimensional values.

Figure 3-20. OFZ for Operations on Runways by Large Aircraft with Lower Than 3/4 Statute Mile (1.2 km) Approach Visibility Minimums and Displaced Threshold

Note 1: Refer to paragraphs 3.10.3, 3.10.4, and 3.10.5 for dimensional values.

3.10.5.2 For operations on runways by large aircraft, separate inner-transitional OFZ (IT-OFZ) criteria apply for runways with instrument approach procedures lower than 3/4 mile but not lower than 1/2 mile.

- 1. For runways with instrument approach procedures with lower than ¾ mile but not lower than ½ mile, the IT-OFZ begins at the edges of the ROFZ and inner-approach OFZ, then rises vertically for a height "H," and then slopes 6 (horizontal) to 1 (vertical) out to a height of 150 feet (46 m) above the established airport elevation.
 - a. In U.S. customary units, $H_{feet} = 61 0.094(S_{feet}) 0.003(E_{feet}). \label{eq:Heet}$
 - b. In SI units, $H_{meters} = 18.4 0.094(S_{meters}) 0.003(E_{meters}).$
 - c. S is equal to the most demanding wingspan of the RDC of the runway, and E is equal to the runway threshold elevation above sea level.
- 2. For runways with instrument approach procedure lower than ½ mile visibility, the IT-OFZ begins at the edges of the ROFZ and inner-

2625

2621

2622

26262627262826292630

2631 2632

2633

2634

26352636

2637

26382639

2642 2643 2644 2645		approach OFZ, then rises vertically for a height "H," then slopes 5 (horizontal) to 1 (vertical) out to a distance "Y" from runway centerline, and then slopes 6 (horizontal) to 1 (vertical) out to a height of 150 feet (46 m) above the established airport elevation:
2646		a. In U.S. customary units,
2647		$H_{\text{feet}} = 53$ - $0.13(S_{\text{feet}})$ - $0.0022(E_{\text{feet}})$ and
2648		$Y_{feet} = 440 + 1.08(S_{feet}) - 0.024(E_{feet}).$
2649		b. In SI units,
2650		$H_{meters} = 16$ - $0.13 (S_{meters})$ - $0.0022 (E_{meters})$ and
2651		$Y_{meters} = 132 + 1.08(S_{meters}) - 0.024(E_{meters}).$
2652 2653 2654		c. S is equal to the most demanding wingspan of the RDC of the runway and E is equal to the runway threshold elevation above sea level.
2655 2656 2657		d. Beyond the distance "Y" from runway centerline, the inner- transitional CAT-II/III OFZ surface is identical to that for the CAT-I OFZ.
2658 2659 2660 2661	3.10.6	Precision Obstacle Free Zone (POFZ). The POFZ is a volume of airspace above an area beginning at the threshold, at the threshold elevation, and centered on the extended runway centerline (200 feet [61 m] long by 800 feet [244 m] wide. See Figure 3-21.

Figure 3-21. Precision Obstacle Free Zone (POFZ) – No Displaced Threshold

2662

Note: See paragraph 3.10.6.

2665 2666	3.10.6.1	The surface is in effect only when all of the following operational conditions are met:
2667		1. The approach includes vertical guidance.
2668 2669 2670		2. The reported ceiling is below 250 feet (76 m) and visibility is less than 3/4 statute mile (1.2 km) (or Runway Visual Range [RVR] is below 4,000 feet [1219 m]).
2671 2672		3. An aircraft is on final approach within 2 miles (3.2 km) of the runway threshold.
2673 2674 2675	3.10.6.2	When the POFZ is in effect, a wing of an aircraft holding on a taxiway may penetrate the POFZ; however, neither the fuselage nor the tail may penetrate the POFZ.
2676 2677	3.10.6.3	The POFZ is applicable at all runway thresholds including displaced thresholds. Refer to <u>Figure 3-22</u> .

Figure 3-22. POFZ – Displaced Threshold

2679 2680 2681

Note 1: Two hold lines are necessary, as the POFZ is only in effect during instrument meteorological conditions.

3.11	Runway Object Free Area (ROFA).
	ROFA provides a measure of wingtip protection in the event of an aircraft excursion from the runway.
3.11.1	Standards.
	1. The ROFA is symmetrical about the runway centerline. See <u>Figure 3-33</u> .
	2. See <u>Appendix G</u> or the online <u>Runway Design Standards Matrix Tool</u> for standard dimensions of the ROFA.
	3. Provide area clear of above-ground objects protruding above the nearest point of the RSA:
	a. For new runways, ensure terrain is no higher than the nearest point of the RSA within a distance from the edge of the RSA equal to one-half the most demanding wingspan of the RDC.
	b. Maintain area clear of parked aircraft, agricultural operations, and other non-essential activities.
	4. Objects are allowed in the ROFA provided there is sufficient clearance (veritical and horizontal) between the object and the aircraft wing while the main gear is in the RSA.
	5. Exceptions:
	a. It is acceptable to have objects in the ROFA for air navigation and aircraft ground maneuvering purposes per <u>Table 6-1</u> .
	b. For existing runways, it is permissible for the ROFA to have a positive grade lateral to the RSA, as shown in <u>Figure 3-31</u> , provided there is adequate drainage of the RSA.
3.11.2	Recommended Practices.
	1. To the extent practical, make objects in the ROFA that exceed the elevation of the nearest point on the RSA comply with the same frangibility criteria as the RSA.
	2. Preclude locating objects in a ROFA that can function equally outside of the ROFA.
3.11.3	Design Consideration.
	When locating ditches in a ROFA, consider the impact future vegetation growth in the
	ditch may have on the adjacent RSA.
3.12	Runway Protection Zone (RPZ).
	The RPZ is a public protection zone that serves to enhance the protection of people and
	property on the ground. Airport owner control of the land use in each runway RPZ is
	the optimum method of ensuring safety of the public in these areas. Acquisition of
	appropriate property interest (e.g. fee title, easement, etc.) offers a high degree of control. Zoning ordinances offer a lesser degree of control. The primary goals are to
	3.11.2 3.11.3

2718 2719				eas of incompatible objects and activities and to ensure this area such objects and activities.
2720 2721 2722			h cat	h RPZ dimensions for a runway end are a function of the aircraft egory and approach visibility minimum associated with the approach
2723 2724		2. The departure RPZ is a function of the aircraft approach category and departure procedures associated with the runway.		
2725 2726		3. For a particular runway end, the more stringent RPZ (usually the approach) will govern the property interests and clearing for the airport owner.		
2727 2728 2729 2730 2731 2732	3.12.1	Standards. The RPZ is trapezoidal in shape and centered about the extended runway centerline. The RPZ may begin at a location other than 200 feet (61 m) beyond the end of the runway. When an RPZ begins at a location other than 200 feet (61 m) beyond the end of runway, two RPZs result, i.e. a departure RPZ and an approach RPZ. The two RPZs normally overlap (refer to Figure 3-23 and Figure 3-25).		
2733 2734 2735 2736		3.12.1.1	Th thr	peroach RPZ. e approach RPZ extends from a point 200 feet (61 m) from the runway eshold, as shown in Figure 3-23, for a distance as prescribed in pendix G or the online Runway Design Standards Matrix Tool.
2737		3.12.1.2	De	parture RPZ.
2738 2739 2740 2741 2742			Ta 20 the	e departure RPZ begins 200 feet (61 m) beyond the runway end. If the keoff Run Available (TORA) and the runway end are not the same, it is 0 feet (61 m) beyond the far end of the TORA. Refer to Appendix G or conline Runway Design Standards Matrix Tool for dimensional indards.
2743 2744			1.	For runways with an RDC for small aircraft in Aircraft Approach Categories A and B:
2745				a. Starting point: 200 feet (61 m) beyond the far end of TORA
2746				b. Length: 1,000 feet (305 m)
2747				c. Inner width: 250 feet (76 m)
2748				d. Outer width: 450 feet (137 m)
2749 2750			2.	For runways with an RDC for large aircraft in Aircraft Approach Categories A and B:
2751				a. Starting point: 200 feet (61 m) beyond the far end of TORA
2752				b. Length: 1,000 feet (305 m)
2753				c. Inner width: 500 feet (152 m)
2754				d. Outer width: 700 feet (213 m)

2755 2756		3.	For E:	runways with an RDC for Aircraft Approach Categories C, D, and
2757			a.	Starting point: 200 feet (61 m) beyond the far end of TORA
2758			b.	Length: 1,700 feet (518 m)
2759			c.	Inner width: 500 feet (152 m)
2760			d.	Outer width: 1,010 feet (308 m).
2761	3.12.2	Design Consider	ratio	<u>ns.</u>
2762		See Appendix I.		

Figure 3-23. Runway Protection Zone (RPZ), Runway Object Free Area (ROFA) and Runway Safety Area (RSA)

2764

2765 2766

Note: See Appendix G or online Runway Design Standards Matrix Tool for dimensions.

Figure 3-24. Runway with all Declared Distances Equal to the Runway Length

2768 2769

Note: See <u>Appendix G</u> or online <u>Runway Design Standards Matrix Tool</u> for dimensions.

Figure 3-25. Approach and Departure RPZs Where the Takeoff Run Available (TORA) is less than the Takeoff Distance Available (TODA)

2772 2773

2774

Note 1: See Appendix H for declared distances.

Note 2: See <u>Appendix G</u> or online <u>Runway Design Standards Matrix Tool</u> for dimensions.

2775 2776 2777 2778 2779 2780	3.13	for completi increases the length. The	y (see Figure 3-26) is an area extending beyond the runway end available on of the takeoff operation of turbine-powered aircraft. A clearway e allowable aircraft operating takeoff weight without increasing runway use of a clearway for takeoff computations requires compliance with the finition of 14 CFR Part 1.	
2781 2782 2783	3.13.1	Standards. The requirements in this paragraph originate from 14 CFR Part 1. These conditions must be met for a clearway to exist.		
2784 2785 2786		3.13.1.1	Dimensions. The clearway must be at least 500 feet (152 m) wide symmetrically about the runway centerline. The length is no more than ½ the runway length.	
2787 2788 2789		3.13.1.2	Clearway Plane Slope. The clearway plane slopes upward with a slope not greater than 1.25 percent (80:1).	
2790 2791 2792 2793 2794		3.13.1.3	Clearing. No object or terrain may protrude through the clearway plane except for threshold lights no higher than 26 inches (66 cm) and located off the runway sides. The area over which the clearway lies need not be suitable for stopping aircraft in the event of an aborted takeoff.	
2795 2796 2797 2798 2799 2800		3.13.1.4	Control. A condition for standard clearways is the airport owner have suitable control of the underlying property. While direct ownership is not necessary, ownership offers the highest degree of control. The purpose of such control is to ensure that no fixed or movable object penetrates the clearway plane during a takeoff operation.	
2801 2802 2803 2804 2805 2806 2807 2808		3.13.1.5	 Notification. When providing a clearway: Identify the clearway length and the declared distances, as specified in paragraph 3.13.1.1, and in the Chart Supplement (and in the Aeronautical Information Publication for international airports) for each operational direction. Designate the clearway on the Airport Layout Plan (ALP) at those airports with an FAA-approved ALP. 	
2809 2810 2811 2812		3.13.1.6	Clearway Location. Locate the clearway at the far end of TORA. The portion of the runway extending into the clearway is unavailable for takeoff run and takeoff distance computations.	

Figure 3-26. Clearway

2814

2815

2816

2817

2818

2819

2820

2821

2822

2823

2824 2825

2826

3.14 **Stopway.**

A stopway is an area beyond the takeoff runway located symmetrically about the extended runway centerline and designated by the airport owner for use in decelerating an aircraft during an aborted takeoff. (See <u>Figure 3-27</u>.) The presence of a blast pad does not mean a stopway exists. Refer to 14 CFR <u>Part 1</u> for the criteria that establish a stopway.

3.14.1 Standards.

- 1. Width: At least as wide as the runway.
- 2. Surface strength:
 - a. Able to support an aircraft during an aborted takeoff without causing structural damage to the aircraft.
 - b. Refer to AC 150/5320-6 for pavement design standards for a stopway.

2827	3. Publication: For each operational direction, provide the length and declared
2828	distances in the Chart Supplement (and in the Aeronautical Information Publication
2829	for international airports).
2830	4. ALP: For federally obligated airports, depict the stopway on the FAA-approved

Figure 3-27. Stopway

2833 2834 2835

28362837

2838

2839

2840

2841

2842

2843

28442845

2846

2847

2831

2832

Note 1: Width of stopway equals width of runway.

Note 2: See AC 150/5340-1 for stopway markings.

3.15 Surface Gradient.

ALP.

Surface gradient is the rate of ascent or descent of an airport surface. The degree of surface gradient can have an effect on aircraft performance, pilot perception and economy of development. An upsloping runway impedes acceleration resulting in longer ground runs during a takeoff operation. A down sloping runway affects deceleration thus resulting in longer ground rollout during landing. The standards in this paragraph allow for economic design flexibility while establishing safe operation of aircraft during landing and takeoff operations. Some of the beneficial aspects provided by the gradient standards include:

- 1. Safe operation within aircraft structural limits.
- 2. Efficient drainage of surface water to reduce risk of aircraft hydroplaning.
- 3. Visual line-of-sight for pilot situational awareness.

2848		4. Reduced risk of optical illusion effect due to runway and terrain slope.			
2849		5. Ride sm	nness and comfort for aircraft passengers.		
2850	3.15.1	Standards for Longitudinal Gradient.			
2851 2852		The longitudinal gradient standards for the centerline of runways and stopways vary aircraft approach category.			
2853		3.15.1.1	ircraft Approach Categories A and B.		
2854 2855			efer to Figure 3-29 and the following for standards appleproach Categories A and B.	icable to Aircraft	
2856			The maximum longitudinal grade is ± 2.0 percent.		
2857			The maximum allowable grade change is ± 2.0 percent	t.	
2858			Vertical curves for longitudinal grade changes are par	abolic.	
2859 2860			a. The minimum length of the vertical curve is 300 f each 1.0 percent of change.	eet (91 m) for	
2861 2862			b. A vertical curve is not necessary when the grade of than 0.40 percent.	change is less	
2863 2864 2865			The minimum allowable distance between the points of vertical curves is 250 feet (76 m) multiplied by the su changes (in percent) associated with the two vertical controls.	m of the grade	
2866		3.15.1.2	ircraft Approach Categories C, D and E.		
2867 2868			efer to Figure 3-30 and the following for standard application proach Categories C, D and E.	cable to Aircraft	
2869			The maximum longitudinal grade is ± 1.50 percent:		
2870			The maximum longitudinal grade is ±1.50 percent: a. longitudinal grades do not exceed ±0.80 percent in quarter, or	n the first and last	
2870 2871 2872			a. longitudinal grades do not exceed ± 0.80 percent in		
2870 2871 2872 2873 2874 2875			 a. longitudinal grades do not exceed ±0.80 percent in quarter, or b. first and last 2,500 feet (762 m), whichever is less 	, of the runway	
2870 2871 2872 2873 2874 2875 2876			 a. longitudinal grades do not exceed ±0.80 percent in quarter, or b. first and last 2,500 feet (762 m), whichever is less length. The maximum allowable grade change is ±1.50 perce runway grade changes are not acceptable within the length. 	, of the runway	
2870 2871 2872 2873 2874 2875 2876			 a. longitudinal grades do not exceed ±0.80 percent in quarter, or b. first and last 2,500 feet (762 m), whichever is less length. The maximum allowable grade change is ±1.50 perce runway grade changes are not acceptable within the lefollowing criteria: 	, of the runway nt; however, esser of the	
2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881			 a. longitudinal grades do not exceed ±0.80 percent in quarter, or b. first and last 2,500 feet (762 m), whichever is less length. The maximum allowable grade change is ±1.50 perce runway grade changes are not acceptable within the lefollowing criteria: a. the first and last quarter of the runway length, or 	nt; however, esser of the	

Standards for Transverse Gradients. Transverse grades provide positive lateral drainage off runway pavement surfaces. Refer to Figure 3-31.		
3.15.2.1	All Runways.	
	The standard configuration is a center crown with equal, constant transverse grades on either side.	
3.15.2.2	Aircraft Approach Categories A and B. Design transverse slope within a 1.0 percent to 2.0 percent range from center crown.	
3.15.2.3	Aircraft Approach Categories C, D and E. Design transverse slope within a 1.0 percent to 1.5 percent range from center crown.	
3.15.2.4	Cross-Slope Variations. The following configuration variances are acceptable methods to maintain positive drainage for site-specific runway conditions. Refer to Figure 3-28. Consider these variances when local site conditions are not suitable for application of the standard cross slope. This includes localized site conditions that limit runway edge elevations in order to match existing grades. Variances are also suitable for runway/runway intersections in order to provide a cross slope transition that creates positive surface drainage while allowing pilots to maintain direction control of the aircraft over a surface irregularity.	
	 Off-center crown: A cross section with the crown off-set not more than 25 feet (7.6 m) from the centerline of the runway pavement. Varied cross-slope: A cross section with different gradients on each side of the runway centerline. Non-uniform cross-slope: A cross section with a transverse grade change of less than 0.5 percent located more than 25 feet (7.6 m) from the runway crown. 	
	Transverse & Refer to Fig 3.15.2.1 3.15.2.2	

Figure 3-28. Alternate Runway Cross Sections

2915 2916 2917

Note 1: Refer to <u>Figure 3-31</u> and <u>Table 3-5</u> for allowable transverse grades. The transverse grades shown here are for example illustrative purposes only.

Note 2: A transverse grade change of less than 0.5% located more than 25 feet (7.6 m) from the runway crown. The runway crown is not necessarily the runway centerline.

Figure 3-29. Longitudinal Grade Limitations for Aircraft Approach Categories A and B

Note 1: Design length of vertical curves to be not be less than 300 ft (91 m) for each 1% grade change, except that no vertical curve is necessary when grade change is less than 0.4%.

Note 2: Do not design grade change at vertical curves greater than 2.0%

Note 3: Minimum distances between points of vertical intersection is 250 ft (76 m) multiplied by the sum of absolute grade changes.

29202921

Figure 3-30. Longitudinal Grade Limitations for Aircraft Approach Categories C,

2930 2931 2932

2933

2934

2928 2929

Note 1: Minimum length of vertical curves equals 1,000 ft (305 m) multiplied by grade change percentage.

Note 2: The minimum vertical curve length is equal to 1,000 ft (305 m) multiplied by grade change.

Note 3: The standard minimum distance between points of vertical intersection is 1,000 ft (305 m) multiplied by the sum of the absolute grade changes.

2935	3.15.3	Runway/Taxiway Intersections.
2936 2937		1. Maintain the surface gradient standards of the runway through intersections with taxiways.
2938 2939		2. Provide positive drainage off intersection pavement to prevent accumulation of surface water.
2940	3.15.4	Runway/Runway Intersections.
2941 2942		Adjustments to runway transverse grades are necessary at runway/runway intersection in order to:
2943		1. Maintain adequate surface drainage from the intersection pavement.
2944 2945		2. Provide a suitable longitudinal grade for both runways free of abrupt surface variations capable of impairing pilot directional control of aircraft.
2946		3.15.4.1 Standards.
2947 2948 2949		 The surface gradient criteria for a higher category runway (e.g. primary runway) have precedence over a lower category runway (e.g. crosswind).
2950 2951		2. Provide positive drainage off intersection pavement that prevents accumulation of standing water on the intersection pavement.
2952		3. Within the runway/runway intersection:
2953 2954 2955		 Adjust the transverse grade of the higher category runway from the standards in <u>Table 3-5</u> to provide a maximum 3-inch elevation difference between the runway crown and the edge of the runway.
2956 2957 2958		 Adjust the transverse grade of the lower category runway to establish a constant transverse slope matching the elevation of the edge of pavement for the higher category runway.
2959		4. Prior to the runway/runway intersection:
2960 2961 2962		a. For both runways, apply a transition from the standard transverse slope of <u>Table 3-5</u> to the adjusted intersection transverse slope using a minimum intersection approach length of 150 ft length.

Table 3-5. Transverse Grades

Category	S-1 Runway (percent)	S-2 Shoulder (percent)	S-3 RSA Slope (percent)	S-4 OFA Slope (note 2)	S-5 Back Slope (Ratio)	D-1 Back Slope (feet/meter)
AAC-A	1.0% - 2.0%	1.5% - 5.0%	1.5% - 5.0%		1	-
AAC-B	1.0% - 2.0%	1.5% - 5.0%	1.5% - 5.0%		1	-
AAC-C	1.0% - 1.5%	1.5% - 5.0%	1.5% - 3.0%		-	-
AAC-D	1.0% - 1.5%	1.5% - 5.0%	1.5% - 3.0%		-	-
AAC-E	1.0% - 1.5%	1.5% - 5.0%	1.5% - 3.0%		1	-
ADG –I	-	-	-	≤ 0%	8:1	25 (7.6)
ADG-II	-	-	-	≤ 0%	8:1	40 (12.2)
ADG-III	-	-	-	≤ 0%	10:1	59 (18)
ADG-IV	-	-	-	≤ 0%	10:1	86 (26.2)
ADG-V	-	-	-	≤ 0%	16:1	107 (32.6)
ADG-VI	-	-	-	≤ 0%	16:1	131 (39.9)

2964

2965 2966

29672968

2969 2970

> 2971 2972

> 29732974

2975

29762977

2978

2979

2980 2981 2982 Note 1: See Figure 3-31 and Figure 4-29.

Note 2: The S-4 slope relative to the RSA edge is negative to facilitate surface water drainage away from the RSA.

Note 3: S-5 and D-1 represent values for an acceptable back slope on the far side of the ROFA that provides adequate wingtip clearance.

3.15.4.2 **Allowable Modification.**

When necessary to accommodate the longitudinal grade conditions of a lower category runway, it is permissible to construct a constant-slope transverse grade on the higher category runway provided the intersection meets the following criteria:

- 1. A minimum transverse slope of 0.5 % is available to permit positive drainage across the higher category runway pavement.
- 2. The higher category runway has grooving per AC 150/5320-12.
- 3. The intersection does not create a bump capable of causing an aircraft to lose directional control.

3.15.4.3 **Design Considerations.**

The presence of surface variations at runway/runway intersections will have different effects depending on aircraft speed and the location of the surface variation on the runway. Consult with the appropriate FAA office

2983 2984				discuss options that pertain to a specific location. Consider the lowing:
2985 2986 2987			1.	When constructing a new runway that intersects another runway, include improvements to the existing runway to meet the criteria of this section.
2988 2989 2990			2.	When a change in aircraft type using the lower category runway occurs, consider the effect operation of higher speed aircraft will have at the runway/runway intersection.
2991		3.15.4.4	Im	plementation.
2992 2993 2994			1.	For new construction and reconstruction of existing intersections, meet the standards of paragraph $\underline{3.15.4.1}$ or the allowable modifications of paragraph $\underline{3.15.4.2}$.
2995 2996 2997 2998			2.	For existing conditions not meeting the standards of paragraph 3.15.4.1, assess the bump-roughness using Figure 2-3 of AC 150/5380-9 and determine if the existing condition falls within acceptable criteria for single bump events.
2999 3000 3001			3.	For conditions not falling within the acceptable range, develop a corrective action plan that leads to making necessary improvements when it becomes practical.
3002 3003 3004			4.	Conditions falling within the unacceptable range may require immediate corrective action such as runway closure, NOTAM issuance or aircraft restrictions.
3005	3.15.5	RSA Grades	<u>.</u>	
3006 3007		_		and transverse gradient standards for RSAs are as follows and as sure 3-29, Figure 3-30, Figure 3-31, and Figure 3-32.
3008		3.15.5.1	Sta	andards.
3009 3010 3011 3012			1.	Longitudinal grades, longitudinal grade changes, vertical curves, and distance between changes in grades for that part of the RSA between the runway ends are the same as the comparable standards for the runway and stopway.
3013 3014 3015			2.	For the first 200 feet (61 m) of the RSA beyond the runway ends, the longitudinal grade is between 0 and 3.0 percent, with any slope being downward from the ends.
3016 3017 3018			3.	Beyond the first 200 feet (61 m), the maximum allowable positive longitudinal grade is such that no part of the RSA penetrates any applicable approach surface or clearway plane.
3019			4.	The maximum allowable negative grade is 5.0 percent.
3020 3021			5.	Limitations on longitudinal grade changes are plus or minus 2.0 percent per 100 feet (30 m).

3022 3023 3024		6. Table 3-5 and Figure 3-31 show the maximum and minimum transverse grades for paved shoulders and for the RSA along the runway up to 200 feet (61 m) beyond the runway end.
3025 3026 3027		7. For NAVAIDs located in the RSA, design the frangibility point of the equipment, including foundation and supports, to be no higher than 3 inches (76 mm) above the surrounding finished grade.
3028	3.15.5.2	Recommended Practices.
3029		1. Minimize the use of maximum grades.
3030 3031		 Keep transverse grades to a minimum to facilitate local drainage conditions.
3032		3. Use parabolic vertical curves to provide smooth transitions.
3033	3.15.5.3	Design Considerations.
3034 3035		1. Consider drainage of water off top of foundation when establishing the height of the frangibility point relative to surrounding finish grade.
3036 3037		2. Other grading requirements for NAVAIDs located in the RSA may be more stringent than the standard stated in <u>Table 3-5</u> .

Figure 3-31. Transverse Grade Limitations

3043

3044

- **Note 1:** Construct a 1.5 in (4 cm) $\pm \frac{1}{2}$ " (1.7 cm) drop between paved and unpaved surfaces.
- Note 2: Maintain between a 3% -5.0% grade for 10 ft of unpaved surface adjacent to the paved surface.
- **Note 3:** Slope S-2 applies when paved shoulders are present.
- Note 4: S-4 is 0% or negative (unlimited) to drain water away from the RSA to the edge of the ROFA.
- **Note 5:** A back slope (i.e. positive grade) is acceptable on the far side of the ROFA provided adequate wingtip clearance is available for ½ max wingspan of critical aircraft.

Figure 3-32. RSA Grade Limitations Beyond 200 feet (61 m) from the Runway End

3048 3049 3050

3051

3052

3053

3054

3055

3056

3057

3058

3059

3060

3046

3047

Note 1: Use vertical curve to transition between longitudinal grade changes.

Note 2: Use gradual transition between transverse grade changes to allow a pilot to maintain control of aircraft traversing the safety area.

3.15.6 Surface Gradient Design Considerations.

- 1. Keep longitudinal grades and grade changes to a minimum.
- 2. Keep transverse grades to a minimum that allows positive drainage of water from pavement surfaces consistent with site-specific conditions.
- 3. Consider potential runway extensions and/or the future upgrade of the runway to a more stringent aircraft approach category when selecting the longitudinal and transverse grade of the runway.
- 4. If the approved ALP indicates extensions and/or upgrades, design grades to match to the ultimate plan.

3061 3062 3063 3064 3065	3.16	Turf Runways. Turf runways are used in many locations where traffic volume is low and aircraft wheel loading is light. Due to the nature of turf runways, landing, takeoff, and accelerate-stop distances are typically 20% longer than for paved runways. Refer to AC 150/5325-4 for additional information.			
3066	3.16.1	Standards.			
3067 3068 3069		3.16.1.1	Geometry. Runway standards apply per Appendix G or the online Runway Design Standards Matrix Tool.		
3070		3.16.1.2	Grading.		
3071 3072			1. Provide well drained turf surface capable of supporting the critical aircraft under wet conditions.		
3073 3074 3075			2. Provide at least a 2.0 percent slope away from the center of the runway for a minimum distance of 40 feet (12 m) on either side of the centerline of the landing strip.		
3076 3077			3. Provide a 5.0 percent slope from that point to the edge of the RSA to provide rapid drainage.		
3078 3079			4. Construct drainage swales with a maximum of a 3.0 percent slope parallel to the runway and outside of the RSA.		
3080 3081 3082		3.16.1.3	Compaction. The compaction standards for turf runways are the same as the compaction standards for RSAs of paved runways.		
3083 3084 3085 3086		3.16.1.4	Vertical Curves. When longitudinal grade changes are necessary, do not exceed 3.0 percent change. Provide vertical curves with curve length equaling at least 300 feet (91 m) for each 1.0 percent change.		
3087 3088 3089 3090		3.16.1.5	Thresholds. Identify thresholds to ensure that airspace evaluation is valid for the runway. Ensure that approaches have clear 20:1 approach slopes starting at the threshold.		
3091		3.16.1.6	Landing Strip Boundary Markers.		
3092			1. The distance between markers is 200 feet - 400 feet (61 m - 122 m).		
3093			2. Locate boundary markers outside of the RSA.		
3094			3. Boundary marker equipment:		
3095 3096			 Low mass cones, frangible reflectors, and Low Intensity Runway Lights (LIRL) may be used to mark the landing strip boundary. 		

3097			b. Ensure higher mass items used for boundary markers are frangible.
3098 3099 3100		3.16.1.7	Hold Markings. Locate holding position markings to provide adequate runway clearance for holding aircraft.
3101 3102 3103		3.16.1.8	Types of Turf. Soil and climate are key factors for selection of grass types suitable for turf runway use.
3104 3105			1. Use grasses for airport turf with a deep, matted root system producing a dense, smooth surface cover with a minimum of top growth.
3106 3107 3108			2. Select long-lived grasses that are durable, capable of spreading (e.g. rhizomes) and recover quickly from dormancy or heavy-use conditions.
3109			3. Refrain from using short lived, shallow-rooted, weak sod species.
3110 3111			4. If seeding, time the planting to provide at least six weeks of favorable growing conditions to allow proper root development.
3112 3113			5. See AC 150/5370-10, Part 12 – Turfing, provides specification information on turf establishment.
3114 3115 3116 3117 3118	3.17	appropriate l	150/5340-1 for the current airport marking standards. Refer to the ighting ACs in the AC 150/5340 series and AC 150/5345 series for dressing airfield and runway lighting. A listing of these ACs is in
3119 3120 3121 3122	3.18	This paragrap CFR Part 97 through incom	Flight Procedures. ph applies to the establishment of new and revised authorized IFPs. Title 14 prescribes the criteria for instrument approach procedure development reporation of FAA Order 8260.3.
3123 3124 3125 3126 3127 3128 3129 3130 3131	3.18.1	guidance on a landings and safety even de landing surfa the airport la data the FAA	ing FAA strategy for navigation services is to provide pilots with vertical approach whenever possible. This results in more stabilized approaches and ensures clearance from existing obstacles and terrain. IFPs improve flight uring visual conditions and nighttime. This paragraph identifies airport acce criteria to assist airport operators in their evaluation and preparation of ending surface in support of a new or revised IFP. It also lists the airport a needs from the sponsor in order to conduct the airport airspace analysis FAA Order JO 7400.2.

3132 3133		3.18.1.1	A favorable determination for IFR status is necessary for an airport to qualify for IFR operations (refer to CFR Part 157).
3134 3135 3136 3137 3138 3139 3140		3.18.1.2	Use the requirements specified by FAA Order 8260.3 when planning for IFPs capable of achieving normal landing minimums. This order references FAA requirements, such as a safety analysis to determine the need for approach lighting and other visual enhancements to mitigate the effects of a difficult approach environment. This consideration applies regardless of whether or not the proposal involves a reduction in approach minimums.
3141 3142 3143		3.18.1.3	For planning purposes, use <u>Table 3-6</u> to determine the lowest obtainable minimums. Consideration of all pertinent factors ultimately determines the lowest minimums obtainable.
3144 3145 3146 3147 3148		3.18.1.4	Lighting enhances the safety of an IFP. An ALS installation enhances the safety of an instrument procedure and may permit lower minimums. Installation of economy light systems such as Runway End Identifier Lights (REIL) or Precision Approach Path Indicator (PAPI) represent supplemental visual aids enhancing pilot situational awareness.
3149 3150 3151		3.18.1.5	Under FAA Order 7110.41, additional requirements apply for certain types of Performance Based Navigation procedure requests, including
3131			Required Navigation Performance (RNP).
3152	3.18.2	<u>Prerequisite</u>	
	3.18.2	Prerequisite 3.18.2.1	
3152 3153 3154 3155 3156 3157 3158 3159	3.18.2	-	Instrument Runway Designation. In accordance with Part 157, it is necessary for an airport to submit FAA Form 7480-1 to change its status from VFR to IFR in order for the FAA to authorize a new IFP. For federally obligated airports, the airport updates their ALP in lieu of submitting the form. The FAA then conducts an aeronautical study and issues a determination. The FAA determination is a composite of the airspace review and findings, and indicates if the FAA

3171 3172 3173 3174 3175		1.	The airport operator or aircraft operator files a request with the FAA's Aeronautical Navigation Products (https://www.faa.gov/air_traffic/flight_info/aeronav/procedures/ifp_initiation/). Specify the runway direction, the desired approach minimums, whether proponent desires circling approach procedures and departure procedures.
3176		2.	The FAA:
3177 3178			a. Validates, prioritizes, and designs the procedure, if approved by FAA under Order 8260.43.
3179 3180			b. Designs the procedure (normally, LNAV, VNAV, and LPV minima are charted with any IFP request per the FAA's NAS Navigation Strategy)
3181 3182 3183			c. Develops IFR takeoff minima and/or procedures for all runway ends at an airport, unless otherwise requested by the airport (normally, at least one runway end will have IFR takeoff minima to support aircraft that depart under IFR).
3184			d. Performs a flight check
3185			e. Publishes the procedure for pilots.
3186 3187		3.	When approach surfaces are entirely clear of obstacles the resulting procedure provides the optimum and most versatile situation for the pilot.
3188 3189		4.	If not entirely clear, the mitigation measures determination are on a case-by-case basis, including:
3190			a. Higher instrument landing minimums,
3191			b. Higher than normal Glide Path Angles (GPAs),
3192			c. Installation of VGSIs,
3193			d. Non-standard Threshold Crossing Heights (TCHs), and
3194			e. Final approach offset.
3195	3.18.4	Ai	rport Aeronautical Surveys.
3196 3197 3198		1.	Use the standards identified in <u>AC 150/5300-16</u> , <u>AC 150/5300-17</u> , and <u>AC 150/5300-18</u> to survey and compile the appropriate data to support the development of instrument procedures.
3199 3200 3201		2.	Provide vertically guided approaches whenever possible. For vertically guided approaches and all departures, complete surveys using the Vertically Guided Airport Airspace Analysis Survey criteria in <u>AC 150/5300-18</u> .
3202 3203 3204		3.	Providing pilots with vertical guidance results in more stabilized approaches and landings, so use the Non-Vertically Guided Airport Airspace Analysis Survey criteria in <u>AC 150/5300-18</u> only in rare circumstances.
3205 3206 3207		4.	Absence of a survey does not preclude authorization to establish an instrument approach procedure to a runway but may restrict the procedure to daytime only operations.

Table 3-6. Criteria to Support Instrument Approach Procedure Development ¹

	Visibility Minimums			
Standards	< 3/4 statute mile	3/4 to < 1 statute mile	≥ 1 statute mile straight-in	Circling ² ≥ 1 statute mile
HAT ³	≤ 250 ft	≥ 250 ft	≥ 250 ft	≥ 350 ft
POFZ (PA & APV only)	Required	Not Required	Not Required	Not Required
IT-OFZ	Required	Not Required	Not Required	Not Required
ALP ⁴	Required	Required	Required	Required
Minimum Runway Length	4,200 ft	3,200 ft ⁵	3,200 ft ⁵	3,200 ft ⁵
Paved Surface	Required	Recommended 6	Recommended ⁶	Recommended ⁶
Runway Markings (See <u>AC</u> <u>150/5340-1</u>)	Precision	Non-precision	Non-precision	Visual
Holding Position Signs & Markings (See <u>AC 150/5340-1</u> , <u>AC 150/5340-18</u>)	Required	Required	Required	Required ⁶
Runway Edge Lights ⁷	HIRL or MIRL	HIRL or MIRL	MIRL or LIRL	MIRL or LIRL (Required only for night minimums)
Parallel Taxiway 8	Required	Required	Recommended	Recommended
Approach Lights ⁹	Required	Recommended 10	Recommended 10	Not Required
VGSI 11	Recommended	Recommended	Recommended	Recommended
Applicable Runway Design Standards, (Reference online Runway Design Standards Matrix Tool or Appendix G)	Lower than 3/4 mile visibility minimums	Not lower than 3/4 mile visibility minimums		Not lower than 1 mile visibility minimums
Obstacle Clearance Surface to be Met (Reference paragraph 3.5.1)	See <u>Table 3-2</u> or <u>Table 3-3</u>	See <u>Table 3-2</u> or <u>Table 3-3</u>	See <u>Table 3-2</u> or <u>Table 3-3</u>	Table 3-1 or Table 3-2
Optimum Survey Type 12	VGS	VGS	NVGS	NVGS ¹³

3209 3210 3211

3212

3213

3214

Note 1: Visibility minimums and described standards are subject to the application of FAA Order 8260.3 (TERPS) and associated orders. For each level of visibility, meet or exceed the optimum conditions within the column.

Note 2: For runways authorized for circling, meet requirements for threshold siting (reference paragraph 3.4) and OFZ (reference paragraph 3.10).

3215 3216 3217	Note	3: Height Above Airport (HAA) for circling. The HAT/HAA indicated is for planning purposes; actual obtainable HAT/HAA is determined by TERPS and may be higher due to obstacles or other requirements.
3218	Note	•
3219	Note	
3220		short as 2,400 ft could support an instrument approach provided the lowest HAT is based on clearing
3221		any 200-ft (61 m) obstacle within the final approach segment.
3222	Note	
3223	Note	
3224		touchdown zone sensor are required for RVR-based minimums.
3225	Note	
3226	- 1011	possible minimums and minimizes the time aircraft are on the runway. Refer to the minimum
3227		visibility requirements on airport conditions in FAA Order 8260.3. Construction of a parallel
3228		taxiway, while advisable, is not a requirement for publication of an instrument approach procedure
3229		with visibility minima ≥ 1 statute mile.
3230	Note	
3231	11010	to conventional ground-based procedures. A full approach light system (ALSF-1, ALSF-2, SSALR,
3232		or MALSR) is required for visibility < 3/4 statute mile. Intermediate (MALSF, MALS, SSALF,
3233		SSALS, SALS/SALSF) or Basic (ODALs) systems will result in higher visibility minimums. An
3234		ALSF-1 or ALSF-2 is required for CAT II/III ILS. HAT < 250 ft without MALSR, SSALR, or
3235		ALSF is permitted with visibility not less than 34 SM.
3236	Note	10: ODALS, MALS, SSALS, and SALS are acceptable. Approach lights are recommended where a
3237	11010	visibility minima improvement of at least ¼ statute mile can be achieved.
3238	Note	
3239	11010	descent angle (VDA) or glidepath angle (GPA) is coincident with the VGSI angle.
3240	Note	
3241	11010	(NVGS) requirements. When an AC 150/5300-18 VGS is not available, the equivalent legacy
3242		vertically guided (VG) surveys are ANAPV/LPV/PC, and PIR.
3243	Note	
3244	11010	in the procedure being restricted to daytime only operations.
02 1 1		in the procedure semigrestricted to day time only operations.
3245	3.19	Jet Blast.
3246		The effects of jet blast can cause erosion along runway shoulders and in some cases
		· · · · · · · · · · · · · · · · · · ·
3247		represent a blast force hazard to holding aircraft and vehicles. Mitigation measures
3248		such as paved shoulders, blast pads, and in some cases blast fences may be necessary.
3249		Refer to Chapter 6 for information on the effects and treatment of jet blast.
2052	2.20	Dunaway Darian Standarda Matria
3250	3.20	Runway Design Standards Matrix.
3251		These are minimum separation standards and, if there is ample space, design the
3252		separation and hold line location at distances exceeding the minimum.
3253	3.20.1	Runway to Taxiway.
3254		See Appendix G and the online Runway Design Standards Matrix Tool for the
3255		minimum runway-to-taxiway separation standards based on ADG. These standards
3256		derive from landing and takeoff flight path profiles and physical characteristics of
3257		aircraft.

3258		3.20.1.1	Separation Based on ADG.
3259			The dimensions in Appendix G and the online Runway Design Standards
3260			Matrix Tool assume the same critical aircraft is using both the runway and
3261			taxiway. For example, if a taxiway serves larger aircraft (e.g. air carrier
3262			aircraft taxiing between the terminal and another runway), the basis for the
3263			runway-to-taxiway separation distance is the ADG of the larger aircraft.
		2 20 1 2	
3264		3.20.1.2	Separation Based on TDG.
3265			If there is a need for direction reversal between the runway and the
3266			parallel taxiway when using a high-speed exit, the basis for the separation
3267			distance may be a combination of the ADG and the TDG of the critical
3268			aircraft. Use <u>Table 4-7</u> , which provides the minimum and recommended
3269			separation distances between a runway and parallel taxiway and runways
3270			for turns based on TDG. The greater value from Appendix G (or the online
3271			Runway Design Standards Matrix Tool) and Table 4-7 determines the
3272			applicable separation value. See paragraph 4.8.4 for additional information
3273			on the effect of exit taxiway design on runway/taxiway separation. See
3274			paragraph 3.10 for additional information on OFZ recommended practices
3275			related to runway-to-taxiway separation.
3276	3.20.2	Runway to 1	
3277			d runway to hold line separation derives from landing and takeoff profiles
3278		and physica	l performance characteristics of the critical aircraft.
3279		3.20.2.1	For some aircraft and runway/taxiway geometries, the standard runway to
3280			hold line separation may be insufficient to hold aircraft perpendicular to
3281			the runway. Adjustments may be necessary to permit sufficient view of
3282			the runway environment including the extended centerline. See paragraph
3283			4.8.1.1 for the standard for designing right-angle runway to taxiway
3284			intersections. See paragraph $4.6.2$ for a recommended practice to attain a
3285			perpendicular holding position.
3286	3.20.3	Runway to 7	<u>Taxiway.</u>
3287		3.20.3.1	Separation Based on ADG.
3288			The dimensions in Appendix G and the online Runway Design Standards
3289			Matrix Tool assume the same critical aircraft uses both the runway and
3290			taxiway. For example, if a taxiway serves larger aircraft (e.g. air carrier
3291			aircraft taxiing between the terminal and another runway), the basis for the
3292			runway-to-taxiway separation distance is the ADG of the larger aircraft.
3293		3.20.3.2	Separation Based on TDG.
3294			If there is a need for direction reversal between the runway and the
3295			parallel taxiway when using a high-speed exit, the basis for the separation
3296			distance may be a combination of the ADG and the TDG of the critical
3297			aircraft. Use <u>Table 4-7</u> , which provides the minimum and recommended
0_0.			

3298		separation distances between a runway and parallel taxiway and runways
3299		for turns based on Taxiway Design Group. The greater value from
3300		Appendix G (or the online Runway Design Standards Matrix Tool) and
3301		<u>Table 4-7</u> determines the applicable separation value. See paragraph <u>4.8.4</u>
3302		for additional information on the effect of exit taxiway design on
3303		runway/taxiway separation. See paragraph 3.10 for additional information
3304		on OFZ recommended practices related to runway-to-taxiway separation.
3305	3.20.3.3	Recommended Practices.
3306		When space is available without causing relocation of existing facilities
3307		and structures, an airport may apply the separation values of the next
3308		larger ADG aircraft when constructing or re-constructing a parallel
3309		taxiway. This will allow operation of more demanding aircraft without the
3310		need for:
3311		1. Specific airport operational restrictions, or
3312		2. Relocation of existing infrastructure when the larger ADG aircraft
3313		becomes the critical aircraft meeting regular use criteria.

3.20.4 Runway to Aircraft Parking Area.

3314

3315

3316

3317

3318

3321

3322

3323

Locate aircraft parking areas to preclude any part of a parked aircraft (tail, wingtip, nose, etc.) from being within a ROFA or penetrating the OFZ. The optimum condition locates aircraft parking positions in a manner preventing the violation of an imaginary surface as defined in 14 CFR Part 77.

Table 3-7. Runway Design Standards Lookup Table

ADG	AAC A	AAC B	AAC C	AAC D	AAC E
I Small Aircraft	A-I Small aircraft	B-I Small aircraft	n/a	n/a	n/a
I	<u>A-I</u>	<u>B-I</u>	<u>C-I</u>	<u>D-I</u>	<u>E-I</u>
II Small Aircraft	A-II Small aircraft	B-II Small aircraft	n/a	n/a	n/a
II	<u>A-II</u>	<u>B-II</u>	<u>C-II</u>	<u>D-II</u>	E-II
III	<u>A-III</u>	<u>B-III</u>	<u>C-III</u>	<u>D-III</u>	E-III
IV	<u>A-IV</u>	<u>B-IV</u>	<u>C-IV</u>	<u>D-IV</u>	E-IV
V	n/a	n/a	<u>C-V</u>	<u>D-V</u>	E-V
VI	n/a	n/a	<u>C-VI</u>	<u>D-VI</u>	E-VI

Note 1: Links in this table navigate to the corresponding table in Appendix G.

Note 2: Alternatively, see the online <u>Runway Design Standards Matrix Tool</u>.

Figure 3-33. Airport Layout Example

3325 3327

Note: See <u>Appendix G</u> or online <u>Runway Design Standards Matrix Tool</u> for dimensions.

3328		CHAPTER 4. Taxiway and Taxilane Design
3329	4.1	General.
3330 3331 3332		This chapter presents the airport design standards, recommended practices and design considerations for taxiways and taxilanes. It provides guidance to enhance safety and efficiency, including but not limited to:
3333		1. Taxiway and taxilane dimensions, configuration and separation standards.
3334		2. Taxiway turns and intersection design.
3335 3336 3337		3. Surface gradients. See <u>Appendix J</u> for additional taxiway <u>design</u> information and <u>taxiway geometries</u> with elevated <u>runway incursion</u> risk.
3338	4.1.1	Design Criteria: Taxiways versus Taxilanes.
3339 3340 3341 3342 3343 3344 3345		In general, the term "taxiway" as used in this chapter describes standards and recommended practices for both taxiways and taxilanes. Some of the design standards for taxiways and taxilanes vary given the different aircraft speeds and uses of taxiways versus taxilanes. Where there are differences between taxiway and taxilane design standards, the tables in this chapter will define these differences. Taxiways typically reside in movement areas, while taxilanes are more common in non-movement areas such as terminal apron areas.
3346 3347		4.1.1.1 Taxiway/Taxilane Differences. The following standards are different between taxiways and taxilanes:
3348 3349 3350 3351		 Object Free Area (OFA) Centerline to centerline separation Centerline to fixed or movable object Wingtip clearance
3352 3353		4.1.1.2 Taxiway/Taxilane Similarities. The following standards are equivalent between taxiways and taxilanes:
3354 3355 3356 3357		 Taxiway/taxilane safety area (TSA) Taxiway/taxilane width Taxiway/taxilane edge safety margin (TESM) Taxiway/taxilane shoulder width
3358 3359 3360 3361	4.1.2	<u>Coordination.</u> An efficient taxiway system design requires knowledge of operational requirements. Coordinate with the airport's applicable stakeholders during the planning and design of taxiways:
3362 3363 3364		 Airport Traffic Control Tower (ATCT) personnel Airlines and FBOs Other airport users

4.2 Taxiway Design Group (TDG). 3365 The overall Main Gear Width (MGW) and the Cockpit to Main Gear Distance (CMG) 3366 determine the TDG classification. Establishing taxiway/taxilane fillet geometry 3367 involves determining the longest CMG, widest MGW theoretical airplane in the design 3368 TDG, and applying the TESM for the design TDG. See Figure 1-1, Figure 4-4 and 3369 paragraph 1.6. Some airplanes have special steering characteristics (e.g. steerable main 3370 3371 gear). In such cases, use the "effective CMG" provided by the manufacturer. 4.3 Taxiway and Taxilane Design Method. 3372 4.3.1 Taxiing Method. 3373 Taxiways designed for cockpit over centerline steering enable rapid movement of traffic 3374 with minimal risk of aircraft excursions from the pavement surface. Judgmental 3375 oversteering, where the pilot intentionally steers the cockpit outside the marked 3376 centerline on turns, introduces excursion risk to a turning maneuver. The Taxiway Edge 3377 Safety Margin (TESM) provides allowance for wander from the centerline. 3378 4.3.1.1 Standards. 3379 Design taxiways for "cockpit over centerline" taxiing. Do not apply 3380 "judgmental oversteering" as a design technique to preclude provision of a 3381 3382 standard fillet design. 4.3.1.2 **Recommended Practice.** 3383 For new taxiway projects, upgrade other intersections along the associated 3384 3385 route to eliminate the need for judgmental oversteering if it is practical to make such improvements at that time. The goal is to provide consistent 3386 "cockpit over centerline" taxiing throughout the airport. 3387 4.3.2 Curve Design. 3388 4.3.2.1 Standards. 3389 1. For new taxiways, design taxiway centerline radii for turns of 90 3390 degrees or more such that the maximum nose gear steering angle is 3391 close to but no more than 50 degrees to prevent excessive tire 3392 scrubbing.² 3393 2. For new taxiways, design taxiway centerline radii for turns of less than 3394 90 degrees such that the maximum nose gear steering angle allows the 3395 3396 pilot to maintain an efficient speed in the turn.

² Where dimensions in this AC are based on nose gear steering angle, all calculations of nose gear steering angle assume that the nose gear is directly under or forward of the cockpit. Where the nose gear is aft of the cockpit, the actual nose gear steering angle will be slightly less. This conservative design allows for the slight slippage experienced by the nose gear in cornering.

4-2

3397 3398			3. Design the radius of the outer edge of the pavement to be equal to the centerline radius plus one-half of the straight segment taxiway width.
3399		4.3.2.2	Recommended Practices.
3400 3401			1. For existing conditions, it is acceptable for the steering angle to be greater than 50 degrees.
3402 3403			2. For existing conditions where centerline lights are present, it is acceptable to retain the existing taxiway centerline.
3404 3405 3406			3. The FAA Office of Airports Taxiway Fillet Design Tool, which calculates centerline radii for simple turns, is available on the FAA web site at: http://www.faa.gov/airports/engineering/airport_design/ .
3407	4.3.3	Three-Path	Concept.
3408		Complex in	ntersections increase the possibility of pilot error and confusion, which can
3409		lead to a ru	nway incursion. Proper airport design practices keep taxiway intersections
3410		simple by r	reducing the number of taxiways intersecting at a single location, thus
3411		allowing fo	or proper placement of airfield markings, signage and lighting. The "three-
3412 3413			pt", formerly known as the "three-node" concept", means that a pilot has no three choices at an intersection – left, right and ahead. See <u>Figure 4-1</u> .
3414		4.3.3.1	Standards.
3415 3416			 Design all new taxiway intersections in accordance with the three-path concept.
3417			2. For existing conditions not meeting the three-path concept, develop a
3418			plan to meet the standard in the future.
3419		4.3.3.2	Recommended Practice.
3420			Reconfigure all existing taxiway intersections (even those not designated
3421			as hot spots) in accordance with the three-path concept when the
3422			associated taxiway is subject to reconstruction or rehabilitation. See
3423			Figure 4-1.

3427

3428

3429

3430

3431

3432

3433

3434

3435

Note: The angle (\triangle) is measured from the initial direction of travel.

4.3.4 Channelized Taxiing.

Standard taxiway widths support visibility of airfield signage. Taxiway widths wider than standard result in signs being located further from the centerline; pilots may miss the signs due to excessive distance.

4.3.4.1 **Standard.**

- 1. Design new taxiway/taxiway and taxiway/runway intersections to meet standard taxiway widths.
- 2. For existing conditions comprising wide pavement areas, develop a plan to meet the standard.

3436		4.3.4.2	Re	commended Practice.	
3437 3438 3439			as l	configure all existing taxiway intersections (even those not designated not spots) in accordance with paragraph 4.3.4.1 when the associated iway is subject to reconstruction or rehabilitation.	
3440	4.3.5	Runway Ac	cess	from Apron.	
3441 3442 3443 3444		false expect	ation an re	cting an apron directly to a runway can lead to confusion by creating a of a parallel taxiway prior to a runway. This loss of situational esult in a pilot entering a runway unknowingly thus resulting in a n.	
3445		4.3.5.1	Sta	andards.	
3446 3447 3448			1.	Design taxiways leading from an apron to a runway to make at least one turn between 75 and 90 degrees prior to reaching the runway hold line.	
3449 3450 3451				a. For runways with a parallel taxiway, stagger the alignment of connecting taxiway and taxiways/taxilanes originating from the apron. See <u>Figure 4-2</u> .	
3452 3453 3454				b. For runways without a parallel taxiway, provide a no-taxi island on the apron aligned with the connecting taxiway to the runway. See <u>Figure 4-3</u> .	
3455			2.	For existing conditions with direct access from an apron to a runway:	
3456 3457				a. Develop a plan (e.g. ALP) to meet the standard when it becomes practical to make such improvements.	
3458 3459 3460				b. Reconfigure existing direct-access taxiways, including those not designated as hot spots, when the associated taxiway is subject to reconstruction.	
3461		4.3.5.2	Re	commended Practices.	
3462 3463 3464			1.	To the extent practical, design taxi routes between the apron and runway ends to include a turn onto a parallel taxiway and a second turn onto a connecting taxiway leading to the runway.	
3465 3466			2.	Design the taxi route between the apron and the runway to include the following:	
3467 3468				a. a turning movement from the apron taxiway/taxilane to the parallel taxiway.	
3469 3470				b. a turning movement from the parallel taxiway to the connecting taxiway at an angle between 75 and 90 degrees.	
3471 3472				c. a holding position that allows the critical aircraft to hold 90 degrees, plus or minus 15 degrees, to the runway centerline.	

3473 3474 3475 3476 3477		3. Provide a minimum tangent length between the connecting taxiway and runway entrance taxiway so that the pilot, after turning onto the parallel taxiway, has sufficient time and distance to align the fuselage along the parallel taxiway centerline to provide a clear view of clearly see the taxiway signs indicating the entrance to the runway.	
3478 3479 3480 3481	4.3.5.3	 During taxiway rehabilitation projects, evaluate the feasibility of reconfiguring existing direct-access taxiways (even those not designated as hot spots) in accordance with paragraph 4.3.5.1. Design Considerations. 	
3482 3483 3484 3485		1. Evaluate whether an increase to the standard runway to taxiway separation is necessary to allow the critical aircraft to hold 90 degrees, plus or minus 15 degrees, to the runway centerline per paragraph 3.20.3.	

Figure 4-2. Apron-Taxiway Transition

Note 1: See paragraph 4.3.5.2.

Figure 4-3. Apron-Runway Transition

3492 3493

3494

3495

Note 1: Turf or paved no taxi island with edge lights/reflectors.

4.3.6 Hot Spots.

4.3.6.1 Standards.

3496 3497 3498

3499 3500

3501

3502

3503 3504

3505

- 1. Reconfigure hot spots identified in the FAA Airport Diagrams when the associated runway or taxiway is subject to reconstruction or rehabilitation.
- 2. Correct other non-standard taxiway design elements as soon as practicable.

4.4 Straight Segment Taxiway/Taxilane Width.

Taxiway width standards derive from aircraft TDG classifications. The minimum width for straight segments ensures that the standard TESM is available for possible aircraft wander (see <u>Figure 4-4</u>). See <u>Table 4-2</u> for minimum width for straight segments. See paragraph <u>4.7</u> for guidance on fillet design.

Figure 4-4. Taxiway Edge Safety Margin (TESM) – Straight Segment

3507 3508 3509

3510

3511

3512 3513

3514

3515

3516 3517

3518

3519 3520

3521

3522

3523

3506

Note 1: See <u>Table 4-2</u> for pavement width and TESM values.

Note 2: See <u>Appendix A</u> for CMG and MGW data.

4.5 Taxiway/Taxilane Clearance.

4.5.1 <u>Taxiway/Taxilane Separations.</u>

Pilots need ample wingtip clearance due to the pilots' limited visual range of their aircraft's wingtips. Wingtip clearance values ensure an acceptable level of safety when one airplane on a parallel taxiway wanders off the taxiway centerline toward an airplane on the adjacent taxiways. See <u>Figure 4-5</u>. The ADG of the critical aircraft determines the minimum separation distance between a taxiway/taxilane centerline and fixed or moveable objects.

4.5.1.1 Standards.

Table 4-1 lists standard minimum separation standards by ADG considering:

- 1. Wingspan dimensions of the critical aircraft in each ADG.
- 2. A lateral deviation allowance to provide protection in the event of deviation from the taxiway centerline.
- 3. A safety buffer allowance to provide for wingtip clearance in the event of deviation from the taxiway centerline.

3526		4.5.1.2	Recommended Practices.
3527			When space is available without causing relocation of existing facilities
3528			and structures, an airport may apply the separation values of the next
3529			larger ADG aircraft when constructing or re-constructing a taxiway or
3530			taxilane. This will allow operation of more demanding aircraft without the
3531			need for:
3532			1. Specific airport operational restrictions, or
3533			2. Relocation of existing infrastructure when the larger ADG aircraft
3534			becomes the critical aircraft meeting regular use criteria.
3535		4.5.1.3	Design Considerations.
3536			The minimum distance between centerlines of parallel taxiways or
3537			taxilanes may be a function of the critical aircraft TDG due to turning and
3538			fillet geometry requirements.
			The grant of the control of the cont
3539	4.5.2	Parallel Tax	tiways/Taxilanes for Dissimilar ADGs.
3539 3540	4.5.2		
	4.5.2	For parallel	tiways/Taxilanes for Dissimilar ADGs.
3540	4.5.2	For parallel distance bet	tiways/Taxilanes for Dissimilar ADGs. taxiways/taxilanes serving dissimilar ADGs, determine the necessary
3540 3541	4.5.2	For parallel distance bet 1. Establish	tiways/Taxilanes for Dissimilar ADGs. taxiways/taxilanes serving dissimilar ADGs, determine the necessary ween centerlines by applying the following method:
3540 3541 3542	4.5.2	For parallel distance bet 1. Establis 2. Establis	taxiways/taxilanes for Dissimilar ADGs. taxiways/taxilanes serving dissimilar ADGs, determine the necessary ween centerlines by applying the following method: the OFA dimension of the more demanding ADG. the the wingspan of the lesser ADG.
3540 3541 3542 3543	4.5.2	For parallel distance bet 1. Establish 2. Establish 3. Determination	taxiways/taxilanes for Dissimilar ADGs. taxiways/taxilanes serving dissimilar ADGs, determine the necessary ween centerlines by applying the following method: the OFA dimension of the more demanding ADG.
3540 3541 3542 3543 3544	4.5.2	For parallel distance bet 1. Establish 2. Establish 3. Determination	taxiways/taxilanes for Dissimilar ADGs. taxiways/taxilanes serving dissimilar ADGs, determine the necessary ween centerlines by applying the following method: the OFA dimension of the more demanding ADG. the wingspan of the lesser ADG. ne the composite taxiway separation value by adding one-half the OFA of the demanding ADG to one-half the wingspan of the lesser ADG.
3540 3541 3542 3543 3544 3545	4.5.2	For parallel distance bet 1. Establis 2. Establis 3. Determinent the more 4. Example	taxiways/taxilanes for Dissimilar ADGs. taxiways/taxilanes serving dissimilar ADGs, determine the necessary ween centerlines by applying the following method: the OFA dimension of the more demanding ADG. the wingspan of the lesser ADG. ne the composite taxiway separation value by adding one-half the OFA of the demanding ADG to one-half the wingspan of the lesser ADG. the:
3540 3541 3542 3543 3544 3545 3546 3547	4.5.2	For parallel distance bet 1. Establis 2. Establis 3. Determinent the more 4. Example a. One	taxiways/taxilanes serving dissimilar ADGs, determine the necessary ween centerlines by applying the following method: the OFA dimension of the more demanding ADG. the wingspan of the lesser ADG. ne the composite taxiway separation value by adding one-half the OFA of edemanding ADG to one-half the wingspan of the lesser ADG. e: -half of ADG III TOFA is 85.5 ft (26 m).
3540 3541 3542 3543 3544 3545 3546	4.5.2	For parallel distance bet 1. Establis 2. Establis 3. Determine the more 4. Example a. One b. One	taxiways/taxilanes serving dissimilar ADGs, determine the necessary ween centerlines by applying the following method: the OFA dimension of the more demanding ADG. the wingspan of the lesser ADG. ne the composite taxiway separation value by adding one-half the OFA of edemanding ADG to one-half the wingspan of the lesser ADG. e: -half of ADG III TOFA is 85.5 ft (26 m). -half of ADG II wingspan is 39.5 (12 m).
3540 3541 3542 3543 3544 3545 3546 3547	4.5.2	For parallel distance bet 1. Establis 2. Establis 3. Determine the more 4. Example a. One b. One	taxiways/taxilanes serving dissimilar ADGs, determine the necessary ween centerlines by applying the following method: the OFA dimension of the more demanding ADG. the wingspan of the lesser ADG. ne the composite taxiway separation value by adding one-half the OFA of edemanding ADG to one-half the wingspan of the lesser ADG. e: -half of ADG III TOFA is 85.5 ft (26 m).

3550 Figure 4-5. Wingtip Clearance – Parallel Taxiways/Taxilanes

Note 1: See <u>Table 4-1</u> for standard separation distances between parallel taxiways and parallel taxilanes.

Table 4-1. Design Standards Based on Airplane Design Group (ADG)

14	ADG							
Item	I	II	III	IV	V	VI		
Taxiway and Taxilane Protection								
TSA	49 ft (15 m)	79 ft (24 m)	118 ft (36 m)	171 ft (52 m)	214 ft (65 m)	262 ft (80 m)		
Taxiway OFA ²	89 ft (27 m)	124 ft (38 m)	171 ft (52 m)	243 ft (74 m)	285 ft (87 m)	335 ft (102 m)		
Taxilane OFA ²	79 ft (24 m)	110 ft (34 m)	158 ft (48 m)	224 ft (68 m)	270 ft (82 m)	322 ft (98 m)		
Taxiway and Taxilane Separation								
Taxiway centerline to parallel taxiway centerline ¹	70 ft (21.5 m)	105 ft (32 m)	144 ft (44 m)	207 ft (63 m)	249 ft (76 m)	298 ft (91 m)		
Taxiway centerline to fixed or movable object ²	45 ft (14 m)	62 ft (19 m)	86 ft (26 m)	121 ft (37 m)	142 ft (43.5 m)	168 ft (51 m)		
Taxilane centerline to parallel taxilane centerline 1	64 ft (20 m)	94 ft (29 m)	138 ft (42 m)	198 ft (60 m)	242 ft (74 m)	292 ft (89 m)		
Taxilane centerline to fixed or movable object ²	40 ft (12 m)	55 ft (17 m)	79 ft (24 m)	112 ft (34 m)	135 ft (41 m)	161 ft (49 m)		
Wingtip Clearance								
Taxiway wingtip clearance	20 ft (6 m)	23 ft (7 m)	27 ft (8 m)	36 ft (11 m)	36 ft (11 m)	36 ft (11 m)		
Taxilane wingtip clearance	15 ft (4.5 m)	16 ft (5 m)	20 ft (6 m)	27 ft (8 m)	28 ft (8.5 m)	30 ft (9 m)		

3554 3555 Note 1: See <u>Figure 4-5</u>. Note 2: See <u>Figure 4-6</u>.

Table 4-2. Design Standards Based on Taxiway Design Group (TDG)

Itom	TDG								
Item	1A	1B	2 A	2B	3	4	5	6	
Taxiway/Taxilane Width	25 ft (7.5 m)	25 ft (7.5 m)	35 ft (10.5 m)	35 ft (10.5 m)	50 ft (15 m)	50 ft (15 m)	75 ft (23 m)	75 ft (23 m)	
Taxiway Edge Safety Margin	5 ft (1.5 m)	5 ft (1.5 m)	7.5 ft (2 m)	7.5 ft (2 m)	10 ft (3 m)	10 ft (3 m)	14 ft (4.25 m)	14 ft (4.25 m)	
Taxiway Shoulder Width	10 ft (3 m)	10 ft (3 m)	15 ft (3 m)	15 ft (3 m)	20 ft (6 m)	20 ft (6 m)	30 ft (9 m)	30 ft (9 m)	
Taxiway/Taxilane Centerline to Parallel Taxiway/Taxilane Centerline w/ 180 Degree Turn			See	<u>Table 4-8</u> :	and <u>Tabl</u>	e 4-9.			

3557

Note: See Figure 4-4.

Figure 4-6. Wingtip Clearance from Taxiway

Note 1: Refer to <u>Table 4-1</u> for standard separation distances between parallel taxiways.

Note 1: Refer to <u>Table 4-1</u> for standard taxilane OFA and standard separation distances between parallel taxilanes.

3565 3566 3567	4.5.3	The TSA is a defined surface prepared to support the occasional passage of aircraft and ARFF equipment.					
3568		4.5.3.1	Sta	ndards.			
3569 3570				The TSA width equals the maximum wingspan of the ADG. See <u>Table 4-1</u> .			
3571 3572				The TSA is symmetrical about the taxiway/taxilane centerline on straight segments.			
3573 3574 3575 3576				a. The TSA increases in width at intersections and turns by extending for a distance of (TSA Width – W)/2 from the taxiway/taxilane edge, based on the fillet design (see Figure 4-9) where W is the taxiway width.			
3577 3578		•		Clear and grade the TSA to remove potentially hazardous ruts, humps, depressions, or other surface variations.			
3579 3580		4		Prevent accumulation of surface water by grading the TSA to drain away from taxiway pavement, or using flush grated catch basins.			
3581 3582 3583		;		Design the TSA to be capable, under dry conditions, of supporting snow removal equipment, ARFF equipment, and the occasional passage of aircraft without causing structural damage to the aircraft.			
3584 3585				a. See <u>AC 150/5370-10</u> , Item P-152, Excavation, Subgrade and Embankment specifications for compaction specification criteria.			
3586 3587 3588				b. Design structures including, but not limited to, manholes, handholes, and grates to support the occasional passage of aircraft and ARFF equipment.			
3589 3590		(The TSA is free of objects, except for objects that need to be located in the TSA because of their function.			
3591 3592 3593 3594				a. Design objects higher than 3 inches (76 mm) above grade on low impact resistant (LIR) supports (frangible mounted structures) of the lowest practical height with the frangible point no higher than 3 inches (76 mm) above the grade.			
3595 3596				b. Design other objects, such as manholes, to meet grade or not exceed a height of 3 inches (76 mm) above grade.			
3597 3598 3599 3600 3601	4.5.4	The TOFA is to provide ver centerline to o	an rtica obje	cilane Object Free Area (TOFA). area adjacent to the TSA that is clear of objects not fixed-by-function all and horizontal wingtip clearance. Applying the taxiway/taxilane ext separation values in Table 4-1 to both sides of the centerline xiway/taxilane Object Free Area (OFA). See Figure 4-6.			

3602	4.5.4.1	Standards.
3603 3604		<u>Table 4-1</u> specifies the standard dimensions for TOFAs. A standard TOFA is:
3605 3606		1. Symmetrical about the taxiway and taxilane centerlines as shown in Figure 4-6 and Figure 4-8.
3607 3608 3609 3610		2. Cleared of roads used by baggage carts, fuel trucks, and other service vehicles, parked aircraft, and other objects, except for objects that need to be located in the TOFA for air navigation or aircraft ground maneuvering purposes.
3611 3612 3613 3614		a. Vehicles may operate within the TOFA provided they give right of way to oncoming aircraft by either maintaining a safe distance ahead or behind the aircraft or by exiting the TOFA to let the aircraft pass.
3615 3616		 Provide vehicular exiting areas along the outside of the TOFA where required.
3617		3. Increase in width at intersections and turns.
3618 3619 3620		 a. TOFA clearing standards are met for a distance of (TOFA Width – W)/2 feet from the taxiway edge, based on the fillet design, where W is the taxiway width. (See Figure 4-9.)

Figure 4-8. Wingtip Clearance from Apron Taxilane

3622 3623

Note 1: Refer to <u>Table 4-1</u> for standard separation distances between parallel <u>taxilanes</u>.

Figure 4-9. TSA and TOFA at Taxiway Intersections

3625 3626 3627

3628 3629

3630

3631

3632

3633

3634

3635

3636

3637

3639

3640

3641

3642

3643

Note 1: (TOFA Width - W)/2 **Note 2:** (TSA Width - W)/2

4.6 **Parallel Taxiways.**

A parallel taxiway eliminates using the runway for taxiing, thus increasing runway capacity and protecting the runway under low visibility conditions. A dual parallel taxiway provides the ability for airplanes to taxi behind an airplane holding at a runway hold line.

4.6.1 Standards.

- 1. Provide a full-length parallel taxiway, or equivalent taxi path, for instrument approach procedures with visibility minimums below one mile.
- 2. Between dual parallel taxiways, provide fillets only for common turning movements (see Figure 4-10).

3638 4.6.2 Recommended Practices.

- 1. Provide a full-length parallel taxiway, or equivalent taxi path, for all runways with published instrument approaches (excluding circling approaches).
- 2. Consider the use of multiple parallel taxiways to provide additional access paths to runway ends at airports with high-density traffic.
- 3. See FAA Order 5090.3 for relevant planning criteria.

4. A dual parallel taxiway (see Figure 4-10) need not extend the full length of runway.

Figure 4-10. Parallel Taxiways

3646 3647 3648

3649

3644

3645

Note 1: Providing a centerline radius marking and fillet for the uncommon turn from the connecting taxiway to the inner parallel can create a risk for a taxiway departure. Refer to paragraph <u>4.6</u> for additional guidance on reducing this risk.

3650	
3651	
3652	
3653	
3654	
3655	
3656	
3657	
3658 3659	
3660 3661	
3662	
3663	
3664	
3665	
2666	

3668

- 5. To avoid risk of take-offs from the inner parallel taxiway as well as to facilitate maneuvering of snow removal equipment, limit the fillet pavement from the connecting taxiway to the inner parallel taxiway to a 30-foot radius.
- 6. Provide a parallel taxiway offset at runways ends to mitigate potential risks of wrong surface landings on the taxiway by establishing a discontinuity in the taxiway alignment. See <u>Figure 4-11</u>. Design a 50-foot to 100-foot taxiway offset within 1,500 feet of the runway end in conformance with curve criteria of paragraph <u>4.3.2</u>. Benefits of this practice include:
 - a. Mitigation of potential risks of taxiway landings by establishing a discontinuity in the taxiway alignment.
 - b. Additional wingtip clearance from parallel taxiway to aircraft holding at a bypass taxiway location. See <u>Figure 4-10</u>.
 - c. Facilitation of perpendicular aircraft holding position relative to the runway centerline
 - d. Facilitation of NAVAIDs (Glide Slope) and visual aids (wind cones) installations at the approach end of the runway.
- 7. See paragraph <u>4.8.5.3</u>, item <u>5</u>, and online <u>Runway Design Standards Matrix Tool</u> (alternately <u>Appendix G</u>) regarding runway to taxiway separation standards.

Figure 4-11. Parallel Taxiway Offset

3670 3671 3672	4.7	Taxiway Fillet Design. Apply these standards and recommended practices to intersections involving taxiways, taxilanes, and/or aprons.									
3673	4.7.1	Standards.									
3674		1. Design f	1. Design fillets to maintain the applicable TESM throughout the turning movement.								
3675 3676 3677 3678		2. To allow for the asymptotic nature of an airplane realigning with the taxiway centerline when exiting a turn, the taper may end at a point where the distance from the centerline to the outside of the main gear is equal to one half of the straight segment taxiway width plus 6 inches (15 cm).									
3679	4.7.2	Recommend	led Practices.								
3680 3681		4.7.2.1	Design pavement fillets at intersections to accommodate the entire selected TDG, while minimizing excess pavement.								
3682 3683 3684 3685 3686		4.7.2.2	See <u>Appendix J</u> for guidance on the design of pavement fillets, including the Taxiway Intersection Dimensions by TDG tables. The FAA Office of Airports online <u>Taxiway Fillet Design Tool</u> , which calculates fillet dimensions for simple turns, is available on the FAA web site at: http://www.faa.gov/airports/engineering/airport_design/ .								
3687 3688		4.7.2.3	See <u>Figure 4-12</u> , <u>Figure 4-13</u> , and <u>Figure 4-14</u> for illustrated dimensions used to provide the minimum pavement necessary for taxiway fillets.								
3689 3690		4.7.2.4	The standard fillets designed using the online <u>Taxiway Fillet Design Tool</u> assume the airplane aligns with the taxiway centerline at the start of a turn.								
3691 3692 3693		4.7.2.5	The Taxiway Fillet Design Tool for Multiple Turns calculates minimum turn radii and is available at http://www.faa.gov/airports/engineering/airport_design/ .								
3694 3695		4.7.2.6	Fillets designed to a specific airplane using CAD software are accepted after review via a modification of standard process.								

Figure 4-12. Taxiway Turn – 90 Degree Delta

3697 3698 3699

3700

3701

3696

Note 1: Radii of the fillet and the taxiway centerline are not concentric. The radii of the centerline and the outer pavement edge are concentric.

Note 2: Offsets are shown in one direction, but offsets, and therefore fillets, are symmetrical.

Note 3: Variables used in this figure relate to the online <u>Taxiway Fillet Design Tool</u>.

Figure 4-13. Taxiway Turn – less than 90 Degree Delta

3703

3704 3705

3706

3707

3708

Note 1: Radii of the fillet and the taxiway centerline are not concentric. The radii of the centerline and the outer pavement edge are concentric.

Note 2: The design TDG establishes the dimensional values. See Appendix J.

Note 3: Variables used in this figure relate to the use of the online <u>Taxiway Fillet Design Tool</u>.

Figure 4-14. Taxiway Turn – greater than 90 Degree Delta

3709 3710 3711

3712 3713 **Note 1:** Radii of the fillet and the taxiway centerline are not concentric. The radii of the centerline and the outer pavement edge are concentric.

Note 2: The design TDG establishes the dimensional values. See Appendix J.

Note 3: Variables used in this figure relate to the use of the online <u>Taxiway Fillet Design Tool</u>.

3714 3715 3716	4.7.3	Design Considerations. Obtuse angle turns require a much larger fillet to maintain the TESM. See Appendix J for details.								
3717 3718 3719 3720 3721 3722		4.7.3.1	When turns are close enough such that the lead-in (see dimension L-1) from one turn overlaps the lead-in to another turn, the airplane is not aligned with the taxiway centerline at the start of the subsequent turn. Such conditions often occur at right-angle runway exits/entrances where the ADG determines runway-to-taxiway separation but the TDG controls the taxiway design.							
3723 3724		4.7.3.2	Design intersections and associated fillets by modelling the critical TDG airplane movements using CAD software.							
3725 3726		4.7.3.3	Fillet improvements may allow the airport to maintain the current location of taxiway centerline and lights for turns.							
3727		4.7.3.4	Consider constructability and snow removal operations:							
3728 3729			1. Construct slightly more pavement than the minimum to simplify paving operations while maintaining the TESM.							
3730			2. Justify a non-zero fillet radius.							
3731 3732			3. Adjust fillet taper points to accommodate the location of concrete pavement joints.							
3733	4.8	Runway/Ta	axiway Intersections.							
3734 3735 3736 3737	4.8.1	intersection They also pr	taxiways provide the best visual perspective to a pilot approaching an with the runway to observe aircraft in both the left and right directions. rovide the optimum orientation of the runway holding position signs to onspicuity to pilots.							
3738		4.8.1.1	Standards.							
3739 3740			1. Design right-angle intersections for runway/taxiway intersections, except where there is a need for high-speed exit taxiways.							
3741 3742 3743			2. If a true 90-degree angle with the runway is not practicable, it is acceptable to adjust the angle such that the critical airplane is ± 15 degrees from a 90-degree angle when at the hold line.							
3744 3745 3746			3. For opposite direction acute angle exit taxiways in close proximity, provide sufficient separation between the exits to limit a large expanse of pavement and allow standard locations for signs and marking.							

3747		4.8.1.2	Recommended Practices.
3748 3749 3750			1. Increase the taxiway-to-runway separation for a segment of the parallel taxiway as depicted in <u>Figure 4-15</u> to allow for a 90-angle angle.
3751 3752			2. Design acute angle exit taxiways at an angle less than 45 degrees from the runway centerline.
3753 3754 3755			3. Limit runway crossings to the outer thirds of the runway, keeping the high-energy area of the runway clear so a pilot can maneuver to avoid a potential collision.
3756			4. Minimize the number of runway crossings:
3757			a. to that necessary for efficient movement of aircraft.
3758 3759			b. to reduce the number of potential conflict points with crossing aircraft operations.
3760 3761 3762			5. Design a runway/taxiway intersection such that the sight distance along a runway from an intersecting taxiway is sufficient to allow a taxiing aircraft to safely enter or cross the runway.
3763		4.8.1.3	Design Considerations.
3764 3765			1. Multiple intersecting taxiways with acute angles cause pilot confusion and poor visibility of signs due to:
3766			a. increased distance from centerline.
3767			b. non-standard positioning of signs.
3768			2. Right-angle intersections provide:
3769			a. a pilot with the best view of the runway and the approach ends.
3770			b. the optimum orientation of the runway holding position signs.
3771	4.8.2	Entrance Tax	xiways.
3772		4.8.2.1	Standards.
3773			1. Curve the outer edge of an entrance taxiways located at runways ends.
3774 3775			2. When multiple parallel taxiways extend to the end of the runway, curve the outer edge of the outer parallel taxiway.
3776			3. See <u>Figure 4-15</u> for a standard entrance taxiway layout.
3777		4.8.2.2	Recommended Practices.
3778			1. Design entrance taxiways to serve each runway end.
3779 3780			2. For fillet design, locate the point of tangency of the taxiway centerline curve at the runway centerline.

3781 3782				ance taxiways do not provide direct access from an apron (see re 4-2 and paragraph J.5.7.
3783 3784				entrance taxiway has its own taxiway designator, markings elevated signage.
3785	4.8.2.3	Des	sign Con	siderations.
3786		1.	Two star	ndard 90 degree turns:
3787			a. Resu	lting in a steering angle of 50 degrees or less:
3788 3789 3790			i.	Design a runway entrance taxiway as two standard 90 degree turns symmetrical about a line midway between the runway and taxiway centerlines.
3791			b. Resu	lting in a steering angle of more than 50 degrees:
3792			i.	Increase the turn radius and fillets.
3793 3794 3795 3796			ii.	<u>Table 4-3</u> and <u>Table 4-4</u> provide dimensions that may be used for common combinations of ADG, TDG, and runway to taxiways separation where the design requires other than two standard 90 degree turns.
3797 3798 3799 3800			iii.	An example of this condition is a right-angle runway exit or entrance where the runway to taxiway separation applies ADG-IV criteria but the taxiway design uses TDG 6 criteria.
3801 3802 3803 3804			iv.	Drawings of common combinations of TDG and runway to taxiway separation, with acceptable fillet design are available in DXF format on the FAA web site at http://www.faa.gov/airports/engineering/airport_design/ .
3805 3806 3807		2.	centerlin	he entrance taxiway width based on <u>Table 4-2</u> . Design the e radius and minimum fillet dimensions with the design TDG in the tables in paragraph <u>J.3</u> .
3808 3809 3810		3.	reside or	ced threshold may cause the location of the holding position to the parallel taxiway to keep aircraft out of the Precision Free Zone (POFZ) and approach surfaces.
3811 3812		4.		taxiways also serve as the final exit taxiway for operations in site direction.

Figure 4-15. Entrance Taxiway

3814 3815

Note 1: Radii of the fillet and the taxiway centerline are not concentric. The radii of the centerline and the outer pavement edge are concentric.

3816 3817 3818

3819

Note 2: It is allowable to design a single fillet edge as shown to avoid a short and narrow fillet pavement section near the runway edge.

Note 3: Refer to <u>Table 4-3</u>, <u>Table 4-4</u> and <u>Appendix J</u> for dimensional values.

Table 4-3. Dimensions for Runway Entrance/Exit Taxiways with TDG 1A, 1B, 2A, or 2B (Where the Two 90-Degree Turns are Nonstandard)

Dimension								ŗ	ГDG							
(see <u>Figure</u> 4-15)	1A			2A					2 B							
Runway Centerline to Taxiway Centerline Distance (ft)	150	240	250	300	350	400	240	250	300	350	400	240	250	300	350	400
W-0 (ft)	12.5	12.5	12.5	12.5	12.5	12.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5
W-1 (ft)	21	18	18	18	18	18	18	23	23	23	23	26	26	26	26	26
W-2 (ft)	21	31	31	31	31	31	31	35	35	35	35	50	50	49	49	48
W-3 (ft)	13	15	15	14	13	13	15	20	19	18	18	27	27	24	22	21
L-1 (ft)	52	94	94	94	94	94	94	91	91	91	91	178	179	177	177	176
L-2 (ft)	0	47	47	47	47	47	47	45	45	45	45	84	84	85	85	84
L-3 (ft)	21	31	31	31	31	31	31	35	35	35	35	50	50	49	49	48
R-Fillet	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R-CL (ft)	19	37	37	37	37	37	37	37	37	37	37	65	65	62	61	60
R-Outer	31.5	49.5	49.5	49.5	49.5	49.5	54.5	54.5	54.5	54.5	54.5	82.5	82.5	79.5	78.5	77.5

Note: Use two standard 90 degree turns for combinations of TDG and common runway to taxiway separation not shown in this table.

3822

Table 4-4. Dimensions for Runway Entrance/Exit Taxiways with TDG 3, 4, 5, or 6 (Where the Two 90-Degree Turns are Nonstandard)

Dimension									TDG	-					
(see <u>Figure</u> <u>4-15</u>)		3		4					5			6			
Runway Centerline to Taxiway Centerline Distance (ft)	300	350	400	300	350	400	450	500	400	450	500	400	450	500	550
W-0 (ft)	25	25	25	25	25	25	25	25	37.5	37.5	37.5	37.5	37.5	37.5	37.5
W-1 (ft)	33	33	33	37	37	36	36	36	49	48	48	51	51	51	5 <mark>0</mark>
W-2 (ft)	55	54	54	80	77	75	74	74	84	83	83	102	100	98	97
W-3 (ft)	31	29	28	49	42	38	35	33	5 <mark>0</mark>	47	45	63	57	53	50
L-1 (ft)	173	172	172	315	310	307	305	305	301	299	298	408	405	403	401
L-2 (ft)	82	83	83	140	140	140	140	140	137	136	138	180	180	180	180
L-3 (ft)	55	54	54	80	77	75	74	74	84	83	83	102	100	98	97
R-Fillet	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R-CL (ft)	62	61	60	110	102	98	95	94	98	95	94	133	126	122	120
R-Outer	87	86	85	135	127	123	120	119	135.5	132.5	131.5	17 <mark>0</mark> .5	163.5	159.5	157.5

Note: Use two standard 90 degree turns for combinations of TDG and common runway to taxiway separation not shown in this table.

4.8.3 Bypass Taxiways.

At busy airports, ATC routinely needs to reshuffle the sequence of aircraft near the departure runway end in order to maintain optimum runway capacity. Bypass taxiways located near runway ends provide flexibility of runway operations by permitting necessary ground maneuvering based on clearance sequence.

4.8.3.1 **Standards.**

- 1. Conform to the standard taxiway widths and separation for the specific ADG and TDG, as shown in <u>Table 4-1</u> and <u>Table 4-2</u>.
- 2. For existing conditions, mark, sign, and light paved islands between the entrance taxiway and the bypass taxiway to identify the area as closed to aircraft (see AC 150/5340-1).

3824

3825

3828

3829

3833 3834

3835

3839 3840 3841		3. For new design, install turf (natural or artificial) to create the no-taxi island between bypass taxiway(s) and the entrance taxiways. See <u>Figure 4-20</u> and <u>Figure 4-10</u> .
3842	4.8.3.2	Recommended Practices.
3843 3844 3845		1. Provide the fillet between the bypass taxiway and entrance taxiway only when there is a recurring operational need for this turning movement, as shown in <u>Figure 4-20</u> .
3846 3847		2. Consult with local ATC to assess if one or more bypass taxiways on a runway end are worthwhile for optimum departure capacity.
3848 3849		3. Provide bypass taxiways at towered airports with regular IFR operations.

Figure 4-16. Bypass Taxiway Bay Configuration

Note 1: The turn from the near end of the runway to the bypass taxiway is an uncommon operation. See paragraph 4.8.3.2.

Note 2: Install an intermediate holding position marking (i.e. Pattern C) prior to the bypass taxiway if any part of a holding aircraft encroaches upon the taxiway object free area.

Note 3: For unobstructed taxi operations on the parallel taxiway, consider an off-set parallel taxiway per figure 4-10 to preclude a holding aircraft from encroaching upon the TOFA.

4.8.4 Exit Taxiways.

3850

3851

3852

3853

3854

3855

3856

3857

3858

3859

3860

Exit taxiways permit free flow to the parallel taxiway or to a point where the aircraft is completely clear of the hold line.

3861	4.8.4.1	Recommended Practices.
3862 3863		1. Design right-angle exit taxiways to provide for flexible operations in both directions and as a runway crossing point.
3864 3865 3866 3867 3868		2. <u>Figure 4-19</u> illustrates a configuration for a right-angle exit taxiway, which can be designed by creating a mirror image of an entrance taxiway about the exit taxiway centerline. For configurations other than those with two standard 90-degree turns, see <u>Table 4-3</u> and <u>Table 4-4</u> .
3869 3870		3. Assess exit taxiway locations impact on runway occupancy time and capacity.
3871 3872 3873		a. The Runway Exit Design Interactive Model (REDIM) is the preferred quantitative method for determining the location and mix of high speed and right-angle runway exits.
3874 3875		b. Fast-time simulation modeling, used alone, is not a reliable means of locating exit taxiways.
3876 3877 3878		c. Alternatively, for airports with an elevation under 2000 feet MSL, <u>Table 4-5</u> and <u>Table 4-6</u> provide for cumulative distributions of exit usage by AAC and ADG.
3879	4.8.4.2	Design Considerations.
3880 3881 3882 3883		1. Exit taxiways, including high speed exit taxiways, may be located in the middle third of a runway to optimize runway capacity provided there is no accompanying crossing taxiway associated with the exit taxiway.
3884 3885 3886		An acute angle exit taxiway is not suitable as a runway entrance or runway crossing point, as it provides a pilot with a diminished viewing range in one direction.
3887 3888		3. Runway exit taxiways classify as either "right angle" or "acute angle" taxiways.
3889 3890 3891		a. The application of a right-angled exit taxiway versus acute-angled exit taxiway is a function of the existing and anticipated traffic in the interest of reducing runway occupancy time.
3892 3893 3894 3895		b. Acute angle taxiway turns require the pilot landing in the opposite direction to slow down considerably on the runway to negotiate the greater than 90-degree turn, resulting in additional runway occupancy time.
3896		c. See paragraph 4.8.5 for guidance on high speed exit taxiways.
3897 3898		4. The type of exit taxiway influences runway to parallel taxiway separation.
3899 3900		 a. FAA Airports' online <u>Runway Design Standards Matrix Tool</u> provides runway/taxiway separations based on ADG.

3901	
3902	
3903	
3904	
3905	
3906	
3907	
3908	

- **b.** Minimum turn radii based on TDG may affect runway/taxiway separation distance.
- 5. For existing runway/taxiway separations, it may not be possible to combine a standard high-speed 30-degree angle exit (see paragraph 4.8.5) with a subsequent 150-degree reverse turn while maintaining a nose gear steering angle of no more than 50 degrees.
- 6. Design tools related to exit taxiways are available at: http://www.faa.gov/airports/engineering/airport_design.

Table 4-5. ADG Cumulative Runway Exit

	ADG I	ADG I	ADG II	ADG II	ADG III	ADG III	ADG IV	ADG IV	ADG V	ADG V	ADG VI	ADG VI
	Acute Angle	Right Angle										
Distance (ft)	Prob (%)	Prob (%)	Prob (%)	Prob (%)	Prob (%)	Prob (%)	Prob (%)	Prob (%)	Prob (%)	Prob (%)	Prob (%)	Prob (%)
0	0	0	0	0	0	0	0	0	0	0	0	0
500	0	0	0	0	0	0	0	0	0	0	0	0
1000	0.002	0	0	0.06	0	0	0	0	0	0	0	0
1500	0.954	0.124	0	0.18	0	0	0	0	0	0	0	0
2000	9.93	3.988	0.13	0.84	0	0.01	0	0	0	0	0	0
2500	34.22	21.338	0.24	1.99	0	0.05	0	0.01	0	0	0	0
3000	66.682	52.602	0.68	5.8	0.08	0.31	0.01	0.04	0	0	0	0
3500	89.288	81.23	3.51	12.83	1.61	1.42	0.58	0.34	0.14	0.06	0	0
4000	97.892	95.64	7.61	23.93	3.32	6.19	1.1	1.79	0.26	0.09	0.14	0
4500	99.734	99.382	24.74	40.03	16.22	16.85	6.39	6.07	2.12	0.46	0.27	0.02
5000	99.984	99.954	43.5	63.57	30.64	29.15	23.54	16.32	7.94	5.23	1.51	0.22
5500	100	100	58.73	72.14	44.51	43.03	37.68	30.94	17.5	7.87	6.56	0.74
6000	100	100	77.18	83.59	65.13	62.5	58.81	42.63	35.57	12.98	13.84	1.16
6500	100	100	88.18	89.85	83.38	77.37	77.91	59.55	67.25	33.3	54.39	5.07
7000	100	100	91.51	92.64	89.46	85.68	91.39	69.67	80.55	44.85	67.05	15.8
7500	100	100	97.67	95.94	96.97	91.49	97.08	77.9	92.67	59.12	79.08	33.1
8000	100	100	98.09	96.42	98.43	93.28	98.68	82.73	97.35	67.61	95.89	45.17
8500	100	100	98.15	97.56	98.77	95.09	99.62	87.74	99.43	76.17	99.7	66.23
9000	100	100	98.5	98.12	98.89	96.78	99.68	92.69	99.44	89.94	99.7	89.71
9500	100	100	100	98.4	100	97.37	99.99	94.17	99.9	92.61	99.96	93.37
10000	100	100	100	99.34	100	98.63	99.99	97.24	99.91	97.7	99.96	96.03
10500	100	100	100	99.43	100	98.97	100	97.54	100	98.32	99.98	96.86
11000	100	100	100	100	100	100	100	100	100	100	100	100

Table 4-6. AAC Cumulative Runway Exit Probability

	AAC A	AAC A	AAC B	AAC B	AAC C	AAC C	AAC D	AAC D	AAC E	AAC E
	Acute Angle	Right Angle								
Distance (ft)	Prob (%)									
0	0	0	0	0	0	0	0	0	0	0
500	0	0	0	0	0	0	0	0	0	0
1000	0.112	0	0.002	0	0	0	0	0	0	0
1500	4.214	0.446	0.696	0.01	0	0	0	0	0	0
2000	22.402	7.626	8.752	1.606	0	0	0	0	0	0
2500	54.844	31.032	32.618	13.652	0.01	0.04	0	0	0	0
3000	83.508	64.94	64.94	42.652	0.06	0.36	0	0.04	0	0.04
3500	97.002	89.712	87.324	73.286	1.2	1.3	0.27	0.16	0.27	0.16
4000	99.72	98.464	96.436	91.204	3.35	7.56	0.83	1.95	0.83	1.95
4500	99.996	99.914	99.116	97.756	16.32	19.2	7.37	5.72	7.37	5.72
5000	100	99.996	99.86	99.538	33.1	35.08	16.78	11.88	16.78	11.88
5500	100	100	99.984	99.902	47.38	48.83	30.66	22.3	30.66	22.3
6000	100	100	100	99.992	67.49	66.13	53.95	39.55	53.95	39.55
6500	100	100	100	100	83.88	78.74	78.33	58.89	78.33	58.89
7000	100	100	100	100	89.94	86.02	86.93	69.47	86.93	69.47
7500	100	100	100	100	96.98	91.32	96.15	79.55	96.15	79.55
8000	100	100	100	100	98.34	92.99	98.05	84.23	98.05	84.23
8500	100	100	100	100	98.64	94.93	98.85	88.53	98.85	88.53
9000	100	100	100	100	98.82	96.82	98.94	93.52	98.94	93.52
9500	100	100	100	100	100	97.41	99.99	94.82	99.99	94.82
10000	100	100	100	100	100	98.71	99.99	97.89	99.99	97.89
10500	100	100	100	100	100	98.96	100	98.44	100	98.44
11000	100	100	100	100	100	100	100	100	100	100

3911	4.8.5	High-Spee	ed Exi	t Taxiways.								
3912 3913 3914		Also com	A specific runway exit taxiway that forms a 30-degree angle with the runway centerline. Also commonly referred to as a "high-speed" exit taxiway. High-speed exits enhance runway capacity by reducing runway occupancy time.									
3915		4.8.5.1	Sta	andards.								
3916 3917			1.	A high-speed exit provides direct access to a parallel taxiway closest to the runway.								
3918 3919			2.	The radius of the high-speed exit from the runway is 1500 feet (457 m).								
3920		4.8.5.2	Re	commended Practices.								
3921 3922				improve pilot recognition and acceptance of an exit taxiway, provide hancements such as:								
3923			1.	High intensity taxiway centerline lights								
3924			2.	Widening the exit taxiway throat								
3925 3926			3.	Provide high speed exits to reduce runway occupancy time when runway operations meet criteria established in FAA Order 5090.5.								
3927		4.8.5.3	De	esign Considerations.								
3928 3929			1.	A high-speed exit that provides direct access to the outer of two parallel taxiways or to an apron introduces safety risks.								
3930 3931			2.	Ideally, aircraft exiting the runway via a high-speed exit taxiway continue on the parallel taxiway in the landing direction.								
3932 3933			3.	When it is necessary for aircraft to reverse taxiing direction after exiting a runway with a single parallel taxiway, consider:								
3934 3935				a. providing an additional 90-degree exit taxiway beyond the high-speed exit to provide two 90-degree turns								
3936 3937				b. providing a second parallel taxiway with crossover taxiways (<u>Figure 4-21</u>), or								
3938				c. providing additional pavement, as shown in <u>Figure 4-18</u> .								
3939 3940 3941			4.	Reference <u>Table 4-7</u> for guidance on reverse turns between runways and parallel taxiways using the greater dimension based on ADG or TDG.								
3942 3943 3944 3945 3946 3947				a. If a reverse turn is necessary when the runway to taxiway separation is less than shown in <u>Table 4-7</u> either decrease the initial exit angle and/or use a radius that will require a nose gear steering angle of more than 50 degrees for longer aircraft and increase pavement fillets. (See paragraph <u>4.7</u> for guidance on fillet design.)								

3948 3949	b. Design the fillet for the reverse turn considering that the aircraft movement on the exit taxiway is in the exiting direction only.
3950 5. 3951 3952 3953	Provide sufficient spacing between opposite direction high-speed exit taxiways to avoid wide expanses of pavement at the runway-taxiway intersection and to allow for the standard location of signs, marking, and lighting. See <u>Figure 4-19</u> .
3954 3955 3956 3957	Figure 4-15 and other drawings in DXF format showing common combinations of ADG, TDG, and runway to taxiway separation distance are available on the FAA web site at: http://www.faa.gov/airports/engineering/airport_design/ .

Table 4-7. Runway to Taxiway Separation for Reverse Turns from a High-Speed Exit Based on Taxiway Design Group (TDG)

Runway Centerline to	TDG										
Taxiway/ Taxilane Centerline	1 A	1B	2 A	2B	3	4	5	6			
Minimum separation	250 ft (76 m)	293 ft (89 m)	293 ft (89 m)	349 ft (106 m)	349 ft (106 m)	427 ft (130 m)	427 ft (130 m)	483 ft (147 m)			
Recommended separation	250 ft	300 ft	300 ft	350 ft	350 ft	450 ft	450 ft	600 ft			
	(76 m)	(91 m)	(91 m)	(107 m)	(107 m)	(137 m)	(137 m)	(183 m)			
Radius for 150-degree turn after 30-degree exit	24	49	49	79	79	121	121	151			
	degrees	degrees	degrees	degrees	degrees	degrees	degrees	degrees			
Minimum distance calculated	246 ft	292 ft	292 ft	348 ft	348 ft	427 ft	427 ft	483 ft			
	(75 m)	(89 m)	(89 m)	(106 m)	(106 m)	(130 m)	(130 m)	(147 m)			

Figure 4-17. High-Speed Exit – TDG 5

3960

3961 3962

Note 1: Radius equals 1500 ft (457 m).

Figure 4-18. High-Speed Exit – Reverse Turn

3964 3965

Note 1: See paragraph 4.8.5.3, item 4.8.5.3

Figure 4-19. Right-Angled Exit Taxiway

3967

3968 Figure 4-20. High-Speed Exit Separation

3969 3970

3971

3972

3973

3974

3975

3976

3977

3978

Note 1: See paragraph 4.8.5.3, item 5.

4.8.6 <u>Crossover Taxiways.</u>

Crossover taxiways, sometimes called "connector" or "transverse" taxiways, between parallel taxiways increase flexibility.

4.8.6.1 **Standards.**

- 1. When there is no reverse turn, design the taxiway to taxiway separation distance between parallel taxiways to be the greater of:
 - a. Separation value based on ADG per Table 4-1.
 - b. Twice the radius of a standard 90-degree turn.
- 2. When there is an operational need for a direction or reversal turn, design the minimum distance between parallel taxiways based on TDG (see Table 4-5 and Figure 4-16).

4.8.6.2 **Design Considerations.** 3982 3983 1. In cases where the separation is based on ADG, a steering angle of more than 50 degrees may result from combining two 90 degree turns 3984 designed according to paragraphs J.2 and J.3. 3985 3986 2. Table 4-7 provides dimensions used in Figure 4-21 for common combinations of ADG and TDG for crossover taxiways where steering 3987 angles may be kept to no more than 50 degrees. 3988 4.8.6.3 **Recommended Practices.** 3989 1. Design the taxiway system to minimize the need for direction reversal 3990 between taxiways (180-degree turns). 3991 2. If it is not feasible to increase the separation between existing parallel 3992 taxiways, it is acceptable to design to a steering angle of more than 50 3993 degrees. 3994

Table 4-8. Crossover Taxiways with Direction Reversal Between Taxiways Based on TDG

3995

Dimension	TDG								
(See <u>Figure 4-21</u>)	1A	1B	2A	2 B	3	4	5	6	
Taxiway Centerline to Centerline Distance	50	100	100	162	162	250	250	312	
W-0 (ft)	12.5	12.5	17.5	17.5	25	25	37.5	37.5	
W-1 (ft)	12.5	12.5	17.5	17.5	25	25	37.5	37.5	
W-2 (ft)	25	19	24	27	34	38	50	53	
W-3 (ft)	25	37	40	57	63	86	95	112	
L-1 (ft)	42	58	68	88	103	131	150	176	
L-2 (ft)	58	101	99	188	185	324	318	424	
L-3 (ft)	0	47	46	84	82	139	136	177	
R-Fillet (ft)	21	37	40	57	63	86	95	112	
R-CL (ft)	25	50	50	81	81	125	125	156	
R-Outer	37.5	62.5	67.5	98.5	106	150	162.5	193.5	

Figure 4-21. Crossover Taxiway where Direction Reversal is Needed Based on TDG

3999 4000

3997

3998

Note: Refer to <u>Table 4-8</u> for dimensional values.

Figure 4-22. Crossover Taxiway where Direction Reversal is Needed Based on ADG

4003 4004

Note: Refer to <u>Table 4-9</u> for dimensional values.

Table 4-9. Crossover Taxiways with Direction Reversal Between Taxiways Based on ADG

D: .									ŗ	TDG								
Dimension (see Figure	1A	11	3	2.	A		2 B			3		4		4	5		6	
4-22)		ADG																
	II	II	III	II	III	II	III	IV	III	IV	III	IV	V	IV	V	IV	V	VI
Taxiway Centerline to Centerline Distance	70	105	144	105	144	105	144	207	144	207	144	207	249	207	249	207	249	298
W-0 (ft)	12.5	12.5	12.5	17.5	17.5	17.5	17.5	17.5	25	25	25	25	25	37.5	37.5	37.5	37.5	37.5
W-1 (ft)	21	19	18	24	23	28	27	26	34	33	40	39	38	5 <mark>0</mark>	50	54	53	53
W-2 (ft)	21	36	33	39	36	61	57	52	63	57	95	87	87	96	95	118	114	112
W-3 (ft)	32	53	38	63	47	137	95	61	110	77	241	149	131	177	157	267	207	181
L-1 (ft)	53	100	95	98	93	192	189	181	186	177	334	325	323	319	318	432	426	424
L-2 (ft)	0	47	47	46	45	83	84	85	82	83	137	138	139	136	136	175	177	177
L-3 (ft)	21	36	33	39	36	61	57	52	63	57	95	87	87	96	95	118	114	112
L-4 (ft)	28	9	62	9	62	0	0	69	0	69	0	0	0	0	0	0	0	0
R-Fillet (ft)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R-CL (ft)	21	48	41	48	41	52.5	72	69	72	103.5	124.5	103.5	124.5	103.5	124.5	103.5	124.5	149
Steering Angle (degrees)	50	50	50	50	50	77	57	50	57	50	85	61	50	61	50	76	63	52

Figure 4-23. Crossover Taxiway Without Direction Reversal Between Taxiways

Note 1: See <u>Appendix J</u> for dimensional values.

4010 4.9 **Holding Bays for Runway Ends.**

Providing holding bays instead of bypass taxiways enhance capacity. Holding bays provide a space for queuing of aircraft awaiting departure clearance. Holding bays also permit aircraft receiving clearance to bypass other aircraft to the runway takeoff position.

4.9.1 Standards.

4007

4008

4009

4011

4012

4013

4014

4015

4016

4017

4018

4020

4021 4022

4023 4024

4025

4026

- 1. Locate holding bays to keep aircraft out of the Obstacle Free Zone (OFZ), POFZ, Runway Safety Area (RSA), and Instrument Landing Systems (ILS) critical areas.
- 2. Design the geometry per the applicable ADG and TDG standards.

4019 4.9.2 Recommended Practices.

- 1. Provide a holding bay when runway operations meet criteria established in FAA Order 5090.5.
- 2. Design holding bays to allow independent aircraft movements to bypass one another to taxi to the runway based on the design ADG. See Figure 4-24.
- 3. Islands, either grass or properly marked pavement, between the parking positions provide visual cues to pilots that assist them with situational awareness. See <u>Figure 4-24</u>.

4027	
4028	
4029	
4030	
4030	
4031	
4032	
4033	
4034	
4035	
4036	

4038

- 4. The alternate holding bay configuration consisting of a queuing taxiway and an access taxiway (see <u>Figure 4-25</u>) can provide an acceptable level of safety and efficiency provided:
 - a. There is adequate TOFA separation between the marked centerlines of the connecting taxiways based on ADG of critical aircraft.
 - b. Spacing of intermediate holding positions allows sufficient wingtip clearance between an aircraft turning onto a connecting taxiway and the aircraft holding ahead of the turning aircraft.
 - c. The airport and ATCT develop a standard operating procedure addressing the use of the queuing taxiway in a manner that establishes an acceptable level of safety.

4039 4040

Note 1: Locate intermediate hold lines at the outer limit of the inner taxiway object free area.

Figure 4-25. Holding Bay – Alternate Configuration

4042 4043

4044

4045

4046

4047

4048

4049

4050

Note 1: See paragraph 4.9.2.

4.10 **Taxiway Turnarounds.**

4.10.1 Recommended Practices.

The provision of a full parallel taxiway may be impractical for some general aviation airports. For such airports, consider turnarounds as an interim alternative to a full or partial parallel taxiway. This may include a limited-sized holding bay to allow more than one aircraft to hold at a runway end. Design the geometry of the turnaround and any holding bay to the applicable ADG and TDG standards. See <u>Figure 4-26</u>.

Figure 4-26. Taxiway Turnaround

4052

4053

4054

4055

4056

4057

4058

4059

4060

4061

4062

4063 4064

4065

4066 4067

4.11 Apron Taxiways and Taxilanes.

There is often a need for through-taxi routes across an apron to provide access to gate positions or other terminal areas.

4.11.1 Standards.

- 1. Provide a clear line of sight (LOS) from the ATCT to movement area pavement.
- 2. Apron taxiways and taxilanes require the same separations as other taxiways and taxilanes.

4.11.2 Recommended Practices.

- 1. Provide a clear line of sight (LOS) from the ATCT for taxilanes not under ATCT control.
- 2. When an apron taxiway or taxilane is along the edge of the apron:
 - a. Locate the centerline inward from the apron edge at a distance equal to one-half the width of the required taxiway/taxilane width.
 - b. Provide shoulder, safety area, and obstacle free area standards along the outer edge.

4068 4.12 End-Around Taxiways (EAT).

An EAT improves efficiency of runway operations and provide a safe means of aircraft movement from one side of a runway to the other side of the runway. The EAT allows aircraft to taxi around the runway end during approach and departure operations and to cross the extended runway centerline without specific clearance from ATC. The design of an EAT considers parameters unique to each airport and each runway. See <u>Figure 4-27</u> and <u>Figure 4-28</u> which illustrate EAT concepts per the design standards described below.

4076 4.12.1 FAA Review.

Before initiating formal feasibility studies, submit the proposed EAT design layout to the local FAA Airports Regional or District Office for review. The FAA Office of Airport Safety and Standards, Airport Engineering Division (AAS-100) reviews the EAT proposal to assess risks associated with EAT installations. Upon receiving FAA pre-approval, the airport may proceed with feasibility studies and design efforts.

4082 4.12.2 Standards.

- 1. Locate the EAT centerline a minimum of 1,500 feet (457 m) from the departure end of the runway.
- 2. The minimum length of that portion of the EAT crossing the extended runway centerline at the minimum distance of 1,500 feet (457 m) is equal to the width of the departure surface of the Departure End of Runway (DER), as shown in <u>Figure 4-27</u> (i.e. central portion of departure surface).
- 3. Increase the minimum distances as necessary to prevent aircraft tails from penetrating the 40:1 departure surface and any surface identified in FAA Order 8260.3, as shown in Figure 4-28.
 - a. Initiate an airspace study for each site to verify that the tail height of the critical design group aircraft operating on the EAT does not penetrate these surfaces.
 - b. The airspace study will also confirm compliance with Part 121, §121.189, Airplanes: Turbine Engine Powered: Takeoff Limitations, which requires the net takeoff flight path to clear all obstacles either by a height of at least 35 feet (10.5 m) vertically, or by at least 200 feet (61 m) horizontally within the airport boundaries.
 - c. In addition to the critical aircraft tail height, the elevation of the stop end of the runway relative to the elevation of points along the EAT is a factor in determining conformance with clearance criteria.
- 4. Locate the EAT outside of ILS critical areas.

4103 4.12.3 Recommended Practices.

Construct the EAT below the stop end runway elevation to minimize the necessary distance between the end of the runway and points along that portion of the EAT crossing the extended runway centerline.

4.12.4 Visual Screens.

A visual screen masks, partially or completely, aircraft using the EAT from a viewpoint on the associated runway. This enables pilots operating on the runway to differentiate between an aircraft crossing the active runway or crossing on the EAT. Establish the height of the screen by masking the engine nacelles of the crossing aircraft from the pilot's view of a departing aircraft at the point on the runway the aircraft reaches V_1 speed during takeoff. Determine the need for a visual screen during the design process.

4.12.4.1 **Standards.**

- 1. Locate the visual screen structure outside all RSAs, runway OFAs, taxiway OFAs, and ILS critical areas.
- 2. Locate the visual screen so that it does not penetrate the inner approach OFZ, the approach light plane or other Terminal Instrument Procedures (TERPS) surfaces.

4.12.4.2 **Design Considerations.**

The design of the visual screen and siting of visual aids are co-dependent. Refer to Appendix D for detailed planning and design guidance on EAT screens.

Note for Figure 4-27:

- **Note 1:** This example assumes all centerline elevations to be equal to the elevation of the runway end centerline. Refer to <u>Figure 3-10</u> for departure surface section 1.
- **Note 2:** This distance varies dependent upon the ground elevation of the transverse EAT section relative to the applicable runway surface elevation (Departure end of runway or threshold elevation).
- **Note 3:** The distance from the approach surface edge to that portion of the taxiway centerline parallel to the edge is a minimum of 40 ft (1/2 TSA width).
- **Note 4:** To avoid an acute angle turn onto the transverse segment of the EAT, it is acceptable to align the taxiway relative to the outer edge of the surface such that the wings are under the controlling surface while the aircraft tail remains outside of the surface.

Figure 4-28. EAT – ADG-III

Note 1: This example illustrates the approach surface controls the location of the side taxiway segments of the EAT while the departure surface controls the location of the transverse taxiway section of the EAT.

Note 2: This example assumes all centerline elevations to be the same elevation as the runway end centerline. Refer to <u>Figure 3-10</u> for departure surface section 1.

Note 3: This distance varies dependent upon the ground elevation of the transverse EAT transverse section relative to the applicable runway surface elevation (Departure end of runway or threshold elevation).

Note 4: The point where the tail height equals the approach surface height is 1730 ft from the runway threshold assuming no change in terrain elevation.

Note 5: The distance between the taxiway centerline and the outer edge of the approach surface edge is a minimum of one-half of the taxiway safety area (e.g. 59 ft).

4149	4.13	Taxiway and Taxilane Shoulders.
4150 4151 4152		Unprotected or unstabilized soils adjacent to taxiways are susceptible to erosion, which can result in engine ingestion problems for jet engines that hang near or over the edge of the taxiway pavement.
4153	4.13.1	Standards.
4154 4155		 Provide paved shoulders for taxiways, taxilanes and aprons accommodating ADG- IV and higher aircraft.
4156		2. When installed, provide paved shoulders for the full length of the taxiway(s).
4157 4158		3. See <u>Table 4-2</u> for taxiway shoulder width standards. Unusual local conditions may justify increases to these standard dimensions.
4159 4160 4161		 Design shoulder pavement to support the occasional passage of the most demanding airplane and the most demanding emergency or maintenance vehicle for the design life of the full-strength pavement. See <u>AC 150/5320-6</u>.
4162 4163		5. Design shoulders to provide proper surface drainage from the edge of the taxiway off the shoulder pavement.
4164		6. Design the shoulder to be flush with the taxiway pavement.
4165 4166 4167		7. Design a 1.5-inch (38 mm) drop-off with a ±½ inch (1.3 cm) tolerance at the edge of paved shoulders to enhance drainage off the shoulder and to prevent fine graded debris from accumulating on the pavement.
4168	4.13.2	Recommended Practices.
4169 4170		 Provide paved shoulders for taxiways, taxilanes and aprons accommodating ADG- III aircraft.
4171 4172		2. Provide turf, aggregate-turf, soil cement, lime or bituminous stabilized soil adjacent to paved surfaces accommodating ADG-I, ADG-II, and ADG-III aircraft.
4173 4174		3. Design shoulder base and subbase subsurface drainage to tie into adjacent taxiway subsurface drainage system.
4175 4176		4. Provide a sub-drainage system with manholes or handholes to permit observation, inspection and flushing of the system.
4177 4178		 Provide base-mounted edge lights and conduit for power cables to facilitate maintenance.
4179 4180 4181		6. When adding paved shoulders to existing taxiways, consider making improvements to the existing taxiway edge lighting to include base-mounted light fixtures and conduit-enclosed power cables.
4182 4183 4184 4185	4.13.3	<u>Design Considerations.</u> A dense, well-rooted turf cover can prevent erosion and may be capable of supporting the occasional passage of aircraft, maintenance equipment, or emergency equipment under dry conditions. Refer to <u>AC 150/5370-10</u> , item P-217, Aggregate-turf

4186 4187		•	xiway. For locations where it is not feasible to establish turf suitable for this ovide soil stabilization or a low-cost paved surface.						
4188	4.14	Surface G	urface Gradient for Taxiways, Taxilanes, and TSAs.						
4189	4.14.1	Longitudin	Longitudinal Gradient.						
4190		4.14.1.1	Standards.						
4191			1. Design the maximum longitudinal grade to not exceed 1.50 percent.						
4192 4193 4194			2. For taxiways/taxilanes exclusively serving aircraft weighing 30,000 lbs or less, it is acceptable to increase the maximum longitudinal grade to 2.0 percent.						
4195 4196			3. When longitudinal grade changes are necessary, design parabolic vertical curves as follows:						
4197			a. The maximum longitudinal grade change is 3.0 percent.						
4198 4199			b. The minimum length of the vertical curve is 100 feet (30 m) for each 1.0 percent of grade change.						
4200 4201 4202			c. The minimum distance between points of intersection of vertical curves is equal to 100 feet (30 m) multiplied by the sum of the grade changes (in percent) associated with the two vertical curves.						
4203 4204 4205			d. <i>Exception</i> : Where a taxiway crosses a runway or taxiway crown, adjust longitudinal grades as necessary to provide smooth transition over crossing the pavement section.						
4206 4207			e. <i>Exception</i> : A vertical curve is not necessary when the grade change is less than 0.40 percent.						
4208		4.14.1.2	Recommended Practices.						
4209			1. Use minimum longitudinal grades.						
4210 4211			2. Design pavements to have no changes in longitudinal grades unless it is impractical to avoid a change in grade.						
4212 4213 4214			3. Design the taxiway crown elevation to be at or below the crown elevation of the corresponding point on the runway to avoid adversely affecting runway surfaces (e.g. ROFZ).						
4215 4216 4217			4. When developing the longitudinal gradient of a parallel taxiway (or any taxiways functioning as parallel taxiways) and connecting taxiways consider:						
4218 4219			a. Potential future connecting taxiways between the parallel taxiway and the runway, and between two taxiways.						

4220 4221 4222			b. Longitudinal gradient of connecting taxiways to future airfield facilities (future runways, taxiways, or aprons) that conform to gradient design standards.
4223	4.14.2	Taxiway/Tax	ilane Transverse Gradient.
4224		4.14.2.1	Standards.
4225 4226 4227			Design transverse gradients and drainage improvements for taxiways/taxilanes, shoulders, and safety areas per the following standards. See <u>Figure 4-29</u> .
4228			1. Taxiway/taxilane pavement transverse gradient:
4229			a. One percent to 1.5 percent from centerline to pavement edge.
4230 4231 4232			b. For Taxiways/taxilanes exclusively serving aircraft weighing less than 30,000 lbs, it is acceptable to apply a cross slope of 1 percent to 2 percent.
4233 4234 4235			2. Design an edge drop-off of 1.5 inch ±½-inch (4 cm ±1.3 cm) between paved and unpaved surfaces to promote drainage off the pavement surface.
4236 4237			3. Design paved taxiway shoulders with a transverse gradient between 1.5% to 5%.
4238 4239 4240			4. For an unpaved surface adjacent to a paved surface, design a 5% ±0.5% transverse gradient for a minimum distance of 10 feet (3 m) from the paved surface.
4241 4242			5. TSA transverse gradient: Design a 1.5% to 5% transverse gradient except as noted in subparagraph <u>4</u> above.
4243			6. TOFA gradients:
4244 4245			a. Side slope gradient: Design transverse gradient to promote positive drainage away from the TSA.
4246 4247 4248 4249			b. Back slope gradient: When a back slope is necessary, design gradient not to exceed a maximum 4:1 slope provided the area immediately adjacent to the TSA edge permits positive drainage of surface water away from the TSA.
4250		4.14.2.2	Recommended Practices.
4251 4252			1. Keep transverse gradients to a minimum as necessary to provide adequate surface drainage suitable for local conditions.
4253 4254			2. The ideal configuration is a center crown with equal, constant transverse grades on either side.
4255 4256 4257			3. An off-center crown, with different gradients on either side, shed sections, and changes in transverse gradients (other than from one side of the crown to the other) of no more than 0.5 percent are acceptable.

1258		4. A shed section may be more suitable:
1259		a. For high-speed exit taxiways.
1260 1261		b. When existing terrain makes it impractical to provide a crown and slope cross section.
1262	4.15	Taxiway Line of Sight (LOS).
1263		There are no specific LOS standards between intersecting taxiways. However, the sight
1264 1265		distance along a runway from an intersecting taxiway needs to be sufficient to allow a taxiing aircraft to safely enter or cross the taxiway.

4267 4268

Figure 4-29. Taxiway Transverse Gradients

Note 1: See paragraph $\underline{4.14.2}$ for specific transverse grade and drainage requirements shown in this figure.

4269	4.16	Taxiway/Taxilane Drainage.
4270 4271		1. Comply with transverse gradients of paragraph <u>4.14.2</u> to preclude standing water on the pavement and within the limits of the safety area.
4272		2. Locate ditches and drainage structure headwalls outside of the safety area:
4273 4274		a. Ensure depth of water in ditch for the design storm does not encroach upon safety area limits.
4275 4276 4277		b. Ensure five-foot vertical wingtip clearance to top of drainage structures located in the OFA when the outer edge or aircraft main gear is located at the edge of the shoulder.
4278		3. Pavement inlets:
4279		a. For taxiways, locate inlets outside of taxiway pavement extents.
4280 4281		b. For taxilanes, it is acceptable to locate trench drain or slotted drain inlets across taxilane pavements.
4282		c. Design drainage inlets flush with surrounding grade.
4283		d. Design inlet grates in accordance with AC 150/5320-6:
4284		i. Withstand loads of the most demanding aircraft.
4285		ii. Account for load transition from inlet to adjacent pavement.
4286	4.17	Markings/Lighting/Signs.
4287		Refer to AC 150/5340-1, AC 150/5340-30 and AC 150/5340-18 for standards on
4288		airfield marking, lighting, and signs.
4289	4.18	Taxiway Bridges.
4290		Refer to <u>Chapter 6</u> for detailed design guidance on bridges.
4291	4.19	Jet Blast.
4292		Refer to Appendix C for information on the effects and treatment of jet blast.

CHAPTER 5. Aprons

4294	5.1	Background.
4295		This chapter presents design concepts, standards and guidelines related to airport
4296		aprons. An airport apron is a dedicated portion of the airfield that serves as an interface
4297		between the airside and landside environments. Aprons serve multiple functions
4298		including:
4299		 Loading and unloading of passengers, mail and cargo
4300		Aircraft parking
4301		Aircraft fueling operations
4302		Aircraft Maintenance operations
4303		• Ground service equipment (GSE) operations
4304		Aircraft deicing operations
4305	5.1.1	Terminology.
4306		While other terms exist in the public domain (i.e. ramp, etc.), this AC uses the term
4307		"apron" for the airside area addressed by this chapter.
4308	5.1.2	Airport Needs.
4309		Aprons are present at all commercial service and general aviation airports. The size and
4310		type of an airport are controlling factors in determining operational needs and capacity
4311		requirements that apply to apron design. The layout of an apron can have a significant
4312		effect on airport operators and tenants as it relates to efficiency, safety, capacity and
4313		operational costs.
4314	5.1.3	Apron Elements.
4315		Apron elements vary per size and type of airport. Common apron elements include:
4316		Stabilized surface
4317		• Taxilanes
4318		 Parking positions
4319		• Tie-downs
4320		Passenger loading and off-loading areas
4321		• GSE areas
4322		Vehicle service roads
4323		• Utility areas (fueling, lighting, power, etc.)
4324		Pavement Marking
4325		Storm water drainage system
4326	5.1.4	Related FAA Guidance.
4327		1. Appendix E, General Aviation Facilities
4328		2. AC 150/5340-1, Standards for Airport Markings
4329		3. AC 150/5360-13, Airport Terminal Planning
4330		4. AC 150/5390-2, Heliport Design

4331	5.2	Apron Types.
4332		The utility of an apron generally defines its type. Refer to Figure 5-1 for a depiction of
4333		the various types of aprons. The following describes common apron types:
4334	5.2.1	Passenger Terminal Aprons.
4335		A paved area between the face of the terminal building and the movement area
4336		boundary where aircraft taxi to a parking position for passenger boarding and deplaning
4337 4338		and for aircraft servicing. Primarily associated with <u>Part 139</u> certificated airports. Refer to paragraph <u>5.20</u> for additional information.
4339	5.2.2	General Aviation (GA) Aprons.
4340		A general aviation apron serves a broad range of civil aircraft activity exclusive of
4341		commercial service and military operations. The utility of a GA apron generally aligns
4342		with the aviation activities at the airport, which can vary widely between airports. Refer
4343		to Appendix E for additional information.
4344	5.2.3	Remote Apron.
4345		Remote aprons are located separately from other aprons and serve to stage or store
4346		aircraft on a temporary basis (e.g. Remain Overnight parking (RON)). Remote aprons
4347		may exist at all airport types. Refer to paragraph <u>5.20.2</u> for additional information.
4348	5.2.4	Hangar Apron.
4349		Hangar aprons are paved areas adjacent to an associated aircraft hangar. Hangar aprons
4350		are for the exclusive use of the hangar occupants and thus not generally available for
4351		open public use. Refer to <u>Appendix E</u> for additional information.
4352	5.2.5	Deicing Aprons (Pads).
4353		Deicing aprons are a unique form of remote apron dedicated for aircraft deicing
4354		operations, typically located apart from the terminal apron. However, in some
4355		instances, deicing aprons may be a designated portion of the terminal apron. Refer to
4356		paragraph <u>5.20.3</u> for additional information.
4357	5.2.6	Helicopter (Rotary Wing) Parking Position.
4358		Parking positions for rotary aircraft are typically located separate from parking
4359		positions for fixed-wing aircraft. Helipads, where rotary aircraft land and take off, may
4360		also serve as a parking position. Refer to <u>AC 150/5390-2</u> for guidance on helicopter
4361		parking positions.

Figure 5-1. Types of Aprons

4363 4364

4365

4367

4368 4369

4370

4372 4373

4374

4376

4377

4378

4379

Note: Image is conceptual for illustrative purposes only. The actual location of the various aprons types is dependent upon factors specific to each airport.

4366 5.3 **Apron Design Objectives.**

Effective apron design promotes acceptable levels of access, capacity, apron utilization, efficient flow management, safety of aircraft movements and future development potential. A deficient design can increase the risk of wingtip conflicts, loss of situational awareness, and constrained capacity.

4371 5.3.1 <u>Apron Access Factors.</u>

- 1. Optimize taxi distances to and from runway ends.
- 2. Provide ease of aircraft maneuvering and GSE movements.
- 3. Design for aircraft access under self-power.

4375 5.3.2 Utilization Factors.

- 1. Provide apron layout based on mix of aircraft types and sizes expected to use the facility.
- 2. Optimize apron layout by grouping aircraft parking areas and taxilanes based on wingspan classifications (i.e. larger vs small aircraft) and clearance requirements.

4380 4381		3. Separate jet aircraft from smaller aircraft to minimize risk of harmful jet blast effects.
4382		4. Optimize GSE areas to promote efficient aircraft maneuvering.
4383	5.3.3	Efficient Flow Management Factors.
4384 4385		1. Optimize location of taxiways and apron taxilanes to provide efficient taxi routes from parking areas to the airfield taxiways.
4386		2. Provide secondary taxilane paths to maintain flow of taxiing aircraft.
4387	5.3.4	Safety Factors.
4388 4389		1. Provide safe maneuvering of aircraft on the apron to avoid wingtip conflicts with fixed or moveable objects.
4390 4391		2. Provide apron layouts that limit risk for loss of situational awareness during taxi operations.
4392 4393		3. Design apron/taxiway configurations to provide taxi paths that reduce the risk of runway incursions.
4394	5.3.5	Future Development.
4395 4396 4397 4398		As part of planning and design efforts, consider airport expansion, future aircraft use trends, and future separation clearance values when establishing apron locations and airside buildings (terminal, hangar, FBO, etc.) in relation to runway and taxiways. Key design considerations include:
4399		1. Providing future expansion capability with minimal development constraints.
4400 4401 4402		2. Avoiding configurations that may necessitate costly reconstruction or alteration of existing airfield infrastructure (e.g. aprons, taxiways, hangars and terminal buildings).
4403 4404		3. Minimizing configurations that may require future operational controls due to operation of larger aircraft at the airport.
4405	5.4	Apron Location.
4406		The location of apron elements can result in an adverse effect to operations on adjacent
4407		runways and taxiways. Application of standards and recommended guidelines when
4408		locating apron elements optimizes the utility of the apron as well as the operational
4409		efficiency of adjacent runways and taxiways.
4410	5.4.1	Standards.
4411		5.4.1.1 Apron Taxilanes.
4412		Locate apron taxilanes in conformance with separation standards of the
4413		online Runway Design Standards Matrix Tool and Table 4-1.

4414 4415 4416 4417 4418 4419 4420 4421 4422 4423		5.4.1.2	 Parking Positions. Locate aircraft parking positions in a manner that ensures aircraft components (wings, tail and fuselage) do not: 1. Conflict with object free area for adjacent runways or taxiways: a. Runway Object Free Area (ROFA) (paragraph 3.11) b. Taxiway Object Free Area (TOFA) (paragraph 4.5) c. Taxilane Object Free Area (TLOFA) (paragraph 4.5) 2. Violate any of the following aeronautical surfaces and areas: a. Runway approach or departure surface (paragraph 1.4) b. Runway Visibility Zone (Figure 3-13)
4424 4425			 c. Runway Obstacle Free Zone (paragraph <u>3.10</u>) d. Navigational Aid Equipment critical areas (paragraph <u>6.11</u>
4426	5.4.2	Recommend	led Practices.
4427 4428 4429 4430 4431 4432 4433 4434		5.4.2.1	 Obstacle Evaluation. Locate parking aircraft parking positions in a manner that does not violate an imaginary surface as defined in 14 CFR Part 77. 1. Parking positions that result in aircraft penetrating a Part 77 imaginary surface require an aeronautical study to determine if the height of the parked aircraft represents a hazard to air navigation. 2. Consult with the FAA Airports Regional Office or Airports District Office (ADO) for guidance.
4435 4436 4437 4438 4439 4440 4441 4442	5.5	The design of as well as sa airport efficient entrances an situational a	cess from Aprons. of aircraft taxi paths from apron areas to runways can affect airport capacity fety of aircraft operations. Properly located taxi paths can enhance both tency and safety. Conversely, wide expanses of pavement at taxiway d taxi paths that provide direct access to a runway can lead to loss of wareness for pilots and vehicle operators, which increases the risk of a rsion. Refer to Chapter 4 and Appendix J for information on problematic igns.
4444 4445 4446	5.5.1	<u>Standards.</u> 5.5.1.1	Provide taxi paths that require a pilot or vehicle operator to make a right angle turn onto a taxiway when departing an apron area (Figure 5-3). This action optimizes the range of vision for pilots and vehicle operators.
4447 4448		5.5.1.2	Stagger the alignment of an apron exit taxilane with that of a connector taxiway that crosses a parallel taxiway for access to a runway. Refer to

4449 4450 4451			<u>Figure 4-2</u> . Design the distance between connecting taxiways to make the length of the aircraft align with the centerline of the parallel taxiway before making another turning movement.
4452	5.5.2	Recommen	ded Practices.
4453 4454		5.5.2.1	Place high activity aprons in a central location to minimize aircraft taxiing distances and runway crossings.
4455		5.5.2.2	Avoid wide throat taxiway entrance/exit pavements from aprons that:
4456			1. Exceed standard widths for taxiways and associated fillets.
4457			2. Violate the three-path concept.
4458			3. Create non-standard locations for signage, lighting and marking.
4459			4. Create surface drainage issues (e.g. ponding of storm water).
4460 4461 4462 4463		5.5.2.3	Mark and light wide apron pavement areas contiguous to a parallel taxiway to mitigate situational awareness risk. Paved islands, also known as NO-TAXI islands, channel aircraft departing the apron area using standard centerline markings and elevated signs.
4464	5.5.3	Implementa	ation.
4465		5.5.3.1	New Construction and Re-Construction Projects.
4466			Meet standards of paragraph <u>5.5.1</u> .
4467		5.5.3.2	Rehabilitation Project.
4468 4469			1. Assess opportunities to make full or incremental improvements that mitigate existing non-standard conditions.
4470 4471 4472			 If impractical or cost prohibitive under a rehabilitation project, develop a plan to correct non-standard conditions as future development project needs.
4473		5.5.3.3	Existing Aprons That Do Not Meet Standards.
4474			1. Implement operational measures that reduce runway incursion risks.
4475 4476			Close the portion of the apron that violation violates standards if operational controls are not adequate.
4477 4478 4479	5.6	Provide sta	oject Clearance on Aprons. Induction of the description of the descri

4480	5.6.1	Standards.	
4481 4482 4483 4484		5.6.1.1	Apron Taxilanes. Refer to <u>Table 4-1</u> for standard dimensions for TLOFA and wingtip clearance to fixed or moveable objects. Refer to paragraph <u>4.5</u> for explanation of wingtip clearance criteria.
4485 4486		5.6.1.2	Parking Position. Provide sufficient clearance to establish:
4487 4488 4489			1. Low risk of conflict between aircraft (wingtips and fuselage) and adjacent objects (other aircraft and structures) during entry and exit operations.
4490 4491			2. Space for personnel and vehicles (GSE, ARFF) to operate safely around perimeter of parked aircraft.
4492	5.6.2	Recommend	led Practices.
4493		5.6.2.1	Vehicle Limit Line.
4494 4495 4496 4497 4498 4499 4500 4501 4502			Consider placement of a vehicle limit line marking to ensure adequate clearance of vehicles and equipment from the adjacent taxilane object free area. For locations where the aircraft is under ATC ground control at push back, a non-movement area boundary marking may serve as the vehicle limit line. For locations where the non-movement area boundary marking is remote from the gate area, consider placement of a vehicle limit line marking per the guidelines of Airports Council International (ACI) publication <i>Apron Markings and Signs</i> to define visually the near edge of an apron taxilane object free area.
4503		5.6.2.2	Parking Position.
4504 4505 4506 4507			Refer to <u>Table 5-1</u> for recommended minimum clearance dimensions between an aircraft and a fixed object or adjacent parked aircraft. These clearances allow for safe maneuvering of aircraft into and out of a parking position as well as sufficient space for personnel and equipment operation.
4508 4509 4510 4511			1. Additional factors may influence increasing the clearance values such as an operator's GSE work area envelop, equipment storage and the slope of the passenger boarding bridge ramp for Americans with Disabilities Act (ADA) conformance.
4512 4513 4514 4515			2. An acceptable level of safety may be achievable with reduced clearance values if controls are in place that minimize risk of conflict between aircraft and objects (e.g. gate operations rules, GSE management plan, training, etc.).
4516 4517 4518			3. For parking positions parallel to terminal building structures, consider a minimum clearance of 45 feet to accommodate equipment operations between the wingtip and the building.

- 4. Refer to <u>Figure 5-2</u> for illustration of parking position clearance for passenger terminals.
- 5. Refer to Figure E-9 for illustration of parking position for GA aircraft.

Table 5-1. Parking Position Clearance.

Airplane Design Group	Recommended Minimum Clearances
I and II	10 ft (3 m)
III, IV, V and VI	25 ft (7.5 m)

Figure 5-2. Parking Position Clearance

4526

4519 4520

4521

4522

4523

4525 5.7 **Apron Taxilanes.**

The lower speed on apron taxilanes allows for precise taxiing operations.

4527	5.7.1	Standards.	
4528		5.7.1.1	Width.
4529			Refer to <u>Table 4-2</u> for taxilane width standards based on TDG.
4530		5.7.1.2	Object Free Area.
4531			Refer to <u>Table 4-1</u> for taxilane object free area values based on ADG.
4532		5.7.1.3	Surface Gradient.
4533 4534			Refer to paragraph <u>5.9</u> for standards addressing gradients and grade change for apron taxilanes.
4535	5.8	Fueling on	Aprons.
4536			rt, storage and distribution of aviation fuel on an apron presents fire hazard
4537		_	sengers, employees and property. Proper handling of aviation fuel in the
4538		-	ninimizes this risk. Generally, aircraft fueling operations occur on an apron
4539		by one of fo	our methods:
4540		1. Delivery	y by fuel truck to the aircraft.
4541		2. Delivery	y by fuel cart and hydrant located at the gate.
4542		3. Centrali	zed fueling at a fuel island located away from terminal buildings.
4543		4. Self-fue	ling by the aircraft operator.
4544	5.8.1	Standards.	
4545 4546		1. AC 150. Airports	/5230-4, Aircraft Fuel Storage, Handling, Training, and Dispensing on
		•	
4547			l Fire Protection Association (NFPA) 407, Standard for Aircraft Fuel
4548		Servicin	g.
4549	5.8.2	Design Con	siderations.
4550		5.8.2.1	Minimize the potential for costly future relocation by considering future
4551			airside development in addition to current operational needs when locating
4552			fuel systems and components including:
4553			• Fuel farms
4554			 Underground fuel distribution loops
4555			 Supporting facilities
4556		5.8.2.2	Construct areas where fueling operations occur with materials that resist
4557			deterioration caused by fuel spillage.

4558 4559 4560 4561 4562	5.9	Apron Surface Gradients. The standards for surface gradient facilitate aircraft towing and taxiing while promoting positive drainage of surface water. Flat slopes facilitate aircraft maneuvering at parking positions and tiedown locations. Refer to paragraph <u>5.10</u> for drainage design considerations.		
4563	5.9.1	Standards.		
4564 4565		5.9.1.1	Provide a minimum 0.5% apron gradient to facilitate aircraft maneuvering operations and apron drainage.	
4566 4567 4568		5.9.1.2	Comply with NFPA 415, Standard on Airport Terminal Buildings, Fueling Ramp Drainage, and Loading Walkways pavement slope standards where fueling operations occur.	
4569		5.9.1.3	Limit maximum grade change to 2 percent.	
4570 4571 4572		5.9.1.4	Design and construct apron grades for positive drainage of surface water to inlets or off the apron pavement edge. For pavement drop-off information, refer to <u>Figure 3-30</u> and <u>Figure 4-29</u> .	
4573 4574		5.9.1.5	Provide between a minimum 1.5-inch (38 mm) to maximum 3-inch (76 mm) drop-off at the pavement edge.	
4575	5.9.2	Recommend	ded Practices.	
4575 4576	5.9.2	5.9.2.1	Limit apron gradients as follows:	
	5.9.2			
4576	5.9.2		Limit apron gradients as follows:	
4576 4577 4578	5.9.2		Limit apron gradients as follows: 1. Maximum: 1% for parking positions. 2. Maximum: 1.5% for apron taxilanes servicing aircraft over 30,000 lbs.	
4576 4577 4578 4579 4580	5.9.2		 Limit apron gradients as follows: Maximum: 1% for parking positions. Maximum: 1.5% for apron taxilanes servicing aircraft over 30,000 lbs. (13,608 kg). Maximum: 2.0% for aprons taxilanes servicing aircraft 30,000 lbs. 	
4576 4577 4578 4579 4580 4581 4582 4583 4584	5.9.2	5.9.2.1	 Limit apron gradients as follows: Maximum: 1% for parking positions. Maximum: 1.5% for apron taxilanes servicing aircraft over 30,000 lbs. (13,608 kg). Maximum: 2.0% for aprons taxilanes servicing aircraft 30,000 lbs. (13,608 kg) or less. For apron locations where it is impractical to meet recommended maximum gradient values due to grade or space constraints, solicit comments from airport users and assess whether exceeding the 	
4576 4577 4578 4579 4580 4581 4582 4583 4584 4585	5.9.2	5.9.2.1	 Limit apron gradients as follows: Maximum: 1% for parking positions. Maximum: 1.5% for apron taxilanes servicing aircraft over 30,000 lbs. (13,608 kg). Maximum: 2.0% for aprons taxilanes servicing aircraft 30,000 lbs. (13,608 kg) or less. For apron locations where it is impractical to meet recommended maximum gradient values due to grade or space constraints, solicit comments from airport users and assess whether exceeding the recommended values may have an adverse effect on: 	
4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586	5.9.2	5.9.2.1	 Limit apron gradients as follows: Maximum: 1% for parking positions. Maximum: 1.5% for apron taxilanes servicing aircraft over 30,000 lbs. (13,608 kg). Maximum: 2.0% for aprons taxilanes servicing aircraft 30,000 lbs. (13,608 kg) or less. For apron locations where it is impractical to meet recommended maximum gradient values due to grade or space constraints, solicit comments from airport users and assess whether exceeding the recommended values may have an adverse effect on: Aircraft maneuvering, 	

4593 4594			area. Beyond the shoulder edge, provide a 3-5% slope to facilitate flow of surface water away from the apron area.
4595	5.9.3	Design Cons	siderations.
4596		1. Consider	r propeller clearance when transitioning between grade changes.
4597 4598 4599		intermed	f a vertical curve for grade changes on apron taxilanes, consider an liate transitional grade section (e.g. 20 to 25 feet) to minimize abrupt inal grade changes greater than 1 percent.
4600	5.10	Apron Drai	nage.
4601 4602 4603 4604		potential for a concern or	des and a wide expanse of impervious pavement in the apron area creates significant volume of surface runoff. While hydroplaning is generally not a aprons due to low taxi speeds, it is desirable to convey surface water to trainage system to prevent freestanding water on the apron.
4605	5.10.1	Standards.	
4606 4607		5.10.1.1	Design apron drainage systems for the design storm event in accordance with <u>AC 150/5320-5</u> , <i>Airport Drainage Design</i> .
4608		5.10.1.2	Direct drainage away from buildings (e.g. terminal, hangar, FBO, etc.).
4609 4610 4611 4612 4613		5.10.1.3	Where aircraft fueling operations occur, slope pavement away from buildings and structures a minimum of 1.0 percent for 50 feet and a minimum of 0.5 percent beyond 50 feet in conformance with the standards of NFPA 415, Standard on Airport Terminal Buildings, Fueling Ramp Drainage, and Loading Walkways.
4614 4615 4616		5.10.1.4	Limit length of apron linear trench drains or slot drains to 125 feet with minimum of 6-foot interval between trench lines to act as a fire stop in accordance with NFPA 415.
4617 4618 4619		5.10.1.5	Design apron grades to prevent accumulation of surface water (i.e. ponding) exceeding 1/4" (6 mm) in depth as measured by 12-ft (3.7 m) straightedge.
4620 4621 4622		5.10.1.6	Comply with federal and local statutory and regulatory requirements for water quality with appropriate design consideration for control and collection of sediment, fuel/oil, and deicing fluids.
4623	5.10.2	Recommend	led Practices.
4624 4625		5.10.2.1	Construct linear drains (e.g. slotted drains) for collection of sheet flow; construct grated inlet catch basins for collection of channelized flow.
4626		5.10.2.2	Locate surface inlets apart from aircraft wheel paths to:

4627			1. Avoid direct aircraft loading on drainage structures.
4628			2. Limit premature pavement deterioration surrounding inlets.
4629 4630 4631		5.10.2.3	Separate the apron drainage system in deicing areas from other airfield drainage system to minimize the surface runoff volume collected for treatment.
4632 4633		5.10.2.4	Construct taxilanes with transverse grades that create positive flow of surface water off the taxilane pavement:
4634 4635			1. The continued presence of water on pavements can increase the risk of premature pavement deterioration.
4636			2. Avoid use of taxilane as "V" bottom drainage conveyance.
4637 4638 4639 4640 4641 4642 4643	5.11	taxiways. So speeds and r of airport, re	v Removal. ral from apron areas differs from that of snow removal from runways and now removal equipment (SRE) for apron areas generally operate at slower equire greater equipment maneuverability. Depending on the type and size moval responsibilities vary between airport operators, third party FBOs and tenants. Snow removal from apron areas presents challenges
4644		1. Working	in constrained areas,
4645		Ŭ	equipment access and exit routes,
4646			options for disposal of snow,
4647			of GSE, and
4648			on with taxiing and parked aircraft.
4649	5.11.1	Standards.	
4650 4651 4652	3.11.1	1. AC 150/	5200-30, Airport Field Condition Assessments and Winter Operations, es standards for airfield priority areas and clearance times for a baseline ent.
4653 4654			5220-20, Airport Snow and Ice Control Equipment, establishes standards rt snow and ice control equipment.
4655	5.11.2	Design Cons	siderations.
4656 4657 4658		5.11.2.1	For airports that regularly experience accumulating snowfall events, give apron design consideration to how the airport will manage effectively, accumulated snowfall in the apron area.
4659		5.11.2.2	Factors to consider:
4660 4661			1. Clearance priority of apron areas per the snow and ice control plan (see paragraph <u>5.11.1</u>).

4662 4663		2. Efficient access and exit routes for haul trucks and SRE that limit interaction with aircraft.
4664 4665		3. Partial closure of apron areas to facilitate snow removal operations while maintaining minimum level of apron operations.
4666 4667 4668		4. Use of designated areas (i.e. low priority areas) to serve as temporary snow pile storage in support of haul operations during low activity hours.
4669 4670 4671 4672 4673 4674		Airports that experience annual snowfall normals of 30-inches or greater will typically have a higher frequency of snow events exceeding 1-inch depths. ³ Frequent snow events at a commercial service airport can adversely affect the capacity of the airport as well as the efficiency of the National Airspace System (NAS). For airports certificated under Part 139 having annual snowfall normals greater than 30 inches:
4675 4676		 Consider increasing the size of the terminal apron pavement to facilitate snow removal operations.
4677 4678 4679		 Design additional apron pavement to have utility for aircraft operations during non-winter months (e.g. RON apron, secondary taxilane, non-contact gate, etc.)
4680 4681		3. Design additional pavement to serve as temporary storage of snow piles during a snow event (e.g. priority 2 area) during winter months.
4682 4683		4. For purpose of this section, temporary means no greater than 48-hours from the end of a snow event.
4684	5.12	Apron Markings.
4685 4686 4687 4688 4689		Apron pavement markings provide a pilot visual guidance when maneuvering aircraft to and from a parking position or gate. Pavement markings also establish boundaries for vehicle operations, GSE areas and ground crew operations. In addition to FAA standards, industry groups and airlines publish best practices for apron markings not addressed by FAA standards.
4690 4691 4692	5.12.1	Standards. AC 150/5340-1 establishes FAA standards for the following apron pavement marking elements:
4693 4694 4695 4696		 Taxiway/taxilane centerline and edge marking Non-movement area boundary marking Intermediate holding position marking Vehicle roadway marking

³ Annual snowfall normal based on current National Oceanic and Atmospheric Administration (NOAA) three-decade <u>Climate Normals</u>.

4697		Surface painted apron entrance points
4698		Ramp control marking
4699		Surface painted gate identification signs
4700		VOR receiver checkpoint marking
4701	5.12.2	Industry Best Practices.
4702		Industry practices and guidelines are available for select apron markings including
4703		aircraft safety envelopes, passenger walk paths, equipment parking, passenger-board-
4704		bridge area, and engine hazard zones. Individual airlines may establish company
4705		standards for gate area markings at gates the airline contractually controls. To ensure
4706		consistent and clear markings, coordinate installation of such markings with affected
4707		parties (i.e. airport, airline operators, service providers, tenants, etc.).
4708		Airports Council International – Apron Markings and Signs
4709		Airlines for America – Recommended Apron Markings and Identifications
4740	5 12	Annon Signago and Edge Lighting
4710	5.13	Apron Signage and Edge Lighting.
4711		Elevated signage and edge lighting provide a pilot visual guidance during taxi
4712		operations. Due to the operational nature of aprons, application of elevated signage and
4713		edge lighting is generally suitable only at the outer limits of apron pavement. Typical
4714 4715		apron signage includes outbound and inbound destination signs and no-entry signs. Apron surface lighting is typically suitable for taxiway/taxilane edge lights located at
4716		the outer limits of the apron pavement or around no-taxi islands. Complex commercial
4717		and cargo aprons may necessitate in-pavement centerline lights or reflectors to provide
4718		a visible taxi route to a parking stand.
4719	5.13.1	Standards.
4720		1. AC 150/5340-18, Standards for Airport Sign Systems
4721		2. AC 150/5340-30, Design and Installation Details for Airport Visual Aids
1721		2. 110 130/33 to 30, Design and Installation Details for Import Visual Illus
4722	5.14	Area Lighting on Aprons.
4723		Area lighting allows apron operations to take place in a safe and efficient manner during
4724		nighttime hours and low visibility conditions. Area lighting also enhances security of
4725		the AOA by illuminating vulnerable locations of the Security Identification Display
4726		Area (SIDA). Occupational Safety and Health Administration (OSHA) standard 29
4727		CFR 1926.56 addresses illumination minimums (expressed in foot-candles) for select
4728		work-place activities.
4729	5.14.1	Associated Risks.
4730		While area lighting has beneficial use in the apron area, such lighting can introduce
4731		certain risk hazards to aircraft operations and control tower operations. This can
4732		involve obtrusive glare, misleading visual cues to pilots, impaired line-of-sight and
4733		obstructions to aeronautical activities.

4734 5.14.2 <u>Design Considerations.</u> 4735 When planning and des

When planning and designing apron area lighting, consider the following factors:

- 1. Avoid lighting configurations that create misleading visual cues that confuse a pilot's recognition of runway lighting systems.
- 2. Avoid light orientations that obscure or impair a pilot's or air traffic controller's view of movement area pavement (i.e. runways and taxiways).

4740 5.14.3 Standards.

4736

4737

4738

4739

4741

4742 4743

4744

4745

4746

4747

4749

4750

4751

4752

4753

4754 4755

4756 4757

4758

4759

4761

4762

4763

4764

4765

4766 4767

4768

- 1. Submit required notification under 14 CFR Part 77 for proposed installation of apron lighting to allow FAA evaluation of potential adverse effect to air navigation and safe operation of the airfield.
 - 2. Limit height of lighting structures to preclude violation of a runway approach surface, departure surface or obstacle free zone.
 - 3. Locate apron light poles outside of taxiway/taxilane object free areas and clear of aircraft parking stands.

4748 5.14.4 Recommended Practices.

- 1. Aim apron luminaires downward towards apron pavement to limit risk of spill light causing confusion for pilots and controllers.
- 2. Baffle or shield apron luminaires to prevent up light.
- 3. Establish uniform illumination across lighted areas with overlapping light sources to minimize ground shadowing.
- 4. Coordinate installation of area lighting with appropriate stakeholders (e.g. airport operations, airline operators, ground service providers, tenants, ATCT, etc.).
- 5. Refer to Illuminating Engineering Society of North America (IES), RP-37-15, Recommended Practice for Airport Service Area Lighting, for industry practices, recommended illuminance values and general guidance on designing apron area lighting.

4760 5.15 **Apron Security.**

Airport security involves maintaining the integrity of the air operations area from entry by unauthorized individuals. Risk to security will vary per airport type and level of activity. Primary hub airports generally have a much higher security risk than a small commercial service airport. The measures, procedures and systems to counter risks to airfield security can also vary at different locations at the same airport. Refer to paragraph <u>6.8</u> for additional information on airport security. Refer to <u>Appendix E</u> for guidelines addressing fencing at GA airports, which primarily serve as a safety measure for inadvertent entry to the AOA.

5.16 **Apron Pavement Design.** 4769 Design apron pavements to provide adequate support for the most demanding loads 4770 4771 imposed by aircraft, GSE, SRE, ARFF vehicles, fuel trucks and other applicable aircraft 4772 servicing equipment. Isolated pavement areas of an apron may require load consideration that do not apply to the entire apron area (e.g. mobile passenger boarding 4773 bridges, people movers, etc.). 4774 5.16.1 4775 Standards. 4776 1. Refer to AC 150/5320-6 for standards addressing pavement structural design. 2. Refer to AC 150/5370-10 for standards addressing construction of apron pavements. 4777 5.16.2 Design Considerations. 4778 It is not necessary or economical to construct all apron pavements at an airport to the 4779 same pavement strength. Design apron pavement for individual apron sections for the 4780 most demanding loads specific for the intended apron use (e.g. commercial airlines, 4781 cargo operations, GA operations). This approach necessitates clear delineation of the 4782 different apron areas through signage or physical separation of pavement areas. Other 4783 apron design considerations include: 4784 1. Structural design life of pavement (typically 20 years) 4785 4786 2. Surface resistance to fuel spills 3. Effect and control of aircraft deicing materials 4787 4. Resistance to rutting from wheel loads and static loads (e.g. aircraft, passenger 4788 boarding bridges, etc.) 4789 5. Resistance to applicable environmental and climate factors 4790 5.17 Jet Blast and Propeller Wash on Aprons. 4791 Aircraft that maneuver on the apron under self-power introduce risk of property damage 4792 5.17.1 and personnel injury from wind velocities due to jet exhaust and propeller wash. Wind 4793 4794 forces from jet blasts are capable of displacing equipment, vehicles and persons. Wind forces from propeller wash can create airborne projectiles endangering ground crew, 4795 4796 passengers, structures and nearby aircraft. 5.17.1.1 **Recommend Practices.** 4797 Refer to Appendix C for information on the effects and treatment of jet 4798 blast. When applicable, incorporate the following design considerations 4799 and guidelines. 4800 1. Configure parking positions such that the direction of wind forces 4801 4802 from jet exhaust and propeller wash point outward and away from personnel, equipment, aircraft and structures. 4803 4804 2. Construct blast barrier to protect GSE during aircraft power out 4805 maneuvers.

4806 4807 4808			3.	Construct pushback area (<u>Figure 5-2</u>) that provides sufficient space to push aircraft back to a point where aircraft maneuvering can be by self-power.
4809 4810			4.	Implement operational controls that limit when pilots may use breakaway power.
4811 4812			5.	Construct an engine run-up area with associated blast protection apart from parking positions and gate areas.
4813 4814 4815			6.	Avoid terminal gate and hardstand aircraft parking layouts that have "tail-to-tail" parking between turbo-jet aircraft and (1) small aircraft and/or (2) narrow-body and wide-body aircraft.
4816 4817			7.	Provide tie-down anchors on apron areas serving small aircraft when adjacent taxiways/taxilanes serve turbojet aircraft.
4818	5.17.2	Aircraft Par	king	Layout Methodology.
4819 4820		•		jet blast contours (velocity and distance). Assess whether aircraft ers create jet blast hazards.
4821		5.17.2.1	W	ind Speed Design Factors.
4822			Co	nsider the following wind exposure rates from the National Weather
4823			Se	rvice (NWS) Beaufort Wind Scale as part of planning and design of
4824			pai	cking position layout. Apply these values to determine potential effect
4825			jet	blast and propeller wash may have on adjacent areas of the apron.
4826		5.17.2.2	Te	rminal Tail-to-Tail Parking.
4827 4828			1.	Apply 35 mph (56 km/hr) maximum to assess harmful risk to adjacent aircraft, personnel and objects.
4829 4830				a. Assumes trained ramp personnel are aware that occasion wind peaks may affect their ability to walk.
4831 4832				b. Does not preclude locating service roads behind aircraft for tug/tractor service
4833				c. Avoid parking general aviation and commuter aircraft adjacent to
4834				turbojet aircraft.
4835		5.17.2.3	Te	rminal Parking at Parallel or Skewed Terminals Facing Each
4836			Ot	her.
4837			1.	Apply 50 mph (80km/hr) maximum breakaway condition to determine
4838				the "reach" of initial jet blast from aircraft entering or existing a gate
4839				position to the facing terminal concourse and service road.
4840			2.	Apply 35 mph (56 km/hr) maximum under breakaway conditions to
4841				locate facing terminal gate parking and service roads assuming:
4842				a. Trained ramp personnel are aware that occasion wind peaks may
4843				affect their ability to walk.

4844			b. There is no general aviation parking in the vicinity
4845 4846			c. Parked commuter aircraft do not board or deplane passengers directly to or from the apron.
4847		5.17.2.4	General Aviation/Commuter Aircraft Parked Next to Turbojet.
4848 4849			1. Apply 24 mph (38 km/hr) maximum under idle and breakaway conditions:
4850 4851 4852			 a. The lower exposure rate takes into account conditions experienced by passengers during bad weather when having to deal with umbrellas and slippery ramp/stairs.
4853 4854 4855			 Consider both idle and breakaway conditions to assess the variety of possible gate layouts, ramp taxiing and tug policies and procedures.
4856		5.17.2.5	Hardstands.
4857 4858			Focus on mitigating the effects of "power plus turn" when assessing the hazard to taxiing operation
4859 4860 4861			1. Apply 24 mph (38 km/hr) maximum under idle conditions to locate an adjacent hardstand when passengers are boarding/deplaning directly to and from the apron.
4862 4863 4864 4865 4866			2. Apply 35 mph (56 km/hr) maximum under idle conditions when aircraft are arriving/departing from the hardstands only if the air carriers written ramp management plan prescribes boarding and escort of all passengers in the adjacent hardstand locations occurs away from the active hardstand by trained ramp personnel.
4867 4868			3. Apply 39 mph (62 km/hr) maximum under breakaway conditions for the location of service roads aft of parked turbojet aircraft.
4869 4870 4871			This value addresses drivers' control of vehicles/trucks when subjected to slightly higher winds and assumes no tug/tractor service operations at the hardstands.
4872 4873			 Apply 35 mph (56 km/hr) maximum on service roads next to a hardstand location.
4874 4875	5.18	Airport Ti Aprons.	raffic Control Tower (ATCT) Visibility / Line Of Sight (LOS) on
4876 4877 4878 4879 4880 4881 4882		movement. of-sight inc Part 139, the area bound runway, tax	onnel require an unobstructed view from the ATCT cab to control aircraft Parked aircraft, buildings and equipment may obstruct the controller's line-reasing the risk to safe movement of aircraft. For airports certificated under air means a clear view of the movement area, including the non-movement ary marking. For non-139 airports, this generally means a clear view of the tiways and apron area. FAA Order 6480.4 provides addition information on visibility requirements.

4883 4884 4885 4886	5.18.1 5.18.2	Standard. Configure apron layout to preclude parked aircraft, equipment and structures from obstructing the controller's line of sight from the ATCT cab to all points of the airport movement area.			
4888	3.10.2	Recommended Practice. When designing new airfield development, evaluate the controller's line of sight from			
4889		the ATCT cab to points on the airport non-movement area.			
4890	5.19	Apron Vehicle Service Road.			
4891		Apron vehicle service roads are designated roadways in the AOA that concentrate			
4892 4893		vehicle operations for safe maneuvering and interaction with taxiing and parked aircraft. Apron vehicle service roads are primarily for the exclusive use of vehicles and			
4894		equipment that service aircraft and by airport operations personnel. Apron service			
4895		roads often tie into airfield service roads, which control vehicle movements to other			
4896		portions of the AOA.			
4897	5.19.1	Design Characteristics.			
4898		5.19.1.1 Lane Characteristics.			
4899		The level and type of ground vehicle traffic on an apron service road are			
4900		key factors in determining the number and width of lanes. Typically,			
4901 4902		apron service roads on commercial service airports are two-way marked roadways between 20 to 25 feet (6.1 to 7.5 meters) in width.			
4903		5.19.1.2 Location.			
4904		Generally located in non-movement area in the following areas:			
4905		1. In front of an aircraft nose (i.e. head of stand)			
4906		2. Immediately behind the aircraft tail (back of stand)			
4907		3. Apart from aircraft parking positions			
4908	5.19.2	Pavement Strength.			
4909		1. For commercial and cargo aprons, aircraft loads control the pavement design			
4910		strength.			
4911 4912		2. For GA aprons serving small aircraft, consider airport vehicle loading (e.g. fuel trucks) in addition to aircraft loads.			
4913	5.19.3	Standards.			
4914		1. Clearance from vehicles to:			
4915		a. Taxiway/Taxilane – Except were necessary to intersect a taxiway or apron			
4916		taxilane, provide applicable clearances from <u>Table 4-1.</u>			

4917 4918 4919		foot (1.5	positions – Provide a minimum of 10-foot (3 m) lateral clearance or 5-6 m) vertical clearance from parked aircraft to the service road using the ehicle expected to operate on the apron service road.
4920		2. Surface Man	rking – Refer to vehicle roadway marking standards in AC 150/5340-1.
4921	5.19.4	Recommended	Practices.
4922		1. Minimize po	oints where service vehicle roads intersect with taxiways and taxilanes.
4923		2. Do not insta	all vertical vehicle road signs in the apron extents.
4924	5.20	Design Conside	erations for Specific Apron Types.
4925	5.20.1	Passenger Term	ninal Apron Factors.
4926		5.20.1.1 C	haracteristics.
4927 4928		1.	Parking gates may be contact type (e.g. by passenger boarding bridge) or non-contact (e.g. by ground loading).
4929 4930		2.	Provide efficient and safe maneuvering of aircraft from the taxiway system to and from parking position.
4931		3.	Provide safe and efficient passenger boarding and deplaning.
4932 4933 4934		4.	Provide sufficient space for GSE (e.g. baggage tugs, cargo tugs, catering trucks, etc.) and support vehicles such as fuel trucks and aircraft maintenance equipment.
4935		5.20.1.2 D o	esign Considerations.
4936 4937 4938		1.	Size passenger aprons to accommodate peak hour operations considering factors and design elements appropriate for the airport type and service level.
4939 4940		2.	Provide sufficient clearance at gate area for maneuvering of aircraft under self-power and for ground service vehicles. (See <u>Figure 5-2</u>)
4941 4942 4943		3.	For airport that have frequent congestion on apron taxilanes due to aircraft departing a gate, consider providing a push back area that allows unimpeded flow on the apron taxilane. (See <u>Figure 5-3</u>)
4944 4945		4.	Design parking stands and gate configurations to accommodate the range of aircraft sizes anticipated to operate at the airport.
4946 4947		5.	Provide a clear delineation of passenger walkways to boarding area for non-contact gates.
4948 4949		6.	Provide a clear demarcation of the SIDA at <u>Part 139</u> airports with an airport security plan.

4950 4951 4952			7.	Segregate commercial aprons from GA aprons (preferably by physical separation of pavement areas) to limit interaction of aircraft and to maintain integrity of the SIDA.
4953	5.20.2	Cargo Apror	<u>1.</u>	
4954		5.20.2.1	Ch	aracteristics.
4955 4956			1.	Cargo aprons are typically located apart from passenger terminals due to different space requirements and different GSE needs.
4957 4958 4959			2.	Cargo aprons are typically located adjacent to a cargo facility building, which acts as an interface with other transportation modes (e.g. freight trucks, rail cars, ships).
4960 4961 4962			3.	A cargo apron may be exclusive-use, where cargo operators maintain control of designated areas; or the apron may be a common-use area, where all cargo operators may operate.
4963		5.20.2.2	De	sign Considerations.
4964 4965			1.	Size a cargo apron for design peak volume of aircraft, aircraft servicing equipment and cargo handling equipment.
4966 4967			2.	Provide sufficient clearance at parking position for maneuvering of aircraft under self-power and operation of GSE and related equipment.
4968 4969			3.	Locate service roads at head-of-stand to allow movement of vehicles independent of aircraft maneuvering.
4970 4971			4.	Consider providing space for a remote cargo aircraft-parking stand as a reserve location for empty aircraft during peak hours.
4972 4973			5.	Consult ACRP Report 143, Guidebook for Air Cargo Facility Planning and Development for industry practices.
4974	5.20.3	Remote Apr	on.	
4975		5.20.3.1	Ch	aracteristics.
4976 4977			1.	Provides an area to hold incoming aircraft at peak hours until a terminal gate becomes open.
4978 4979 4980			2.	Provides an area to park non-active aircraft overnight without occupying gate space; commonly known as remain-overnight (RON) positions.
4981 4982			3.	Provides an area for air traffic control to stage aircraft for effective flow management of arrivals and departures (see paragraph $\underline{4.9}$).
4983 4984 4985 4986			4.	Serves as a remote passenger gate during situations where operations exceed gate capacity and apron buses or other ground vehicles transport passengers from the terminal building to the aircraft (uncommon practice).

4987		5.20.3.2	Design Considerations.
4988 4989 4990			1. Locate remote aprons in a non-movement area where parked aircraft will not impede efficient flow of taxiing aircraft from terminal to runway/taxiway system.
4991 4992 4993			2. Size remote apron to provide a reasonable number of reserve parking stands based on recurring space deficiencies observed during peak hours or operations.
4994	5.20.4	Deicing Apr	<u>on.</u>
4995		5.20.4.1	Characteristics.
4996 4997			1. Centralized facility typically located apart from gate area to minimize conflicts with GSE.
4998 4999 5000			2. Size of deicing pad accommodates the aircraft receiving treatment as well as space for maneuvering of deicing equipment around the aircraft.
5001		5.20.4.2	Design Considerations.
5002 5003			1. Refer to AC 150/5300-14 for standards and guidelines addressing layout, clearance, marking and lighting.
5004 5005 5006			2. Locate deicing facilities away from the terminal gate along taxiways leading to runway departure ends to minimize taxi time from start of treatment to departure clearance.
5007 5008			3. Design containment system to collect deicing fluid runoff for subsequent treatment for compliance with environmental regulations.

Figure 5-3. Passenger Terminal Gate Area

5010 5011 5012

5013

5014

- **Note 1:** Image is conceptual for illustrative purposes only. Actual configuration is dependent upon factors unique to the airport.
- Note 2: Refer to <u>Table 5-1</u> for ADG III-VI wingtip clearance values
- **Note 3:** Refer to paragraph <u>5.17.1.1</u> for jet blast and push back design considerations

5015 Page Intentionally Blank

5016		CHAPTER 6. Airfield Systems and Facilities
5021 5022 5023	6.1	Introduction. This chapter presents information for various systems and facilities located on airports including:
5024 5025 5026 5027 5028 5029 5030 5031 5032 5033		 Airfield Bridges and Tunnels Airfield Drainage Airfield Pavements Airfield Roadways Blast Fences Buildings within AOA Security of Airports Compass Calibration Pads Underground Cables NAS Facilities and Equipment
5034	6.2	Airfield Bridges and Tunnels.
5035 5036 5037 5038	6.2.1	General. This section presents guidance for general design standards and considerations for airfield bridges and tunnels. This section does not provide guidance or standards for structural design.
5039 5040 5041 5042 5043 5044 5045	6.2.2	Need for Airfield Bridge. An airfield bridge or tunnel may be necessary due to airport physical constraints such as space, the presence of roadways, railways, terrain, bodies of water, or the need to construct systems to move passengers and luggage. For safety as well as economic reasons, assess whether relocation of the constraining feature (e.g. public roadway) prevents the need to construct a bridge or tunnel. Examples of airfield applications include:
5046		1. Bridge for a runway or parallel taxiway over a public highway
5047		2. Taxiway bridge crossing an airport entrance road
5048		3. Tunnel under an apron for people mover trains or baggage tugs.
5049 5050 5051	6.2.3	General Siting Guidelines. Apply the following guidelines to minimize the need for bridge structures: 1. Route or reroute the constraining feature(s) to affect the fewest runways and/or
5052		taxiways.
5053 5054		2. Co-align the constraining feature(s), including utilities, so that a single structure can resolve all conflicts.

5055 5056			bridges and tunnels along runways and tangent portions of taxiways; away tersections, exits or curves.		
5057 5058 5059		drainag	bridge locations that do not have an adverse effect upon the airport's ge systems, utility service lines, airfield lighting circuits, Instrument Landing (ILS), or Approach Lighting System (ALS).		
5060 5061		5. Design taxiwa:	bridge elevations to facilitate a near flat vertical grade for the runway and/or y.		
5062 5063			provision for a separate bridge structure for service vehicle and Aircraft and Fire Fighting (ARFF) per paragraphs <u>6.5.2</u> and <u>6.5.3</u> .		
5064	6.2.4	Dimension	al Criteria.		
5065 5066 5067		The standards of the authority having jurisdiction (e.g. state code) will govern the structural design of a bridge. However, there are dimensional standards and design considerations unique to airports as described below:			
5068		6.2.4.1	Standards.		
5069 5070 5071			1. Design the width of the bridge to be equal to or greater than the associated safety area, as measured perpendicular to the runway or taxiway centerline.		
5072 5073 5074			2. With the exception of parapets, design the bridge so no structural members project more than 3 inches (76 mm) above the bridge surface:		
5075 5076			a. Parapets represent a safety feature by containing aircraft and vehicles that wander to the pavement edge.		
5077 5078			b. Construct parapets to a height of no more than 12 inches (30 cm) above bridge deck and outside of the RSA and/or TSA limits.		
5079 5080			 Construct parapets to the strength requirements as prescribed in federal highway standards. 		
5081		6.2.4.2	Design Considerations.		
5082 5083			1. Minimize bridge length by aligning the structure with the runway or taxiway centerline.		
5084 5085 5086 5087 5088			2. Consider a combined structure (e.g. tunnel) spanning the full (combined) width of the runway and taxiway safety areas when both the runway and taxiway pass over a surface feature such as a highway. This approach facilitates access by emergency vehicles by eliminating the presence of a gap between the two safety areas.		

5089	6.2.5	Load Consid	Load Considerations.		
5090 5091 5092		6.2.5.1	Standards. Design runway and taxiway bridges to support both static and dynamic loads imposed by the heaviest aircraft expected to use the structures.		
5093		6.2.5.2	Design Considerations.		
5094 5095			Consider any concentrated loads due to the main gear configurations. Design load considerations unique to airfield bridges include:		
5096			1. Runway load factors due to dynamic loading.		
5097			2. Longitudinal loads due to braking forces.		
5098			3. Transverse loads caused by wind on large aircraft.		
5099 5100			4. Braking loads as high as 0.7G (for no-slip brakes) on bridge decks subject to direct wheel loads.		
5101 5102			5. Horizontal loads from vehicle wheels if bridge is within limits of a curve.		
5103			6. Evaluate the future need to accommodate heavier aircraft:		
5104 5105 5106			a. It is economical to apply a reasonable load increase factor during design than it is to reconstruct or strengthen an existing bridge in the future.		
5107 5108 5109			 FAA considers it reasonable to consider a load increase factor in the range of 20% - 25% to account for fleet growth over anticipated service life of the bridge. 		
5110	6.2.6	Marking and	d Lighting for Bridges and Tunnels.		
5111		6.2.6.1	Standards.		
5112 5113 5114			 Mark, light and sign all taxiway routes and runways supported by bridges or tunnels according to the standards in <u>AC 150/5340-1</u>, <u>AC 150/5340-18</u>, and <u>AC 150/5340-30</u>. 		
5115 5116 5117			2. Identify bridge edge portals with a minimum of three equally spaced L-810 obstruction lights on each side of the bridge structure as shown in Figure 6-1.		
5118 5119 5120			3. Paint 3-foot (1 m) yellow stripes spaced 25 feet (7.5 m) apart on taxiway shoulders on bridge decks, as shown in Figure 6-1. See AC 150/5340-1 for additional information.		
5121		6.2.6.2	Design Considerations.		
5122 5123 5124			 Consider installation of centerline lighting if aircraft will use the taxiway bridge during nighttime operations and/or during low visibility conditions. 		

5129

2. Airports may reduce the spacing between successive taxiway light fixtures (whether on the edge or centerline) from the standard values of AC 150/5340-30 on the segment of the taxiway pavement crossing the bridge or tunnel, but not below 50 feet (15 m).

Figure 6-1. Shoulder Markings for Taxiway Bridges

5130 5131 5132

5133

Note 1:

Note 2:

Note 3:

Spacing maximum 150 ft (46 m).

5134 5135 5136 5137 5138 5139 5140	6.3	Airfield Drainage. Airfield drainage systems collect, convey and discharge storm water from airfield pavements to allow safe vehicle and aircraft operations during a storm event. An effective drainage system maintains the integrity of safety areas by diminishing the risk of erosion and providing suitable surface for operation of safety and emergency vehicles. Consider the following drainage design factors when undertaking airfield design projects.			
5141	6.3.1	Standards.			
5142		6.3.1.1	System Design.		
5143 5144			Refer to AC 150/5320-5 for guidance on the design of airport drainage systems.		
5145		6.3.1.2	Regulatory Requirements.		
5146			Comply with federal, state and local requirements for storm water		
5147			management. Federal requirements include compliance with the Clean		
5148			Water Act.		
5149		6.3.1.3	Airfield Pavement and Safety Areas.		
5150			Comply with transverse gradient standards to prevent accumulation of		
5151 5152			surface water on airfield pavements and safety areas following a storm event. See paragraph 4.14.		
5153		6.3.1.4	Wildlife Management.		
5154			Minimize the potential for the storm water system to attract wildlife to the		
5155			airport. Refer to AC 150/5200-33 for guidance and requirements on land		
5156 5157			use management and storm water management facilities that minimize wildlife hazard attractants.		
5157					
5158	6.3.2	Design Cons	siderations.		
5159		6.3.2.1	Drainage System.		
5160			Design the drainage system to collect, convey and discharge storm water		
5161			from the airfield in a manner that prevents damage to airport pavements		
5162			and safety areas.		
5163 5164			1. Locate ditches, channels and collection structures (e.g. inlets and detention basins) outside of safety area limits.		
5165 5166			2. Design the grate and structure to resist loading of the critical aircraft where it is impractical to install an inlet outside of a safety area.		
5167 5168			3. Install a pavement sub-drain system to control and remove subsurface water to preserve and prolongs pavement performance.		
5169 5170			4. Locate open channels and watercourses away from runway approach and departure paths.		

5171		6.3.2.2	System Adaptability.
5172			Consider future airport expansion and grading requirements when
5173			establishing storm water management needs during planning and design
5174			efforts.
3174			enorts.
5175		6.3.2.3	Water Quality.
		0.3.2.3	•
5176			Employ best management practices (BMPs) to mitigate the adverse
5177			impacts of development activity on water quality. Refer to the National
5178			Pollution Discharge Elimination System (NPDES) for permitting
5179			requirements. Refer to AC 150/5320-15 for guidance on the management
5180			and regulations of industrial waste generated at airports.
E404	<i>c</i> 1	A *	
5181	6.4	Airfield Pay	vements.
5182	6.4.1	General.	
	0.4.1	<u> </u>	
5183		-	ements provide a suitable support surface for the safe and efficient
5184		-	aircraft. In addition to resisting aircraft loads, airport pavements provide a
5185			sistant surface suitable for year-round aircraft operations under various
5186		environmen	tal conditions. Proper pavement design considers the cumulative effective of
5187		repetitive air	rcraft loadings over the design life of the pavement section.
5188	6.4.2	Standards.	
E400		6.4.2.1	Dovoment Design
5189		0.4.2.1	Pavement Design.
5190			Refer to AC 150/5320-6 for standards and guidance for airfield pavement
5191			design.
E100		6.4.2.2	Surface Friction Treatment.
5192		0.4.2.2	
5193			Provide grooving or other surface friction treatment for primary and
5194			secondary runways at commercial service airports and runways serving
5195			turbojet operations. Refer to AC 150/5320-12 for information on skid
5196			resistant surfaces.
E40=	<i>-</i> -	A + .00 I I TS	
5197	6.5	Airfield Ro	•
5198		The operation	on of ground vehicles within the AOA introduces conflict risks with taxiing
5199		and parked a	aircraft. Airfield roads are dedicated routes that separate vehicle operations
5200		from aircraf	t operations. AOA roadways are primarily for use by vehicles that service
5201		aircraft, nav	igational equipment, airport operations and airport security.
		,	
5202	6.5.1	All Roadwa	<u>ys.</u>
5203		6.5.1.1	Design Considerations.
5204			1. Use of local, county or state construction specifications are suitable for
5205			construction of airfield roadways.
0200			construction of unfficial fourways.

5206 5207 5208			2.	Construct roads that traverse a safety area flush with the adjacent grade to allow a pilot to maintain control of the aircraft during an excursion event.
5209 5210 5211			3.	Where a road surface consists of granular material, pave the first 300 feet (91 m) adjacent to a paved surface to limit tracking of debris on operational pavements.
5212			4.	Provide pavement markings to delineate roadway edges in apron areas.
5213 5214			5.	Provide surface pavement hold line marking and road signs when intersecting with taxiways and taxilanes.
5215	6.5.2	AOA Vehicl	le S	ervice Road.
5216 5217 5218 5219		allow passag impeding air	ge of	rvice roads (VSR) are dedicated routes in the non-movement area that f ground service equipment and airport operations vehicles without ft movements. VSRs enhance safety by channelizing ground vehicle hat minimize interaction with aircraft operations.
5220		6.5.2.1	Sta	andards.
5221 5222			1.	Locate the roadway outside the limits of ROFAs, TOFAs and TLOFAs except where it is necessary to cross a taxiway or taxilane.
5223 5224			2.	Refer to <u>AC 150/5340-1</u> for standard marking details for airfield roadways.
5225			3.	Do not route a VSR across a runway or through a runway safety area.
5226		6.5.2.2	De	esign Considerations.
5227			1.	Factors to consider when assessing the justification for a VSR include:
5228				a. Frequency of ground vehicle traffic in the non-movement
5229				b. Potential for conflict with parked or taxiing aircraft
5230 5231 5232			2.	Design width of VSR to accommodate two-way traffic for equipment and vehicles that operate at the airport. Typical VSR widths range from 20 to 25 feet (6 to 7.6 m).
5233			3.	Route VSRs in a manner that limits crossing of taxiways and taxilanes.
5234 5235 5236			4.	For locations that justify a need for ground service vehicles to traverse a similar path as a taxiway bridge, construct a separate bridge for vehicle use.
5237			5.	Locate airfield vehicular bridges outside of object free areas.
5238 5239			6.	See <u>Chapter 5</u> for guidance related to service roads located on the apron.

5240	6.5.3	ARFF Acc	eess Roads.
5241			ess roads provide ARFF vehicles unimpeded access to potential accident
5242 5243			certificated airport. These roads also facilitate access for mutual aid vehicles, es, and other emergency operations and equipment. ARFF access routes may
5243 5244			a combination of dedicated ARFF roads, taxiways, and runways.
J244		Collisist of	a combination of dedicated MXII Toads, taxiways, and fullways.
5245		6.5.3.1	Standards.
5246 5247			1. Provide a road surface suitable to permit emergency vehicle passage for all weather conditions that occur at the airport.
5248 5249			2. Design a route to provide unimpeded access to select points on the runway to achieve <u>Part 139</u> response times from the ARFF building.
5250 5251 5252			3. Provide ARFF access to the RSA and RPZ so that no area is more than 330 feet (100 m) from a prepared surface (i.e. roadway, taxiway or runway).
5253		6.5.3.2	Recommended Practices.
5254 5255 5256			1. Establish width of ARFF access road to provide safe passage of two- way traffic based on dimensions of equipment at the airport, with typical roadway widths ranging from 20 feet to 30 feet (6 m to 9 m).
5257 5258 5259			2. Provide sufficient radius curve to permit high center-of-gravity vehicles to navigate a turn at a high speed; use a typical maximum design speed of a fully loaded ARFF vehicle of 70 mph (113 kph).
5260		6.5.3.3	Design Considerations.
5261 5262			1. Evaluate how mutual-aid vehicles and other emergency vehicles will access the AOA and movement area in the event of an incident.
5263 5264 5265 5266			 VSRs may provide effective access for mutual-aid and other emergency vehicles; however, vehicle traffic precludes the use of VSRs as a primary ARFF access route in meeting <u>Part 139</u> response times.
5267 5268			3. Consider installing boat launch ramps at airports where the AOA is located immediately adjacent to a large body of water.
5269	6.5.4	Perimeter	Security Road.
5270		A Transpo	rtation Security Administration security vulnerability assessment may justify
5271			n of a perimeter security road to facilitate monitoring of the AOA fence line at
5272		a certificat	ed airport. See paragraph $\underline{6.8}$ for guidance on airport security programs.
5273		6.5.4.1	Standards.
5274			The following design criteria apply when the Transportation Security
5275			Administration determines a perimeter security road is necessary based on
5276			risk at the airport.
5277			1. Construct width of roadway to be 12 to 15 feet (3 to 5 m).

5278			2.	Construct roadway to be a well-graded, compacted gravel surfacing:
5279 5280				a. suitable for low volume traffic during all weather conditions at the airport.
5281 5282				b. conforming to local, county or state standards for aggregate surfaced roadways.
5283 5284			3.	Locate the roadway near the fence line to provide the vehicle operator a clear view of the AOA fence.
5285		6.5.4.2	De	sign Considerations.
5286 5287			1.	Consider paving those segments of the roadway that have a higher volume of traffic due to multiple purposes (e.g. vehicle service).
5288 5289 5290			2.	Consider the effects that erosion may have on maintaining the integrity of the AOA fence installation due to storm water runoff from the roadway.
5291	6.5.5	NAVAIDs	Acce	ess Roads.
5292 5293 5294 5295 5296 5297		etc.) are fix and object ensure prop	ked-by free a per op	s facilities (e.g. PAPI, glide slope, runway visual range, wind cones, y-function. This requires equipment to reside within or near safety areas areas of runways and taxiways. Access to these facilities is necessary to peration of the equipment. Responsibility for the road (i.e. construction, c.) is generally a function of who owns and operates the equipment or
5298		6.5.5.1	Sta	andards.
5299 5300			1.	Locate entrances to NAVAID access roads from a vehicle service road or a taxiway to avoid entering the runway environment.
5301 5302			2.	Where impractical to locate a NAVAID access road from other than the runway, provide paved access road per paragraph 6.5.3.
5303		6.5.5.2	Re	commended Practices.
5304			1.	Design NAVAID access road width as follows:
5305				a. Single Lane: 10 to 12 feet (3 to 3.7 m)
5306				b. Dual lane: 20 to 24 feet (6 to 7.3 m)
5307			2.	Provide well-graded, compacted gravel or crushed rock surfacing:
5308 5309				a. suitable for low volume traffic during all weather conditions at the airport.
5310 5311				b. conforming to local, county or state standards for aggregate surfaced roadways.
5312 5313				c. Refer to paragraph 6.5.3 for intersections of granular surfaces with runways, taxiway and aprons.

5314		6.5.5.3	Design Considerations.
5315 5316			1. Locate access roads to minimize interference with protected surfaces such as safety areas, object free areas, and obstacle free zones.
5317 5318			2. Consider parking areas and turnaround areas that are clear of safety areas, object free areas and obstacle free zones.
5319	6.6	Blast Fen	ces.
5320 5321 5322 5323 5324 5325 5326		deflecting noise asso personnel, and maner runway en	es substantially reduce or eliminate the damaging effects of jet blast by or dissipating wind forces. They may mitigate issues related to fumes and ciated with jet engine operation. Blast fences near apron areas protect equipment, and facilities from the jet blast of aircraft using nearby taxilanes avering into or out of parking positions. Blast fences may be necessary near ds, run-up pads, and the airport boundary to shield public roadways, and individuals located near the AOA boundary.
5327 5328 5329 5330 5331	6.6.1	properly v	n engineering analysis that considers all applicable factors to ensure the fence withstands the force of the exhaust velocities. Different blast fence types are ally available from various manufacturers. Factors influencing blast fence
5332 5333 5334 5335 5336 5337 5338		DistanGradirHeight	ft fleet e exhaust velocities ce to engine
5339 5340 5341	6.6.2		wingtip clearance standards during aircraft maneuvering near the blast fence. ast fences outside of the following surfaces:
5342 5343 5344 5345 5346		RSAROFATSATOFA	
5347 5348 5349 5350 5351	6.6.3	Design pla exhaust str 120 feet fr	rom Aircraft. accement of a blast fence relative to aircraft so that the centerline of the jet ream falls below the top of the fence. This will generally be between 60 to rom the jet engine. Maintain a minimum 50-foot clearance from the tail of the the front of the blast fence.

5352 5353 5354 5355 5356 5357	6.6.4	Structural Design. Design fence support elements to resist the exhaust forces of the critical aircraft. Refer to the aircraft manufacturer's manual for information on exhaust velocity contours. For locations where it is impractical to locate portions of the blast fence outside of an object free area, design the structure to fail mechanically by fracture or buckling when impacted by an aircraft. Refer to AC 150/5220-23 for additional information.	
5358	6.7	Buildings within AOA.	
5359	6.7.1	Building Restriction Line (BRL).	
5360 5361 5362 5363 5364 5365		The BRL is a line the airport establishes to indicate suitable locations for locating buildings and structures within the AOA, with appropriate consideration for the protection of aircraft operational surfaces. Structures located in close proximity to aircraft movement areas may result in operational restrictions and limitations on future expansion opportunities within the airside area of the airport (e.g. apron parking, proper taxiway to runway separations).	
5366		6.7.1.1 Criteria.	
5367		1. Identify a suitable BRL on the ALP.	
5368 5369		2. Establish the BRL to protect applicable operational surfaces to include:	
5370		a. Runway Protection Zones (RPZs)	
5371		b. Obstacle Free Zones (OFZs)	
5372		c. Object Free Areas (OFAs)	
5373		d. Runway Visibility Zone (RVZ)	
5374		e. NAVAID critical areas	
5375		f. TERPS surfaces	
5376		g. ATCT clear line of sight (LOS).	
5377 5378 5379 5380 5381 5382		6.7.1.2 Recommended Practice. In addition to the surfaces in paragraph <u>6.7.1.1</u> , establish the location of the BRL by ensuring an airport-established allowable structure height does not penetrate the transitional Part 77 imaginary surface. Typical structure heights for BRL establishment range from 25 feet (7.6 m) to 35 feet (10.5 m).	
5383	6.7.2	Standards for Buildings and Structures.	
5384 5385		The standards listed below apply to new development as it relates to paragraph $\underline{3}$, <i>Applicability</i> .	
5386 5387		1. Americans with Disabilities Act (ADA) – Comply with applicable ADA standards for accessible design per 28 CFR Part 36 and 49 USC § 47102(3)(F).	

5388		2. ARFF E	Building – Comply with standards of AC 150/5210-15.	
5389 5390 5391		governi	g Code – Comply with building code requirements as adopted by the local ng body; or in the absence of a formally adopted code, the current ional Building Code.	
5392 5393			ent Vault – Comply with standards of <u>AC 150/5340-30</u> which include ls from the National Electric Code.	
5394		5. Snow R	emoval Equipment Building – Comply with standards of AC 150/5220-18.	
5395		6. Termina	al Building – Comply with the standards of AC 150/5360-13.	
5396	6.8	Security of	Airports.	
5397 5398 5399 5400 5401 5402 5403		intentional of protecting the airport. The topography,	objective of airport security is to safeguard the AOA against acts, or unintentional, that harm or interrupt airport operations. This includes he safety of passengers, crew, ground personnel and general users of the risks to airport security vary between airports. Airport size, type, location, and activity are important factors that can affect the risk. Establishing the level of security at a given airport involves applying a risk-based analysis	
5404 5405 5406 5407		 Identify Implement	ng vulnerabilities ing threats enting measures and controls that mitigate risk ring implemented security measures	
5408 5409 5410 5411 5412	6.8.1	The Transportation 449.4 The	Transportation Security Administration. The Transportation Security Administration is responsible for security in all modes of transportation, including responsibilities for civil aviation security per 49 USC Chapter 449.4 The Transportation Security Administration regulations for airport security according at 49 CFR § 1542, Airport Security (§1542).	
5413 5414		6.8.1.1	Transportation Security Administration Regulations for Airport Security.	
5415		6.8.1.1.1	Commercial Service Airports.	
5416			Transportation Security Administration regulations for airport security	
5417			apply to airports with commercial service operations. Airports subject to	
5418			§1542 must adopt and implement a security program acceptable to the	
5419 5420			Transportation Security Administration. Key program elements maintaining security of the movement area, secured areas and security	
5421			identification area.	

 4 49 CFR \S 1502.1, Responsibilities of the Administrator.

6-12

5422		6.8.1.1.2	General Aviation Airports.
5423 5424 5425 5426 5427 5428			Currently, there are no regulations that establish security requirements for general aviation (GA) airports. For GA airports, the Transportation Security Administration has published <i>Security Guidelines for General Aviation Airport Operators and Uses</i> , which establishes voluntary guidelines and suggestions a GA operator may implement to address security at its airport.
5429	6.8.2	FAA Regul	ations for Airport Security.
5430 5431 5432 5433 5434		Part 139 air movement a	tions for airport security apply to airports operating under 14 CFR Part 139. Ports must provide safeguards that prevent unauthorized person entry to the area. This includes installation of fencing, provision of access controls and to the Transportation Security Administration approved airport security
5435	6.8.3	AOA Secur	ity Measures and Controls.
5436 5437 5438 5439 5440		for maintair risk assessn Transportat	ng guidelines represent basic measures and controls acceptable to the FAA ing the security of the AOA at a certificated airport. Conducting a security tent may support additional measures and controls, as approved by the on Security Administration Federal Security Director (FSD) that address to an airport.
5441		6.8.3.1	Fencing Standards.
5442 5443 5444			Basic chain link fence conforming to the standards of section F-162, Chain-Link Fence, of <u>AC 150/5370-10</u> and having the following characteristics:
5445			1. Minimum height of 8 feet (2.4 m) measured from grade consisting of:
5446			a. 7-feet (2.1 m) high chain link fabric.
5447 5448			b. 1-foot (0.3 m) high outrigger with 3-strand barbwire mounted at a 45-degree angle.
5449 5450			2. Fabric mesh consisting of 9-gauge galvanized wire in 2-inch (5 cm) mesh.
5451			3. No more than a 2-inch (5 cm) gap between bottom of fabric and grade.
5452			4. Prevent intrusion under the fence by:
5453 5454			 Securing bottom rail to concrete footing at mid-point of line posts, or
5455			b. Burying fabric a minimum of 12 inches (30.5 cm) below grade.
5456		6.8.3.2	Vehicle Barrier Standards.
5457 5458 5459			When required by a security risk assessment, construct vehicle barriers at locations on the AOA boundary found to have a threat of vehicle intrusion. Basic barrier characteristics include:

5460 5461		1. Barrier height ranging between 30 to 36 inches (70.2 to 91.4 cm) above grade.
5462		2. Barrier types:
5463		a. Reinforced concrete barrier
5464 5465		b. Steel bollards with minimum 6-inch (15.2 cm) diameter and schedule 40 pipe.
5466		c. Steel guardrail between 30 to 36 inches (70.2 to 91.4 cm) in height.
5467 5468		d. Steel guardrail consisting of 12-gauge W-beam and W6×9 steel posts at 6-foot 3-inch (1.9 m) spacing.
5469		6.8.3.3 Access Gate and Gate Operator Standards.
5470 5471 5472 5473		Comply with ASTM standard F-2200 for Class IV gate installation. Comply with UL 325 for Class IV gate operators. Position gate operators in a location that prevents tampering by individuals exterior to the fence line.
5474	6.8.4	Existing AOA Physical Barrier.
5475 5476 5477 5478 5479 5480		The criteria of paragraph <u>6.8.3</u> apply to new and replacement development projects. There is no obligation for an airport owner/operator with existing AOA physical barriers not meeting the basic features of paragraph <u>6.8.3</u> to take corrective action. However, the FAA expects any replacement security fence at a certificated airport to conform to the minimum criteria of paragraph <u>6.8.3</u> whenever a FSD approved security risk assessment determines:
5481 5482		 the existing AOA barrier, or portions thereof, present an unacceptable security risk; or,
5483 5484		2. the existing fence, or portions thereof, have met its useful life and can no longer function properly.
5485	6.9	Compass Calibration Pad.
5486 5487 5488 5489 5490 5491		A compass calibration pad is a paved area where aircraft position to calibrate the aircraft magnetic compass (see <u>Figure 6-2</u>). This allows the pilot to determine the deviation error in the magnetic compass. Pilots periodically check their magnetic compass to determine accuracy of readings. The compass calibration pad is not the only means to perform aircraft compass calibration. See <u>Appendix F</u> for guidance on compass calibration pad surveys.
5492	6.9.1	Compass Calibration Pad Location.
5493 5494 5495 5496		Site conditions and airport design criteria are key factors in determining a suitable location for a compass calibration pad. Conducting a magnetic survey establishes the suitability of a final location. Determine a tentative site by visual application of the criteria listed below and a thorough magnetic survey of the site(s).

5497	6.9.1.1	Check for locally generated or natural magnetic anomalies.
5498 5499		1. Note a site may be unsatisfactory even if it appears to meet all visually applied criteria regarding distances from structures, etc.
5500		2. Check location(s) for presence of industrial areas.
5501 5502		3. Conduct magnetic surveys at various times as needed to determine if the area experiences intermittent magnetic variations.
5503 5504 5505	6.9.1.2	The optimum site has a uniform magnetic variation or declination. Magnetic declination is the difference between magnetic north and true north.
5506 5507 5508	6.9.1.3	Perform preliminary magnetic surveys to determine the angular difference between true and magnetic north measured at any point does not differ from the angular difference measured at any other point:
5509 5510 5511		1. by more than one-half degree (30 minutes of arc) within a space between 2 feet and 6 feet (0.5 m and 2 m) above the grade elevation of the pad, and
5512 5513		2. over an area within a 250-foot (76 meters) radius from the center of the pad.
5514 5515 5516 5517 5518	6.9.1.4	Small anomalies may be acceptable if the magnetic surveys indicate no effect on any magnetic measurements on the paved portion of the compass calibration pad. Have the geophysicist, surveyor or engineer conducting the magnetic survey provide a compass rose report certifying the results and noting all anomalies.
5519	6.9.1.5	Compass Calibration Pad Location Standards.
5520		Locate the pad to meet the following criteria:
5521 5522 5523 5524		1. Center of pad is a minimum of 600 feet (183 meters) from magnetic objects such as large parking lots, busy roads, railroad tracks, high voltage electrical transmission lines or cables carrying direct current (either above or below ground).
5525 5526 5527 5528		2. Center of pad is a minimum of 300 feet (91 meters) from buildings, aircraft arresting gear, fuel lines, electrical or communication cable conduits when they contain magnetic (iron, steel, or ferrous) materials and from other aircraft.
5529 5530 5531		3. Center of pad is minimum of 150 feet (46 m) from runway and taxiway light bases, airfield signs, ducts, and grates for drainage if they contain iron, steel, or ferrous materials.
5532 5533		 Location of pad is clear of any critical area for electronic NAVAID facilities.

5534 5535			5.	Location of pad is clear of all airport design surfaces so aircraft using the pad do not penetrate the OFZ, safety areas, object free areas, etc.
5536	6.9.2	Compass C	Calibr	ration Pad Design and Construction Standards.
5537 5538				For a typical compass calibration pad configuration. Apply the following truction criteria to ensure the effectiveness of the calibration pad.
5539		6.9.2.1	M	aterial.
5540 5541			1.	Construct pad(s) using either non-reinforced concrete or asphalt pavement.
5542 5543			2.	Do not use magnetic materials, such as reinforcing steel or ferrous aggregate, in the construction of the calibration pad.
5544 5545			3.	Use dowels that are non-ferrous (e.g. aluminum, brass, bronze) or non-metallic (e.g. fiberglass).
5546 5547			4.	Use non-metallic or aluminum material for any drainage pipe within a 150-foot (46 m) radius of the center of the pad site.
5548 5549			5.	Do not use magnetic materials in the construction of any pavement within a 300-foot (91 m) radius of the center of the pad site.
5550		6.9.2.2	De	esign and Construction.
5551			1.	Size pad for the most demanding aircraft that will use the pad.
5552 5553			2.	Design the pavement to support the most demanding aircraft and/or maintenance equipment loading.
5554 5555			3.	Construct joint type and spacing in concrete pavement in accordance with FAA standards and paragraph <u>6.9.2.1</u> .
5556 5557			4.	Slope pavement to drain storm water from the center of pad to the edge of pavement.
5558 5559			5.	Refer to the applicable portions of <u>AC 150/5320-6</u> and <u>AC 150/5370-10</u> for pavement design and construction standards respectively.

Figure 6-2. Compass Calibration Pad

5566

Note 1: Diameter of calibration pad varies depending on requirements of user aircraft.

Note 2: The color of the radials is at the discretion of the airport operator provided there is adequate contrast with the pavement surface and the marking does not create pilot confusion with taxiway marking.

Note 3: Provide 1 ½ in (38 mm) drop off, plus or minus ½ inch (13 mm) to promote drainage off the pavement surface.

5568	6.10	Undergroui	nd Power, Control and Communications Cables.
5569 5570 5571 5572 5573		communicat complexity of Ownership of	ically have a network of underground cables providing power, control, ion and video functions that serve airfield facilities and equipment. The of the underground cable network varies by size and type of airport. of underground cables may involve the airport, Federal government, local atility companies. Typical airside facilities served by underground cables
5574 5575 5576 5577 5578 5579 5580		AirfieldNAVAIINAS surCommunWeatherAOA sec	taxiway edge lighting sign systems Os (e.g. approach lights, ILS, PAPIs, etc.) veillance (e.g. radar, ASDE-X, ASSC, multilateration, ADS-B) nication systems (e.g. RTR) systems (e.g. AWOS, LLWAS, RVR, etc.) curity controls (e.g. gate access controls, perimeter cameras, etc.) rea lighting
5582 5583 5584 5585 5586 5587 5588 5589	6.10.1	Failure to masituation that operations. It costly project practice redu By maintain owner can id	de Management Plan. The aintain accurate and current information on subsurface utilities can create a strincreases the risk of disruptions that may affect safe and efficient airport Discovery of project conflicts with existing underground cables can lead to set delays. Establishing an underground cable management plan is a best ucing the risk of unscheduled interruptions and disruptive project conflicts. The accurate and current information on underground cables, an airport lentify potential conflicts during the design phase rather than the
5590		construction	phase.
5590 5591		6.10.1.1	Recommended Practices.
5591 5592 5593			 Recommended Practices. 1. Maintain an information repository of all underground cables located on the airfield (e.g. design drawings, as-built drawings, GIS, asset
5591 5592 5593 5594			 Recommended Practices. Maintain an information repository of all underground cables located on the airfield (e.g. design drawings, as-built drawings, GIS, asset management software) as projects occur. Collect and maintain the following minimum information for each
5591 5592 5593 5594 5595 5596			 Recommended Practices. Maintain an information repository of all underground cables located on the airfield (e.g. design drawings, as-built drawings, GIS, asset management software) as projects occur. Collect and maintain the following minimum information for each underground cable:
5591 5592 5593 5594 5595 5596			 Recommended Practices. Maintain an information repository of all underground cables located on the airfield (e.g. design drawings, as-built drawings, GIS, asset management software) as projects occur. Collect and maintain the following minimum information for each underground cable: a. Owner
5591 5592 5593 5594 5595 5596 5597 5598			 Recommended Practices. Maintain an information repository of all underground cables located on the airfield (e.g. design drawings, as-built drawings, GIS, asset management software) as projects occur. Collect and maintain the following minimum information for each underground cable: Owner Servicing facility or equipment Type of cable (e.g. power, control, communication, fiber optic,
5591 5592 5593 5594 5595 5596 5597 5598 5599 5600			 Recommended Practices. Maintain an information repository of all underground cables located on the airfield (e.g. design drawings, as-built drawings, GIS, asset management software) as projects occur. Collect and maintain the following minimum information for each underground cable: Owner Servicing facility or equipment Type of cable (e.g. power, control, communication, fiber optic, etc.)
5591 5592 5593 5594 5595 5596 5597 5598 5599 5600			 Recommended Practices. Maintain an information repository of all underground cables located on the airfield (e.g. design drawings, as-built drawings, GIS, asset management software) as projects occur. Collect and maintain the following minimum information for each underground cable: Owner Servicing facility or equipment Type of cable (e.g. power, control, communication, fiber optic, etc.) Location (e.g. mapped points, geo-referenced, etc.)

5605 5606		3. Implement no-cost permitting process for all airside projects to collect information on underground cables and utilities prior to installation.
5607 5608		4. Collect and verify as-built information as construction projects are completed.
5609 5610		5. Refer to ACRP Synthesis 34, Subsurface Utility Engineering Information Management for Airports.
5611	6.10.2	Airport-Owned Underground Cables.
5612 5613		Consider the following when undertaking an airside project that installs or modifies underground cables:
5614		1. Collect and maintain information on underground cables per paragraph <u>6.10.1.1</u> .
5615 5616 5617		2. When practical and reasonable, install spare raceways in duct banks under airside pavements to preclude saw cutting of pavement for future airport development or utility expansion work.
5618 5619		3. Consider future airport development shown on the approved ALP in assessing future ductbank requirements.
5620 5621 5622		4. When installing new underground cables and utilities, consider pavement or foundation section depth of future airport facilities as shown on the approved ALP in order to avoid future conflicts.
5623 5624		5. The depth of underground cables can migrate in areas subject to repetitive freeze-thaw conditions.
5625		6. Integrate subsurface utility engineering into project design.
5626	6.10.3	FAA-Owned Underground Cable Systems.
5627 5628 5629 5630 5631 5632		FAA installs and maintains a network of underground power, control and communication cables that service communication, surveillance, NAVAIDs and weather facilities. See FAA specification FAA-C-1391, <i>Installation, Termination, Splicing, and Transient Protection of Underground Electrical Distribution System Power Cables.</i> Take actions during the design phase of airside development project to identify and avoid adversely affecting FAA-owned cables.
5633		6.10.3.1 ATO Coordination.
5634		As part of the preliminary design phase, contact the local FAA ATO
5635 5636		Technical Operations Organization for underground cable information specific to an airport.
5637		6.10.3.2 Cable Depths.
5638		FAA installs underground cable up to 600V a minimum of 24 inches
5639		below grade. For cable ducts under taxiway and runways, the depth
5640		increases to 48 inches or greater. Due to as-built drawings accuracy risks,
5641		the preferred method for positive identification of cable depths is by cable
5642		locators or by exposing existing cables using non-destructive methods
5643		(e.g. vacuum excavation).

5644		6.10.3.3	Cable Loop Systems.
5645			Order 6950.23 establishes FAA policy for installation of cable loop
5646			systems at select airports. Cable loops provide the benefits of redundancy
5647			to facilitate uninterrupted facility service. Because the location of cable
5648			loop segments occurs apart from the facility it serves, there is increased
5649			risk of cable cuts due to unawareness. As part of the design process for
5650			airfield development projects, contact the local FAA ATO Service Center
5651			to determine the presence of cable loop systems at an airport.
3001			to determine the presence of cable loop systems at an amport.
5652		6.10.3.4	Continuous Power Airports.
5653			Order 6030.20, <i>Electrical Power Policy</i> , establishes FAA policy for
5654			continuous power of select airport critical to NAS operations. This ensures
5655			continued operation of critical NAS facilities in the event of a power
5656			failure from a public utility company. Refer to Appendix A of FAA Order
5657			6030.20 for continuous power airport (CPA) runways. For development
5658			projects at a CPA, consider the risk of power disruption to the CPA
5659			runway as part of the design process.
3033			Tunway as part of the design process.
5660	6.11	CNSW and	ATC Facilities and Equipment.
5661		This section	presents information for Communications, Navigation, Surveillance and
5662		Weather (Cl	NSW) facilities and Air Traffic Control (ATC) facilities that contribute to
5663		safe airport	operations in the NAS. Figure 6-3 depicts the typical types and location of
5664		these faciliti	
5665	6.11.1	Purpose.	
5666		FAA owns,	operates and maintains the majority of CNSW and ATC facilities at an
5667		airport. Fede	eral requirements pertaining to non-Federal facilities are located at 14 CFR
5668		Part 171 and	l <u>FAA Order 6700.20</u> , Non-Federal Navigational Aids, Air Traffic Control
5669		Facilities, a	nd Automated Weather Systems. Use of the information in this section
5670		during airpo	ort planning and design will assist the airport with minimizing conflicts
5671		between futi	ure development and existing or future CNSW and ATC facilities.
5672	6.11.2		of Information.
5673			ation does not represent complete guidelines and standards for the siting and
5674			nt of CNSW or ATC facilities. Standards and requirements for facility
5675			stablishment are contained in the various FAA Orders referenced within this
5676		section.	
5677	6.11.3	FAA Owned	d Facilities Impacted by Airport Development.
	0.11.3		
5678			elopment can have an adverse effect on existing CNSW and ATC facilities.
5679			es unscheduled outages and the need to relocate an existing facility. Airports
5680			er, remove or relocate FAA owned equipment without approval from the
5681		FAA.	

Figure 6-3. Typical Communications, Navigation, Surveillance and Weather (CNSW)

5685 5686 5687 5688 5689 5690 5691 5692		6.11.3.1	Reimbursable Agreement. Airport development affecting FAA operations or FAA-owned facilities and equipment may require establishment of a reimbursable agreement for materials, supplies, equipment and services provided by the FAA for a Sponsor's proposed development. To limit the loss of operational service, provide at least three years advance notice to the FAA NAS Planning and Integration (NPI) Team responsible for the airport where the project is taking place.
5693	6.11.4	·	sility Criteria.
5694			V facility has specific criteria to allow the device to function properly. The
5695			cation of a facility relative to the runway/taxiway or airport varies by the
5696 5697			the facility. Consider the following factors during planning and design of lopment to minimize impacts to existing FAA facilities.
		-	
5698		6.11.4.1	Notification.
5699			Proponents of development on an airport must submit a Notice of
5700 5701			Proposed Construction or Alteration (FAA Form 7460-1) per 14 CFR Part 77. The FAA uses this information to evaluate the potential impact of any
5701			proposed construction near a FAA-owned facility.
		(11.40	
5703		6.11.4.2	Separation and Clearance.
5704 5705			In addition to the physical area and land necessary for a CNSW or ATC facility, each facility may require meeting specific separation and
5706			clearance criteria to function properly. The basis for the criteria may be
5707			visual (e.g. line of sight) or electronic (radio frequency (RF)). Visual aid
5708			facilities typically require an obstacle clearance surface to provide a clear
5709			line of site.
5710		6.11.4.3	Critical Areas.
5711			Some facilities have a defined critical area that require protection to
5712			ensure proper performance. Such areas may preclude the presence of
5713			objects that may induce electromagnetic interference (EMI). The size and
5714 5715			shape of a facility's critical areas vary by facility type. Some facilities require conformance to specific grading criteria.
0710			require comormance to specific grading effects.
5716	6.11.5	Jet Blast/Ex	<u>haust.</u>
5717			W facilities, monitoring devices, and equipment shelters at least 600 feet
5718 5710		, ,	m the source of any jet blast to minimize the accumulation of exhaust
5719		deposits on	antenias.
5720	6.11.6	Facilities an	d Equipment near Runways.
5721		•	ated near an active runway can present an increased risk to aircraft
5722		_	The FAA standards for RSAs and ROFAs recognize that certain equipment
5723 5724		18 fixed-by- properly.	function and are located within the limits of the RSA or ROFA to function
5124		property.	

5725 6.11.6.1 **Fixed-by-Function.**

5726 5727

5728

5729

5730

5731

5732

5733

FAA classifies certain CNSW equipment as being fixed-by-function. This means the safety benefit of the equipment residing in a RSA or OFA outweighs the potential risk of an aircraft striking the equipment. A fixed-by-function determination allows the equipment, or portions of the equipment, to reside within the RSA or ROFA. Table 6-1 identifies the CNSW equipment the FAA designates as fixed-by-function for location within a RSA or ROFA.

Table 6-1. Fixed-by-function Designation for CNSW Equipment

	Fixed-By-Function			
CNSW Equipment	In RSA	In ROFA	Associated Equipment	
ADS-B	No	No	No	
Airport Beacon	No	No	N/A	
ALS	Yes	Yes	No ¹	
ASDE-X or ASSC	No	No	N/A	
ASOS, AWOS	No	No	N/A	
ASR	No	No	N/A	
ATCT	No	No	N/A	
DME	No	No	No	
GS	No ²	No ^{2, 3}	No	
IM	Yes	Yes	Yes	
LDIN	Yes	Yes	No ¹	
LOC	No	No	No	
LLWAS	No	No	No	
MM	No	No	No	
NDB	No	No	N/A	
OM	No	No	No	
PRM	No	No	No	
REIL	Yes	Yes	No ¹	

	Fixed-By-Function			
CNSW Equipment	In RSA	In ROFA	Associated Equipment	
Runway Lights and Signs	Yes	Yes	No	
RTR	No	No	No	
RVR	No	Yes	Yes	
RWSL	Yes	Yes	No	
Taxiway Lights and Signs	Yes	Yes	No	
VOR/TACAN/VORTAC	No	No	N/A	
PAPI & VASI	Yes	Yes	No	
WCAM	No	No	No	
WEF	No	No	No	
Wind Cone	No	No	No	

Note 1: Flasher light power units (Individual Control Cabinets) are fixed-by-function.

Note 2: End Fire glideslopes are fixed-by-function in the RSA/ROFA.

Note 3: Space constraints may necessitate locating a Glide slope antenna within a ROFA. Evaluate on a case-by-case basis through an aeronautical study.

6.11.6.2 **Associated Equipment.**

Although a piece of equipment may have a fixed-by-function designation, it does not necessarily mean all components of the equipment can reside in the RSA or ROFA. The associated equipment shelters and power and control racks are not fixed-by-function. Locate such components outside RSAs and ROFAs in accordance with Table 6-1.

6.11.6.3 Frangibility.

5734

5735

5736

5737

5738

5739

5740 5741

5742

5743

5744

5745

5746 5747 Mount equipment located within an RSA on frangible couplings. These couplings have a point of frangibility on the mounting legs no higher than 3 inches (76 mm) above the ground designed to break away upon impact. This reduces the potential damage to aircraft inadvertently leaving the paved surface. The frangibility requirement is a standard for RSAs, whether or not the CNSW equipment is fixed-by-function. AC 150/5220-23 provides guidance on frangible connections.

Figure 6-4. Two Frangible Connections

6.11.6.4 Non-Standard Installations.

The FAA considers existing facilities and associated equipment residing within an RSA but not fixed-by-function or meeting frangibility requirements to be non-standard installations. The FAA expects the airport to develop plans to correct the non-standard installation by relocating the equipment as soon as practicable.

6.11.7 <u>Airport Traffic Control Tower (ATCT).</u>

The ATCT is a staffed facility that uses air/ground communications and other ATC systems to provide air traffic services both on the airport and for the surrounding airspace. The location of an ATCT gives controllers a clear line of sight to all surface movement areas, takeoff areas, and landing areas. Refer to FAA Order 6480.4 for FAA ATCT siting criteria.

6.11.7.1 **Key Factors for Airport Development.**

New airport development has potential to affect the operations of an existing ATCT. Key factors to consider when planning and designing any new airport development projects include:

- 1. Maintain an unobstructed line of sight from ATCT cab to all points on movement area pavement.
- 2. Maintain the minimum angle of incidence from the ATCT cab to all points on the movement area at 0.80 degrees.
- 3. Ensure new light sources (e.g. area lighting) do not obscure the controller's view of the movement area.

5772 6.11.8

5776

5777

5778

5779

5780

57815782

5783

5784

5785

5786

5787

6.11.8 Remote Transmitter/Receiver (RTR) and Remote Communications Outlet (RCO).

RTR and RCO are air-to-ground communications systems having transmitters and/or receivers allowing radio communications between the pilot and air traffic control. See Figure 6-5. See FAA Order JO 6580.3 for additional information.

6.11.8.1 **Design Considerations for Airport Development.**

Key factors to consider during planning and design of airport development projects include:

- 1. Maintaining unobstructed line-of-sight between communications towers, aircraft and ATCT.
- 2. Ensure development does not present a risk of electronic interference that distorts the RF signal or reduces receiver performance.

Figure 6-5. Remote Transmitter/Receiver (RTR) Communication Facility

5788

5789

5790

5791

5792

5793

5794

6.11.9 Airport Surveillance Radar (ASR).

ASR is a radar facility used to detect and display azimuth, range, and elevation of aircraft operating within terminal airspace. Figure 6-6 shows a typical ASR. Typical ASRs range from 17 to 77 feet (5 to 23.5 m) above ground level (AGL) with a standard antenna tower 24 feet \times 24 feet (7 m \times 7 m). See FAA Order 6310.6 for information on ASR siting criteria.

5795 6.11.9.1 **Key Factors for Airport Development.**Key factors to consider during planning a

Key factors to consider during planning and design of airport development projects include:

- 1. Locate buildings and other facilities at least 1,500 feet (457 m) from ASR antennas to avoid potential signal reflections.
- 2. Locate electronic equipment at least one-half mile (0.8 km) from ASR antennas.
- 3. Ensure trees and structures remain below the elevation of the ASR mezzanine level.
- 4. Watch for proposed development (e.g. wind turbines) in the airport vicinity that may cause potential reflectivity issues (resulting in false targets) or that otherwise affect the ASR's operation.

6.11.10 <u>Airport Surface Surveillance Capability (ASSC)/Airport Surface Detection Equipment Model X (ASDE-X).</u>

ASSC/ASDE-X systems improve surface surveillance and situational awareness in all kinds of weather. ASSC is similar to the Airport Surface Detection Equipment, Model X (ASDE-X) system deployed in the U.S. With ASCC/ASDE-X, controllers see aircraft and ground vehicles on the airport surface, and on approach and departure paths within a few miles of the airport, during periods of reduced visibility. The systems consists of several transmitters and receivers located near runways and taxiways.

Key Factors for Airport Development.

Key factors to consider during planning and design of airport development projects include:

5820 5821 5822	1.	Ensure proposed development does not affect the continuous line-of-sight between aircraft, surface vehicles and ASCC/ASDE-X equipment.
5823 5824	2.	Ensure proposed development does not cause relocation of remote units (multilateration) or create other signal or multipath constraints.
5825	6.11.11 Approach Light	ing System (ALS).
5826 5827 5828 5829 5830 5831	extended runwa towards the run operator, or by	ng systems are light configurations positioned symmetrically along the y centerline. They begin at the runway threshold and extend outwards way's approach area. The ALS control may be by the ATCT, the airport pilot-controlled lighting systems. An ALS often supplements electronic alting in lower visibility minimums. Guidance on ALSs is available in 6850.2.
5832	6.11.11.1 A	LS Configurations.
5833 5834		ne FAA uses many ALS configurations to meet visual requirements for ecision and non-precision approaches (NPAs).
5835 5836	1.	ALS with Sequenced Flashing Lights (ALSF, ALSF-1, or ALSF-2). See <u>Figure 6-7</u> .
5837 5838	2.	High intensity ALS required for CAT-II and CAT-III precision approaches. See <u>Figure 6-8</u> .
5839 5840 5841	3.	Medium Intensity ALS with Runway Alignment (MALSR) used for CAT-I precision approaches and special authorization CAT-II approaches. See <u>Figure 6-9</u> .

Figure 6-7. Approach Lighting System (ALS) with Sequenced Flashers II (ALSF-2)

Figure 6-8. Simplified Short Approach Light System with Runway Alignment (SSALR)

Figure 6-9. Medium Intensity Approach Lighting System (MALS) with Runway Alignment Indicator Lights (MALSR)

6.11.11.2 Medium Intensity Approach Lighting System (MALS).

- 1. Economy approach lighting aid that enhances visual recognition of runway end for non-precision instrument and visual approaches.
- 2. Simplified Short Approach Light System (SSALS) have the same configuration as a MALS but use high intensity lights.
- 3. See Figure 6-10.

Figure 6-10. MALS

5858

5859

5851 5852

5853

5854

5855

5856

6.11.11.3 Medium Intensity ALS with Sequenced Flashing Lights (MALSF).

1. Economy approach lighting aid that enhances visual recognition of

runway end for non-precision instrument and visual approaches.

2. Simplified Short Approach Light System with Sequenced Flashing

Lights (SSALF) have the same configuration as a MALSF but use

- 5860 5861
- 5862 5863
- 5864
- 5865

3. See Figure 6-11.

high intensity lights.

Figure 6-11. MALS with Sequenced Flashers (MALSF)

5867

5868

6.11.11.4 An Omnidirectional Approach Lighting System (ODALS).

5869 5870

5871 5872

5873 5874

- 1. Provides for circling, offset and straight-in visual guidance to non-precision runways.
- 2. Consists of seven (7) 360-degree flashing light stations that extend up to 1,500 feet (457 m) from the runway threshold.
- 3. Two of the lights positioned on either side of the runway threshold effectively function as Runway End Identifier Lighting (REIL).
- 4. See Figure 6-12.

Figure 6-12. Omnidirectional Airport Lighting System (ODALS)

5877

5878

5879

5880

5881

5882

5883

5884

5885

5886

5887

5888

5889

5890 5891

5892 5893

5894

5895

5896

5897

6.11.11.5 Land Requirements.

An ALS requires a site centered on the extended runway centerline that is 400 feet (122 m) wide, starts at the runway threshold, and extends 200 feet (61 m) beyond the outermost light of the ALS.

6.11.11.6 **Obstacle Clearance Requirements.**

A clear line of sight (LOS) is necessary between approaching aircraft and all lights in an ALS.

6.11.11.7 **Key Factors for Airport Development.**

Key factors to consider related to an ALS system during planning and design of airport development projects include:

- 1. Maintain the obstacle clearance surface, as applicable for each type of ALS facility, with no objects protruding through the approach light plane or the secondary plane.
- 2. Maintain approach light-lane clearance over highways, rail lines and public roadways as follows:
 - a. Highways -17 feet (5.1 m)
 - b. Rail lines 23 feet (7 m)
 - c. Public roadways and parking 15 feet (4.6 m)
- 3. Ensure that components of airport installed ALS systems meet obstacle clearance criteria per Chapter 3 and Chapter 4.

5898 5899		4. See FAA Order JO 6850.2 and AC 150/5340-30 for specific requirements for each ALS system as described in this paragraph.
5900	6.11.11.8	Approach Lead-In Lighting System (LDIN).
5901		LDINs consist of at least three flashing lights installed at or near ground
5902		level to define the desired course to an ALS or to a runway threshold. See
5903		<u>Figure 6-13</u> .

Figure 6-13. Lead-in Lighting System (LDIN)

5906		6.11.11.9	LDIN Configuration and Clearance for Line of Sight.
5907			Each LDIN installation is unique. LDIN serve to address problems related
5908			to the approach area associated with hazardous terrain, obstructions, noise
5909 5910			sensitive areas, etc. LDIN systems may be curved, straight, or a combination thereof, consisting of a grouping of flashing lights located on
5911			the desired approach path. The spacing between light groups is typically
5912			at 3,000-foot (914 m) intervals.
5913		6.11.11.10	Key Factors for Airport Development.
5914			1. Ensure development does not interfere with clear line of sight between
5915			approaching aircraft and the next light ahead of the aircraft.
5916			2. Maintain the minimum obstacle clearance.
5917	6.11.12	Runway En	d Identifier Lighting (REIL).
5918			sists of two synchronized flashing unidirectional or omnidirectional lights,
5919			side of the runway threshold (see <u>Figure 6-14</u>). The function of the REIL is
5920			apid and positive identification of the runway end, in particular for a runway
5921			by other ground lighting sources or lacking contrast with the surrounding
5922 5923			ditional guidance on REILs is available in FAA Order JO 6850.2 and AC
0923		<u>150/5340-30</u>	<u>J</u> .
5924		6.11.12.1	Key Factors for Airport Development.
5925			1. Maintain a clear line of sight to the REILS for approaching aircraft.
5926 5927			2. Verify separation distance compliance when constructing new taxiway pavement in proximity to runway end.

Figure 6-14. Runway End Identifier Lighting (REIL)

5929

5930

5931

5932

5933

5934

5935

5936

5937

5938

5939 5940

5941

59425943

5944 5945

5946

5947

5948

5949

6.11.13 Airport Rotating Beacons.

Airport rotating beacons indicate the location of an airport by projecting beams of light spaced 180 degrees apart. Airport rotating beacons are a requirement for all Part 139 airports (reference 14 CFR § 139.311). For all other airports, a rotating beacon is standard for any airport with runway edge lights. See AC 150/5340-30 for design and installation guidance.

6.11.13.1 Key Factors for Airport Development.

Key factors to consider during planning and design of airport development projects include:

- 1. New runway construction may necessitate relocation of an existing beacon in order to maintain a location within 5,000 feet (1524 m) of the runways.
- 2. Ensure that new installations do not interfere with pilot or ATCT controller visions.
- 3. Maintain the beam sweep, aimed 2 degrees or more above the horizon, from obstruction by any natural or manmade objects.

6.11.14 Precision Approach Path Indicator (PAPI).

A PAPI is a light array of equally spaced light units color-coded to provide a visual indication of an aircraft's vertical position relative to the glide path to a touchdown point on the runway. PAPIs are a type of VGSI that assists pilots with maintaining a

5950 5951		e over objects. See FAA Order JO 6850.2 and AC 150/5340-30 for design tion guidance.
5952	6.11.14.1	Application.
5953 5954 5955		1. A 2-box PAPI system is suitable for visual and non-precision runways with runway edge lights; or when obstacle mitigation is necessary in the runway approach.
5956 5957		2. A 4-box PAPI is suitable for <u>Part 139</u> runways and runways serving jet aircraft operations.
5958	6.11.14.2	Key Factors for Airport Development.
5959 5960		Key factors to consider during planning and design of airport development projects include:
5961		1. Maintain the obstacle clearance surface (OCS) clear of penetrating

objects.

1. Maintain the obstacle clearance surface (OCS) clear of penetrating

- 2. Assess the effect of any change to the runway threshold location on:
 - a. the minimum threshold Crossing Height (TCH).
 - b. The PAPI runway reference point relative to an existing Glide Slope runway reference point.

Figure 6-15. 4-Unit Precision Approach Path Indicator (PAPI)

5962

5963

5964

5965

5966

6.11.15 <u>Instrument Landing System (ILS).</u>

5969

5970

5971

5972

5973

5974

5975

5976

5977

The ILS provides pilots with electronic guidance for aircraft alignment, descent gradient, and position for landing safely under conditions of reduced ceilings and visibility. An ILS uses a line-of-sight RF signal path from the LOC antenna, marker beacons and GS antenna to provide horizontal and vertical guidance to pilots. The FAA owns and operates the majority of ILS systems in the NAS. FAA Order 6750.16 provides guidance on siting ILS components.

Figure 6-16. Instrument Landing System (ILS) Localizer (LOC) Siting and Critical Area

5978 5979 5980

Note 1: Additional critical area when back course localizer is available.

Note 2: Dimension apply when aircraft length is equal to or less than 135'.

5981	6.11.15.1	Ke	y Factors for Airport Development.
5982 5983			y factors to consider during planning and design of airport development bjects include:
5984 5985 5986 5987		1.	Ensuring critical areas remain clear of signal interference sources such as power lines, fences, buildings, dense or tall vegetation, aircraft surface operations, ground vehicles, etc., that could adversely affect ILS system performance.
5988 5989		2.	Consider the potential impacts to ILS components in the event of a change in runway length or runway threshold location.
5990	6.11.16 Localizer (L	OC)	Antenna.
5991	The LOC sig	gnal	provides lateral course guidance allowing a pilot to maintain the
5992	aircraft's po	sitio	n relative to the runway's extended centerline. The LOC antenna array
5993	is located be	yon	d the RSA typically on the extended runway centerline. Depending on
5994 5995			RSA, the distance of the antenna array from the stop end of the runway 600 to 2,000 feet (183 to 610 m). See <u>Figure 6-17</u> .
5996	6.11.16.1	Ke	ey Factors for Airport Development.
5997 5998			y factors to consider during planning and design of airport development bjects include:
5999		1.	Maintain the critical area clear of objects.
6000 6001		2.	Maintain the longitudinal grade between the antenna array and runway end clear of surface irregularities similar to RSA grading standards.
6002 6003		3.	Maintain -0.5 percent to -3.0 percent symmetrical transverse grades from centerline to outed edges of the critical area.
6004 6005		4.	Assess the effect relocation of a runway end (near or far end) has on localizer performance.

localizer ground-check points.

Figure 6-17. LOC 8-Antenna Array

5. Assess the effect proposed development may have on existing

6006

6007

6.11.17 Glideslope (GS) Antenna.

The GS signal provides vertical decent guidance allowing a pilot to land at a designated point on the runway. The GS is located along the side of the runway, optimally outside of the ROFA limits. The desired threshold crossing height and runway slope control the location of the GS antenna from the runway threshold. See <u>Figure 6-18</u> for the GS critical area. The GS equipment shelter is located behind the antenna and a minimum of 400 feet (122 m) from the runway centerline.

6.11.17.1 Key Factors for Airport Development.

Key factors to consider during planning and design of airport development projects include:

- 1. Ensure development does not alter the terrain within the GS critical area beyond standard grading tolerances.
- 2. Ensure development does not create any signal interference sources (e.g. buildings, power lines, surface vehicles, aircraft, etc.) adversely affecting GS performance.
- 3. In the event of a change to the runway threshold location, verify the effect the new location will have on GS performance with respect to touchdown point, TCH and PAPI runway point of intersection.

Figure 6-18. Glideslope (GS) Siting and Critical Area

Figure 6-19. GS Antenna and Equipment Shelter

6031

6032

6033

6034

6035

6036 6037

6038

6039

6040

6041

6042

6043

6.11.18 Distance Measuring Equipment (DME).

A DME provides pilots with a slant range measurement of distance to the runway in nautical miles. The DME is usually co-located with the LOC when used as an ancillary aid of the ILS. DME can also serve as an alternate position, navigation, timing service for aircraft in the event of a GPS outage. The FAA typically owns and operates DME equipment (see <u>Figure 6-20</u>). Refer to FAA <u>Order 6780.5</u> for design and installation guidance on DME installations. ATO requirements for DME clearance are expected in late 2019.

6.11.18.1 **Key Factor for Airport Development.**

Ensure new airport development does not introduce electromagnetic interference sources that may degrade performance of the DME signal.

Figure 6-20. Distance Measuring Equipment (DME) Antenna

6.11.19 Runway Visual Range (RVR).

RVR measures the atmospheric transmissivity along runways and translates this visibility value to the air traffic user. RVRs support increased precision takeoff and landing capacity per the authorized ILS minimums. RVR visibility readings assist ATCT controllers when issuing control instructions and to avoid ground operations that may interfere with ILS critical areas. See Figure 6-21 and FAA Order 6560.10.

Figure 6-21. Touchdown Runway Visual Range (RVR)

6052

6053

6054 6055

6045

6046

6047

6048

6049

6050

6051

6.11.19.1 **Key Factors for Airport Development.**

Key factors to consider during planning and design of airport development projects include:

1.	In the event of a change in runway length, runway operations, or
	runway threshold location, verify the effect of the change on the
	proper location(s) and functioning of all RVR units.

2. Consider potential for RVR sharing in the event of construction of a new adjacent runway.

6.11.20 Very High Frequency Omnidirectional Range (VOR).

VORs are a ground based navigation system that transmit RF signals that allow a pilot to establish course heading. See <u>Figure 6-22</u> and <u>Figure 6-23</u>. The VOR Minimum Operational Network provides a conventional navigation backup service in the event of a loss of Global Positioning System (GPS) signal. The Minimum Operational Network enables pilots to revert from PBN to conventional navigation for approach, terminal and en route operations. The Minimum Operational Network also allows aircraft to use ILS or VOR approach procedures without the necessity of GPS, DME, automatic direction finding, or surveillance. See FAA Order 6820.10.

Figure 6-22. Enroute VHF Omnidirectional Range (VOR) Facility

Figure 6-23. TVOR Installation

6075

6076

6077

6078

6079

6080

6081

6082 6083

6084

6085

6086

6087

6088

6089

6090

6091

6092

Note: See FAA Order 6820.10 for VOR siting details.

6.11.20.1 Key Factors for Airport Development.

Key factors to consider during planning and design of airport development projects include:

- 1. Ensure development does not create signal interference sources (e.g. buildings, power lines, surface vehicles, aircraft, etc.) that can adversely affect VOR performance.
- 2. In the event of construction of new runways or taxiways, comply with Lateral offsets from runways and taxiways to ensure proper VOR performance.

6.11.21 Non-Directional Beacon (NDB).

A non-directional beacon is a radio beacon that aids the pilot of an aircraft equipped with direction finding equipment. NDBs also serve as a compass locator for the outer marker of an ILS. See Figure 6-24.

6.11.21.1 Key Factors for Airport Development.

Key factors to consider during planning and design of airport development projects include:

1. Ensure development does not establish sources of electromagnetic interference that degrades the NDB performance.

6095

2. Use caution when grading near an NDB facility as subsurface ground radials can extend outward from the antenna a distance of 40 feet.

Figure 6-24. Non-Directional Beacon (NDB) Facility

6096

6097

6098

6099

6100

6101

6102

6103 6104

6105

6106

6107

6108

6109

6110

6.11.22 <u>Segmented Circles and Wind C</u>ones.

A wind cone visually indicates prevailing wind direction at a particular location on an airfield or heliport. The segmented circle provides visual indication of current airport operations such as active landing direction and traffic patterns. See <u>AC 150/5340-5</u> for guidance on segmented circles. See AC 150/5340-30 for guidance on wind cones.

6.11.22.1 **Key Factors for Airport Development.**

Key factors to consider during planning and design of airport development projects include:

- 1. In the event of a change in runway length or runway threshold relocations, verify the proper location(s) of segmented circles and wind cones per the standard.
- 2. Evaluate the need for a supplemental wind cone for both landing and takeoff operations in the event of a runway extension.
- 3. Ensure adequate wingtip clearance to existing wind cone assemblies when constructing new parallel taxiway.

6112	6.11.23	Automated Surface Observing System (ASOS) and Automated Weather Observing			
6113		System (AWOS	<u>S).</u>		
6114		An ASOS and A	AWOS are multi-sensor climate recording instruments that measure		
6115		cloud cover and ceiling; visibility; wind speed and direction; temperature; dew point;			
6116		precipitation accumulation; icing (freezing rain); and sea level pressure for altimeter			
6117		setting. See <u>Figure 6-25</u> . Some configurations may also detect cloud-to-ground			
6118		lightning. ASOS/AWOS facilities are often co-located with glide slopes. Refer to FAA			
6119		Order 6560.20 and AC 150/5220-16 for additional information.			
6120		6.11.23.1 K	ey Factors for Airport Development.		
6121		K	ey factors to consider during planning and design of airport development		
6122		pr	rojects include:		
6123		1.	Airport development or changes in runway category changes (e.g.		
6124			visual/non-precision or precision) may adversely affect the proper		
6125			location of the ASOS/AWOS relative to the runway.		
6126		2.	New runway and taxiway development may result in the existing		
6127			ASOS/AWOS facilities violating object free areas.		

Figure 6-25. Automated Surface Observing System (ASOS) Weather Sensors Suite

incorrect sensor readings (e.g. wind speed sensor).

3. Proposed development may create conditions that cause false or

6128

6129

6.11.24 Weather Camera (WCAM).

A WCAM provides aircraft with near real-time photographical weather images via the Hypertext Transfer Protocol (HTTP). These cameras are common in the western region of the United States and specifically in Alaska where rapid changes in weather conditions require remote weather monitoring equipment. See Figure 6-26.

6.11.24.1 Key Factors for Airport Development.

Proposed airport development may adversely affect the camera's visual line of sight.

Figure 6-26. Weather Camera (WCAM) Pole

6141

6142

6143 6144

6145

6146

6147

6132

6133

6134

6135

6136

61376138

6139

6140

6.11.25 Wind Equipment F-400 (WEF)/Wind Measuring Equipment (WME).

WEFs and WME measure wind speed and direction for areas near runways. See <u>Figure 6-27</u>. These systems feed wind data to air traffic control facilities and automated broadcast systems. A typical WEF pole is 30 feet (9 m) tall and is located away from structures that may cause artificial wind profiles. See FAA <u>Order 6560.20</u> for additional information.

6.11.25.1 **Key Factors for Airport Development.**

Airport development near the facility may create conditions that cause inaccurate wind readings.

Figure 6-27. Weather Equipment Sensor Pole

6152

6153

6154

6155

6156

6157

6158

6159

6160 6161

6162

6148

6149

6150

6151

6.11.26 <u>Low Level Windshear Alert System (LLWAS).</u>

LLWAS measures wind speed and direction at remote sensor station sites situated around an airport. See <u>Figure 6-28</u>. Equipped airports may have as few as 6 or as many as 12 remote anemometer stations. The system transmits remote sensor data to a master station and generates warnings upon detecting windshear or microburst conditions. Refer to FAA Order 6560.21 for LLWAS siting guidelines.

6.11.26.1 **Key Factors for Airport Development.**

Airport development (e.g. buildings, structures, and other man-made features) may cause conditions that alter wind speed or direction in the vicinity of the anemometer stations.

Figure 6-28. Low Level Windshear Alert System (LLWAS) Sensor Pole

6.11.27 Runway Status Lights (RWSL).

RWSL are a fully automated system providing runway status information to pilots and surface vehicle operators to indicate when it is unsafe to enter, cross, or begin takeoff on a runway. RWSL are suitable only at airports with ASDE-X or ASSC, which are necessary to trigger the safety logic that activates RWSL. The RWSL system processes information from surveillance systems and activates Runway Entrance Lights (REL) and Takeoff Hold Lights (THL) along with the motion and velocity of the detected traffic. The RWSL system provides lights on runways and taxiways, increasing a pilot's situational awareness and reducing the risk of runway incursions.

6.11.27.1 **Key Factors for Airport Development.**

Airport development may adversely affect circuitry and functioning of the RWSL components.

6.11.28 Automated Dependent Surveillance Broadcast (ADS-B) Ground Station.

Automatic dependent surveillance—broadcast (ADS-B) is a NextGen surveillance technology that relies on satellites and a network of ground station transceivers rather than radar to accurately observe and track aircraft. Aircraft equipped with an ADS-B

6181 6182 6183	call sign th	itter send their position, altitude, heading, ground speed, vertical speed and rough the data communications network to air traffic control facilities. Pilots ave the capability to receive air traffic information and other advisories.
6184	6.11.28.1	Key Factors for Airport Development.
6185 6186		Key factors to consider during planning and design of airport development projects include:
6187 6188		1. Development may introduce RF interfering sources that can affect performance of the ground station.
6189		2. Development may adversely affect line of sight to airborne aircraft.
6190 6191		3. Be aware of underground communications cables when trenching in the vicinity of an ADS-B ground station.

Figure 6-29. Automated Dependent Surveillance Broadcast (ADS-B) Ground Station

Page Intentionally Blank

APPENDIX A. AIRCRAFT CHARACTERISTICS

A.1 Basic Aircraft Characteristics.

7/2/2020

A.1.1 This appendix provides basic aircraft characteristics for common aircraft as needed to perform such design functions as taxiway fillet layout and taxiway to taxilane separation requirements. The best manufacturers' information available at the time of issuance of this AC is available online in the Aircraft Characteristic Database (see paragraph A.3.1).

Note: This data does not include all aircraft or aircraft versions. The FAA does not guarantee the accuracy of the data values. Consult the manufacturer's technical specifications if there is a question on a specific aircraft.

A.1.2 In accordance with the cockpit over centerline design method, the Cockpit to Main Gear (CMG) dimension will be used in lieu of wheelbase for aircraft (typically larger) where the cockpit is located forward of the nose gear. For aircraft with the cockpit located aft of the nose gear, use the wheelbase in lieu of CMG to determine the Taxiway Design Group (TDG). Refer to Figure A-1 and Figure A-2. The aircraft characteristics database will continue to be updated periodically as new aircraft are certified and as more complete information becomes available for existing aircraft.

Note: Wingspan includes extent of winglets.

7/2/2020

6216

Figure A-2. Key Dimensions – Small Aircraft

6217 6218

6219

6220

6221

6222

6223

6224

6225

6226

6228

6229

6230

6231

6232

6233

Note: Wingspan includes extent of winglets.

Sources of the information provide in this appendix include aircraft manufacturers' websites and various databases:

- FAA Aircraft Characteristics Database: http://www.faa.gov/airports/engineering/aircraft_char_database/
- Eurocontrol Aircraft Performance Database
- Airbus Airplane Characteristics for Airport Planning
- Boeing Airplane Characteristics for Airport Planning
- Embraer Aircraft Characteristics for Airport Planning

6227 A.2 Background.

- A.2.1 Aircraft physical characteristics have operational and economic significance affecting an airport's design, development, and operation. They influence the design aspects of runways, taxiways, ramps, aprons, servicing facilities, gates, and life safety facilities. Their consideration when planning a new airport or improving existing airport facilities maximizes facility utilization and safety. Anticipate growth in air traffic and the effects of near future model aircraft operating weights and physical dimensions.
- A.2.2 Military aircraft frequently operate at civil airports. Meet the physical characteristics for military aircraft at joint-use airports. Therefore, consider routine military operations

6238

6239

6240

6241

6242

6243

6244

6245

6246

6247

6248

6249

such as medical evacuation, strategic deployment and dispersal, and Reserve and National Guard training missions during airport facility design.

A.2.3 Aircraft with folding wingtip technology occupy two different ADGs depending on the status of the wingtips. Folded wingtips allow aircraft with this technology to access parts of the airport with a smaller critical ADG than with the wingtips extended, without a need for operational mitigations. See <u>Figure A-3</u>.

Figure A-3. Folding Wingtips

A.3 Aircraft Arranged by Aircraft Manufacturer, and Runway Design Code (RDC).

A.3.1 <u>Aircraft Characteristics Database.</u>

Aircraft characteristics guides (sometimes known as Airport Planning Manuals, or APMs) provide relevant information and are available from aircraft manufacturers. The FAA's Aircraft Characteristics Database is located at http://www.faa.gov/airports/engineering/aircraft_char_database/.

Page Intentionally Blank

7/2/2020

APPENDIX B. WIND ANALYSIS

6251

6287

B.1 Objective. 6252 This appendix provides guidance on the basics of wind coverage, allowable crosswind 6253 components to aid in runway orientation, wind data sources, and methods of analyzing 6254 wind data. Accurate analysis of the wind coverage adds substantially to the safety and 6255 utility of an airport. Airport planners and designers conduct an accurate analysis of wind 6256 to determine primary runway orientation and coverage, and if a crosswind runway is 6257 necessary at an airport. 6258 6259 B.1.1 Wind conditions affect all aircraft to some degree. Generally, wind affects small aircraft to a greater degree than large aircraft having larger rudders. Adverse crosswind 6260 conditions are often a contributing factor in small aircraft accidents. During wind 6261 6262 conditions exceeding the allowable crosswind component for an aircraft type (or the pilot's skill level), during approach the pilot may divert to another airport in the interest 6263 of maintaining flight safety. If departing, the pilot may elect to wait until more 6264 favorable conditions occur. 6265 B.2 Coverage and Orientation of Runways. 6266 Wind coverage is the percent of time crosswind components are below an acceptable 6267 velocity. Normally the best runway orientation, based on wind, is the one providing the 6268 greatest wind coverage with the minimum crosswind components. 6269 6270 B.2.1 The desirable wind coverage for an airport is 95 percent of time based on the total numbers of weather observations during the record period of at least 10 consecutive 6271 years. Normally, use the all-weather winds to assess overall wind coverage at an 6272 6273 airport. If wind coverage on the primary runway alone is less than 95 percent for an RDC with regular use, a crosswind runway may be justified to achieve the desired 95 6274 6275 percent wind coverage, provided both runways would independently have regular use of 6276 the applicable critical aircraft. A crosswind runway is not justified if the aircraft 6277 effected by the crosswind component does not meet the criteria for regular use. B.2.2 If the primary runway orientation provides less than 95 percent wind coverage, evaluate 6278 the need for a crosswind runway. 6279 B.2.3 When analyzing wind data, consider: 6280 6281 B.2.3.1 Operationally weight the wind data to reflect the shift in use periods at airports where operations are predominantly seasonal or if operations 6282 decline substantively after dark. Only use operational weighting if there 6283 6284 are significant variations in operational levels during the applicable conditions. Note that except for the above, FAA does not consider 6285 shorter-term, seasonal variations in wind coverage as a rationale for a 6286

crosswind runway.

6288		B.2.3.2	For locations that justify a crosswind runway for an RDC with regular use
6289			but provision of a crosswind is impractical or cost prohibitive, it is
6290			acceptable to increase the width of the primary runway to the next
6291			standard width in lieu of providing a crosswind runway. The greater
6292			width allows for better operational tolerance to crosswinds. However, if
6293			the existing primary runway is already wider than what is necessary for
6294			the RDC with crosswind constraints, a further increase in width to the
6295			primary runway is unwarranted.
6296			Example: Consider an airport with a primary B-II runway with a width of
6297			75 feet and less than 95 percent wind coverage for the B-II RDC. If it is
6298			impractical to provide a crosswind runway, it is acceptable to increase the
6299			width of the primary from 75 feet to 100 feet as an alternate means of
6300			meeting crosswind needs. However, if the RDC (with regular use) needing
6301			a crosswind is an A-I aircraft, which has a standard runway width of 60
6302			feet, the existing 75-foot primary runway is already sufficiently wide for
6303			crosswind purposes. No further increase in width is justified.
6304		B.2.3.3	Analyses will normally consider all weather and IMC wind conditions, but
6305			supplemented with VMC, Category II/III, and other specific conditions as
6306			needed. For example, the IMC wind analysis may help with identifying
6307			the best runway end for an IFP. The FAA does not consider other
6308			conditions (such as gusts) in reviewing wind coverage.
6309		B.2.3.4	FAA recommends a wind coverage of 95 percent. Rarely do a primary
6310			and crosswind runway (if provided) yield a wind coverage of 100 percent.
6311			Having wind coverage of less than 100 percent is not a deficiency on the
6312			part of an airport.
6313	B.3	Allowable (Crosswind Components.
6314		See Table B	-1 for the allowable crosswind component(s) of each Runway Design Code
6315		(RDC) perce	entage of wind coverage determination. Note that individual aircraft types
6316		may have cr	cosswind components differing from the values indicated in <u>Table B-1</u> .
6317		However, us	se the indicated crosswind component by RDC where the maximum
6318		crosswind co	omponent of the critical aircraft is less than the allowable crosswind
6319		component l	by RDC.

6321

6322

6323

6324

6325

6326

6327

6328

Table B-1. Allowable Crosswind Component per Runway Design Code (RDC)

RDC	Allowable Crosswind Component
A-I and B-I *	10.5 knots
A-II and B-II	13 knots
A-III, B-III, C-I through D-III D-I through D-III	16 knots
A-IV and B-IV, C-IV through C-VI, D-IV through D-VI	20 knots
E-I through E-VI	20 knots

Note: * Includes A-I and B-I small aircraft.

B.3.1 <u>Crosswind Components.</u>

The crosswind component of wind direction and velocity is the resultant vector acting at a right angle to the runway. It is equal to the wind velocity multiplied by the trigonometric sine of the angle between the wind direction and the runway direction. Solve the wind vector triangles graphically as shown in <u>Figure B-1</u> to determine the headwind and tailwind component for different combinations of wind velocities and directions.

Figure B-1. Wind Vector Diagram

6330 6331 6332

Note: Example: Wind speed 20 knots angle between runway and direction of wind – 60° crosswind component – 17 knots. Headwind component – 10 knots.

7/2/2020

Wind Data Sources. **B.4** 6333 1. Use the latest, most reliable wind information to carry out a wind analysis. Wind 6334 observations recorded on the airfield are more suitable than offsite observations. 6335 a. The FAA recommends a data period covering at least the last 10 consecutive 6336 years of wind observations. Calm wind conditions are always included in the 6337 wind data. 6338 b. Use up to 30 years of consecutive data if needed to assess long-term trends in 6339 weather; a 10-year sample of data is insufficient for use in trend analysis (i.e. to 6340 asses if winds are shifting with time). 6341 6342 2. Records of lesser duration may be acceptable on a case-by-case basis, but this requires approval by the FAA Airports Region/District Office prior to proceeding. 6343 6344 3. Wind data of recent vintage (newest observations are less than five years) are acceptable for analysis purposes. 6345 B.4.1 National Climatic Data Center. 6346 6347 Wind information is available from the National Oceanic and Atmospheric Administration, National Climatic Data Center (NCDC). NCDC has long-term 6348 repositories of the weather data collected at most US airports. The hourly data is 6349 available at the following website: https://www1.ncdc.noaa.gov/pub/data/noaa/. 6350 NCDC data is also available via the FAA ADIP website, as described in paragraph 6351 B.5.1. 6352 Note: NCDC wind directions based on true north. The magnetic declination for the 6353 airport determines the magnetic-based runway headings. 6354 B.4.2 6355 Data Not Available. B.4.2.1 When NCDC or local AWOS data is not available for the site, develop 6356 composite wind data using wind information obtained from two or more 6357 nearby recording stations. However, exercise caution because the 6358 composite data may have limited value if there are significant changes in 6359 the topography (such as hills/mountains, bodies of water, ground cover, 6360 etc.) between the sites. Augment limited records with personal 6361 observations (wind-bent trees, interviews with the local populace, etc.) to 6362 determine if a discernible wind pattern can be established. 6363 B.4.2.2 Obtain onsite wind observations when there is a question on the reliability 6364 of or lack of wind data. The FAA recommends at least a one-year 6365 monitoring period to produce reliable data and account for daily wind 6366 6367 fluctuations and seasonal changes at the site. Acquire adequate wind data before proceeding with airport development. 6368

B.5 **Analyzing Wind Data.** 6369 6370 The most common wind analysis procedure uses a computer program to assess wind coverage, as discussed in paragraphs B.5.1 and B.5.3. In addition, provide a scaled 6371 graphical presentation of the wind information for the Airport Layout Plan (ALP) per 6372 6373 paragraph B.5.2. Analyses normally consider all weather and IMC wind conditions, and supplemented with VMC, Category II/III, and other specific conditions as needed. 6374 Standard Wind Analysis Tool. B.5.1 6375 The Standard Wind Analysis Tool is on the FAA's ADIP website 6376 https://adip.faa.gov/agis/public/#/public. The Standard Wind Analysis tool performs 6377 the wind analysis specified in this AC and stores the uploaded data and calculated 6378 6379 results to a text file (*.TBW), an AutoCAD Drawing Interchange file (*.DXF), or a scalable vector graphics file (*.SVG). Additionally, the data and results display in a 6380 browser window as a report or the traditional Windrose graphic. This tool requires the 6381 wind data files in FAA data format. Generate wind data files by selecting the Windrose 6382 File Generator as a tool option on the ADIP website. 6383 The Windrose File Generator: B.5.1.1 6384 1. Connects to the Integrated Surface Hourly/Integrated Surface Data 6385 (ISH/ISD) inventory from the National Climate Data Center (NCDC). 6386 6387 2. Compiles and summarizes the latest 10 years of wind observations by hours from the recording station associated with the airport location ID 6388 (ICAO Identifier). 6389 3. Produces three different types of wind data files (ALL WEATHER, 6390 IFR, and VFR) in the standard tool format with the recording station 6391 number as a part of the filename and PRN as its file type. 6392 B.5.1.2 Generate and download these wind summary files and later upload them 6393 into the wind table for each particular type of windrose analysis. 6394 B.5.1.3 For background information on the NCDC's ISH/ISD wind data 6395 inventory, visit the NCDC web site. If the PRN files are in the standard 6396 tool format, use the Upload Wind Data File link to load wind data into the 6397 standard tool for analysis. 6398 B.5.2 Windrose Graphic. 6399 The standard graphical windrose (Figure B-2) is a series of concentric circles cut by 6400 radial lines. The perimeter of each concentric circle represents the division between 6401 6402 successive wind speed groupings (Figure B-2). Radial lines divide the windrose into 36 wind sectors, the area of each sector centered on the reported wind direction. Figure B-3 6403 is an example of a typical wind summary. 6404 B.5.2.1 **Plotting Wind Data.** 6405

6406 6407

Each segment of the windrose represents a wind direction and speed

grouping, based on the number of hourly observations. Within each

6408 6409 6410 6411 6412			segment, the recorded directions and speeds of the wind summary convert to a percentage of the total recorded observations. Figure B-4 illustrates a completed windrose analysis based on data from Figure B-3. Plus (+) symbols indicate direction and speed combinations occurring less than one-tenth of one percent of the time.				
6413		B.5.2.2	Runway Wind Box.				
6414			A runway wind box is a useful aid to visualize the windrose analysis				
6415			(Figure B-4). The wind box is a series of three parallel lines drawn to the				
6416			same scale as the windrose. The allowable crosswind component for the				
6417			runway as determined by the RDC establishes the physical distance				
6418			between the outer parallel lines and the centerline. Draw the allowable				
6419			crosswind component lines directly on the windrose when analyzing the				
6420			wind coverage for a runway orientation.				
6421	B.5.3	Spreadsheet	<u>s.</u>				
6422		For analyses	s purposes, wind coverage calculations use spreadsheets that calculate the				
6423		•	omponent of each hourly wind observation. Such calculations are accurate				
6424		and facilitate	e analysis of specific conditions, such as IMC or Cat II/III weather, or				
6425		seasonal or o	seasonal or daytime/nighttime wind coverage as discussed in paragraph <u>B.2</u> . When				
6426		requested fi	urnish calculations to the FAA for validation.				
0 120		requested, re	irmsii calculations to the PAA for vandation.				
6427	B.5.4	-	nalysis Procedure for New Runway Location.				
6427	B.5.4	Example: A	nalysis Procedure for New Runway Location.				
6427 6428	B.5.4	-	nalysis Procedure for New Runway Location. For a new airport location, the analysis determines the runway orientation				
6427 6428 6429	B.5.4	Example: A	For a new airport location, the analysis determines the runway orientation providing the greatest wind coverage within the allowable crosswind				
6427 6428	B.5.4	Example: A	For a new airport location, the analysis determines the runway orientation providing the greatest wind coverage within the allowable crosswind component limits. This process involves rotating the runway wind box				
6427 6428 6429 6430	B.5.4	Example: A	For a new airport location, the analysis determines the runway orientation providing the greatest wind coverage within the allowable crosswind				
6427 6428 6429 6430 6431 6432	B.5.4	Example: A B.5.4.1	For a new airport location, the analysis determines the runway orientation providing the greatest wind coverage within the allowable crosswind component limits. This process involves rotating the runway wind box about the windrose center point to maximize the sum of the individual segment percentages appearing between the outer "crosswind limit" lines.				
6427 6428 6429 6430 6431 6432	B.5.4	Example: A	For a new airport location, the analysis determines the runway orientation providing the greatest wind coverage within the allowable crosswind component limits. This process involves rotating the runway wind box about the windrose center point to maximize the sum of the individual segment percentages appearing between the outer "crosswind limit" lines. Figure B-4 illustrates the analysis procedure used in determining the wind				
6427 6428 6429 6430 6431 6432 6433 6434	B.5.4	Example: A B.5.4.1	For a new airport location, the analysis determines the runway orientation providing the greatest wind coverage within the allowable crosswind component limits. This process involves rotating the runway wind box about the windrose center point to maximize the sum of the individual segment percentages appearing between the outer "crosswind limit" lines. Figure B-4 illustrates the analysis procedure used in determining the wind coverage for a 90-270 degree runway orientation intended to serve RDC				
6427 6428 6429 6430 6431 6432 6433 6434 6435	B.5.4	Example: A B.5.4.1	For a new airport location, the analysis determines the runway orientation providing the greatest wind coverage within the allowable crosswind component limits. This process involves rotating the runway wind box about the windrose center point to maximize the sum of the individual segment percentages appearing between the outer "crosswind limit" lines. Figure B-4 illustrates the analysis procedure used in determining the wind coverage for a 90-270 degree runway orientation intended to serve RDC B-II. The wind information is from Figure B-3. For a new runway, iterate				
6427 6428 6429 6430 6431 6432 6433 6434	B.5.4	Example: A B.5.4.1	For a new airport location, the analysis determines the runway orientation providing the greatest wind coverage within the allowable crosswind component limits. This process involves rotating the runway wind box about the windrose center point to maximize the sum of the individual segment percentages appearing between the outer "crosswind limit" lines. Figure B-4 illustrates the analysis procedure used in determining the wind coverage for a 90-270 degree runway orientation intended to serve RDC				
6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437	B.5.4	Example: A B.5.4.1	For a new airport location, the analysis determines the runway orientation providing the greatest wind coverage within the allowable crosswind component limits. This process involves rotating the runway wind box about the windrose center point to maximize the sum of the individual segment percentages appearing between the outer "crosswind limit" lines. Figure B-4 illustrates the analysis procedure used in determining the wind coverage for a 90-270 degree runway orientation intended to serve RDC B-II. The wind information is from Figure B-3. For a new runway, iterate on several orientations to determine the orientation that maximizes wind coverage.				
6427 6428 6429 6430 6431 6432 6433 6434 6435 6436	B.5.4	Example: A B.5.4.1 B.5.4.2	For a new airport location, the analysis determines the runway orientation providing the greatest wind coverage within the allowable crosswind component limits. This process involves rotating the runway wind box about the windrose center point to maximize the sum of the individual segment percentages appearing between the outer "crosswind limit" lines. Figure B-4 illustrates the analysis procedure used in determining the wind coverage for a 90-270 degree runway orientation intended to serve RDC B-II. The wind information is from Figure B-3. For a new runway, iterate on several orientations to determine the orientation that maximizes wind coverage. The example Figure B-4 wind analysis shows the optimum wind coverage				
6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437	B.5.4	Example: A B.5.4.1 B.5.4.2	For a new airport location, the analysis determines the runway orientation providing the greatest wind coverage within the allowable crosswind component limits. This process involves rotating the runway wind box about the windrose center point to maximize the sum of the individual segment percentages appearing between the outer "crosswind limit" lines. Figure B-4 illustrates the analysis procedure used in determining the wind coverage for a 90-270 degree runway orientation intended to serve RDC B-II. The wind information is from Figure B-3. For a new runway, iterate on several orientations to determine the orientation that maximizes wind coverage. The example Figure B-4 wind analysis shows the optimum wind coverage possible with a single runway and a 13-knot crosswind component is 97.8				
6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437	B.5.4	Example: A B.5.4.1 B.5.4.2	For a new airport location, the analysis determines the runway orientation providing the greatest wind coverage within the allowable crosswind component limits. This process involves rotating the runway wind box about the windrose center point to maximize the sum of the individual segment percentages appearing between the outer "crosswind limit" lines. Figure B-4 illustrates the analysis procedure used in determining the wind coverage for a 90-270 degree runway orientation intended to serve RDC B-II. The wind information is from Figure B-3. For a new runway, iterate on several orientations to determine the orientation that maximizes wind coverage. The example Figure B-4 wind analysis shows the optimum wind coverage				
6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437	B.5.4	Example: A B.5.4.1 B.5.4.2	For a new airport location, the analysis determines the runway orientation providing the greatest wind coverage within the allowable crosswind component limits. This process involves rotating the runway wind box about the windrose center point to maximize the sum of the individual segment percentages appearing between the outer "crosswind limit" lines. Figure B-4 illustrates the analysis procedure used in determining the wind coverage for a 90-270 degree runway orientation intended to serve RDC B-II. The wind information is from Figure B-3. For a new runway, iterate on several orientations to determine the orientation that maximizes wind coverage. The example Figure B-4 wind analysis shows the optimum wind coverage possible with a single runway and a 13-knot crosswind component is 97.8 percent. If the analysis had shown it was not possible to obtain at least				

7/2/2020

7/2/2020 DRAFT

6444

Table B-2. Standard Wind Analysis Results for ALL_WEATHER

TITLE:	Anytown,	USA								
		RUNWA	Y ORIENT	ΓΑΤΙΟΝ:		270	DEGREE			
		CROSSW	IND COM	IPONENT	:	13	KNOTS			
		TAILWIN	ID COMP	ONENT:		60	KNOTS			
		-								
				VERAGE:		7.79%				
							(KNOTS)			
DIRECTION	0-3	4-6	7-10	11-16	17-21	22-27	28-33	34-40	> 41	TOTAL
10°	174	652	586	247	6	0	0	0	0	1665
20°	213	816	698	221	7	0	0	0	0	1955
30°	235	894	656	158	4	0	0	0	2	1949
40°	167	806	559	88	0	0	0	0	0	1620
50°	182	809	345	44	1	0	0	0	0	1381
60°	199	753 550	332	30	5	0	0	0	0	1319
70°	158	550	187	20	0	0	0	0	1	916
80°	134	453	194	22	1	0	0	0	0	804
90°	145	373	169	16	2	0	0	0	0	705
100°	103	321	115	19	1	0	0	0	2	561
110°	92	293	138	25	0	0	0	0	0	548
120°	90	283	207	33	3	0	0	0	0	616
130° 140°	93 65	279 246	188	28 55	0	0	0	0	0	588
140° 150°	63 64	246	195 194	33 42	2 4	0	0	$0 \\ 0$	1 0	564 517
150°	61	236	201	105	16	1	0	0	1	621
170°	80	254	306	140	10	2	0	0	1	793
170 180°	88	372	485	194	25	2	0	0	0	1166
190°	125	499	608	278	17	$\frac{2}{2}$	0	0	0	1529
200°	184	717	700	370	27	2	0	0	0	2000
210°	264	950	725	331	26	0	0	0	2	2298
220°	321	1419	1030	445	40	5	0	0	0	3260
230°	396	1658	1355	630	97	9	1	0	0	4146
240°	415	1600	1465	782	83	13	2	0	1	4361
250°	323	1166	1093	730	119	33	5	0	0	3469
260°	311	979	918	715	139	23	4	0	0	3089
270°	248	760	810	660	143	28	3	0	0	2652
280°	226	625	815	666	105	14	2	0	0	2453
290°	162	572	865	710	98	11	0	0	0	2418
300°	130	470	788	590	68	5	0	0	0	2051
310°	82	394	659	325	31	1	0	0	0	1492
320°	97	302	485	246	15	0	0	0	0	1145
330°	66	281	450	196	6	1	0	0	0	1000
340°	85	265	369	151	4	1	0	0	0	875
350°	102	314	323	152	12	0	0	0	0	903
360°	140	394	457	223	16	0	0	0	0	1230
Calm	18705									18705
TOTAL	24725	21968	19670	9687	1133	153	17	0	11	77364
I										

SOURCE: Anytown, USA ANNUAL PERIOD RECORD 1995-2004 REFERENCE: Appendix 1 of AC 150/5300-13, Airport Design, including Changes 1 through 18.

7/2/2020 DRAFT

Figure B-2. Blank Windrose Graphic Showing Direction and Divisions

Wind Speed Divisions Radius of Circle Knots MPH Knots *3.5 units 0 - 3.50 - 3.53.5 - 6.53.5 - 7.5*6.5 units 6.5 - 10.57.5 - 12.510.5 units 10.5 - 16.512.5 - 18.516.5 units 16.5 - 21.518.5 - 24.521.5 units 21.5 - 27.524.5 - 31.527.5 units 27.5 - 33.531.5 - 38.5*33.5 units 33.5 - 40.538.5 - 46.5*40.5 units 40.5 - over46.5 - over

Note: * may not be needed for most windrose analyses

6447

6446

Figure B-3. Completed Windrose Graphic Using Table B-2 Data

7/2/2020 DRAFT AC 150/5300-13B

Figure B-4. Windrose Analysis

6451 6452

6450

Note 1: Runway oriented 90 degree - 270 degree (true) would only have 2.2 percent of the winds exceeding the 13-knot crosswind component.

6453 6454 6455

Note 2: Wind directions are recorded based on true north. The magnetic runway headings are determined based on the magnetic declination for the area. Example: If the magnetic declination is 12 degrees W, the runway designators for the above runway

6456 6457 would be 10 - 28.

Page Intentionally Blank 6458

APPENDIX C. THE EFFECTS AND TREATMENT OF JET BLAST

6460 C.1 Introduction.

6459

6461

6462

6463

6464

6466 6467

6468

6469 6470

6471

6472

6473

6474

6475

6476

6477

6478

6479

6480

6481

6482 6483

6484

6485

6486

6487

6488

6489

Jet blast (jet exhaust) forces produce very high wind velocities and temperatures. Jet blast is capable of causing bodily injury to personnel; damage to airport equipment and facilities; airfield pavement; and ground erosion along the edge of pavements. This appendix recommends ways to minimize the effects of jet blast.

6465 C.2 **Jet Blast Effects.**

Jet blast has the potential to affect all aircraft operational areas. Velocities greater than 30 mph (48 km/hr) can cause loose objects on the pavement to become airborne, risking injury to personnel, structures and equipment at considerable distances behind an aircraft. Sudden gusts averaging more than 20 mph (31 km/hr) can be more dangerous than continuous velocities of the same magnitude when striking moving vehicles or aircraft. Aircraft engines operating at takeoff thrust, can produce velocities of this magnitude over 2,000 feet (610 m) to the rear of some aircraft.

C.2.1 Jet Blast Pressures.

Jet exhaust velocities are irregular and turbulent. Consider the vibrations they induce over small areas when designing a building or structure subjected to jet blast. Assume the velocities to be periodic over areas of 10 to 15 ft² (1.0 to 1.4 m²) with peaks occurring at 2 to 6 times per second. These peaks are not continuous laterally or vertically. Use the following equations to compute the pressure produced on a surface perpendicular to the exhaust stream:

$P = 0.00256 \text{ V}^2$ $P = 0.04733 \text{ V}^2$

where: **or** where:

 $P = pressure (lbs/ft^2)$ P = pressure (pascals)

V = velocity (mi/hr) V = velocity (km/hr)

C.2.2 Blast Velocity Distances.

The drag and uplift forces produced by jet engines are capable of moving large boulders. A jet engine operating at maximum thrust is capable of lifting a 2-foot (0.6 m) boulder located 35 feet (10.7 m) behind the aircraft. Forces capable of causing severe erosion decrease rapidly with distance and beyond 1200 feet (366 m) behind some aircraft, only sand and cohesionless soils are affected.

C.2.3 Jet Engine Exhaust Velocity and Temperature.

Aircraft manufacturers provide information on the exhaust velocities and temperatures for their respective aircraft and engine combinations. Typically, contours are provided for ground idle, breakaway (typical taxiing condition), and maximum takeoff power

6490	conditions under specific conditions (sea level, static airplane, zero wind, standard day
6491	conditions). Airport planning guides and/or airplane characteristics provide this
6492	information and are available on the aircraft manufacturer websites. Obtain data on
6493	lateral and vertical velocity contours, as well as site specific blast loads on structures,
6494	from the engine manufacturers.

APPENDIX D. END-AROUND TAXIWAY (EAT) SCREENS

D.1 Screen Sizing.

7/2/2020

6495

6496

6497

6498

6499

6500

6501

6502

6503

6504

6505 6506

6507

6508

6509

6510

6511

6512

The size of the EAT visual screen is dependent on the runway geometry, the Runway Design Code (RDC) of the aircraft operating on that particular departing runway and EAT, and the relative elevations of the EAT, V_1 point, the ground at the screen, and the stop end of the runway.

D.1.1 Horizontal Geometry.

Base the design of the screen width on a departing aircraft's view from a location at point V_1 through the farthest point on the runway hold line at the stop end of the runway. See Figure D-1. To calculate the screen width:

- 1. Determine the distance between the screen location and the runway end (D_S).
- 2. From the runway centerline V₁ point, draw lines through the runway hold line position closest to the stop end of the runway (normally derived from the Hold Line Position in the online Runway Design Standards Matrix Tool.
- 3. Extend the lines to intersect with a line perpendicular to the runway at the screen location.
- 4. Using the formula in the <u>Figure D-1</u> notes, calculate the width of the visual screen.

Figure D-1. End-Around Taxiway (EAT) Screen Sizing and Location

		••
6514		Notes for Figure D-1:
6515		$\angle A = \arctan \frac{D_h}{D_v}$
		$D_{ m v}$
6516		$\left(\tan \angle A(D_v + D_s)\right) = \frac{1}{2}D_e$
0010		$(\tan 2A(D_v + D_s)) = 2^{D_e}$
6517		Where:
6518		$D_V = 0.4 \times Runway Length$
6519		D_S = Distance from the stop end of the runway to the screen.
6520		$D_h = Distance$ from the runway centerline to the hold line.
6521		D_e = Width of the EAT visual screen.
6522	D.1.2	Vertical Geometry.
	2.1.2	·
6523		Design the height of the screen so the top of the screen will mask that portion of an
6524		aircraft that extends up to the top of a engine nacelle of the Airplane Design Group
6525		(ADG) taxiing on the EAT, as viewed from the cockpit of the same ADG at the V_1
6526		point on the departure runway (see <u>Figure D-3</u>).
6527		1. Extend the visual screen from the ground to the calculated height.
6528		2. For ADG-III and above, it is permissible to have the lower limit of the visual screen
6529		up to two feet (0.5 m) above the stop end of the runway elevation.
6530		3. Consider variations in terrain at the site where the screen is constructed.
6531		4. It may be feasible to grade the site of the visual screen to allow for an additional 2-
6532		foot (0.5 m) separation between the visual screen panels and the ground for mowing
6533		access.
6534		5. A visual screen is not necessary if terrain masks the engine nacelle of the aircraft on
6535		the EAT (see <u>Figure D-4</u>).
6536	D.2	Screen Construction.
6537		Construct the visual screen to perform as designed and be durable, resistant to weather,
6538		frangible, and resistant to expected wind load. The visual screen comprises
6539		foundations, frame, connection hardware, and front panels.
6540	D.2.1	Foundations.
6541		Design foundation supports to maintain the visual screen in a stable position. Provide a
6542		sufficient mow strip around the base of the foundation to provide a safety buffer
6543		between mowing equipment and the screen structure.
6544	D.2.2	Frame.
6545		Construct the frame structure of the screen to withstand wind loading with breakaway
6546		capability in the event of an aircraft strike. Figure D-4 illustrates examples for
6547		constructing the frame structure, depending on the overall height of the structure.
6548		Application of the described hollow structural sections (HSS) includes examination and

7/2/2020

verification of accuracy, suitability and structural sufficiency by a licensed structural 6549 engineer. Ensure no HSS damage occurs due to water infiltration and freezing. 6550 Construct the visual screen structure to allow the front panels of the screen to be angled 6551 upward 12 ($\pm 1^{\circ}$) degrees from the vertical plane. 6552

Figure D-2. EAT Screen Vertical Dimension Calculation

6553 6554 To calculate the required height of the screen above grade, H_S: $\frac{(ELEV_{V1} + H_{EYE} - H_{NACELLE} - ELEV_{EAT}) (D_{EAT} - D_S)}{(D_{EAT} + 0.4 \times L_{RWY})} + H_{NACELLE} + ELEV_{EAT} - ELEV_{GAS}$ Where: 6555 $ELEV_{V1} = MSL$ elevation of the runway centerline at the V_1 point, 60% of the length of 6556 the runway from the takeoff threshold 6557 $ELEV_{SER} = MSL$ elevation of the stop end of the runway (SER). 6558 6559 $ELEV_{TOS} = MSL$ elevation of the top of the screen. 6560 $ELEV_{NACELLE} = MSL$ elevation of the top of the engine nacelle. 6561 $ELEV_{GAS} = MSL$ elevation of the ground at the screen. 6562 $ELEV_{EAT} = MSL$ elevation of the centerline of the EAT. $H_{NACELLE}$ = Height of the engine nacelle above the taxiway (See <u>Table D-1</u> below). 6563 6564 H_{EYE} = Height of the pilot's eye above the runway (See <u>Table D-1</u> below). $L_{RWY} = Length of the runway.$ 6565 D_S = Distance from the stop end of the runway to the screen. 6566 D_{EAT} = Distance from the stop end of the runway to the centerline of the EAT. 6567 Check that the screen is below the 40:1 departure surface: 6568 $H_s + ELEV_{GAS} < D_S/40 + ELEV_{SER}$ 6569 6570

Figure D-3. Stop End of the Runway/EAT Elevation Difference

6572

6573

6574

6571

A visual screen is not required if the elevation of the EAT is lower than the elevation of the stop end of the runway by at least:

$$\frac{H_{EYE} \times D_{EAT}}{.4 \times L_{RWY}} - H_{NACELLE}$$

6575

6576

Table D-1. Aircraft Characteristics

ADG	Nacelle Height (feet) (H _{NACELLE})	Pilot's Eye Height (feet) (H _{EYE})
III	9	15
IV	12	21
V	18	29
VI	18	29

6577

Note: 1 ft = 0.305 m

Figure D-4. Example Visual Screen Structure

6579 6580

Note: See <u>Table D-2</u>, <u>Table D-3</u>, and <u>Table D-4</u> for framing schedules.

7/2/2020 DRAFT

6581

6582

Table D-2. Notes for Figure D-4 – High Frame Elevation

	Framing Schedule					
	Visual Screen 26 ft $(8 \text{ m}) < H \le 32 \text{ ft } (10 \text{ m})$					
	Wind Speed (mph)					
Member	90	130	150			
P1	HSS 8×6×5/16	HSS 8×8×1/2	HSS 12×8×3/8			
P2	HSS 10×6×1/2	HSS 12×8×9/16	HSS 16×8×1/2			
Р3	HSS 12×6×1/2	HSS 16×8×1/2	HSS 20×8×1/2			
PF1	HSS 6×4×3/16	HSS 6×4×5/16	HSS 6×4×5/16			

Table D-3. Notes for Figure D-4 – Intermediate Frame Elevation

Framing Schedule Visual Screen 18 ft (5 m) < H ≤ 26 ft (8 m)							
	Wind Speed (mph)						
Member	90	130	150				
P1	HSS 8×6×5/16	HSS 8×8×1/2	HSS 12×8×3/8				
P2	HSS 10×6×1/2	HSS 12×8×9/16	HSS 16×8×1/2				
Р3							
PF1	HSS 6×4×3/16	HSS 6×4×5/16	HSS 6×4×5/16				

Table D-4. Notes for Figure D-4 – Low Frame Elevation

Framing Schedule							
	Visual Screen $H \le 18$ ft (5 m)						
	Wind Speed (mph)						
Member	90	130	150				
P1	HSS 8×6×5/16						
P2							
Р3							
PF1	HSS 6×4×3/16	HSS 6×4×5/16	HSS 6×4×5/16				

6584	D.2.3	Front Panel.				
6585 6586 6587 6588		Design the front panel of the visual screen so it is conspicuous from the runway side of the screen. Replaceable front panels 12 feet (3.5 m) long and 4 feet (1 m) high and attached to the frame structure allow easy replacement if necessary. See <u>Figure D-6</u> . The following design is acceptable in meeting design criteria.				
6589		D.2.3.1		uminum Honeycomb Criteria.		
6590				e screen panels are constructed of aluminum honeycomb material.		
6591 6592			1.	The front panel of the screen consists of 4-foot-tall (1 m) panels, with the remaining difference added as needed.		
6593 6594				a. For example, three 4-foot (1 m) high panels plus one 1-foot (0.5 m) tall panel creates a 13-foot (4 m) tall screen.		
6595 6596			2.	Provide a 0.5-inch space between panels to allow for thermal and deflection movements.		
6597			3.	Specify the front and back panel faces to:		
6598				a. meet the required deflection allowance, and		
6599				b. be a minimum 0.04 inches (1 mm) thick.		
6600 6601			4.	Provide honeycomb material is of sufficient thickness to meet the deflection allowance, but not more than 3 inches (76 mm) thick.		
6602 6603 6604			5.	Design the internal honeycomb diameter for the sufficient strength needed to meet the deflection allowance, but not more than 0.75 inches (19 mm).		
6605			6.	Provide panel edge closures that consist of aluminum tubing that is:		
6606				a. 1-inch (25 mm) times the thickness of the honeycomb		
6607				b. sealed.		
6608 6609 6610			7.	The deflection allowance for the screen is 0.5 inches (13 mm) maximum at the center of the panel when supported by four points at the corner of the panel.		
6611 6612			8.	Provide panel faces with a clear anodized finish on both front and back.		
6613		D.2.3.2	Pa	ttern.		
6614 6615 6616 6617 6618 6619			deg pro is o	e front panel of the screen visually depicts a continuous, alternating red white, diagonal striping of 12-foot (3.5 m) wide stripes set at a 45-gree angle ±5 degrees, sloped either all to the left or all to the right. To evide maximum contrast, the slope of the diagonal striping on the screen opposite the slope of aircraft tails operating in the predominant flow on EAT, as shown in Figure D-6.		

Color. Color. Color. Color. Color. Color. Color. Chromaticity Coordinate Limits shown in Table D-5, when measured in accordance with FP-85, Section 718.01(a), or ASTM D4956.

D.2.3.4 **Reflectivity.**

The surface of the front panel is reflective on the runway side of the screen. Perform reflectivity measurements in accordance with ASTM E810. Acceptance requires the sheeting maintain at least 90 percent of its values, as shown in <u>Table D-6</u>, with water falling on the surface, when measured in accordance with the standard rainfall test of FP-85, Section 718.02(a), and Section 7.10.0 of AASHTO M268.

D.2.3.5 Adhesion.

The screen surface material has a pressure-sensitive adhesive, which conforms to adhesive requirements of FP-85 (Class 1) and <u>ASTM D4956</u> (Class 1).

Figure D-5. Example Panel Layout for 13-foot (4 m) High Screen

Note 1: Unless otherwise noted, dimensions are expressed as feet (meters)

Note 2: The front panels of the screen are retroreflective red and white.

Note 3: Panel A2 is the same as panel C1 rotated 180°

Note 4: Panel B2 is the same as panel B1 rotated 180°

Note 5: Panel C2 is the same as panel A1 rotated 180°

6642

6637

6625

6626

6627

6628

6629

6630

6631

6632

6633

6634

6635

7/2/2020 Appendix D

Figure D-6. Visual Screen Stripe Orientations

6644 6645

6643

Note: The front panel of the screen is retroreflective red and white (see paragraph <u>D.2.3.3</u>).

Table D-5. International Committee of Illumination (CIE) Chromaticity **Coordinate Limits**

Color	X	y	X	y	X	y	X	y	Min	Max	Munsell Paper
White	.303	.287	.368	.353	.340	.380	.274	.316	35		6.3GY 6.77/0.8
Red	.613	.297	.708	.292	.636	.364	.558	.352	8.0	12.0	8.2R 3.78/14.0

6650

6651 6652

6653

6654 6655

6656

6657

6658

6659

6660 6661

6662

6663

6664

Table D-6. Minimum Coefficient of Retroreflection Candelas/Foot Candle/Square Foot/Candelas/Lux/Square Meter

Observation Angle ¹ (Degrees)	Entrance Angle ² (Degrees)	White	Red
0.2	-4	70	14.5
0.2	+30	30	6.0
0.5	-4	30	7.5
0.5	+30	15	3.0

Note 1: Observation (Divergence) Angle – The angle between the illumination axis and the observation axis.

Note 2: Entrance (Incidence) Angle – The angle from the illumination axis to the retroreflector axis. The retroreflector axis is an axis perpendicular to the retroreflective surface.

Note 3: Reflectivity acceptance criteria: conform to FP-85 Table 718-1 and ASTM D4956.

D.2.4 Environmental Performance.

Design the front panel of the screen and all its components for continuous outdoor use under the following conditions:

D.2.4.1 **Temperature.**

Design screen surface material to withstand an ambient temperature range of $-4^{\circ}F$ to $+130^{\circ}F$ ($-20^{\circ}C$ to $+55^{\circ}C$).

D.2.4.2 Wind Loading.

Design the screen to sustain exposure to a wind speed of at least 90 mph (145 k/h) or the appropriate wind speed anticipated for the specific airport location, whichever is greater. See <u>Table D-7</u> for wind pressures.

Table D-7. Visual Screen Panel Wind Loads

Wind Speed (mph [k/h]) (3 second gust)	Wind Load (PSI)
90 mph (145 k/h)	0.17
130 mph (209 k/h)	0.35
150 mph (241 k/h)	0.47

that have an adverse effect on ASDE performance. To avoid this, tilt the visual screen back/away (on the side facing the ASDE) 12 degrees ($\pm 1^{\circ}$). This will minimize or eliminate false radar targets generated by reflections off the screen surface. See Figure D-4.

Research has shown that a visual screen erected on an airport equipped

with Airport Surface Detection Equipment (ASDE) may reflect signals

6696

6697

6698

6699 6700

6701

6703	D.2.7.3	Instrument Landing System (ILS) Interference.
6704		Research has shown that a visual screen on a runway equipped with an
6705		ILS system (localizer [LOC] and glideslope [GS]) will generally not affect
6706		or interfere with the operation of the system. Perform an analysis for GSs,
6707		especially null reference GSs, prior to the installation of the screens.

6708		APPENDIX E. GENERAL AVIATION FACILITIES
6709 6710 6711	E.1	Background. This appendix addresses design considerations and guidelines for general aviation facilities that include:
6712 6713 6714 6715 6716		 General Aviation Aprons Hangars Terminal buildings Airport Support Facilities Fencing
6717 6718 6719	E.1.1	 Standards. Refer to Chapter 5 for FAA standards that apply to aprons. Refer to Chapter 6 for FAA standards that apply to airfield buildings.
6720 6721 6722	E.1.2	Location. GA facilities may exist at an airport primarily for GA operations; or within a segregated portion of a commercial service airport.
6723 6724 6725	E.1.3	Basic Design Principles. Consider the following basic design guidelines when planning and designing GA facilities.
6726 6727 6728 6729		 Maintain safety of taxiing and parked aircraft. Develop facilities in a manner that does not adversely affect runway surfaces (e.g. approach/departures surfaces, OFZs, etc.), imaginary surfaces for air navigation (see paragraph 3.3.12) and equipment critical areas (e.g. ILS, VOR, etc.).
6730 6731 6732		3. Design facilities to optimize aircraft movement paths between parking positions, hangars, and support facilities (e.g. fueling) and any Fixed Base Operator (FBO) facilities.
6733 6734		4. Provide planning and design to accommodate varying aircraft types and sizes anticipated to use the airport.
6735 6736		5. Develop facilities in a manner that minimizes or precludes reconstruction or relocation of infrastructure in order to accommodate future growth.
6737	E.2	General Aviation Apron.
6738	E.2.1	General Design Considerations.
6739 6740		1. Evaluate apron parking positions and tie-downs for aircraft entry and exit under self-power and by tow.

6741 6742			te parking areas for small aircraft (e.g. ADG I) from larger aircraft (e.g. to optimize utility and efficiency of apron space.			
6743 6744		3. Design separate apron areas to accommodate the critical aircraft intended to use the segment of apron.				
6745 6746			4. Account for the effect of jet blast and propeller wash on adjacent aircraft and facilities per guidelines of paragraph <u>5.17</u> .			
6747	E.2.2	Parking Pos	<u>ition.</u>			
6748 6749		1 01	osition represents a location where aircraft can park without impeding other n parking and aircraft taxi operations on adjacent taxilanes.			
6750		E.2.2.1	Markings.			
6751 6752			Parking positions consist of marked locations (e.g. tie downs and lead-in lines) or unmarked positions.			
6753 6754 6755			1. Marked parking positions provide a measure of safety for aircraft maneuvering but reduces flexibility on the size of aircraft able to park at the position.			
6756			2. Unmarked positions:			
6757			a. Provide flexibility to handle all types of aircraft.			
6758 6759			b. Requires judgmental maneuvering and possibly assistance from a parking marshal or wing-walkers.			
6760		E.2.2.2	Parking Position Sizing.			
6761 6762 6763 6764			To optimize space, establish separate parking areas for the different groupings of aircraft anticipated to use the airport. <u>Table E-1</u> provides areas values based on the common tie down size groupings of paragraph <u>E.2.3.3</u> plus applicable clearance values of <u>Table 5-1</u> . Airport operators			
6765			may apply these values or establish custom values based on specific			

aircraft dimensions using its airport.

6766

6767

Table E-1. Parking Position Sizing

Wingspan	Length	Area
49 ft (15 m)	< 30 ft	2,070 sf (192 m ²)
49 ft (15 m)	30 to 45 ft	2,970 sf (276 m ²)
79 ft (24 m)	45 to 60 ft	5,805 sf (539 m ²)
79 ft (24 m)	60 to 75 ft	7,155 sf (665 m ²)
79 ft (24 m)	75 to 90 ft	8,460 sf (786 m ²)

7/2/2020 DRAFT AC 150/5300-13B Appendix E

6768 **Notes for Table E-1:** 6769 1. Values for area calculated by multiplying the sum of the wingspan dimension plus 10 6770 feet by the sum of the aircraft length plus 5 feet and rounding up to the nearest 6771 multiple of 5. 6772 2. Values for area do not include the TLOFA in front of the parking position. E.2.3 Tiedowns. 6773 6774 A tiedown is a distinct type of parking stand designed to accommodate a specific range 6775 of aircraft sizes. E.2.3.1 Benefits. 6776 6777 Securing aircraft reduces risk of damage to parked aircraft due to wind forces from weather events (i.e. storms, wind gusts, microbursts, etc.) and 6778 mechanical forces (i.e. jet blast, propeller wash). Unsecured parking 6779 locations expose aircraft to risk of damage from wind forces by becoming 6780 airborne, spun around or flipped over. 6781 E.2.3.2 **Tiedown Characteristics.** 6782 1. The three-point method is a common tiedown involving two tiedown 6783 anchors along the wing axis and one anchor at the tail of the aircraft. 6784 2. Commonly includes a 6" yellow striped marking in the shape of a tee 6785 to demonstrate location for wing axis and tail location. 6786 6787 3. Tiedown locations typically occur on paved aprons but may also occur in turf areas (e.g. overflow parking or tail tiedown anchor located off 6788 edge of paved apron). 6789 6790 E.2.3.3 Tiedown Sizing. 6791 The sizing of tiedown parking locations at an airport is a function of the aircraft using the airport. Base tiedown area dimensions on aircraft 6792 wingspan and length. To determine suitable tiedown area dimensions, 6793 each airport operator needs to assess aircraft activity on its apron. The 6794 6795 following guidelines show common aircraft groupings based on aircraft lengths for an airport operator to consider for its airport. 6796 6797 1. ADG I aircraft a. 30 ft aircraft length 6798 b. 45 ft aircraft length 6799 2. ADG II aircraft 6800 a. 60 ft aircraft length 6801 b. 75 ft aircraft length 6802 c. 90 ft aircraft length 6803 3. ADG III aircraft 6804

6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819

6821

- a. 100 ft aircraft length
- b. 115 ft aircraft length

E.2.3.4 **Tiedown Anchor Layout.**

Refer to <u>Figure E-1</u> for an example of a tiedown layout. Airport operators may customize the tiedown layout dimensions to address local needs. Consider providing separate groupings of different tiedown layouts to accommodate varying aircraft sizes the use the airport.

- 1. Provide two wing tiedown anchors at the end of the marked stripe spaced at least one-half the wingspan of the critical aircraft.
- 2. From the edge of the TLOFA:
 - a. Locate wing tiedown anchors a distance so the nose of aircraft using the tiedown does not penetrate the adjacent TLOFA.
 - b. Locate the tail tiedown anchor from the TLOFA a distance not less than the length of the critical aircraft.
- 3. Ensure no part of the tiedown anchor protrudes above the pavement surface; or no more than 1 inch (2.5 cm) above surrounding turf.

Figure E-1. Tiedown Layout

6823		Notes for Figure E-1:
6824		1. Figure keys:
6825		A. Distance from main gear to nose of critical aircraft assuming nose of aircraft at the outer
6826		edge of the TLOFA.
6827		B. Overall length of the critical aircraft.
6828		C. Wingspan of the critical aircraft
6829		2. Refer to paragraph <u>E.2.3</u> for tiedown design considerations.
6830		3. Make adjustments as necessary to ensure nose of aircraft using tie-down do not violate the
6831		TLOFA.
6832		4. Take into account the length of tiedown ropes and the risk to propeller entanglement.
6833	E.2.4	Apron Layout Considerations.
6834		E.2.4.1 General.
6835		1. Refer to Figure E-2 for illustration of tiedown spacing relationship.
6836		2. Ensure no part of parked aircraft violates a TOFA or TLOFA.
6837		3. Maintain recommended obstruction clearances per <u>Table 5-1</u> .
6838		4. Orient parking positions to align with the direction of prevailing winds
6839		at the airport.
6840		5. Group parking positions for similar aircraft wingspan and length to
6841		facilitate efficient layout of the apron.
0041		racintate efficient layout of the apron.
6842		6. Incorporate flexibility for infrequent operations by large aircraft (e.g.
6843		ADG-III) by designating and marking an area capable of
6844		accommodating both large and medium (ADG-II) size aircraft.
0044		accommodating both large and medium (ADO-11) size diferant.

7/2/2020 DRAFT

Figure E-2. Tiedown Spacing

6846 6847

Note 1: Provide sufficient space between pavement edge and tail to permit pilot to walk around aircraft during preflight check.

6848 6849

Note 2: Layout tiedowns so that no part of a parked aircraft violates a TLOFA, TOFA or ROFA.

Note 3: Depth of tiedown position is dependent on critical aircraft. Refer to paragraph <u>E.2.3.3</u>.

6850 6851

E.2.4.2 Nested Parking Positions.

6856

Applying a nested parking position configuration optimizes available apron space and shortens the length of the associated taxilanes. Refer to <u>Figure E-3.</u> for a typical nested parking position layout. Nested parking positions also offer flexibility by accommodating both small and large aircraft.

7/2/2020 DRAFT

Figure E-3. Nested Tiedowns

6858 6859

6857

Note 1: Maintain clearance of TLOFA.

6860

Tighter clearances may be suitable when aircraft enter and exit parking position by tug. Note 2:

6861

E.2.4.3 **Transient Aircraft.**

6862 6863 1. Provide an area on the apron that enables convenient access to airport facilities (GA terminal, FBO, fuel, etc.) for transient aircraft parking.

Figure E-5.)

DRAFT

AC 150/5300-13B

7/2/2020

6888

6889

6890

5. Dual path entry/exit taxilanes are generally suitable for transient

aircraft and aprons where there is high potential for taxi conflicts. (See

7/2/2020

Figure E-4. Single Path Entry/Exit Taxilane

Figure E-5. Dual Path Entry/Exit Taxilane

Note 1: Nested parking position can provide flexibility by accommodating parking of larger aircraft. Ensure tiedowns for smaller aircraft do not pose a hazard to larger aircraft.

E.2.4.6 Hangar Aprons and Taxilanes.

Depending on activity level, aircraft or vehicles parked on hangar aprons may affect operations on the associated taxilane as illustrated in Figure E-6. Hangar aprons extending into the TLOFA can impede aircraft taxi operations. This may not be an issue if low activity levels exist at the hangar complex.

6892

6891

6893

6894 6895 6896

6897 6898

6899 6900 6901

.,	Appendi	хE
6903 6904 6905	 If space is sufficient and activity levels support the need for uncongested use of the taxilane, locate hangar aprons outside of TLOFA to avoid interfering with taxilane operations. 	
6906 6907 6908	2. Ensure the TLOFA is clear from the taxilane centerline to the face of the T-hangar of all above ground objects (e.g. utilities boxes, hydran bollards, etc.).	
6909	3. Locate drainage structures outside of aircraft wheel paths on taxiland	es.

DRAFT

AC 150/5300-13B

7/2/2020

Figure E-6. T-Hangar Complex

6911 6912 6913

- Note 1: The bottom taxilane illustrates a T-hangar apron configuration clear of aircraft operating on the taxilane. This arrangement may be appropriate when space is available and hangar activities justify unimpeded taxi movements.
- 6914 6915 6916
- Note 2: The center taxilane illustrates how an aircraft positioned in front of the hangar can impede aircraft operations on the taxilane. This configuration may be suitable for low activity hangar complexes and space constrained airports. Consider providing two taxi paths for this configuration.
- 6917 6918 6919
- Note 3: Locate drainage inlets outside of aircraft wheel paths. Consider intermittent trench style inlets to address flat slopes between hangars.

6920 6921 6922 6923 6924 6925 6926 6927	E.2.5	operators no GA apron. I parking pos factors influ 1. Size and 2. Number	Sizing. g a suitable area size for a GA apron varies for each airport. Airport eed to assess activity at their airport to determine the optimum size of the Determining a suitable apron size involves summing the areas for individual itions with the area necessary for the TLOFA configuration. The primary tencing the GA apron size include: I type of parked aircraft groupings per Table E-1. To f transient aircraft at average peak period. To based aircraft not stored in a hangar.
6929		4. Length	and orientation of taxilanes.
6930		5. Ancillar	y services (e.g. fueling area).
6931 6932 6933		E.2.5.1	Transient Aircraft. Determine the number of suitable parking positions for transient aircraft from observed activity levels and projected growth.
6934 6935 6936		E.2.5.2	Based Aircraft. Establish the number of parking positions from based aircraft not stored in a hangar, plus an additional 10 percent for supplemental parking positions.
6937 6938 6939 6940		E.2.5.3	Apron Taxilanes. Determine the area for apron taxilanes by establishing the cumulative length for both interior and perimeter apron taxilanes. Consider different taxilanes may serve specific ADG aircraft.
6941	E.3	Hangars.	
6942		GA hangars	provide a variety of benefits and uses that include:
6943 6944			osed structure to protect parked aircraft from weather elements such as in, snow and ice.
6945		2. Security	for owner protection of aircraft investments.
6946		3. A place	to service aircraft for maintenance and repair activities.
6947		4. Combin	ation hangar/office for corporate and FBO entities.
6948	E.3.1	Hangar Con	astruction Regulations and Standards.
6949 6950 6951		<u>6.11.4.1</u>) fo	ice of Proposed Construction as required by 14 CFR Part 77 (see paragraph r evaluation of the potential impact on air navigation. Standards applicable construction include:
6952 6953		•	g code requirements as adopted by the local governing body or IBC in the of formally adopted code.
6954		2. ADA re	quirements for public accommodation per 28 CFR Part 36.

6961

6962 6963

6964

6965

6966

6967 6968

6969

			Tippendix E
6955		3. Applic	able requirements of NFPA 409.
6956	E.3.2	Hangars T	ypes.
6957		E.3.2.1	Conventional (Box) Hangar.
6958			Square or rectangular hangar sized for protective storage of multiple
6959			aircraft types ranging in size and type. Conventional hangars are typically

E.3.2.2 **T-Hangar.**

required by fire protection.

A rectangular structure with a tee shape floorplan primarily used for storage of small aircraft. Common T-hangar bay arrangements include a standard configuration (Figure E-7) or a nested configuration (Figure E-8).

stand-alone structures spaced according to size and separation distance

Figure E-7. Standard T-Hangar Layout

Note: The standard T-hangar configuration offers the advantage of minimizing the structure depth when length is not a controlling factor.

7/2/2020 DRAFT

6970

Figure E-8. Nested T-Hangar Layout

6971 6972 6973

Note: The nested T-hangar configuration offers the advantage of minimizing the structure length when depth is not the controlling factor.

6974

E.3.2.3 Corporate Hangar.

6975 6976 A conventional hangar with office space integrated near the back or the side of the structure.

6977

E.3.2.4 Shade Shelter.

6978 6979 6980

6982

6983

6984

6985

6986

6987

6988

6989

6990

6991

An open-air structure with roof that provides limited protection from weather elements (i.e. sun and precipitation). A less common but economical option compared to fully enclosed hangar units.

6981 E.3.3 <u>Hangar Size.</u>

The type and number of aircraft based at an airport are the primary factors in determining hangar width, height, depth and number of bays. Aircraft maneuvering to hangar space is typically under low speed thus allowing precise maneuvering and tighter clearance values

- 1. Size hangar interior space to provide sufficient clearance between aircraft and structure to limit risk of wingtip conflict.
- 2. Provide a minimum of five feet (1.5 m) clearance between aircraft and structure to permit the pilot to walk around aircraft when parked in the hangar.
- 3. For public community hangars, allow for flexibility in design to accommodate various sizes of aircraft.

6992 E.3.4 Hangar Location.

Locate hangars in a manner consistent with the FAA approved airport layout plan avoiding conflict with the building restriction line (BRL) and the standards in Chapter 6. Other design factors to consider include:

DRAFT AC 150/5300-13B Appendix E

7/2/2020

	1/2/2020		DRAFT	AC 150/5300-13B Appendix E
7032 7033			pically, a single or double panel door rizontal position.	that lifts upward to
7034 7035			pically operates with a combination of unterweights, tracks, steel cables and r	· · ·
7036		3. Bi-fold	d doors:	
7037 7038			articulated, two-panel door that folds sition.	up to a horizontal
7039 7040			fold doors can create a canopy in fron en position.	t of the hangar when in
7041		4. Fabric	doors:	
7042 7043			entrance barrier consisting of fabric part typically retracts upward to provide	
7044	E.3.6	Hangar Utilities.		
7045		E.3.6.1 Design Co	onsiderations.	
7046 7047			underground utilities in a manner that ations under existing and future apron	
7048 7049 7050			space constraints require installation underground duct banks with a spare of ations.	
7051 7052 7053			aircraft fueling and maintenance active ter separator for hangar drainage syste acles.	
7054 7055		•	at and locate above ground facilities sunts, etc. outside of object free areas.	ich as transformers, fire
7056	E.4	GA Terminal Building	ş.	
7057 7058 7059		buildings facilitate trans	nmonly a focal point of activity at GA after of passengers and cargo from the after space for pilot preflight planning.	*
7060	E.4.1	Standards.		
7061		Refer to Chapter 6 for d	iscussion on standards applicable to a	irfield buildings.
7062	E.4.2	Design Considerations.		
7063 7064		1. Relationship betwee travel paths for pass	en the terminal building and aircraft pa engers and pilots.	rking areas to facilitate
7065 7066			aths within terminal building from land of individuals accessing the AOA.	dside to airside that

DRAFT

AC 150/5300-13B

7/2/2020

7067		3. Public w	vaiting area.
7068		4. Secluded	d area for pilot flight planning.
7069		5. Public re	estroom accommodations.
7070	E.5	Airport Suj	pport Facilities.
7071	E.5.1	Fuel Faciliti	<u>les.</u>
7072		Refer to Cha	apter 5 for standards applicable for fueling facilities.
7073		E.5.1.1	Siting Considerations.
7074 7075 7076			 Locate GA fueling facilities at peripheral of apron in position to provide convenient access to aircraft and fuel distribution trucks without interfering with other apron aircraft movements.
7077 7078			2. Locate hydrant fueling to avoid fuel truck deliveries crossing pavements used by aircraft.
7079 7080			3. Locate service roads for fuel delivery trucks to minimize or avoid interaction with aircraft.
7081 7082			4. Install minimum 6-ft high fence around aboveground fuel tanks located on the landside and accessible to the public.
7083	E.5.2	Vehicle Acc	eess and Parking.
7083 7084	E.5.2	Vehicle Acc E.5.2.1	Associated Risks.
7084 7085	E.5.2		Associated Risks. The interaction of vehicles and aircraft within the same area creates a risk
7084 7085 7086	E.5.2		Associated Risks. The interaction of vehicles and aircraft within the same area creates a risk for aircraft/vehicle accidents. Limit vehicle operations in the AOA to
7084 7085	E.5.2		Associated Risks. The interaction of vehicles and aircraft within the same area creates a risk
7084 7085 7086	E.5.2		Associated Risks. The interaction of vehicles and aircraft within the same area creates a risk for aircraft/vehicle accidents. Limit vehicle operations in the AOA to
7084 7085 7086 7087 7088 7089	E.5.2	E.5.2.1	Associated Risks. The interaction of vehicles and aircraft within the same area creates a risk for aircraft/vehicle accidents. Limit vehicle operations in the AOA to those necessary to service and maintain aircraft and airport operations. Design Considerations. Refer to Figure E-9 for an illustration showing separation of vehicle
7084 7085 7086 7087 7088	E.5.2	E.5.2.1	Associated Risks. The interaction of vehicles and aircraft within the same area creates a risk for aircraft/vehicle accidents. Limit vehicle operations in the AOA to those necessary to service and maintain aircraft and airport operations. Design Considerations.
7084 7085 7086 7087 7088 7089	E.5.2	E.5.2.1	Associated Risks. The interaction of vehicles and aircraft within the same area creates a risk for aircraft/vehicle accidents. Limit vehicle operations in the AOA to those necessary to service and maintain aircraft and airport operations. Design Considerations. Refer to Figure E-9 for an illustration showing separation of vehicle
7084 7085 7086 7087 7088 7089 7090	E.5.2	E.5.2.1	Associated Risks. The interaction of vehicles and aircraft within the same area creates a risk for aircraft/vehicle accidents. Limit vehicle operations in the AOA to those necessary to service and maintain aircraft and airport operations. Design Considerations. Refer to Figure E-9 for an illustration showing separation of vehicle parking from hangar taxi lanes.
7084 7085 7086 7087 7088 7089 7090	E.5.2	E.5.2.1	Associated Risks. The interaction of vehicles and aircraft within the same area creates a risk for aircraft/vehicle accidents. Limit vehicle operations in the AOA to those necessary to service and maintain aircraft and airport operations. Design Considerations. Refer to Figure E-9 for an illustration showing separation of vehicle parking from hangar taxi lanes. 1. Locate general public access roads and parking areas outside of the
7084 7085 7086 7087 7088 7089 7090 7091 7092	E.5.2	E.5.2.1	Associated Risks. The interaction of vehicles and aircraft within the same area creates a risk for aircraft/vehicle accidents. Limit vehicle operations in the AOA to those necessary to service and maintain aircraft and airport operations. Design Considerations. Refer to Figure E-9 for an illustration showing separation of vehicle parking from hangar taxi lanes. 1. Locate general public access roads and parking areas outside of the AOA.
7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094	E.5.2	E.5.2.1	Associated Risks. The interaction of vehicles and aircraft within the same area creates a risk for aircraft/vehicle accidents. Limit vehicle operations in the AOA to those necessary to service and maintain aircraft and airport operations. Design Considerations. Refer to Figure E-9 for an illustration showing separation of vehicle parking from hangar taxi lanes. 1. Locate general public access roads and parking areas outside of the AOA. 2. Locate AOA boundary fence clear of TLOFA limits. 3. Refer to the applicable building code for clearance requirements
7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095	E.5.2	E.5.2.1	Associated Risks. The interaction of vehicles and aircraft within the same area creates a risk for aircraft/vehicle accidents. Limit vehicle operations in the AOA to those necessary to service and maintain aircraft and airport operations. Design Considerations. Refer to Figure E-9 for an illustration showing separation of vehicle parking from hangar taxi lanes. 1. Locate general public access roads and parking areas outside of the AOA. 2. Locate AOA boundary fence clear of TLOFA limits. 3. Refer to the applicable building code for clearance requirements between parking area and hangar facilities.

Figure E-9. Separation of Vehicle Parking and Aircraft Pavement

7101 7102 7103

- **Note 1:** Refer to paragraph $\underline{E.5.2.2}$ for design considerations.
- **Note 2:** The layout depicted is an example of separating vehicle pavements from pavements for aircraft movements.

7105	E.5.3	Wash Racks.	
7106 7107			designated areas where aircraft owners wash and clean their airplane. is the primary factor in determining the need for a wash rack facility.
7108		E.5.3.1 V	Vash Rack Characteristics.
7109 7110		1	. May be open air (i.e. no overhead cover) or under a canopy roof (i.e. open sides).
7111		2	. Paved platform for aircraft washing that also collects wash water.
7112		3	. Typically designed for single aircraft occupancy.
7113		E.5.3.2	Design Considerations.
7114		1	. Locate wash rack facility in a manner that:
7115			a. Avoids overspray affecting other aircraft and airfield facilities.
7116 7117			b. Isolates the facility to avoid interfering with aircraft movements and other apron facilities.
7118		2	. Pavement:
7119 7120			 Design strength for most demanding aircraft anticipated to use facility.
7121 7122			b. Construct pad with materials that will not prematurely deteriorate from frequent exposure to water and cleaning agents.
7123		3	. Conform to clearance guidelines of <u>Table 5-1</u> based on critical aircraft.
7124		4	. Design entry and exit of aircraft to be by self-power or by tow.
7125 7126 7127		5	Size the wash rack pad to provide a minimum of 5-feet paved surface around the aircraft for space to walk and for safe maneuvering of aircraft.
7128 7129 7130 7131		6	Locate water hose bibs, control equipment, electric equipment, vacuums, payment systems devices and related accessories in a manner that facilitates cleaning of aircraft but minimizes wingtip conflict hazards during aircraft maneuvering.
7132 7133		7	. Consult local governing authorities regarding requirements for treatment of wash water collected from pad:
7134 7135			a. Provide paved surface and curb with a minimum slope of 0.5% to collect wash water runoff for discharge to drainage system.
7136 7137			b. The facility may require installation of oil/water separator for collection of degreaser agents.
7138		8	. Provide suitable area lighting if facility is available for nighttime use.

7139 7140 7141 7142 7143 7144	E.6	Fencing for GA Airports. Fencing of the AOA contributes to the safety of the airport by establishing a physical barrier that limits or impedes inadvertent entry of individuals and vehicles into the AOA. Although there are no Transportation Security Administration standards or requirements for GA security, AOA fencing does represent a basic deterrent feature that discourages unauthorized entry.
7145	E.6.1	Design Considerations.
7146		Key factors and considerations for design of GA fencing include:
7147 7148		 AOA fencing is primary a safety feature that protects the integrity of airfield operations.
7149		2. An appropriate fence height relates to the level of safety risk present at the airport.
7150	E.6.2	Key Risk Factors.
7151		The factors that contribute risks to safety for GA airports vary between types of airports
7152 7153		as well as between different areas of the same airport. Common risk factors for GA airports include:
		•
7154 7155		1. Airport activity – The risk to safety will generally be greater at a high activity airport than that at a low activity airport: ⁵
7156		a. High activity (e.g. national and regional airports).
7157		b. Moderate activity (e.g. local airports).
7158		c. Low Activity (basic airports).
7159		2. Proximity to populated area – The potential for individuals to enter the AOA and
7160		pose a safety risk is generally less at a rural GA airport than a GA airport near a
7161		metropolitan area: ⁶
7162		a. Urbanized area (50,000 or more people).
7163		b. Urban Clusters (2,500 to 50,000 people)
7164		c. Rural areas (less than 2,500 people)
7165		3. Airport Sensitive Areas – The risk to airport safety varies around the perimeter of
7166		the AOA based upon distance to airport sensitive areas such as the following:
7167		a. Terminal Area
7168		b. Runways, taxiways and aprons
7169		c. Hangar complexes
7170		d. Fuel facilities

 ⁵ Refer to FAA Report General Aviation Airports: A National Asset -May 2012 for airport category descriptions.
 ⁶ Refer to the U.S. Bureau of Census for definition of urban areas, urban clusters and rural areas (76 FR 53043)

7171	E.6.3	Basic Fencing Guidelines.
7172 7173		The following represents recommended basic fencing guidelines based upon select risk factors that can influence the safety of airport operations:
7174		1. National and Regional GA airports:
7175 7176		a. Install a minimum 5-foot [1.5 m] high chain link fence around perimeter of AOA boundary.
7177 7178		b. Consider installation of a gate operator to manage access of authorized vehicles into the AOA.
7179		2. Local and Basic GA airports:
7180 7181		a. Urban and urban cluster locations – Install a minimum 4-foot [1.2 m] high chain link fence around perimeter of AOA boundary.
7182 7183 7184 7185		b. Rural locations – Install a minimum 4-foot [1.2 m] high chain link fence out to 500' [152 m] from sensitive areas of the airport; and a minimum 4-foot [1.2 m] high woven wire fence (Class A or Class C fence) around remaining perimeter of AOA boundary.
7186	E.6.4	Managing Access to AOA.
7187		1. Minimize the number of vehicle and pedestrian gates to manage access to the AOA.
7188 7189		2. Locate access points in key visible locations to facilitate monitoring and awareness of individuals entering the AOA.
7190		3. Limit vehicle access gates to vehicles having an aviation need to enter the AOA:
7191		a. For basic airports, manual gates are appropriate for managing access to AOA.
7192 7193 7194		b. For local, regional and national airports, consider one class 3 gate operator, as defined by ASTM F2200-17, for access to the terminal apron area and manual gates elsewhere.
7195	E.6.5	Additional Risk Based Measures.
7196 7197	2.0.0	An airport may have unique circumstances increasing the risk to airport safety beyond what the basic fencing guidelines provide. Conducting a risk-based assessment may
7198		justify modifications to the basic fencing guidelines to mitigate a specific risk to safety
7199 7200		at that airport. This includes increased fence heights, addition of 3-strand barbed wire, smaller fence mesh, etc.
7201	E.6.6	Signage.
7202		Install warning signs at access points and intermediate points along boundary fence to
7203		establish notice to individuals they are entering the AOA.

7204	E.6.7	Wildlife Fencing.
7205		For non-139 airports, a wildlife hazard site visit (WHSV) determines whether fencing to
7206		deter wildlife is necessary. If an airport's WHSV supports wildlife fencing, the
7207		recommendations in the WHSV for fence type, height and location supersede the basic
7208		fencing guidelines of paragraph <u>E.6.2</u> . For additional information, refer to AC
7209		150/5200-38, Protocol for the Conduct and Review of Wildlife Hazard Site Visits,
7210		Wildlife Hazard Assessments, and Wildlife Hazard Management Plans.

AC 150/5300-13B 7/2/2020

7211		APPENDIX F. COMPASS CALIBRATION PAD SURVEY
7212	F.1	Survey of the Compass Calibration Pad.
7213		1. Resurvey the pad after all construction is complete to:
7214		a. establish the current magnetic headings, and
7215		b. demonstrate the pad is free of magnetic materials.
7216		2. Mark the center of the calibration pad with a bronze survey marker.
7217 7218		3. Establish a permanent monument at a remote location along the true north radial for future reference.
7219 7220 7221		4. Mark the date of observation and any annual change in direction of magnetic north durably and legibly on the surface of the calibration pad near the magnetic north mark.
7222 7223		5. Any qualified state-registered geophysicist, surveyor or engineer may perform the compass rose survey.
7224 7225 7226 7227 7228 7229		6. The U.S. Geological Survey (USGS) Geomagnetism Group historically provides information on the necessary surveys and equipment to certify a compass rose, as well as, the calibration of magnetometers and other suitable instruments used to measure the magnetic field. Services and contact information is available at the Geomagnetism Group website: https://www.usgs.gov/natural-hazards/geomagnetism .
7230	F.2	Resurvey of In-service Pads.
7231		The FAA recommends:
7232 7233		1. Conducting magnetic surveys of existing compass calibration pads at regular intervals of 5 years or less.
7234		2. Conducting magnetic surveys after:
7235 7236		a. Major construction of utility lines, buildings, or any other structures within 600 feet (183 m) of the center of the pad, or
7237		b. Any construction within 150 feet (46 m) of the center of the pad.

7/2/2020 DRAFT

APPENDIX G. RUNWAY DESIGN STANDARDS TABLES

Table G-1. Runway Design Standards Matrix, A/B-I Small Aircraft

Aircraft Approach Category (AAC) and Airplane Design Group (ADG):		A/B - I Small Aircraft			
ITEM	DIM	VISIBILITY MINIMUMS			
	•	Visual	Not Lower	Not Lower	Lower than
			than 1 mile	than 3/4 mile	3/4 mile
RUNWAY DESIGN					
Runway Length	A		Refer to parag	raphs <u>3.3</u> and <u>3.6</u>	<u>5.1</u>
Runway Width	В	60 ft	60 ft	60 ft	75 ft
Shoulder Width		10 ft	10 ft	10 ft	10 ft
Blast Pad Width		80 ft	80 ft	80 ft	95 ft
Blast Pad Length		60 ft	60 ft	60 ft	60 ft
Crosswind Component		10.5 knots	10.5 knots	10.5 knots	10.5 knots
RUNWAY PROTECTION					
Runway Safety Area (RSA)					
Length beyond departure end 9, 10	R	240 ft	240 ft	240 ft	600 ft
Length prior to threshold	P	240 ft	240 ft	240 ft	600 ft
Width	C	120 ft	120 ft	120 ft	300 ft
Runway Object Free Area (ROFA)					
Length beyond runway end	R	240 ft	240 ft	240 ft	600 ft
Length prior to threshold	P	240 ft	240 ft	240 ft	600 ft
Width	Q	250 ft	250 ft	250 ft	800 ft
Obstacle Free Zone (OFZ)					
Length		Refer to p	paragraph <u>3.10</u>		
Width		Refer to paragraph 3.10			
Precision Obstacle Free Zone (POFZ)					
Length		N/A	N/A	N/A	N/A
Width		N/A	N/A	N/A	N/A
Approach Runway Protection Zone (RPZ)					
Length	L	1,000 ft	1,000 ft	1,700 ft	2,500 ft
Inner Width	U	250 ft	250 ft	1,000 ft	1,000 ft
Outer Width	V	450 ft	450 ft	1,510 ft	1,750 ft
Acres		8.035	8.035	48.978	79.000
Departure Runway Protection Zone (RPZ)					
Length	L	1,000 ft	1,000 ft	1,000 ft	1,000 ft
Inner Width	U	250 ft	250 ft	250 ft	250 ft
Outer Width	V	450 ft	450 ft	450 ft	450 ft
Acres		8.035	8.035	8.035	8.035
RUNWAY SEPARATION					
Runway centerline to:					
Parallel runway centerline	Н			paragraph <u>3.8</u>	
Holding Position		125 ft	125 ft	125 ft	175 ft
Parallel taxiway/taxilane centerline 2,4	D	150 ft	150 ft	150 ft	200 ft
Aircraft parking area	G	Refer to paragraph 5.4.1.2			

Note: Values in the table are rounded to the nearest foot. 1 foot = 0.305 meters.

7241

7239

7242

7243

Table G-2. Runway Design Standards Matrix, A/B-I

Aircraft Approach Category (AAC) and Airplane Design Group (ADG):		A/B - I				
ITEM	DIM	VISIBILITY MINIMUMS				
		Visual	Not Lower than	Not Lower than	Lower than	
			1 mile	3/4 mile	3/4 mile	
RUNWAY DESIGN						
Runway Length	A		Refer to parag	raphs <u>3.3</u> and <u>3.6</u>	<u>.1</u>	
Runway Width	В	60 ft	60 ft	60 ft	100 ft	
Shoulder Width		10 ft	10 ft	10 ft	10 ft	
Blast Pad Width		80 ft	80 ft	80 ft	120 ft	
Blast Pad Length		100 ft	100 ft	100 ft	100 ft	
Crosswind Component		10.5 knots	10.5 knots	10.5 knots	10.5 knots	
RUNWAY PROTECTION						
Runway Safety Area (RSA)			_			
Length beyond departure end 9, 10	R	240 ft	240 ft	240 ft	600 ft	
Length prior to threshold	P	240 ft	240 ft	240 ft	600 ft	
Width	C	120 ft	120 ft	120 ft	300 ft	
Runway Object Free Area (ROFA)						
Length beyond runway end	R	240 ft	240 ft	240 ft	600 ft	
Length prior to threshold	P	240 ft	240 ft	240 ft	600 ft	
Width	Q	400 ft	400 ft	400 ft	800 ft	
Obstacle Free Zone (OFZ)						
Length			Refer to p	aragraph <u>3.10</u>		
Width			Refer to p	aragraph <u>3.10</u>		
Precision Obstacle Free Zone (POFZ)						
Length		N/A	N/A	N/A	200 ft	
Width		N/A	N/A	N/A	800 ft	
Approach Runway Protection Zone (RPZ)						
Length	L	1,000 ft	1,000 ft	1,700 ft	2,500 ft	
Inner Width	U	500 ft	500 ft	1,000 ft	1,000 ft	
Outer Width	V	700 ft	700 ft	1,510 ft	1,750 ft	
Acres		13.770	13.770	48.978	78.914	
Departure Runway Protection Zone (RPZ)						
Length	L	1,000 ft	1,000 ft	1,000 ft	1,000 ft	
Inner Width	U	500 ft	500 ft	500 ft	500 ft	
Outer Width	V	700 ft	700 ft	700 ft	700 ft	
Acres		13.770	13.770	13.770	13.770	
RUNWAY SEPARATION						
Runway centerline to:						
Parallel runway centerline	Н			paragraph <u>3.8</u>		
Holding Position		200 ft	200 ft	200 ft	250 ft	
Parallel taxiway/taxilane centerline ^{2, 4}	D	225 ft	225 ft	225 ft	250 ft	
Aircraft parking area	G			igraph <u>5.4.1.2</u>		
Helicopter touchdown pad		1	Refer to <u>A</u>	AC 150/5390-2		

7245

Table G-3. Runway Design Standards Matrix, A/B-II Small Aircraft

Aircraft Approach Category (AAC) and Airplane Design Group (ADG):		A/B - II Small Aircraft				
ITEM	DIM	VISIBILITY MINIMUMS				
		Visual	Not Lower than	Not Lower than	Lower than	
			1 mile	3/4 mile	3/4 mile	
RUNWAY DESIGN						
Runway Length	A		Refer to paragr	aphs <u>3.3</u> and <u>3.6</u> .	.1	
Runway Width	В	75 ft	75 ft	75 ft	100 ft	
Shoulder Width		10 ft	10 ft	10 ft	10 ft	
Blast Pad Width		95 ft	95 ft	95 ft	120 ft	
Blast Pad Length		150 ft	150 ft	150 ft	150 ft	
Crosswind Component		13 knots	13 knots	13 knots	13 knots	
RUNWAY PROTECTION Runway Safety Area (RSA)						
Length beyond departure end 9, 10	R	300 ft	300 ft	300 ft	600 ft	
Length prior to threshold	P	300 ft	300 ft	300 ft	600 ft	
Width	C	150 ft	150 ft	150 ft	300 ft	
Runway Object Free Area (ROFA)						
Length beyond runway end	R	300 ft	300 ft	300 ft	600 ft	
Length prior to threshold	P	300 ft	300 ft	300 ft	600 ft	
Width	Q	500 ft	500 ft	500 ft	800 ft	
Obstacle Free Zone (OFZ)				<u>'</u>		
Length			Refer to po	aragraph <u>3.10</u>		
Width				aragraph 3.10		
Precision Obstacle Free Zone (POFZ)			v 1	<u> </u>		
Length		N/A	N/A	N/A	200 ft	
Width		N/A	N/A	N/A	800 ft	
Approach Runway Protection Zone (RPZ)			•	•		
Length	L	1,000 ft	1,000 ft	1,700 ft	2,500 ft	
Inner Width	U	250 ft	250 ft	1,000 ft	1,000 ft	
Outer Width	V	450 ft	450 ft	1,510 ft	1,750 ft	
Acres		8.035	8.035	48.978	79.000	
Departure Runway Protection Zone (RPZ)						
Length	L	1,000 ft	1,000 ft	1,000 ft	1,000 ft	
Inner Width	U	250 ft	250 ft	500 ft	500 ft	
Outer Width	V	450 ft	450 ft	700 ft	700 ft	
Acres		8.035	8.035	13.770	13.770	
RUNWAY SEPARATION Runway centerline to:						
Parallel runway centerline	Н		Refer to p	aragraph <u>3.8</u>		
Holding Position		125 ft	125 ft	125 ft	175 ft	
Parallel taxiway/taxilane centerline ^{2, 4}	D	240 ft	240 ft	240 ft	300 ft	
Aircraft parking area	G			graph <u>5.4.1.2</u>	- * *	
Helicopter touchdown pad	-			C 150/5390-2		

Table G-4. Runway Design Standards Matrix, A/B-II

Aircraft Approach Category (AAC) and Airplane Design Group (ADG):		A/B - II			
ITEM	DIM	VISIBILITY MINIMUMS			
		Visual	Not Lower than	Not Lower than	Lower than
			1 mile	3/4 mile	3/4 mile
RUNWAY DESIGN					
Runway Length	A		Refer to parag	raphs <u>3.3</u> and <u>3.6</u>	.1
Runway Width	В	75 ft	75 ft	75 ft	100 ft
Shoulder Width		10 ft	10 ft	10 ft	10 ft
Blast Pad Width		95 ft	95 ft	95 ft	120 ft
Blast Pad Length		150 ft	150 ft	150 ft	150 ft
Crosswind Component		13 knots	13 knots	13 knots	13 knots
RUNWAY PROTECTION					
Runway Safety Area (RSA)					
Length beyond departure end 9, 10	R	300 ft	300 ft	300 ft	600 ft
Length prior to threshold	P	300 ft	300 ft	300 ft	600 ft
Width	C	150 ft	150 ft	150 ft	300 ft
Object Free Area (OFA)					
Length beyond runway end	R	300 ft	300 ft	300 ft	600 ft
Length prior to threshold	P	300 ft	300 ft	300 ft	600 ft
Width	Q	500 ft	500 ft	500 ft	800 ft
Runway Obstacle Free Zone (ROFZ)					
Length			Refer to p	aragraph <u>3.10</u>	
Width			Refer to p	aragraph <u>3.10</u>	
Precision Obstacle Free Zone (POFZ)					
Length		N/A	N/A	N/A	200 ft
Width		N/A	N/A	N/A	800 ft
Approach Runway Protection Zone (RPZ)					
Length	L	1,000 ft	1,000 ft	1,700 ft	2,500 ft
Inner Width	U	500 ft	500 ft	1,000 ft	1,000 ft
Outer Width	V	700 ft	700 ft	1,510 ft	1,750 ft
Acres		13.770	13.770	48.978	78.914
Departure Runway Protection Zone (RPZ)			-		
Length	L	1,000 ft	1,000 ft	1,000 ft	1,000 ft
Inner Width	U	500 ft	500 ft	500 ft	500 ft
Outer Width	V	700 ft	700 ft	700 ft	700 ft
Acres		13.770	13.770	13.770	13.770
RUNWAY SEPARATION			1		
Runway centerline to:					
Parallel runway centerline	Н		Refer to p	paragraph <u>3.8</u>	
Holding Position		200 ft	200 ft	200 ft	250 ft
Parallel taxiway/taxilane centerline ^{2, 4}	D	240 ft	240 ft	240 ft	300 ft
Aircraft parking area	G			graph 5.4.1.2	
Helicopter touchdown pad				C 150/5390-2	

Note: Values in the table are rounded to the nearest foot. 1 foot = 0.305 meters.

7247

7248

7249

Table G-5. Runway Design Standards Matrix, A/B-III

Aircraft Approach Category (AAC) and Airplane Design Group (ADG):		A/B - III			
ITEM	DIM	VISIBILITY MINIMUMS			
		Visual	Not Lower than	Not Lower than	Lower than
			1 mile	3/4 mile	3/4 mile
RUNWAY DESIGN					
Runway Length	A		Refer to parag	raphs <u>3.3</u> and <u>3.6</u>	<u>.1</u>
Runway Width	В	100 ft	100 ft	100 ft	100 ft
Shoulder Width		20 ft	20 ft	20 ft	20 ft
Blast Pad Width		140 ft	140 ft	140 ft	140 ft
Blast Pad Length		200 ft	200 ft	200 ft	200 ft
Crosswind Component		16 knots	16 knots	16 knots	16 knots
RUNWAY PROTECTION					
Runway Safety Area (RSA)				·	
Length beyond departure end 9, 10	R	600 ft	600 ft	600 ft	800 ft
Length prior to threshold ¹¹	P	600 ft	600 ft	600 ft	600 ft
Width	C	300 ft	300 ft	300 ft	400 ft
Runway Object Free Area (ROFA)					
Length beyond runway end	R	600 ft	600 ft	600 ft	800 ft
Length prior to threshold ¹¹	P	600 ft	600 ft	600 ft	600 ft
Width	Q	800 ft	800 ft	800 ft	800 ft
Obstacle Free Zone (OFZ)					
Length			Refer to p	aragraph <u>3.10</u>	
Width				aragraph 3.10	
Precision Obstacle Free Zone (POFZ)		1	, , , , , , , , , , , , , , , , , , ,	-	
Length		N/A	N/A	N/A	200 ft
Width		N/A	N/A	N/A	800 ft
Approach Runway Protection Zone (RPZ)			<u></u>		
Length	L	1,000 ft	1,000 ft	1,700 ft	2,500 ft
Inner Width	U	500 ft	500 ft	1,000 ft	1,000 ft
Outer Width	V	700 ft	700 ft	1,510 ft	1,750 ft
Acres		13.770	13.770	48.978	78.914
Departure Runway Protection Zone (RPZ)					
Length	L	1,000 ft	1,000 ft	1,000 ft	1,000 ft
Inner Width	U	500 ft	500 ft	500 ft	500 ft
Outer Width	V	700 ft	700 ft	700 ft	700 ft
Acres		13.770	13.770	13.770	13.770
RUNWAY SEPARATION					
Runway centerline to:					
Parallel runway centerline	Н		Refer to p	paragraph <u>3.8</u>	
Holding Position ⁷		200 ft	200 ft	200 ft	250 ft
Parallel taxiway/taxilane centerline ^{2, 4}	D	300 ft	300 ft	300 ft	350 ft
Aircraft parking area	G			<i>igraph</i> 5.4.1.2	-
Helicopter touchdown pad	-			C 150/5390-2	

DRAFT AC 150/5300-13B 7/2/2020

7250

7251

Table G-6. Runway Design Standards Matrix, A/B-IV

Aircraft Approach Category (AAC) and Airplane Design Group (ADG):		A/B - IV				
ITEM	DIM	VISIBILITY MINIMUMS				
		Visual	Not Lower than 1 mile	Not Lower than 3/4 mile	Lower than 3/4 mile	
RUNWAY DESIGN						
Runway Length	A		Refer to parag	raphs <u>3.3</u> and <u>3.6</u>	<u>.1</u>	
Runway Width	В	150 ft	150 ft	150 ft	150 ft	
Shoulder Width		25 ft	25 ft	25 ft	25 ft	
Blast Pad Width		200 ft	200 ft	200 ft	200 ft	
Blast Pad Length		200 ft	200 ft	200 ft	200 ft	
Crosswind Component		20 knots	20 knots	20 knots	20 knots	
RUNWAY PROTECTION Runway Safety Area (RSA)						
Length beyond departure end ^{9, 10}	R	1,000 ft	1,000 ft	1,000 ft	1,000 ft	
Length prior to threshold ¹¹	P	600 ft	600 ft	600 ft	600 ft	
Width	C	500 ft	500 ft	500 ft	500 ft	
Object Free Area (OFA)	C	300 11	300 10	300 It	300 11	
Length beyond runway end	R	1,000 ft	1,000 ft	1,000 ft	1,000 ft	
Length prior to threshold ¹¹	P	600 ft	600 ft	600 ft	600 ft	
Width	Q	800 ft	800 ft	800 ft	800 ft	
Runway Obstacle Free Zone (ROFZ)						
Length			Refer to p	aragraph <u>3.10</u>		
Width				aragraph <u>3.10</u>		
Precision Obstacle Free Zone (POFZ)			· · ·			
Length		N/A	N/A	N/A	200 ft	
Width		N/A	N/A	N/A	800 ft	
Approach Runway Protection Zone (RPZ)						
Length	L	1,000 ft	1,000 ft	1,700 ft	2,500 ft	
Inner Width	U	500 ft	500 ft	1,000 ft	1,000 ft	
Outer Width	V	700 ft	700 ft	1,510 ft	1,750 ft	
Acres		13.770	13.770	48.978	78.914	
Departure Runway Protection Zone (RPZ)						
Length	L	1,000 ft	1,000 ft	1,000 ft	1,000 ft	
Inner Width	U	500 ft	500 ft	500 ft	500 ft	
Outer Width	V	700 ft	700 ft	700 ft	700 ft	
Acres		13.770	13.770	13.770	13.770	
RUNWAY SEPARATION						
Runway centerline to:	**		D.C.	1.2.0		
Parallel runway centerline	Н	250.0		paragraph <u>3.8</u>	250.0	
Holding Position 8	ъ	250 ft	250 ft	250 ft	250 ft	
Parallel taxiway/taxilane centerline ²	D	400 ft	400 ft	400 ft	400 ft	
Aircraft parking area	G			graph <u>5.4.1.2</u>		
Helicopter touchdown pad			Refer to A	C 150/5390-2		

7252

7253

Table G-7. Runway Design Standards Matrix, C/D/E-I

RUNWAY DESIGN Runway Length A Refer to paragraphs 3.3 and 3.6.1	Aircraft Approach Category (AAC) and Airplane Design Group (ADG):		C/D/E - I				
RUNWAY DESIGN Runway Length A Refer to paragraphs 3.3 and 3.6.1				VISIBILITY MINIMUM			
RUNWAY DESIGN Runway Length A Runway Length B 100 ft 120 ft 1			Visual	Not Lower than	Not Lower than	Lower than	
Runway Length				1 mile	3/4 mile	3/4 mile	
Runway Width B 100 ft 120 ft	RUNWAY DESIGN						
Shoulder Width Blast Pad Width Blast Pad Width 120 ft 12	Runway Length	A		Refer to paragr	aphs <u>3.3</u> and <u>3.6.</u>	<u>.1</u>	
Blast Pad Width Blast Pad Length 120 ft	Runway Width	В	100 ft	100 ft	100 ft	100 ft	
Blast Pad Length 100 ft	Shoulder Width		10 ft	10 ft	10 ft	10 ft	
Crosswind Component 16 knots	Blast Pad Width		120 ft		120 ft	120 ft	
RUNWAY PROTECTION Runway Safety Area (RSA) Length beyond departure end 9,10 Length prior to threshold 11 P 600 ft 600 ft 600 ft 600 ft 500 ft 600 ft 6	Blast Pad Length		100 ft	100 ft	100 ft	100 ft	
Runway Safety Area (RSA) Length beyond departure end 9,10 Length prior to threshold 11 P 600 ft 600 ft 600 ft 600 ft 500 ft 600 ft 600 ft 600 ft 600 ft 600 ft 500 ft 600	Crosswind Component		16 knots	16 knots	16 knots	16 knots	
Length prior to threshold 11							
Width 13	Length beyond departure end 9, 10	R	1,000 ft	1,000 ft	1,000 ft	1,000 ft	
Disject Free Area (OFA)	Length prior to threshold ¹¹	P	600 ft	600 ft	600 ft	600 ft	
Length beyond runway end Length prior to threshold 1	Width 13	C	500 ft	500 ft	500 ft	500 ft	
Length beyond runway end Length prior to threshold 1	Object Free Area (OFA)						
Length prior to threshold 11		R	1,000 ft	1,000 ft	1,000 ft	1,000 ft	
Width	Length prior to threshold ¹¹	P	600 ft	600 ft	600 ft	600 ft	
Runway Obstacle Free Zone (ROFZ) Length Refer to paragraph 3.10	• 1	Q	800 ft	800 ft	800 ft	800 ft	
Width	Runway Obstacle Free Zone (ROFZ)						
Width	Length			Refer to po	aragraph <u>3.10</u>		
Length Width N/A N/A N/A 800							
N/A N/A N/A 800	Precision Obstacle Free Zone (POFZ)			¥ .			
N/A N/A N/A 800	Length		N/A	N/A	N/A	200 ft	
Length	Width		N/A	N/A	N/A	800 ft	
Inner Width	Approach Runway Protection Zone (RPZ)						
Outer Width Acres V 1,010 ft 29.465 1,010 ft 29.465 1,510 ft 29.465 1,750 test 29.465 1,750 test 29.465 1,750 test 29.465 78.912 test 29.465 7	Length	L	1,700 ft	1,700 ft	1,700 ft	2,500 ft	
Acres 29.465 29.465 48.978 78.914	Inner Width	U	500 ft	500 ft	1,000 ft	1,000 ft	
Departure Runway Protection Zone (RPZ) Length	Outer Width	V	1,010 ft	1,010 ft	1,510 ft	1,750 ft	
Length	Acres		29.465	29.465	48.978	78.914	
Inner Width	Departure Runway Protection Zone (RPZ)						
Outer Width Acres V 1,010 ft 29.465 29.465	Length	L	1,700 ft	1,700 ft	1,700 ft	1,700 ft	
Acres RUNWAY SEPARATION Runway centerline to: Parallel runway centerline Holding Position Parallel taxiway/taxilane centerline	Inner Width	U				500 ft	
RUNWAY SEPARATION Runway centerline to: Parallel runway centerline H Holding Position Parallel taxiway/taxilane centerline D Parallel taxiway/taxilane centerline D Refer to paragraph 3.8 250 ft 250 ft 250 ft 250 ft 250	Outer Width	V	1,010 ft	1,010 ft	1,010 ft	1,010 ft	
Runway centerline to:HRefer to paragraph 3.8 Parallel runway centerlineH 250 ft 250 ft 250 ft Holding Position 250 ft 250 ft 250 ft 250 ft Parallel taxiway/taxilane centerline 2D 300 ft 300 ft 300 ft			29.465	29.465	29.465	29.465	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
Holding Position $ 250 \text{ ft} \qquad 250 \text{ ft} $	T	Н		Refer to n	paragraph 3.8		
Parallel taxiway/taxilane centerline ² D 300 ft 300 ft 300 ft 400			250 ft			250 ft	
	_	D				400 ft	
						.00 10	
Helicopter touchdown pad **Refer to AC 150/5390-2**	1 0	٥					

Table G-8. Runway Design Standards Matrix, C/D/E-II 7254

Aircraft Approach Category (AAC) and Airplane Design Group (ADG):		C/D/E - II				
ITEM	DIM	VISIBILITY MINIMUMS				
		Visual	Not Lower than 1 mile	Not Lower than 3/4 mile	Lower than 3/4 mile	
RUNWAY DESIGN						
Runway Length	A		Refer to parag	raphs <u>3.3</u> and <u>3.6.</u>	<u>1</u>	
Runway Width	В	100 ft	100 ft	100 ft	100 ft	
Shoulder Width		10 ft	10 ft	10 ft	10 ft	
Blast Pad Width		120 ft	120 ft	120 ft	120 ft	
Blast Pad Length		150 ft	150 ft	150 ft	150 ft	
Crosswind Component		16 knots	16 knots	16 knots	16 knots	
RUNWAY PROTECTION Runway Safety Area (RSA)						
Length beyond departure end 9,10	R	1,000 ft	1,000 ft	1,000 ft	1,000 ft	
Length prior to threshold 11	P	600 ft	600 ft	600 ft	600 ft	
Width ¹³	C	500 ft	500 ft	500 ft	500 ft	
Object Free Area (OFA)						
Length beyond runway end	R	1,000 ft	1,000 ft	1,000 ft	1,000 ft	
Length prior to threshold 11	P	600 ft	600 ft	600 ft	600 ft	
Width	Q	800 ft	800 ft	800 ft	800 ft	
Runway Obstacle Free Zone (ROFZ)						
Length			Refer to p	aragraph <u>3.10</u>		
Width			Refer to p	aragraph <u>3.10</u>		
Precision Obstacle Free Zone (POFZ)						
Length		N/A	N/A	N/A	200 ft	
Width		N/A	N/A	N/A	800 ft	
Approach Runway Protection Zone (RPZ)						
Length	L	1,700 ft	1,700 ft	1,700 ft	2,500 ft	
Inner Width	U	500 ft	500 ft	1,000 ft	1,000 ft	
Outer Width	V	1,010 ft	1,010 ft	1,510 ft	1,750 ft	
Acres		29.465	29.465	48.978	78.914	
Departure Runway Protection Zone (RPZ)						
Length	L	1,700 ft	1,700 ft	1,700 ft	1,700 ft	
Inner Width	U	500 ft	500 ft	500 ft	500 ft	
Outer Width	V	1,010 ft	1,010 ft	1,010 ft	1,010 ft	
Acres		29.465	29.465	29.465	29.465	
RUNWAY SEPARATION Runway centerline to:						
Parallel runway centerline	Н		Refer to p	paragraph <u>3.8</u>		
Holding Position		250 ft	250 ft	250 ft	250 ft	
Parallel taxiway/taxilane centerline ²	D	300 ft	300 ft	300 ft	400 ft	
Aircraft parking area	G			graph <u>5.4.1.2</u>		
Helicopter touchdown pad	-			C 150/5390-2		

Note: Values in the table are rounded to the nearest foot. 1 foot = 0.305 meters.

Table G-9. Runway Design Standards Matrix, C/D/E-III 7256

RUNWAY DESIGN Runway Length Runway Width 12 Shoulder Width 12 Blast Pad Width 12 Blast Pad Length Crosswind Component RUNWAY PROTECTION Runway Safety Area (RSA) Length beyond departure end 9, 10 Length prior to threshold 11 Width Object Free Area (OFA) Length beyond runway end Length prior to threshold 11	IM 1		Meini ir		C/D/E - III			
Runway Length Runway Width 12 Shoulder Width 12 Blast Pad Width 12 Blast Pad Length Crosswind Component RUNWAY PROTECTION Runway Safety Area (RSA) Length beyond departure end 9, 10 Length prior to threshold 11 Width Object Free Area (OFA) Length beyond runway end Length prior to threshold 11 Width			VISIBILITY MINIMUMS					
Runway Length Runway Width 12 Shoulder Width 12 Blast Pad Width 12 Blast Pad Length Crosswind Component RUNWAY PROTECTION Runway Safety Area (RSA) Length beyond departure end 9, 10 Length prior to threshold 11 Width Object Free Area (OFA) Length beyond runway end Length prior to threshold 11 Width		Visual	Not Lower than 1 mile	Not Lower than 3/4 mile	Lower than 3/4 mile			
Runway Length Runway Width 12 Shoulder Width 12 Blast Pad Width 12 Blast Pad Length Crosswind Component RUNWAY PROTECTION Runway Safety Area (RSA) Length beyond departure end 9, 10 Length prior to threshold 11 Width Object Free Area (OFA) Length beyond runway end Length prior to threshold 11 Width		<u> </u>	1 mile	3/ 1 111110	3/ 1 111110			
Runway Width 12 Shoulder Width 12 Blast Pad Width 12 Blast Pad Length Crosswind Component RUNWAY PROTECTION Runway Safety Area (RSA) Length beyond departure end 9, 10 Length prior to threshold 11 Width Object Free Area (OFA) Length beyond runway end Length prior to threshold 11 Width	A		Refer to paragi	raphs <u>3.3</u> and <u>3.6.</u>	1			
Shoulder Width 12 Blast Pad Width 12 Blast Pad Length Crosswind Component RUNWAY PROTECTION Runway Safety Area (RSA) Length beyond departure end 9, 10 Length prior to threshold 11 Width Object Free Area (OFA) Length beyond runway end Length prior to threshold 11 Width	В	1 <mark>0</mark> 0 ft	1 <mark>0</mark> 0 ft	100 ft	1 <mark>0</mark> 0 ft			
Blast Pad Width ¹² Blast Pad Length Crosswind Component RUNWAY PROTECTION Runway Safety Area (RSA) Length beyond departure end ^{9, 10} Length prior to threshold ¹¹ Width Object Free Area (OFA) Length beyond runway end Length prior to threshold ¹¹ Width	_	20 ft	20 ft	20 ft	20 ft			
Blast Pad Length Crosswind Component RUNWAY PROTECTION Runway Safety Area (RSA) Length beyond departure end 9, 10 Length prior to threshold 11 Width Object Free Area (OFA) Length beyond runway end Length prior to threshold 11 Width		140 ft	140 ft	140 ft	140 ft			
Crosswind Component RUNWAY PROTECTION Runway Safety Area (RSA) Length beyond departure end 9, 10 Length prior to threshold 11 Width Object Free Area (OFA) Length beyond runway end Length prior to threshold 11 Width		200 ft	200 ft	200 ft	200 ft			
RUNWAY PROTECTION Runway Safety Area (RSA) Length beyond departure end 9, 10 Length prior to threshold 11 Width Object Free Area (OFA) Length beyond runway end Length prior to threshold 11 Width		16 knots	16 knots	16 knots	16 knots			
Runway Safety Area (RSA) Length beyond departure end 9, 10 Length prior to threshold 11 Width Object Free Area (OFA) Length beyond runway end Length prior to threshold 11 Width								
Length prior to threshold ¹¹ Width Object Free Area (OFA) Length beyond runway end Length prior to threshold ¹¹ Width								
Width Object Free Area (OFA) Length beyond runway end Length prior to threshold 11 Width	R	1,000 ft	1,000 ft	1,000 ft	1,000 ft			
Object Free Area (OFA) Length beyond runway end Length prior to threshold 11 Width	P	600 ft	600 ft	600 ft	600 ft			
Length beyond runway end Length prior to threshold ¹¹ Width	C	500 ft	500 ft	500 ft	500 ft			
Length prior to threshold ¹¹ Width								
Width	R	1,000 ft	1,000 ft	1,000 ft	1,000 ft			
	P	600 ft	600 ft	600 ft	600 ft			
Runway Obstacle Free Zone (ROFZ)	Q	800 ft	800 ft	800 ft	800 ft			
Length			Refer to po	aragraph <u>3.10</u>				
Width			Refer to po	aragraph <u>3.10</u>				
Precision Obstacle Free Zone (POFZ)				 				
Length		N/A	N/A	N/A	200 ft			
Width		N/A	N/A	N/A	800 ft			
Approach Runway Protection Zone (RPZ)		T						
	L	1,700 ft	1,700 ft	1,700 ft	2,500 ft			
	U	500 ft	500 ft	1,000 ft	1,000 ft			
Outer Width	V	1,010 ft	1,010 ft	1,510 ft	1,750 ft			
Acres		29.465	29.465	48.978	78.914			
Departure Runway Protection Zone (RPZ)		•						
	L	1,700 ft	1,700 ft	1,700 ft	1,700 ft			
	U	500 ft	500 ft	500 ft	500 ft			
	V	1,010 ft	1,010 ft	1,010 ft	1,010 ft			
Acres		29.465	29.465	29.465	29.465			
RUNWAY SEPARATION Runway centerline to:								
,	Н		Refer to n	paragraph <u>3.8</u>				
Holding Position 8	-	250 ft	250 ft	250 ft	250 ft			
_	D	400 ft	400 ft	400 ft	400 ft			
•	G			graph <u>5.4.1.2</u>				
Helicopter touchdown pad	-			C 150/5390-2				

Note: Values in the table are rounded to the nearest foot. 1 foot = 0.305 meters.

7/2/2020 DRAFT

7258

7259

Table G-10. Runway Design Standards Matrix, C/D/E-IV

Aircraft Approach Category (AAC) and Airplane Design Group (ADG):		C/D/E - IV				
ITEM	DIM	VISIBILITY MINIMUMS				
		Visual	Not Lower than 1 mile	Not Lower than 3/4 mile	Lower than 3/4 mile	
RUNWAY DESIGN		· L	•			
Runway Length	A		Refer to parag	raphs <u>3.3</u> and <u>3.6.</u>	1	
Runway Width	В	150 ft	150 ft	150 ft	150 ft	
Shoulder Width		25 ft	25 ft	25 ft	25 ft	
Blast Pad Width		200 ft	200 ft	200 ft	200 ft	
Blast Pad Length		200 ft	200 ft	200 ft	200 ft	
Crosswind Component		20 knots	20 knots	20 knots	20 knots	
RUNWAY PROTECTION Runway Safety Area (RSA)						
Length beyond departure end 9, 10	R	1,000 ft	1,000 ft	1,000 ft	1,000 ft	
Length prior to threshold 11	P	600 ft	600 ft	600 ft	600 ft	
Width	C	500 ft	500 ft	500 ft	500 ft	
Runway Object Free Area (ROFA)						
Length beyond runway end	R	1,000 ft	1,000 ft	1,000 ft	1,000 ft	
Length prior to threshold ¹¹	P	600 ft	600 ft	600 ft	600 ft	
Width	Q	800 ft	800 ft	800 ft	800 ft	
Obstacle Free Zone (OFZ)						
Length			Refer to p	aragraph <u>3.10</u>		
Width			Refer to p	aragraph <u>3.10</u>		
Precision Obstacle Free Zone (POFZ)						
Length		N/A	N/A	N/A	200 ft	
Width		N/A	N/A	N/A	800 ft	
Approach Runway Protection Zone (RPZ)						
Length	L	1,700 ft	1,700 ft	1,700 ft	2,500 ft	
Inner Width	U	500 ft	500 ft	1,000 ft	1,000 ft	
Outer Width	V	1,010 ft	1,010 ft	1,510 ft	1,750 ft	
Acres		29.465	29.465	48.978	78.914	
Departure Runway Protection Zone (RPZ)						
Length	L	1,700 ft	1,700 ft	1,700 ft	1,700 ft	
Inner Width	U	500 ft	500 ft	500 ft	500 ft	
Outer Width	V	1,010 ft	1,010 ft	1,010 ft	1,010 ft	
Acres		29.465	29.465	29.465	29.465	
RUNWAY SEPARATION Runway centerline to:						
Parallel runway centerline	Н			paragraph <u>3.8</u>		
Holding Position 8		250 ft	250 ft	250 ft	250 ft	
Parallel taxiway/taxilane centerline ²	D	400 ft	400 ft	400 ft	400 ft	
Aircraft parking area	G		Refer to para	graph <u>5.4.1.2</u>		
Helicopter touchdown pad				C 150/5390-2		

AC 150/5300-13B 7/2/2020 DRAFT

7260

7261

Table G-11. Runway Design Standards Matrix, C/D/E-V

Aircraft Approach Category (AAC) and Airplane Design Group (ADG):			C/I	D/E - V	
ITEM	DIM	VISIBILITY MINIMUMS			
		Visual	Not Lower than 1 mile	Not Lower than 3/4 mile	Lower than 3/4 mile
RUNWAY DESIGN					
Runway Length	A		Refer to paragi	raphs <u>3.3</u> and <u>3.6</u>	<u>.1</u>
Runway Width	В	150 ft	150 ft	150 ft	150 ft
Shoulder Width		35 ft	35 ft	35 ft	35 ft
Blast Pad Width		220 ft	220 ft	220 ft	220 ft
Blast Pad Length		400 ft	400 ft	400 ft	400 ft
Crosswind Component		20 knots	20 knots	20 knots	20 knots
RUNWAY PROTECTION					
Runway Safety Area (RSA)				<u> </u>	
Length beyond departure end 9, 10	R	1,000 ft	1,000 ft	1,000 ft	1,000 ft
Length prior to threshold ¹¹	P	600 ft	600 ft	600 ft	600 ft
Width	C	500 ft	500 ft	500 ft	500 ft
Runway Object Free Area (ROFA)					
Length beyond runway end	R	1,000 ft	1,000 ft	1,000 ft	1,000 ft
Length prior to threshold ¹¹	P	600 ft	600 ft	600 ft	600 ft
Width	Q	800 ft	800 ft	800 ft	800 ft
Obstacle Free Zone (OFZ)					
Length			Refer to p	aragraph <u>3.10</u>	
Width			Refer to p	aragraph <u>3.10</u>	
Precision Obstacle Free Zone (POFZ)					
Length		N/A	N/A	N/A	200 ft
Width		N/A	N/A	N/A	800 ft
Approach Runway Protection Zone (RPZ)					
Length	L	1,700 ft	1,700 ft	1,700 ft	2,500 ft
Inner Width	U	500 ft	500 ft	1,000 ft	1,000 ft
Outer Width	V	1,010 ft	1,010 ft	1,510 ft	1,750 ft
Acres		29.465	29.465	48.978	78.914
Departure Runway Protection Zone (RPZ)					
Length	L	1,700 ft	1,700 ft	1,700 ft	1,700 ft
Inner Width	U	500 ft	500 ft	500 ft	500 ft
Outer Width	V	1,010 ft	1,010 ft	1,010 ft	1,010 ft
Acres		29.465	29.465	29.465	29.465
RUNWAY SEPARATION					
Runway centerline to:					
Parallel runway centerline	Н			paragraph <u>3.8</u>	
Holding Position 8		250 ft	250 ft	250 ft	280 ft
Parallel taxiway/taxilane centerline ^{3, 5}	D			ootnote 3.	
Aircraft parking area	G			graph <u>5.4.1.2</u>	
Helicopter touchdown pad			Refer to <u>A</u>	C 150/5390-2	

AC 150/5300-13B DRAFT7/2/2020

7262

7263

Table G-12. Runway Design Standards Matrix, C/D/E-VI

Aircraft Approach Category (AAC) and Airplane Design Group (ADG):		C/D/E - VI				
ITEM	DIM	VISIBILITY MINIMUMS				
		Visual	Not Lower than 1 mile	Not Lower than 3/4 mile	Lower than 3/4 mile	
RUNWAY DESIGN			1 IIIIC	3/4 IIIIC	3/4 HHC	
Runway Length	A		Refer to parag	raphs <u>3.3</u> and <u>3.6</u> .	1	
Runway Width	В	200 ft	200 ft	200 ft	200 ft	
Shoulder Width		40 ft	40 ft	40 ft	40 ft	
Blast Pad Width		280 ft	280 ft	280 ft	280 ft	
Blast Pad Length		400 ft	400 ft	400 ft	400 ft	
Crosswind Component		20 knots	20 knots	20 knots	20 knots	
RUNWAY PROTECTION						
Runway Safety Area (RSA)						
Length beyond departure end 9, 10	R	1,000 ft	1,000 ft	1,000 ft	1,000 ft	
Length prior to threshold ¹¹	P	600 ft	600 ft	600 ft	600 ft	
Width	C	500 ft	500 ft	500 ft	500 ft	
Object Free Area (OFA)						
Length beyond runway end	R	1,000 ft	1,000 ft	1,000 ft	1,000 ft	
Length prior to threshold ¹¹	P	600 ft	600 ft	600 ft	600 ft	
Width	Q	800 ft	800 ft	800 ft	800 ft	
Runway Obstacle Free Zone (ROFZ)						
Length			Refer to p	aragraph <u>3.10</u>		
Width			Refer to p	aragraph <u>3.10</u>		
Precision Obstacle Free Zone (POFZ)						
Length		N/A	N/A	N/A	200 ft	
Width		N/A	N/A	N/A	800 ft	
Approach Runway Protection Zone (RPZ)						
Length	L	1,700 ft	1,700 ft	1,700 ft	2,500 ft	
Inner Width	U	500 ft	500 ft	1,000 ft	1,000 ft	
Outer Width	V	1,010 ft	1,010 ft	1,510 ft	1,750 ft	
Acres		29.465	29.465	48.978	78.914	
Departure Runway Protection Zone (RPZ)						
Length	L	1,700 ft	1,700 ft	1,700 ft	1,700 ft	
Inner Width	U	500 ft	500 ft	500 ft	500 ft	
Outer Width	V	1,010 ft	1,010 ft	1,010 ft	1,010 ft	
Acres		29.465	29.465	29.465	29.465	
RUNWAY SEPARATION						
Runway centerline to:						
Parallel runway centerline	Н			paragraph <u>3.8</u>		
Holding Position 8		280 ft	280 ft	280 ft	280 ft	
Parallel taxiway/taxilane centerline ^{2, 6}	D	500 ft	500 ft	500 ft	500 ft	
Aircraft parking area	G			<i>igraph</i> <u>5.4.1.2</u>		
Helicopter touchdown pad			Refer to <u>A</u>	C 150/5390-2		

Footnotes:

- 7265 **1.** Letters correspond to the dimensions in Figure 3-33.
- The runway to taxiway/taxilane centerline separation standards are for airports at sea level.
 For airports at higher elevations, an increase to these separation distances may be required to keep taxiing and holding aircraft clear of the inner-transitional OFZ (refer to paragraph 3.10.5). This standard cannot be used to justify a decrease in runway to taxiway/taxilane separation.
- 7271 **3.** The standard runway centerline to parallel taxiway centerline separation distance is 400 feet for airports at or below an elevation of 1,345 feet; 450 feet for airports between elevations of 1,345 feet and 6,560 feet; and 500 feet for airports above an elevation of 6,560 feet.
- 7274 **4.** For approaches with visibility less than ½-statute mile, runway centerline to taxiway/taxilane centerline separation increases to 400 feet.
- 5. For approaches with visibility less than ½-statute mile, the separation distance increases to 500 feet.
- 6. For approaches with visibility less than 3/4 statute mile, the separation distance may increase by an elevation adjustment. For approaches with visibility less than ½-statute mile, the separation distance increases to 550 feet.
- 7281 7. Increase this distance 1 foot for each 100 feet above 5,100 feet above sea level.
- 7282 **8.** Increase this distance 1 foot for each 100 feet above sea level.
- 7283 **9.** The RSA length beyond the runway end begins at the runway end if the runway does not have a stopway. When a runway has a stopway, the length begins at the stopway end.
- 10. The RSA length beyond the runway end may be reduced to that required to install an Engineered Materials Arresting System (EMAS) (the designed set-back of the EMAS included) designed to stop the critical aircraft exiting the runway end at 70 knots. See the latest edition of AC 150/5220-22 for additional guidance.
- This value only applies if that runway end is equipped with electronic or visual vertical guidance. ILS, GLS, LPV, LNAV/VNAV, and RNP lines of minima provides electronic vertical guidance. A PAPI or VASI provides visual vertical guidance. If there is no such guidance for that runway, use the value for "length beyond departure end."
- 7293 **12.** For airplanes with maximum certificated takeoff weight greater than 150,000 lbs, the standard runway width is 150 feet, the shoulder width is 25 feet, and the runway blast pad width is 200 feet.
- 7296 **13.** An RSA width of 400 feet is permissible.

7/2/2020

APPENDIX H. DECLARED DISTANCES

7299	H.1	Application.
7300 7301		Declared distances represent the maximum distances available and suitable for meeting aircraft takeoff, rejected takeoff, and landing distances performance requirements.
7302 7303 7304		1. Declared distances apply to the certification and operation of turbine-engine powered transport category airplanes operating under 14 CFR parts 135, 121, and 91 (turbine include turbojets or turboprop powered aircraft).
7305		2. The declared distances are:
7306 7307		 a. Takeoff Distance Available (TODA) and Takeoff Run Available (TORA), which apply to takeoff;
7308 7309		b. Accelerate Stop Distance Available (ASDA), which applies to a rejected takeoff; and
7310		c. Landing Distance Available (LDA), which applies to landing.
7311 7312		3. For turbine powered aircraft operations, the TODA may include a clearway, if present (reference 14 CFR Part 1). The ASDA may include a stopway, if present:
7313 7314 7315		a. By treating these distances independently, declared distances is a design methodology that results in declaring and reporting the TORA, TODA, ASDA and LDA for each operational direction.
7316 7317 7318 7319		4. While there are not similarly stringent operating rules applicable to other airplane types (e.g. pistons), declared distances are useful as advisory information to assist pilots with becoming familiar with all available information concerning the intended flight (see 14 CFR 91.103).
7320 7321 7322		5. Implementing declared distances is a reasonable alternative to mitigate existing runway shortcomings and thus better meet design standards, even when the critical aircraft is not a turbine-engine powered, transport category airplane:
7323 7324		a. However, all airport operators still need to review all reasonable alternatives in the master planning effort, and not immediately choose declared distances.
7325 7326 7327		b. The use of declared distances to satisfy runway design standards is an interim condition ensuring flight safety until the airport implements improvements to the runway.
7328 7329 7330		c. The full operational use of the paved runway is the optimum state, so declared distances do not limit the usable length available for airplane takeoff and landing operations.
7331 7332 7333		6. The FAA Airports Regional Office or Airports District Office (AD) review and approval is necessary to implement proposals for declared distances not equal to the physical length of the runway.
7334 7335		7. Declared distances are normally published for all runways with turbine operations (even if not the critical aircraft) or runways with charted IFPs that have C and D

7/2/2020

minima. At Part 139 airports declared distance data are listed for all runway ends 7336 7337 that are specified as Part 139 use. 7338 H.1.1 Using Declared Distances. H.1.1.1 Using declared distances is one method to: 7339 1. Obtain additional RSA and/or ROFA prior to the runway's threshold 7340 (the start of the LDA) and/or beyond the stop end of the LDA and 7341 ASDA; 7342 7343 2. Mitigate unacceptable incompatible land uses in the RPZ; 3. Meet runway approach and/or departure surface clearance 7344 7345 requirements, in accordance with airport design standards; or 4. Mitigate environmental impacts. 7346 H.1.1.2 7347 Use declared distances as a way for incremental improvements when it is not practical to fully meet these requirements. However, declared 7348 distances are only used for these purposes where it is impracticable to 7349 7350 meet the airport design standards or mitigate the environmental impacts by other means, and the use of declared distances is practical. 7351 7352 H.1.2Declared distances either limit or increase runway use. The use of declared distances may result in a displaced runway threshold and may affect the beginning and ending of 7353 7354 the RSA, ROFA, and RPZ. For runways without published declared distances, the declared distances are equal to the physical length of the runway unless there is a 7355 displaced threshold. With a displaced threshold, the LDA is shortened by the length of 7356 7357 the threshold displacement in the direction of landing at that displaced threshold. H.2 RSA, ROFA, and RPZ Lengths and Related Nomenclature. 7358 The nomenclature referenced in the following paragraphs is used throughout the rest of 7359 7360 this section and is always based upon the direction of operation. H.2.1RSA, ROFA Standards. 7361 The online Runway Design Standards Matrix Tool specifies the length "R" as the 7362 required length of the RSA and ROFA beyond the runway departure end. The tool 7363 specifies length "P" as the required length of the RSA and ROFA prior to the threshold. 7364 A full dimension RSA and full dimension ROFA extend the length of the runway plus 2 7365 × R when there is no stopway. Where a stopway exists, measure R from the far end of 7366 the stopway based upon the takeoff direction, and the RSA and ROFA extend the full 7367 length of the runway plus the length of the stopway(s) plus $2 \times R$. 7368 H.2.2Existing or Proposed RSA and ROFA beyond the Runway Ends. 7369 As used in the Figure H-8, Figure H-9, Figure H-10, Figure H-11, Figure H-12, Figure 7370 H-15, and Figure H-16, the RSA length "S" is the existing or proposed RSA beyond the 7371

runway ends. The ROFA length "T" is the existing or proposed ROFA beyond the 7372 runway ends. 7373 7374 H.2.3RPZ Lengths. The online Runway Design Standards Matrix Tool specifies the standard RPZ length 7375 "L" for both the Approach RPZ, which ends 200 ft (61 m) from the threshold based 7376 upon the landing direction, and the Departure RPZ, beginning 200 ft (61 m) from the 7377 runway end based upon the direction of takeoff. See Figure 3-23, Figure 3-24, and 7378 Figure 3-25. 7379 7380 H.3 Background. H.3.1 It is helpful to understand the relationship between aircraft certification, aircraft 7381 operating rules, airport data, and airport design for the application of declared distances 7382 in airport design. Aircraft certification provides the aircraft's performance distances. 7383 H.3.2The takeoff decision speed (V_1) , and the following distances to achieve or decelerate 7384 from V_1 are established by the manufacturer and confirmed during certification testing 7385 for varying climatological conditions, operating weights, etc.: 7386 H.3.2.1 Takeoff Run. 7387 The distance to accelerate from brake release to lift-off, plus safety 7388 factors. (See TORA, paragraph H.4.1.) 7389 H.3.2.2 Takeoff Distance. 7390 The distance to accelerate from brake release past lift-off to start of takeoff 7391 7392 climb, plus safety factors. (See TODA, paragraph H.4.2.) H.3.2.3**Accelerate-Stop Distance.** 7393 The distance to accelerate from brake release to V_1 and then decelerate to 7394 a stop, plus safety factors. (See ASDA, paragraph <u>H.4.3</u>.) 7395 H.3.2.4 Landing Distance. 7396 The distance from the threshold to complete the approach, touchdown, and 7397 7398 decelerate to a stop, plus safety factors. (See LDA, paragraph H.5.1.) Aircraft operating rules provide a minimum acceptable level of safety by controlling the 7399 H.3.3aircraft maximum operating weights and limiting the aircraft's performance distances as 7400 follows: 7401 7402 • TORA does not exceed the length of runway. • TODA does not exceed the length of runway plus clearway. 7403 • ASDA does not exceed the length of runway plus stopway. 7404 • LDA does not exceed the length of runway. 7405

7409

7410

7411 7412

7413 7414

7415

7416

7417

7406	H.3.4	Airport data provide the runway length and/or the following declared distance
7407		information for calculating maximum operating weights and/or operating capability.

For Takeoff. 7408 H.4

Start of takeoff ends of runway:

- 1. The start of takeoff for ASDA, TORA and TODA will always be collocated.
- 2. Do not consider the threshold locations, the RPZs, nor the RSA and ROFA behind the start of takeoff, in establishing the start of takeoff.
- 3. The start of takeoff is most often at the beginning of the runway but may also be located farther up the operational takeoff directions of the runway (see Figure H-1).
- 4. Declare TODA, ASDA and TORA when starting at such a location; start of takeoff may not start behind that point.

Figure H-1. Typical Starting Point for ASDA, TODA, and TORA

7418

7420

7421

7422

7423 7424

7425

7426

7427

7428

H.4.17419 TORA.

The TORA is the length of runway declared available and suitable for satisfying takeoff run requirements.

- 1. Consider for determination of the TORA:
 - a. the start of takeoff
 - b. the departure RPZ, and
 - c. limitations resulting from a reduced TODA.
 - 2. When the full runway beyond the start of takeoff is available for the takeoff run, the departure end of the TORA is located at the end of the runway (see Figure H-2).
 - 3. Reduce the TORA such that it ends prior to the runway to resolve incompatible land uses in the departure RPZ, and/or to mitigate environmental effects.

- 4. The departure RPZ begins 200 ft (61 m) from the end of the TORA and extends out a distance L (see <u>Figure H-2</u> and <u>Figure H-3</u>).
- 5. Since TORA can never be longer than the TODA, whenever the TODA is shortened to less than the runway length to mitigate penetrations to the departure surface, the TORA is limited to the length of the TODA (see Figure H-4).
- 6. If a clearway exists and it begins prior to the runway end, the TORA ends at the beginning of the clearway (see Figure H-5).

Figure H-2. Typical Location for Departure End of TORA

7430

7431

7432

7433

74347435

7436

Figure H-3. Modified Departure End of TORA due to Incompatible RPZ Land Use

7441

7439

Figure H-4. Modified TODA and TORA due to Object Penetration of 40:1 Surface

7444 7445

Note 1: The penetration to the instrument departure surface has been mitigated by the decreased length of the TODA.

7446 7447

Note 2: TORA has been limited by TODA. TORA can never be longer than TODA.

7/2/2020 D R

7448

Figure H-5. Extended TODA with Clearway – Shortened TORA

7449

7451

7452

74537454

7455

74567457

7458

7459

7450 H.4.2 TODA.

The TODA is the TORA plus the length of any remaining runway or clearway beyond the departure end of the TORA available for satisfying takeoff distance requirements.

- 1. Consider for the determination of the TODA:
 - a. the start of takeoff
 - b. departure surface requirements, and
- c. any clearway.
- 2. When only the full runway beyond the start of takeoff is available for takeoff distance, locate the departure end of the TODA at the end of the runway (see Figure H-6).

- The TODA may be limited from extending to the runway end to mitigate penetrations to the 40:1 instrument departure surface, where applicable (see Figure H-4).
 This is only one method of mitigating penetrations to the departure surface.
 The TODA may also extend beyond the runway end through the use of a clearway (see Figure H-5 and Figure H-7).
 - 6. The full length of the TODA may not be usable for a particular operation and may be limited by obstacles in the departure area and aircraft performance.
 - 7. The aircraft operator determines usable TODA length before each takeoff and requires knowledge of each controlling obstacle in the departure area.

7466

7467

7468

7469

7/2/2020 DRAFT

Figure H-7. Extended TODA with Clearway – Typical TORA

7473

7474

7472

H.4.2.1Clearway.

7475 7476

7477 7478

7479 7480

7481 7482

7483 7484

A clearway is only included as part of TODA. It is located at the departure end of the TORA. See paragraph 3.13.

- 1. When the TORA does not extend to the end of the runway a clearway (if any) extends beyond the runway end.
- 2. Any portion of the runway extending into the clearway is unavailable and/or unsuitable for takeoff run and takeoff distance computations.
- 3. Add the length of the clearway to the TORA for takeoff distance calculations.
- 4. A clearway increases the allowable airplane operating takeoff weight without increasing runway length.

7485 H.4.3 <u>ASDA.</u>

7486

7487

7488 7489

7490

7491

7492

7493

7494

7495

7496

7497

7498

7499

7500

7501

7502

7503

7504

7505

7506

The ASDA extends the length of runway plus stopway (if any) declared available and suitable for satisfying accelerate-stop distance requirements for a rejected takeoff. At the start of takeoff, consider the RSA and ROFA beyond the ASDA in determining the ASDA.

- 1. When only the full runway beyond the start of takeoff is available for completing a rejected takeoff, locate the stop end of the ASDA at the end of the runway, with the standard RSA and ROFA length R beyond the runway end (see <u>Figure H-8</u>).
- 2. When the standard RSA length R beyond the end of the runway does not exist or is not obtainable, reducing the ASDA is one way to obtain additional RSA beyond the ASDA as illustrated in Figure H-9.
- 3. When using declared distances to provide ROFA not obtainable beyond the runway end, and T is less than S, obtain additional ROFA beyond the ASDA by reducing the ASDA as illustrated in Figure H-10.
- 4. When a runway includes a stopway, the RSA and ROFA extend R beyond the stopway (see Figure H-11).
- 5. It may be necessary to use EMAS in conjunction with declared distances.
- 6. The portion of runway beyond the ASDA is unavailable and/or unsuitable for ASDA computations.

H.4.3.1 **Stopway.**

Only include a stopway as part of ASDA. See the definition of a stopway in paragraph 1.5, item 88.

Figure H-8. Typical Location of Stop End of ASDA and LDA

7508 7509 7510

- **Note 1:** When a stopway exists, see <u>Figure H-11</u> for the stop end of the ASDA.
- Note 2: S denotes the existing or proposed length of the RSA beyond the runway end.
- Note 3: T denotes the existing or proposed length of the ROFA beyond the runway end.

DRAFT 7/2/2020

Figure H-9. Adjusted ASDA and LDA Stop End for the RSA

7514 7515

7512

Note 1: When a stopway exists, see Figure H-11 for the stop end of the ASDA.

S denotes the existing or proposed length of the RSA beyond the runway end. Note 2:

Note 3: T denotes the existing or proposed length of the ROFA beyond the runway end.

Note 4: When declared distances are used as an incremental improvement and R is not obtainable beyond the LDA, this dimension equals the length of RSA obtainable beyond the ASDA.

Note 5: When declared distances are used as an incremental improvement and R is not obtainable beyond the LDA/ASDA, this dimension may equal the length of RSA obtainable beyond the LDA/ASDA minus S.

7520

7/2/2020 DRAFT

Figure H-10. Adjusted ASDA and LDA Stop End for ROFA

7523

7522

Note 1: When a stopway exists, see Figure H-11 for the stop end of the ASDA.

Note 2: S denotes the existing or proposed length of the RSA beyond the runway end.

Note 3: T denotes the existing or proposed length of the ROFA beyond the runway end.

Note 4: When declared distances are used as an incremental improvement and R is not obtainable beyond the LDA/ASDA, this dimension equals the length of ROFA obtainable beyond the LDA/ASDA.

Note 5: When declared distances are used as an incremental improvement and R is not obtainable beyond the LDA/ASDA, this dimension may equal the length of ROFA obtainable beyond the LDA/ASDA minus T.

7/2/2020 DRAFT

Figure H-11. Stop End of ASDA with Stopway

7534 7535 7536

7539

7540

7541

7542

7543

7544

7545

7533

Note 1: S denotes the existing or proposed length of the RSA beyond the runway end.

Note 2: T denotes the existing or proposed length of the ROFA beyond the runway end.

For Landing. 7537 H.5

H.5.1 7538 LDA.

The LDA is the length of runway declared available and suitable for satisfying landing distance requirements. Consider the threshold siting criteria, the approach RPZ, the RSA and ROFA prior to the threshold and beyond the LDA in establishing this distance.

H.5.1.1 The Beginning of the LDA.

The LDA begins at the threshold. When the RSA, ROFA, approach RPZ and threshold siting requirements are met the threshold is normally placed at the beginning of the runway. (See Figure H-12). When these standards do not exist, displacing the threshold is an option to attain them.

- 1. If there are multiple reasons to displace a threshold:
 - a. Calculate each displacement requirement.

11212	2020		DKMT	Appendix H	
7550			b. Select the longest displacement.		
7551 7552 7553 7554			c. Reevaluate all other criteria from the car to ensure that they are not violated, such penetrations due to the splay of the appraissociated with the new threshold.	n as new obstacle	
7555 7556 7557 7558 7559		2.	Displacing the threshold is an option to obta ROFA, to mitigate unacceptable incompatible meet approach surface requirements, and to effects (see Figure H-12, Figure H-13, Figure H-16).	ole land uses in the RPZ, to mitigate environmental	
7560	H.5.1.2	Th	e End of the LDA.		
7561 7562			nen the LDA extends to the end of the runwall ROFA extend beyond the runway end by le	•	ļ
7563 7564		1.	Except when a stopway exists as part of the the same location as the end of the ASDA.	ASDA, the LDA ends at	
7565		2.	A stopway cannot be part of the LDA.		
7566 7567 7568		3.	When the full dimension RSA/ROFA length is not obtainable, obtain additional RSA begathe LDA as illustrated in <u>Figure H-9</u> .		
7569 7570 7571		4.	Where declared distances provide ROFA norunway end and T is less than S, obtain add the LDA by reducing the LDA as illustrated	itional RSA ROFA beyond	
7572		5.	EMAS can be used to meet RSA standards;	it may be necessary to use	

EMAS in conjunction with declared distances.

computations (see Figure H-9 and Figure H-10).

6. The portion of runway beyond the LDA is unavailable for LDA

DRAFT

AC 150/5300-13B

7/2/2020

7573

7574

Figure H-12. Typical Start of LDA 7576

7577

Note 1: See Table 3-1.

Note 2: S denotes the existing or proposed length of the RSA beyond the runway end.

Note 3: T denotes the existing or proposed length of the ROFA beyond the runway end.

7578 7579

Figure H-13. LDA Starting Point – Displaced Threshold for Obstacle Clearance Surface

7583 7584 **Note 1:** See <u>Table 3-1</u>.

7581

Figure H-14. LDA Starting Point – Displaced Threshold for Adjusted RPZ

7586 7587

Note 1: See <u>Table 3-1</u>.

7/2/2020 DRAFT AC 150/5300-13B

Figure H-15. LDA Starting Point – Displaced Threshold for Adjusted RSA

7589 7590 7591

7592

7593

7594

7595

7596

7588

- S denotes the existing or proposed length of the RSA beyond the runway end. Note 1:
- Note 2: T denotes the existing or proposed length of the ROFA beyond the runway end.
- Note 3: When declared distances are used as an incremental improvement and the applicable P or R is not obtainable prior to the LDA, this dimension equals the length of RSA obtainable prior to the LDA.

When declared distances are used as an incremental improvement and the applicable P or R is not Note 4: obtainable prior to the LDA, this dimension equals the length of RSA prior to the LDA minus S.

Notification. 7597 H.6

The airport owner provides the clearway and stopway lengths, if necessary, and 7598 H.6.1declared distances (TORA, TODA, ASDA, and LDA) for inclusion in the Airport 7599 7600 Master Record (FAA Form 5010), Chart Supplement (and in the Aeronautical Information Publication, for international airports) for each operational runway 7601 direction. 7602

H.6.2 Publish declared distances for all international airports and Part 139 certificated airports, even when the distances are equal to the runway length in both directions. When the threshold siting is for small airplanes, report LDA as "LDA for airplanes of 12,500 lbs (5700 kg) or less maximum certificated takeoff weight."

Figure H-16. LDA Starting Point – Displaced Threshold for Adjusted ROFA

7608 7609 7610

7603

7604

7605

7606

7607

- **Note 1:** S denotes the existing or proposed length of the RSA beyond the runway end.
- **Note 2:** T denotes the existing or proposed length of the ROFA beyond the runway end.

7611 7612 7613

Note 3: When declared distances are used as an incremental improvement and the applicable P or R is not obtainable prior to the LDA, this dimension equals the length of ROFA obtainable prior to the LDA.

Note 4: When declared distances are used as an incremental improvement and the applicable P or R is not obtainable prior to the LDA, this dimension equals the length of ROFA prior to the LDA minus T.

7617	H.7	Documenting Declared Distances.
7618		Record all standards requiring a threshold displacement.
7619		1. Indicate:
7620		a. the controlling threshold displacement
7621 7622		b. the reason for a takeoff starting farther up the runway based upon the takeoff direction (if applicable)
7623 7624		c. all reasons for limiting the TORA, TODA ASDA and LDA to less than the runway length (if applicable)
7625 7626		2. Document the controlling limitations and the reason for the ASDA or TODA extending beyond the runway end.
7627 7628		3. Where a limitation is removed, check there are no other limiting conditions before extending a respective distance.
7629 7630		4. For obligated airports, provide the information to the responsible FAA Airports office and show the declared distances on the approved ALP.
7631 7632		5. For applicable runways, depict declared distances in both operational directions as an ALP Sheet with plan and profile views showing obstructions.

APPENDIX I. RUNWAY ADDITIONAL INFORMATION

I.1 Runway Safety Area (RSA) Development.

The RSA enhances the safety of aircraft which undershoot, overrun, or veer off the runway, and it provides greater accessibility for fire fighting and rescue equipment during such incidents. <u>Figure I-1</u> below depicts the approximate percentage of aircraft overrunning the runway which stay within a specified distance from the runway end. The current RSA standards are based on 90% of overruns being contained within the RSA. The RSA is depicted in <u>Figure 3-16</u> and its dimensions are given in the online Runway Design Standards Matrix Tool.

I.1.1 <u>Historical Development.</u>

In the early years of aviation, all aircraft operated from relatively unimproved airfields. As aviation developed, the alignment of takeoff and landing paths centered on a well-defined area known as a landing strip. Thereafter, the requirements of more advanced aircraft necessitated improving or paving the center portion of the landing strip. Retaining the term "landing strip" to describe the graded area surrounding and upon which the runway or improved surface was constructed, the primary role of the landing strip changed to that of a safety area surrounding the runway. This area had to be capable under normal (dry) conditions of supporting aircraft without causing structural damage to the aircraft or injury to their occupants. Later, the designation of the area changed to "runway safety area" to reflect its functional role.

I.1.2 Incremental Improvements.

FAA recognizes incremental improvements inside full RSA dimensions enhance the margin of safety for aircraft. The airport owner and the FAA continually analyze a non-standard RSA with respect to operational, environmental, and technological changes and revise the safety area determination as appropriate. Include incremental improvements in the determination. The concept of incremental improvement precludes the placing of objects within the standard RSA dimensions even if that specific runway does not fully meet RSA standards.

7/2/2020 DRAFT AC 150/5300-13B

Figure I-1. Percent of Aircraft Overrun Versus Distance Beyond the Runway End

7662

7663

7664

7665

7666

7667

7668

7669

7670

7671

7672

7673

7674

7675 7676

7677

7678

7679

7661

I.2 Runway Protection Zone (RPZ) Background.

Approach protection zones were originally established to define land areas underneath aircraft approach paths in which control by the airport operator was highly desirable to prevent the creation of air navigation hazards. Historical development:

- 1. A 1952 report by the President's Airport Commission (chaired by James Doolittle), entitled The Airport and Its Neighbors, recommended the establishment of clear areas beyond runway ends.
- 2. Provision of these clear areas was not only to preclude obstructions potentially hazardous to aircraft, but also to control building construction as a protection from nuisance and hazard to people on the ground.
- 3. The Department of Commerce concurred with the recommendation on the basis that this area was "primarily for the purpose of safety and convenience to people on the ground."
- 4. The FAA adopted "Clear Zones" with dimensional standards to implement the Doolittle Commission's recommendation.
- 5. Guidelines were developed recommending that clear zones be kept free of structures and any development creating a place of public assembly.

I.2.1 In conjunction with the introduction of the RPZ as a replacement term for Clear Zone, 7680 the RPZ was divided into "extended object free" and "controlled activity" areas. The 7681

- extended object free area has subsequently been renamed as the "central portion of the RPZ." The FAA has since dropped this designation for differentiating the RPZ into different zones. The extended RSA and ROFA protect the areas most critical to the runway ends.
- The RPZ function is to enhance the protection of people and property on the ground.

 Where practical, airport owners own the property under the runway approach and departure areas to at least the limits of the RPZ. It is desirable to clear the entire RPZ of all above-ground objects to minimize risk to the public. See FAA Memorandum,

 Interim Guidance on Land Uses Within a Runway Protection Zone, dated 9/27/2012, for guidance on incompatible activities.
- The following new land uses within the limits of the RPZ are permissible without further evaluation:
 - 1. Farming activities meeting airport design clearance standards.
 - 2. Irrigation channels meeting the standards of <u>AC 150/5200-33</u> and FAA/USDA manual, *Wildlife Hazard Management at Airports*.
 - 3. Airport service roads, as long as they are not public roads and are under direct control of the airport operator.
 - 4. Underground facilities, as long as they meet other design criteria, such as RSA standards, as applicable.
 - 5. NAVAIDs and aviation facilities, such as equipment for airport facilities considered fixed-by-function in regard to the RPZ.
 - 6. Above-ground fuel tanks associated with back-up generators for unstaffed NAVAIDS.

7705 I.3 Runway as a Taxiway.

7694

7695

7696

7697

7698

7699

7700 7701

77027703

7704

7706

7707

7708

7709

7710

7711

7712 7713

7714 7715

7716

A full-length parallel taxiway reduces the risk of both wrong surface events and runway incursions. Using an operationally closed runway as a taxiway, especially when a parallel taxiway exists, creates an elevated risk for these events. Performing taxi operations on a runway creates a potential for pilot confusion due to the wide pavement width and the lack of standard taxiway pavement markings, signage and lighting. Locations routinely needing an operational need for taxi operations on a runway is an indication that may justify development of dual parallel taxiways to eliminate taxiing on the runway. If the operational use of a runway as a taxiway is necessary for airport capacity and local conditions preclude standard parallel taxiways, establish a Letter of Agreement with the ATCT describing the operation. Refer to <u>AC 150/5340-1</u> for marking holding positions on a runway.

⁷ The heights of traverse ways are adjusted as explained in 14 CFR Part 77, paragraph 77.9(c): "Any highway, railroad, or other traverse way for mobile objects, [is] adjusted upward 17 feet for an Interstate Highway that is part of the National System of Military and Interstate Highways where overcrossings are designed for a minimum of 17 feet vertical distance, 15 feet for any other public roadway, 10 feet or the height of the highest mobile object that would normally traverse the road, whichever is greater, for a private road, 23 feet for a railroad, and for a waterway or any other traverse way not previously mentioned, an amount equal to the height of the highest mobile object that would normally traverse it..."

- 7746 I.5.4 Protecting the Surface 2 area is a recommended practice to guard against the
 7747 introduction of objects penetrating the surface. If future mitigation actions succeed in
 7748 removing the limiting obstacle causing the threshold displacement, then restoration of
 7749 the threshold to the full runway length can occur without clearing new objects clear of
 7750 Surface 1 but penetrating Surface 2. With the application of Surface 2 to guard against
 7751 new objects, the approach surface from the physical end of the runway will already be
 7752 clear of obstacles.
- The FAA recommends airports enact local zoning, easements, or other means to prevent future airport encroachment that can adversely affect aircraft operations.

Figure I-2. Threshold Displacement on a Visual Runway

7755

7757 I.6 **Overlapping RSAs.**

Runway configurations resulting in a runway threshold being located in close proximity to another runway or runway threshold create an elevated risk for runway incursions and wrong surface events. Two typical scenarios are: the runways intersect (Figure I-3) or the RSAs overlap (Figure I-4). These configurations do not provide sufficient physical space for design of entrance taxiways or associated marking and signage thus increasing the potential for pilot confusion and loss of situational awareness. Refer to Chapter 3 for standards addressing converging and intersecting runways.

Figure I-3. Overlapping Runway Safety Areas – Elevated Risk

Note 1: These configurations present an elevated risk for pilot loss of situational awareness that can contribute to a wrong runway takeoff.

7/2/2020

Figure I-4. Intersecting Runways – Elevated Risk

7770 7771 7772

Note 1: These configurations present an elevated risk for pilot loss of situational awareness that can contribute to a wrong runway takeoff or runway incursion.

Page Intentionally Blank

7774 APPENDIX J. TAXIWAY ADDITIONAL INFORMATION Purpose. J.1 7775 This appendix provides additional taxiway design guidance including: 7776 7777 1. Additional information and guidance on taxiway fillet design supplementing the design standards and recommended practices in paragraph 4.7. 7778 2. Background and rationale for fillet design, including a step-by-step fillet design 7779 example. 7780 7781 3. Tables containing intersection details and dimensions for a range of turn angles for all TDG groups. 7782 4. Discussion and examples of taxiway geometries with elevated runway incursion and 7783 other safety risks. 7784 J.2 Taxiway Fillet and Turn Design. 7785 J.2.1Description. 7786 7787 As an airplane maneuvers through a turn designed for cockpit over centerline taxiing, the main gear require additional pavement in the form of fillets to maintain the Taxiway 7788 Edge Safety Margin (TESM). 7789 1. Design the fillets based on combinations of the longest CMGs and widest MGWs in 7790 the TDG. 7791 2. Base the outer radius of the curve design on the centerline radius. 7792 7793 3. The nose gear is not a factor in pavement requirements for a taxiway turn. J.2.2 Fillet Design Rationale. 7794 Refer to Figure J-1 for the following fillet design rationale: 7795 1. At the start of the turn, the taxiway taper starts on the inside of the turn for a length 7796 L-1, with the distance from the taxiway centerline to the pavement edge tapering 7797 from W-0 to W-1. 7798 2. As the airplane continues, the distance from the taxiway centerline to the pavement 7799 edge taper increases further, for a length L-2, from width W-1 to W-2, ending at a 7800 distance L-3 from the point of intersection. 7801 3. The tapers associated with the dimensions L-1 and L-2 are symmetrical about a line 7802 bisecting the angle between the two centerlines and the "L-2" tapers connect by a 7803 fillet of radius R-Fillet, tangent to both. 7804

4. The track of the main gear controls the fillet dimensions as the airplane exits the

turn and the main gear returns to a symmetrical track about the taxiway centerline.

7805

5. Since the main gear follows an asymptotic curve, it can take over 1000 ft (305 m) for the airplane to become re-centered. For this reason, the end of the "L-1" taper relies on a TESM 6 inches (15 cm) less than the applicable standard.

7810 Figure J-1. Fillet Design Example

7811

7813

7814

7815

7817

7818

7820

7821

7822

7823

7824 7825

7826

7827

7812 J.2.3 Taper Transitions.

Base the transition point from the "L-1" taper to the "L-2" taper on minimizing excess pavement, maximizing constructability, and ensuring compatibility with taxiway edge lighting standards. Determine W-1 by the location of this transition point.

7816 J.2.4 Common Turning Angles.

<u>Table J-1</u> through <u>Table J-8</u> provide dimensions for a range of common turning angles, assuming sufficient distance is available to develop lead-in lengths.

7819 J.2.5 Adjoining Taxiway Turns.

The standard fillet dimensions may not be suitable for taxiway turns in close proximity to each other. An indication of this is when the "L-1" tapers overlap, thus not allowing the critical aircraft to straighten out before entering the second turn. This often is the case for 90-degree runway entrances and exits located near a connecting taxiway. Applying the standard fillet dimensions may not adequately maintain the TESM and/or maximum 50-degree nose gear steering angle. Refer to Table 4-3, Table 4-4, Table 4-5, Table 4-8, and Table 4-9 for common combinations of TDGs for taxiway-to-taxiway separations.

7828	J.2.6	Design Tools.				
7829 7830 7831		J.2.6.1	Microsoft Excel spreadsheets to determine the radius and taper lengths for single turns and two closely space turns are available on the FAA web site at: https://www.faa.gov/airports/engineering/airport_design/ .			
7832 7833 7834		J.2.6.2	CAD modeling assists with selection of the centerline turn radius, outer pavement and fillet dimensions for separation distances and turns not listed in the tables located in this appendix.			
7835	J.2.7	Examples U	sing CAD Modeling.			
7836 7837		_	ure J-2 through <u>Figure J-10</u> for examples of curve designs that were sing CAD modeling of aircraft ground maneuvering.			
7838 7839		J.2.7.1	<u>Figure J-2</u> illustrates the design of a curve for an angle of intersection (i.e. delta) of 135 degrees for TDG 6 aircraft.			

Figure J-2. Angle of Intersection (Delta)

7843

7844

7845

7840

J.2.7.2 Per <u>Figure J-3</u>, connect the two centerlines with a radius calculated that will not result in a steering angle of no more than 50 degrees based on the maximum CMG of the TDG. Per <u>Figure 1-1</u>, the maximum CMG for TDG 6 is 125 feet.

7/2/2020 Appendix J

7846

7847

7848

7849

7850

7851

7852

7853

7854

7855

Figure J-3. Steering Angle of No More Than 50 Degrees

J.2.7.3 As shown in Figure J-4, model the track of the main gear of the longest CMG and widest MGW using an offset equal to the TESM. For TDG 6, the TESM is 14 feet (4.25 m).

Figure J-4. Track of the Main Gear is Modeled, Offset by the TESM

J.2.7.4Per Figure J-5, select a fillet radius minimizing excess pavement while providing the standard TESM. This example uses an R-FILLET equal to 50 feet (15.2 m).

Appendix J

Figure J-5. Minimize Excess Pavement While Providing the Standard TESM

7857

7861

7862

7856

7858 J.2.7.5 7859 7860

7/2/2020

In <u>Figure J-6</u>, the pavement edge (or main gear track + TESM) is offset by 6 inches (15 cm), for the determination of the intersection between the main gear track and the pavement edge. Either method may be used to apply the 6-inch reduction in TESM noted in paragraph <u>J.2.2.</u>

Figure J-6. Pavement Edge (Main Gear Track + TESM) Offset by 6 inches (15 cm)

7863 7864

Note: See Figure J-7.

7865 7866 J.2.7.6 <u>Figure J-7</u> shows offsetting either the actual pavement edge or the gear track plus TESM. As noted in paragraph 4.7.1, calculating this point

AC 150/5300-13B 7/2/2020

recognizes the asymptotic nature of an airplane aligning with the taxiway 7867 centerline upon exiting a turn. 7868

Figure J-7. Detail of Figure J-6

7870

7874

7875

7869

7871 J.2.7.7 In Figure J-8, select tapers to minimize excess pavement while considering constructability. The point of intersection of the tapers 7872 determines the dimension W-1, as shown in Figure J-1. 7873

> Figure J-8. Taper Selection to Minimize Excess Pavement with Consideration for Constructability

J.2.7.8 Per <u>Figure J-9</u>, establish the outer radius for the taxiway by adding one-half the taxiway width (W-0) for a given TDG to the taxiway centerline curve radius.

Figure J-9. Establishing Radius of Outer Taxiway Pavement Edge Based on the Centerline Radius and Taxiway Width for Each TDG

7882

7883

7884

7877

7878

7879

7880

7881

J.2.7.9 Per <u>Figure J-10</u>, identify applicable fillet dimensions.

Figure J-10. Dimensioning the Fillet Design

7888

7889

7890

7891

7892

7893

7894

7886 J.3 TDG Tables for Common Intersection Angles.

The following tables provide dimensions for a common range of intersection angles (deltas). The FAA's Taxiway Fillet Design Tool is available to calculate fillet dimensions for intersection angles not shown in the tables below. This design tool provides curve design for turning angle (delta) between 5 degrees and 175 degrees. Visit the FAA website at https://www.faa.gov/airports/eingineering/airport_design/.

Table J-1. Taxiway Intersection Dimensions for TDG 1A

	Δ (degrees)						
Dimension (see note)	30	45	60	90	120	135	150
W-0 (ft)	12.5	12.5	12.5	12.5	12.5	12.5	12.5
W-1 (ft)	17	19	21	21	22	23	24
W-2 (ft)	17	19	21	21	22	23	24
L-1 (ft)	40	47	53	5 <mark>2</mark>	55	56	57
L-2 (ft)	0	0	0	0	0	0	0
L-3 (ft)	5	8	12	21	38	55	87
R-Fillet (ft)	0	0	0	0	0	0	0
R-CL (ft)	50	50	50	19	23	24	24
R-Outer (ft)	62.5	62.5	62.5	31.5	35.5	36.5	36.5

Note: See <u>Figure 4-12</u>, <u>Figure 4-13</u>, and <u>Figure 4-14</u>. Dimensions shown rounded to the nearest foot.

1 foot = 0.305 meters.

J-8

Table J-2. Taxiway Intersection Dimensions for TDG 1B

			Δ	(degree	es)		
Dimension (see note)	30	45	60	90	120	135	150
W-0 (ft)	12.5	12.5	12.5	12.5	12.5	12.5	12.5
W-1 (ft)	21	24	27	18	18	18	18
W-2 (ft)	21	24	27	31	29	29	30
L-1 (ft)	107	121	130	94	89	89	92
L-2 (ft)	0	0	0	47	45	46	45
L-3 (ft)	6	10	16	31	78	112	177
R-Fillet (ft)	0	0	0	0	20	20	20
R-CL (ft)	50	50	50	37	45	47	48
R-Outer (ft)	62.5	62.5	62.5	49.5	57.5	59.5	60.5

7896 7897 Note: See <u>Figure 4-12</u>, <u>Figure 4-13</u>, and <u>Figure 4-14</u>. Dimensions shown rounded to the nearest foot.

1 foot = $0.\overline{305}$ meters.

7898 Table J-3. Taxiway Intersection Dimensions for TDG 2A

			Δ	(degree	es)		
Dimension (see note)	30	45	60	90	120	135	150
W-0 (ft)	17.5	17.5	17.5	17.5	17.5	17.5	17.5
W-1 (ft)	25	28	22	23	20	20	20
W-2 (ft)	25	28	31	35	23	22	20
L-1 (ft)	105	119	85	91	61	54	48
L-2 (ft)	0	0	44	45	30	25	9
L-3 (ft)	7	12	18	35	121	168	257
R-Fillet (ft)	0	0	0	0	50	50	50
R-CL (ft)	50	50	50	37	45	47	48
R-Outer (ft)	67.5	67.5	67.5	54.5	62.5	64.5	65.5

7899 7900 Note: See Figure 4-12, Figure 4-13, and Figure 4-14. Dimensions shown rounded to the nearest foot.

1 foot = 0.305 meters.

Table J-4. Taxiway Intersection Dimensions for TDG 2B

			Δ	(degree	es)		
Dimension (see note)	30	45	60	90	120	135	150
W-0 (ft)	17.5	17.5	17.5	17.5	17.5	17.5	17.5
W-1 (ft)	30	36	24	25	23	23	23
W-2 (ft)	30	36	41	48	30	37	36
L-1 (ft)	205	228	162	176	156	155	152
L-2 (ft)	0	0	82	84	78	70	78
L-3 (ft)	8	15	24	48	141	199	310
R-Fillet (ft)	0	0	0	0	50	50	50
R-CL (ft)	75	75	75	60	73	76	78
R-Outer (ft)	92.5	92.5	92.5	77.5	90.5	93.5	95.5

7902 7903 **Note:** See Figure 4-12, Figure 4-13, and Figure 4-14. Dimensions shown rounded to the nearest foot. 1 foot = 0.305 meters.

7904

Table J-5. Taxiway Intersection Dimensions for TDG 3

			Δ	(degree	es)		
Dimension (see note)	30	45	60	90	120	135	150
W-0 (ft)	25	25	25	25	25	25	25
W-1 (ft)	29	30	31	32	32	32	33
W-2 (ft)	37	43	47	54	52	53	55
L-1 (ft)	132	149	159	171	169	171	173
L-2 (ft)	71	77	81	83	81	80	80
L-3 (ft)	10	18	27	54	125	180	286
R-Fillet (ft)	0	0	0	0	25	25	25
R-CL (ft)	75	75	75	60	73	76	78
R-Outer (ft)	100	100	100	85	98	101	103

7905 7906 **Note:** See <u>Figure 4-12</u>, <u>Figure 4-13</u>, and <u>Figure 4-14</u>. Dimensions shown rounded to the nearest foot. 1 foot = 0.305 meters.

7/2/2020

7907

Table J-6. Taxiway Intersection Dimensions for TDG 4

	Δ (degrees)						
Dimension (see note)	30	45	60	90	120	135	150
W-0 (ft)	25	25	25	25	25	25	25
W-1 (ft)	31	32	34	36	35	35	36
W-2 (ft)	45	52	60	73	67	70	72
L-1 (ft)	239	261	280	303	294	300	302
L-2 (ft)	119	133	138	140	135	135	135
L-3 (ft)	12	22	35	73	188	272	435
R-Fillet (ft)	0	0	0	0	50	50	50
R-CL (ft)	110	110	110	92	111	117	120
R-Outer (ft)	135	135	135	117	136	142	145

7908 7909 Note: See Figure 4-12, Figure 4-13, and Figure 4-14. Dimensions shown rounded to the nearest foot.

1 foot = $0.\overline{305}$ meters.

7910

Table J-7. Taxiway Intersection Dimensions for TDG 5

			Δ	(degree	s)		
Dimension (see note)	30	45	60	90	120	135	150
W-0 (ft)	37.5	37.5	37.5	37.5	37.5	37.5	37.5
W-1 (ft)	43	45	46	48	46	47	47
W-2 (ft)	57	65	71	82	74	75	76
L-1 (ft)	237	261	276	298	282	286	287
L-2 (ft)	118	128	135	136	133	133	132
L-3 (ft)	16	27	41	82	202	288	453
R-Fillet (ft)	0	0	0	0	50	50	50
R-CL (ft)	110	110	110	92	111	117	120
R-Outer (ft)	147.5	147.5	147.5	129.5	148.5	154.5	157.5

7911 7912 Note: See Figure 4-12, Figure 4-13, and Figure 4-14. Dimensions shown rounded to the nearest foot.

1 foot = 0.305 meters.

7/2/2020 DRAFT AC 150/5300-13B

Table J-8. Taxiway Intersection Dimensions for TDG 6 7913

		Δ (degrees)								
Dimension (see note)	30	45	60	90	120	135	150			
W-0 (ft)	37.5	37.5	37.5	37.5	37.5	37.5	37.5			
W-1 (ft)	44	46	48	50	50	50	51			
W-2 (ft)	62	72	82	95	92	96	100			
L-1 (ft)	317	347	372	398	393	400	407			
L-2 (ft)	158	172	175	179	175	174	173			
L-3 (ft)	17	30	47	95	231	336	538			
R-Fillet (ft)	0	0	0	0	50	50	50			
R-CL (ft)	150	150	150	115	139	146	150			
R-Outer (ft)	187.5	187.5	187.5	152.5	176.5	183.5	187.5			

Note: See Figure 4-12, Figure 4-13, and Figure 4-14. Dimensions shown rounded to the nearest foot. 1 foot = 0.305 meters.

J.4 Methodology and Calculations for Reductions in Taxiway Standards. 7917

Studies on aircraft wander during taxi operations indicate taxi deviations from centerline and taxiway excursions are infrequent and of limited severity. The FAA taxiway standards for clearance to fixed or moveable objects provide an acceptable level of safety by establishing object free areas and taxiway separation values. The FAA's methodology applies the following:

- 1. A lateral deviation from the taxiway centerline.
- 2. A safety buffer to provide wingtip clearance in the event of a lateral deviation of the aircraft from the taxiway centerline.

Taxiway/Taxilane OFA Standards. J.4.17926

7914

7915

7918

7919

7920

7921

7922

7923

7924

7925

7927

7928

7929

7930

Taxiway/taxilane OFA of Table J-9 and Table J-10 apply a lateral deviation and safety buffer distance for each ADG. Figure J-11 illustrates this methodology. Due to lower aircraft taxi speeds on taxilanes versus taxiways, the applied lateral deviation and safety buffer distances for taxilanes are less than for taxiways.

7/2/2020 DRAFT

Figure J-11. Taxiway/Taxilane OFA Width

7932

7931

Table J-9. Taxiway OFA Calculations (feet)

ADG	1/2 ADG WS	Lateral Deviation	Safety Buffer	1/2 Taxiway OFA	Full Taxiway OFA
I	24.5	5	15	44.5	89
II	39.5	7.5	15	62	124
III	59.0	10	16.5	85.5	171
IV	85.5	15	21	121.5	243
V	107.0	14.5	21	142.5	285
VI	131.0	14.5	22	167.5	335

7/2/2020 DRAFT

7934

Table J-10. Taxilane OFA Calculations (feet)

ADG	1/2 ADG WS	Lateral Deviation	Safety Buffer	1/2 Taxilane OFA	Full Taxilane OFA
I	24.5	5	10	39.5	79
II	39.5	5	10.5	55	110
III	59.0	8	12	79.0	158
IV	85.5	10	16.5	112	224
V	107.0	10	18	135.0	270
VI	131.0	10	20	161.0	322

7936 7937 7938

7939 7940

7935

J.4.2 <u>Taxiway/Taxilane Centerline to Parallel Taxiway/Taxilane Centerline Separation.</u>

The calculation of the separation distance between parallel taxiways/taxilanes for each ADG assume a lateral deviation from centerline for one aircraft with the second aircraft remaining on the centerline of the parallel taxiway. The separation distance equals ½ the OFA of the first parallel taxiway plus ½ the wingspan of the ADG on the second taxiway.

7/2/2020

Figure J-12. Separation Distance between Parallel Taxiways/Taxilanes

7942

7943

7944 7945

7946

7947

7948 7949

7950

7941

J.5 Taxiway Geometries with Elevated Risk to Safety.

This section identifies taxiway geometries with an elevated risk to safety (e.g. Runway incursions, wrong surface events, etc.). Understanding the risks associated with these undesirable configurations is beneficial when planning and designing the relationship between taxiways, aprons and runways. This information supplements the design standards on taxiways and taxilanes provided in Chapter 4. Refer to AC 150/5340-1, Standards for Airport Markings, for information on select mitigation measures including "no-taxi" islands.

7951	J.5.1	Background.
7952		The information presented in this section originates from previous studies and reports
7953		that address: (1) data and incident analysis on past runway incursions, and (2) the
7954 7955		impact of specific runway, taxiway and apron configurations on the likelihood of runway incursions. These reports include:
7956 7957		• Engineering Brief 75, Incorporation of Runway Incursion Prevention into Taxiway and Apron Design
7958		 Report DOT/FAA/TC-18/2, Problematic Taxiway Geometry Study Overview
	1.5.0	
7959	J.5.2	Select Risk Configurations.
7960 7961		The following list, which is not all-inclusive, identifies select pavement configurations that introduce a risk to safety:
7962		1. Wide Expanse of Pavement at Runway-Taxiway Interface
7963		2. Entrance Taxiway Intersecting Runway at Other Than a Right Angle
7964		3. Complex Runway-Taxiway and Taxiway-Taxiway Intersections
7965		4. Direct Access from the Apron to a Runway
7966		5. High-Speed Exit Crossing Another Taxiway
7967		6. High-speed exits leading directly into or across another runway
7968		7. Wide Expanse of Pavement at Apron-Taxiway Interface
7969		8. Short (stub) Taxiway Connection to a Runway
7970		9. Wide Expanse of Holding Bay Pavement
7971		10. Collocated High-speed Exit Taxiways
7972		11. Fillet pavement between Parallel Taxiways
7973		12. Aligned Taxiways
7974		13. Taxiway Connections to V-shaped Runways
7975	J.5.3	Existing Sub-Standard Configuration.
7976		Each airport has specific factors affecting the risk associated with sub-standard
7977		geometric configurations. Various mitigating measures or corrective actions may be
7978		necessary to minimize risk when "elevated risk" configurations exist at an airport. This
7979		is particularly important for high-risk "hot spots" and locations identified under the
7980 7981		Runway Incursion Mitigation (RIM) program (https://www.faa.gov/airports/special_programs/rim/). The FAA expects federally
7982		obligated airports to develop a plan to address existing areas with unacceptable risk to
7983		safety. The FAA further expects such airports to take corrective action as soon as
7984		practical.
7985	J.5.4	Wide Expanse of Pavement at Runway-Taxiway Interface.
7986		Wide pavement areas result in placement of airfield signs far from a pilot's view thus
7987		reducing the conspicuity of critical visual cues (signs, markings, lighting). This

increases the risk for pilot loss of situational awareness. See <u>Figure J-13</u>. The diminished visual cues, particularly under low visibility conditions, increases the probability of a runway incursion.

Figure J-13. Extra-Wide Pavement Area at Runway Entrance

7992

7988

7989

7990

J.5.5 Entrance Taxiway Intersecting Runway at Other Than a Right Angle.

7993 7994

7995

7996

7997

7998

7999 8000

8001

8002

8003 8004

8005

Entrance taxiways intersecting a runway at other than a right angle increase the risk of a runway incursion. The acute angle reduces a pilot's field of view in one direction making it difficult for a pilot to detect an aircraft operating on the runway. This configuration also increases the width of the entrance pavement reducing the pilot's ability to maintain situational awareness. The RIM program has demonstrated taxiway configurations that intersect runways at angle other than 90-degrees increases the probability of runway incursions. Refer to paragraph 4.9 for standards addressing entrance taxiways. See <u>Figure J-14</u> and <u>Figure J-15</u>.

Figure J-14. Entrance Taxiway Intersecting Runway End at an Acute Angle

Note: A pilot at the holding position has an enhanced viewing range of the approach area but a diminished range of view down the runway.

Figure J-15. Entrance Taxiway Intersecting Runway End at an Obtuse Angle

8007 8008 8009

8011

8012

8013

Note: A pilot at the holding position has an enhanced viewing range of the runway but a diminished range of view in the approach area.

8010 J.5.6

<u>Complex Runway-Taxiway and Taxiway-Taxiway Intersections.</u> Complex intersections increase the possibility of pilot error due to loss of situational

awareness. Complex intersections can preclude standard installation of signs, marking and lighting that provide key visual cues for navigation.

8014

J.5.6.1 Complex Intersections Exceeding The "Three-Path Concept".

8015 8016 8017 1. Excessive options at complex intersections create potential for loss of situational awareness that increase the risk of runway incursions and wrong surface takeoffs.

8018 8019 8020 2. Complex intersections often produce wide expanses of pavement, which place lighting, marking and signage in non-standard or unexpected locations.

8021 8022

3. Refer to paragraph <u>4.3.3</u> for taxiway intersection design based on the "three-path concept".

8023 8024 4. See <u>Figure J-16</u> and <u>Figure J-17</u> for examples of complex taxiway intersections.

Figure J-16. Complex Taxiway Intersection not Meeting the "Three-Path Concept"

Figure J-17. Aerial Image of Complex Taxiway Intersection Exceeding the "Three-Path" Concept

8030

8031

80328033

8034 8035 8036

8037

J.5.6.2 Runway-Taxiway Intersections that Coincide with Two or More Runways.

- 1. The large expanse of pavement prevents standard placement of signs, marking and lighting.
- 2. Potential for pilot loss of situational awareness can contribute to a wrong runway takeoff.
- 3. See Figure J-18.

7/2/2020 DRAFT

Figure J-18. Taxiway Intersection that Coincides with Multiple Runways

8039

8040

8038

Y-Shaped Taxiways. J.5.6.3

8041

8042

8043 8044

- 1. Multiple path choices present opportunities for ground navigation errors that can lead to a runway incursion.
- 2. Potential for conflict with two aircraft or two vehicles converging to a single taxiway.
- 3. See Figure J-19.

DRAFT 7/2/2020

Figure J-19. Y-Shaped Taxiway Crossing a Runway

8047

8048

8049

8050 8051

8052

8053

8054

8055

8056

8057

8046

J.5.7 Direct Access from the Apron to a Runway.

Taxiways leading directly from an apron to a runway, as shown in Figure J-20, can create the false expectation of a parallel taxiway prior to the runway. This results in pilot confusion that could lead to a runway incursion. Taxiway geometries forcing the pilot to make turns promotes situational awareness and minimizes the risk of runway incursions. Refer to Figure 4-2 for standard taxiway configurations between the apron and a runway.

1. Taxiways from the terminal area with a straight path to the middle third of a runway present a risk of taxiing aircraft entering a high-energy area of a runway during an operation.

2. Taxiways from an apron area or holding bay leading directly to a runway end present a risk of a taxiing aircraft entering the runway during an operation.

Figure J-20. Apron-Taxiway Configuration – Elevated Risk

8061

8058

8059

J.5.8 High-Speed Exit Crossing a Connecting Taxiway.

8062

8063

8064

8065

8066

8067

8068

8069

8070 8071

8072 8073 This configuration, as depicted in Figure J-21 and Figure J-22, results in a wide expanse of pavement creating non-standard marking, signing and lighting.

- 1. The lack of visual cues can lead to pilot confusion, increasing risks to safety.
- 2. High-speed taxiways collocated with another taxiway increase the risk of a pilot using the exit taxiway as a runway entrance or crossing point thus providing a limited range of view when entering a runway. See paragraph 4.8.5 for additional information.

Figure J-21. Aerial Image of High-speed Exit Collocated with Connecting **Taxiways**

Note: High-speed exit leading directly across a connecting taxiway.

J-25

Figure J-22. High-Speed Exit Collocated with Connecting Taxiway

J.5.9 <u>High-Speed Exits Leading Directly into or Across Another Runway.</u>

Aircraft exiting from a high-speed exit may not have sufficient distance to decelerate and stop prior to encountering an adjacent runway hold line. See <u>Figure J-23</u>. This configuration increases the probability of a runway incursion.

Figure J-23. Aerial Image of High-speed Exit Leading to Another Runway

8081

8082

8083

8084

8085

8086

8087

8076

8077

8078

8079

8080

J.5.10 Wide Expanse of Pavement at Apron-Taxiway Interface.

Parallel taxiways that are contiguous with apron pavement create a wide expanse of pavement void of critical visual cues such as elevated signs (i.e. taxiway location and direction signs). See <u>Figure J-24</u>. This lack of visual cues can contribute to pilot loss of situational awareness. Additionally, the lack of surface markings induces non-channelized taxiing, which increases the risk of wingtip conflicts.

Figure J-24. Parallel Taxiway Adjacent to Apron Pavement

8090

J.5.11 Short (Stub) Taxiway Connection to a Runway.

Short (stub) taxiway configurations between runways result in aircraft encountering a runway holding position almost immediately upon entry onto the taxiway segment.

Pilots not familiar with the location may fail to hold short thus resulting in a runway incursion. Taxiway stubs also create challenges of holding an aircraft or vehicle without adversely affecting one of the runways. See Figure J-19 and Figure J-25.

Figure J-25. Aerial Image of Short (Stub) Taxiway Connection to a Runway

8097

8098

8104

8105

J.5.12 Wide Expanse of Holding Bay Pavement.

The wide pavement area of holding bays limit the proper placement of signs, lighting and surface marking. See Figure J-26 and Figure J-27. The diminished visual cues increase the risk of pilot loss of situational awareness. Certain wide holding bay configurations encourage non-channelized taxiing involving judgmental steering, in particular when pavement markings are insufficient. This situation does not ensure proper wingtip clearance during maneuvering of aircraft into and out of the holding bay. Refer to paragraph 4.9 for holding bay design standards.

Figure J-26. Poor Holding Bay – Moderate Risk Configuration

8107 8108 8109

Note 1: Non-channelized taxiing does not provide assurance of standard wing-tip clearance availability.

8110

Figure J-27. Poor Holding Bay – Elevated Risk Configuration

8111 8112 8113

Note 1: The wide distance of the holding bay places the vertical signs outside of the pilot's normal viewing range.

8116

8117

8118

8114 J.5.13 <u>Collocated High-speed Exit Taxiways.</u>

Collocated high-speed exit taxiways create a wide, expansive pavement area at the runway-taxiway interface that precludes proper placement of lighting and signage. See <u>Figure J-28</u>. Refer to paragraph <u>4.8.5</u> for high-speed taxiway exit design standards.

Figure J-28. Collocated High-Speed Runway Exit Taxiways

8119

81208121

8122

8123

8124

J.5.14 Fillet Pavement between Parallel Taxiways.

Turning movements from an outer parallel taxiway to an inner parallel taxiway at the runway end are uncommon. Providing fillet pavement for this uncommon turn creates a wide pavement throat a pilot may misconstrue as the runway. This loss of situational awareness can lead to a wrong surface departure event. See <u>Figure J-29</u>.

7/2/2020 DRAFT

Figure J-29. Taxiway Fillet Pavement for Uncommon Turn

8126

8127

8128

8129

8130

8131

8133 8134

8135

8136

8137

8138

8125

J.5.15 <u>Aligned Taxiways.</u>

An aligned taxiway is one whose centerline coincides with a runway centerline. See Figure J-30. Aligned taxiways represent an elevated hazard risk due to the potential for taxiing aircraft to take a position in direct line with departing or landing aircraft. Aligned taxiways also can contribute to a pilot's loss of situational awareness.

8132 J.5.15.1 **Standards.**

For locations with existing aligned taxiways, the FAA expects the airport to have a plan on file to correct the non-standard aligned taxiway as soon as practical (i.e. next reconstruction project). Mitigation of aligned taxiways commonly involves converting the aligned taxiway pavement into a blast pad and constructing a new entrance taxiway at the standard location, as shown in Figure J-30.

7/2/2020 DRAFT

Figure J-30. Aligned Taxiway and Corrected Design

8140

8141

8142

8143 8144

8145 8146

8147

8148

8149 8150

8139

Taxiway Connections to V-shaped Runways. J.5.16

Crossing-taxiways (or connecting taxiways) located between runways that converge (e.g. V-shaped runways) can increase runway incursion risks when the taxiway length between runways is short. See Figure J-31 and Figure J-32. The associated risks include:

- 1. Hold lines in close proximity to each other similar to the risk associated with a short-stub taxiway per paragraph J.5.11.
- 2. Taxiways that intersect runways at other than 90 degrees thus providing that pilot a diminished range of view to a portion of the runway. Aligned taxiway to reach runway end.

7/2/2020 DRAFT

Figure J-31. Taxiway Connections to V-shaped Runways

8152

8153

8151

Figure J-32. Taxiways to Converging, Non-Intersecting Runways

8154

8155

8156

8157

8158

8159

J.5.17 Parallel Taxiways/Runway Intersection.

> The intersection of a parallel taxiway with a crossing runway may induce runway incursion risks if the intersection angle is less than 75 degrees. Additionally, the pavement fillets for acute angle intersection can create non-standard conditions for pavement marking and signage. It is not necessary for a parallel taxiway to be

equidistant to the runway it serves for the entire length of the taxiway. When intersecting a crossing runway, adjust the alignment of the parallel taxiway to establish a 90-degree angle, plus or minus 15 degrees, with the runway centerline. See <u>Figure J-33</u>.

Figure J-33. Parallel Taxiway/Runway Intersection – Elevated Risk

8165

8160

8161

8162 8163

Figure J-34. Parallel Taxiway/Runway Intersection – Optimum Configuration 8166

APPENDIX K. APPROACH AND DEPARTURE REFERENCE CODES

K.1 General Overview.

The Approach and Departure Reference Codes (APRC and DPRC) are specifically for runway to taxiway separations. The APRC and DPRC are not design standards. They identify aircraft operations on a runway and its associated taxiway with no operating restrictions. These codes may help Air Traffic Control and the Airport Operator determine the capabilities of their airfield based on existing runway to parallel taxiway separation. Airports often serve aircraft exceeding their airport's or specific runway's design standards. A runway's pavement strength or a taxiway fillet radius are other examples used to assess operational conditions.

K.1.1 Runway-to-Taxiway Separation.

Plan and design the runway-to-taxiway separations per paragraph 3.20 for new infrastructure. A parallel taxiway increases capacity and improves safety by eliminating the need for aircraft to use the runway for taxiing. The landing and takeoff flight path profiles and physical characteristics of an aircraft determine this separation. Adhering to the separation standard prevents any part of a taxiing airplane (located on a centerline) from penetrating the RSA or the OFZ. This separation depends on the ADG of the larger aircraft. For example, if the parallel taxiway serves ADG IV aircraft and the runway serves ADG III; ADG IV standards control the separation distance.

K.2 Approach Reference Code (APRC).

Based on existing runway to taxiway separation, the APRC is a three-component code describing a combination of aircraft and visibility scenarios that will allow concurrent operations on the runways and taxiways without generating ATC operational restrictions.

- 1. The codes in <u>Table K-1</u> mimic the RDC (see paragraph <u>1.6.4</u>), using the APRC convention AAC/ADG/RVR (example: B/II/4000).
- 2. Within the limits of the APRC, airplanes up to the listed AAC and ADG and operating down to the visibility minimums noted per runway-to-taxiway separation, taxiing on the parallel taxiway may be conducted without operational mitigation.

8200

8201

8202

8203

8204 8205

8206

8207

8208

8209

8210

8211

8212 8213

8214

8215

8216 8217

Table K-1. Approach Reference Code (APRC)

Visibility	Runway to Taxiway Separation (ft)											
Minimums	≥ 150	≥ 200	≥ 225	≥ 240	≥ 250	≥ 300	≥ 350	≥ 400	≥ 450	≥500	≥550	
Not lower than 3/4 mile (4000 RVR)	B/I(S)/ 4000	B/I(S)/ 4000	B/I/ 4000	B/II/ 4000	B/II/ 4000	B/III/ 4000 D/II/ 4000	B/III/ 4000 D/II/ 4000	D/IV/ 4000 D/V/ 4000 ¹	D/IV/ 4000 D/V/ 4000 ²	D/V/ 4000 ³ D/VI/ 4000	D/IV/ 4000	
Lower than 3/4 mile but not lower than 1/2 mile (2400 RVR)	N/A	B/I(S)/ 2400	B/I(S)/ 2400	B/I(S)/ 2400	B/I/ 2400	B/II/ 2400	B/III/ 2400	D/IV/ 2400 D/V/ 2400 ¹	D/IV/ 2400 D/V/ 2400 ²	D/V/ 2400 ³ D/VI/ 2400	D/IV/ 2400	
Lower than 1/2 mile but not lower than 1/4 mile (1600 RVR)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	D/IV/ 1600	D/IV/ 1600	D/V/ 1600	D/VI/ 1600	
Lower than 1/4 mile (1200 RVR)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	D/IV/ 1200	D/IV/ 1200	D/V/ 1200	D/VI/ 1200	

Note 1: Airport elevation at or below 1,345 ft.

Note 2: Airport elevation between 1,345 ft and 6,560 ft.

Note 3: Airport elevation above 6,560 ft.

General Notes:

- (S) denotes small aircraft
- Entries for Approach Category D also apply to Approach Category E. However, there are no Approach Category E aircraft currently in the civil fleet.
- For ADG-VI aircraft with tail heights of less than 66 feet (20 m), ADG-V separation standards apply.

K.2.1 APRC Example.

XYZ airport currently has a runway to taxiway separation of 350-feet. The RDC for this runway is C/II/2400, and in accordance with the online Runway Design Standards

Matrix Tool requires a 400-foot separation. Using Table K-1, the APRC in this example is B/III/4000 and D/II/4000 at visibility minimums at not lower than ¾ mile (4000 RVR), and B/III/2400 at visibility minimums at lower than ¾ mile, but not lower than ½ mile (2400 RVR). This means that the following aircraft may land and taxi on the parallel taxiway without an operational restriction:

K.2.1.1 Visibility minimum at not lower than ¾ mile (4000 RVR).

1. Within Approach Categories A & B, Airplane Design Groups I(S), I, II, & III.

			Appendix K
8218			2. Within Approach Categories C & D, Airplane Design Groups I & II.
8219 8220		K.2.1.2	Visibility minimum at lower than $\frac{3}{4}$ mile, but not lower than $\frac{1}{2}$ mile (2400 RVR).
8221 8222			1. Within Approach Categories A and B, Airplane Design Groups I(S), I, II, & III.
8223 8224 8225			2. The Airport Operator (sponsor) and the ATC manager may implement operational restrictions of aircraft on the parallel taxiway to maximize the runway's capability.
8226 8227 8228 8229			3. Coordinate these procedures with Airport's Division and document in a Letter of Agreement between the Airport Operator and Air Traffic. Below is an example of operational restrictions implemented by the ATC Manager in reference to the previous example.
8230		K.2.1.3	Visibility minimum not lower than ¾ mile (4000 RVR).
8231 8232 8233			1. The parallel taxiway is to remain clear of ADG IV or larger aircraft when any aircraft is on final approach and within two miles of the runway threshold.
8234 8235 8236			2. No aircraft will be on final approach and within two miles of the runway threshold when the parallel taxiway is occupied by an ADG IV aircraft or larger.
8237 8238		K.2.1.4	Visibility minimum lower than $\frac{3}{4}$ mile, but not lower than $\frac{1}{2}$ mile (2400 RVR).
8239 8240 8241			1. The parallel taxiway is to remain clear of ADG III or larger aircraft when any aircraft is on final approach and within two miles of the runway threshold.
8242 8243 8244			2. No aircraft will be on final approach and within two miles of the runway threshold when an ADG III or larger aircraft occupy the parallel taxiway.
8245	K.3	Departur	e Reference Code (DPRC).
8246 8247 8248 8249 8250		Based on e (AAC and aircraft is taxiway se	existing runway to taxiway separation, the DPRC is a two-component code ADG) describing the type of aircraft that can depart a runway while any on the parallel taxiway. <u>Table K-2</u> summarizes the minimum runway to paration for each DPRC. Within a DPRC, airplanes up to the AAC and ADG act unrestricted operations.

 $D\,R\,A\,F\,T$

AC 150/5300-13B

7/2/2020

7/2/2020 DRAFT

Appendix K

Table K-2. Departure Reference Code (DPRC) 8251

Runway to Taxiway Separation (ft)						
≥ 150	≥ 225	≥ 240	≥ 300	≥ 400	≥ 500	
B/I(S)	B/I	B/II	B/III D/II	D/IV D/V	D/VI ¹	

8252 8253 8254

8255 8256

8257 8258

8259

8260

8261

8262

8263

8264

8265

Note 1:

Refer to Figure K-1. ADG-VI airplanes may depart with aircraft on the parallel taxiway where the runway to taxiway separation is as little as 400-feet under these two scenarios:

- No ADG-VI aircraft is occupying the parallel taxiway beyond 1,500 feet of the point of the start of takeoff roll.
- No aircraft, regardless of size, is occupying the parallel taxiway beyond 1,500 feet of the point of the start of takeoff roll when there is snow, ice, or slush contamination on the runway.

General Notes:

- (S) denotes small aircraft
- Entries for Approach Category D also apply to Approach Category E. However, there are no Approach Category E aircraft currently in the civil fleet.

K.3.1 DPRC Example.

XYZ airport currently has a runway to taxiway separation of 240-feet. The DPRC, in this example, is B/II. The following aircraft may depart with any aircraft on the parallel taxiway without operational mitigation:

Within Approach Categories A & B, Airplane Design Groups I(S), I, & II.

The ATC Manager may implement the following operational restrictions for the parallel taxiway:

• Remain clear of aircraft ADG III or larger when aircraft larger than B/II is departing the runway.

8266 8267

8268 8269

Figure K-1. ADG V-VI Departures

8273 8274

Note: Refer to AC 150/5340-1 for Intermediate holding position marking.

Page Intentionally Blank

APPENDIX L. DIFFERENCES IN AIRPORT DESIGN STANDARDS AND RELATIONSHIP OF AIRCRAFT CHARACTERISTICS TO DESIGN COMPONENTS

8276

8277

8278

8279

8280

8281

8282

8283

L.1 <u>Table L-1</u> depicts the differences in design standards associated with an increase in the AAC and ADG. <u>Table L-2</u> depicts the differences in design standards associated with a decrease in visibility minimums. <u>Table L-3</u> relates aircraft characteristics to various design components.

Table L-1. Differences in Design Standards with Upgrade in Aircraft Approach Category (AAC) and Airplane Design Group (ADG)

AAC/ ADC upgrade	Differences in Airport Design Standards	Reference
A-I* to B-I*	No change in airport design standards.	
C-I	Increase in crosswind component.	Refer to paragraph <u>B.3</u> and <u>Table B-1</u> .
	Increase in runway separation standards.	Refer to interactive online <u>Runway Design</u> <u>Standards Matrix Tool</u> and <u>Table 4-7</u> .
	Increase in RPZ dimensions.	Refer to online Runway Design Standards Matrix Tool and paragraph 3.12.1.
	Increase in OFZ dimensions.	Refer to paragraph 3.10.
	Increase in runway design standards.	Refer to online Runway Design Standards Matrix Tool.
	Increase in surface gradient standards.	Refer to paragraph 3.15, Figure 4-29, paragraph 4.14, and paragraph 5.9.
	Increase in threshold siting standards.	Refer to paragraph <u>3.4</u> .
A-I to B-I	No change in airport design standards.	
C-1	Increase in crosswind component.	Refer to paragraph B.3 and Table B-1.
	Increase in runway separation standards.	Refer to online <u>Runway Design Standards</u> <u>Matrix Tool</u> and <u>Table 4-7</u> .
	Increase in RPZ dimensions.	Refer to online Runway Design Standards Matrix Tool and paragraph 3.12.1.
	Increase in runway design standards.	Refer to online Runway Design Standards Matrix Tool.

AAC/ ADC upgrade	Differences in Airport Design Standards	Reference
	Increase in surface gradient standards.	Refer to paragraph 3.15, Figure 4-29, paragraph 4.14, and paragraph 5.9.
A-II to B-II	No change in airport design standards.	
C-II	Increase in crosswind component.	Refer to paragraph <u>B.3</u> and <u>Table B-1</u> .
	Increase in runway separation standards.	Refer to online Runway Design Standards Matrix Tool and Table 4-7.
	Increase in RPZ dimensions.	Refer to online Runway Design Standards Matrix Tool and paragraph 3.12.1.
	Increase in runway design standards.	Refer to online <u>Runway Design Standards</u> <u>Matrix Tool</u> .
	Increase in surface gradient standards.	Refer to paragraph 3.15, Figure 4-29, paragraph 4.14, and paragraph 5.9.
A-III to B-III	No change in airport standards.	
B-III to C-III	Increase in runway separation standards.	Refer to online <u>Runway Design Standards</u> <u>Matrix Tool</u> and <u>Table 4-7</u> .
	Increase in RPZ dimensions.	Refer to online <u>Runway Design Standards</u> <u>Matrix Tool</u> and paragraph <u>3.12.1</u> .
	Increase in runway design standards.	Refer to online <u>Runway Design Standards</u> <u>Matrix Tool</u> .
	Increase in surface gradient standards.	Refer to paragraph 3.15, Figure 4-29, paragraph 4.14, and paragraph 5.9.
A-IV to B-IV	No change in airport design standards.	
B-IV to C-IV	Increase in RPZ dimensions.	Refer to online Runway Design Standards Matrix Tool and paragraph 3.12.1.
	Increase in surface gradient standards.	Refer to paragraph 3.15, Figure 4-29, paragraph 4.14, and paragraph 5.9.
C-I to D-I	Increase in runway design standards.	Refer to online <u>Runway Design Standards</u> <u>Matrix Tool</u> .
C-II to D-II	Increase in runway design standards.	Refer to online <u>Runway Design Standards</u> <u>Matrix Tool</u> .

Note: * These airport design standards pertain to facilities designed for small aircraft.

L-2

Appendix L

8285 8286 7/2/2020

Table L-2. Differences in Airport Design Standards with Lowering Approach **Visibility Minimums**

Visibility	Differences in	Reference
minimums*	Airport Design Standards	
Visual	No change in airport design standards.	Refer to <u>Table 3-6</u> .
to		
Not lower than		
1-mile		
Not lower than 1-mile	Parallel Taxiway:	Refer to <u>Table 3-6</u> .
to	• Increase in RPZ dimensions.	Refer to the Runway Design
Not lower than	7	Standards Matrix Tool.
3/4-mile	 Increase in threshold siting standards. 	Refer to paragraph 3.4.
Not lower than	For runways with aircraft approach	Refer to design standards in
3/4-mile	categories A & B runways:	Chapter 3.
to	 Increase in runway separation 	Refer to the online Runway
Not lower than	standards.	Design Standards Matrix Tool and
CAT-I		<u>Table 4-7</u> .
	• Increase in RPZ dimensions.	Refer to the online Runway
		Design Standards Matrix Tool.
	Increase in OFZ dimensions.	Refer to paragraph 3.9.
	Increase in runway design	Refer to the online Runway
	standards.	Design Standards Matrix Tool.
	Increase in threshold siting standards.	Refer to paragraph 3.4.
	For runways with aircraft approach	Refer to design standards in
	categories C, D, & E runways:	Chapter 3.
	• Increase in runway separation for	Refer to the online Runway
	runways standards with ADG-I &	Design Standards Matrix Tool and
	ADG-II standards.	Table 4-7.
	Increase in RPZ dimensions.	Refer to the online Runway
	increase in Ri 2 dimensions.	Design Standards Matrix Tool.
	Increase in OFZ dimensions.	Refer to paragraph 3.10.
	Increase in threshold siting standards.	Refer to paragraph 3.4.
Not lower than	Increase in OFZ dimensions for runways	Refer to paragraph 3.10.
CAT-I	serving large aircraft.	
to	Increase in threshold siting standards.	Refer to paragraph 3.4.
Lower than	<i>5 5</i>	1 <i>C</i> 1 ===
CAT-I		
	addition to the changes in airport design standards	. 1 '1' C 1 1

8287 8288 8289

8290

Note: ** In addition to the changes in airport design standards as noted, providing for lower approach visibility minimums may result in an increase in the number of objects identified as obstructions to air navigation in accordance with Part 77. This may result in the need for object removal or marking and lighting. Refer to paragraph 3.6.

8291

Table L-3. Relationship of Aircraft Characteristics to Design Components

Aircraft Characteristics	Design Components
Approach Speed	RSA, ROFA, RPZ, runway width, runway-to-taxiway separation, runway-to-fixed object.
Landing and Takeoff Distance	Runway length
Cockpit to Main Gear Distance (CMG)	Fillet design, apron area, parking layout
Main Gear Width (MGW)	Taxiway width, fillet design
Wingspan / Tail Height	Taxiway and apron OFA, parking configuration, hangar locations, taxiway-to-taxiway separation, runway to taxiway separation

APPENDIX M. ACRONYMS

8292

0292		AFFERDIX W. ACKONT WS
8293	AAA	Airport Airspace Analysis
8294	AAC	Aircraft Approach Category
8295 8296	AAS-100	FAA Office of Airport Safety and Standards, Airport Engineering Division
8297	AASHTO	American Association of State Highway and Transportation Officials
8298	ABN	Airport Beacon
8299	AC	Advisory Circular
8300	ACI	Airports Council International
8301	ACM	Airport Certification Manual
8302	ACRP	Airport Cooperative Research Program
8303	ADA	Americans with Disabilities Act
8304	ADG	Airplane Design Group
8305	ADIP	Airport Data and Information Portal
8306	ADO	Airports District Office
8307	ADRM	Airport Development Reference Manual
8308	ADS-B	Automatic Dependent Surveillance - Broadcast
8309	AGL	Above Ground Level
8310	AIM	Aeronautical Information Manual
8311	AIP	Airport Improvement Program
8312	ALP	Airport Layout Plan
8313	ALS	Approach Lighting System
8314	ALSF	Approach Lighting System with Sequenced Flashing Lights
8315	ALSF-1	ALS with Sequenced Flashers I
8316	ALSF-2	ALS with Sequenced Flashers II
8317	AOA	Aircraft Operations Area
8318	APRC	Approach Reference Code
8319	APV	Approach Procedure with Vertical Guidance
8320	ARC	Airport Reference Code
8321	ARFF	Aircraft Rescue and Fire Fighting
8322	ARP	Airport Reference Point
8323	ARSR	Air Route Surveillance Radar

	7/2/2020	DRAFT	AC 150/5300-13B Appendix M			
8324	ASDA	Accelerate Stop Distance Available				
8325	ASDE	Airport Surface Detection Equipment (Radar)		ļ		
8326	ASDE-X	Airport Surface Detection Equipment – Model X				
8327	ASOS	Automated Surface Observing System				
8328	ASR	Airport Surveillance Radar				
8329	ASRS	Aviation Safety Reporting System				
8330	ASSC	Airport Surface Surveillance Capability				
8331	ASTM	American Society for Testing and Materials Intern	national	ļ		
8332	ATC	Air Traffic Control				
8333	ATC-F	Air Traffic Control Facilities				
8334	ATCT	Airport Traffic Control Tower				
8335	ATO	Air Traffic Organization		J		
8336	AWOS	Automated Weather Observing Systems				
8337	AWSS	Automated Weather Sensor System				
8338	BMP	Best Management Practice				
8339	BRL	Building Restriction Line				
8340	CAD	Computer Aided Design				
8341	CAT	Category		ı		
8342	CFR	Code of Federal Regulations				
8343	CIE	International Committee of Illumination				
8344	CL	Centerline				
8345	CWY	Clearway				
8346	CMG	Cockpit to Main Gear Distance				
8347	CNSW	Communications, Navigation, Surveillance and W	Veather eather			
8348	CPA	Continuous Power Airport				
8349	DER	Departure End of Runway				
8350	DME	Distance Measuring Equipment				
8351	DPRC	Departure Reference Code				
8352	DXF	Drawing eXchange Format				
8353	EAT	End-Around Taxiway		ı		
8354	EMAS	Engineered Materials Arresting System				
8355	EMI	Electromagnetic Interference				

	7/2/2020	DRAFT	AC 150/5300-13B Appendix M		
8356	FAA	Federal Aviation Administration			
8357	FAR	Federal Aviation Regulations			
8358	FBO	Fixed Base Operator			
8359	FOD	Foreign Object Debris			
8360	FSD	Transportation Security Administration Federal Security	y Director		
8361	GA	General Aviation			
8362	GIS	Geographic Information System			
8363	GLS	Ground Based Augmentation System (GBAS) Landing	System		
8364	GNSS	Global Navigation Satellite System	ı		
8365	GPA	Glide Path Angle			
8366	GPS	Global Positioning System			
8367	GS	Glideslope			
8368	GSE	Ground Service Equipment			
8369	HAA	Height Above Airport			
8370	HAT	Height Above Touchdown			
8371	HIRL	High Intensity Runway Lights	'		
8372	HSS	Hollow Structural Section			
8373	HTTP	Hypertext Transfer Protocol			
8374	HTTPS	Hypertext Transfer Protocol Secure			
8375	IA-OFZ	Inner-Approach OFZ			
8376	IATA	International Air Transport Association	'		
8377	ICAO	International Civil Aviation Organization			
8378	IES	Illuminating Engineering Society of North America	'		
8379	IFP	Instrument Flight Procedure			
8380	IFR	Instrument Flight Rules	' '		
8381	IFST	International Flight Service Transmitter			
8382	ILS	Instrument Landing System			
8383	IMC	Instrument Meteorological Conditions			
8384	ISH/ISD	Integrated Surface Hourly/Integrated Surface Data			
8385	IT-OFZ	Inner-Transitional OFZ			
8386	IVT	IFP Validation Team			
8387	LDA	Landing Distance Available	'		

	7/2/2020	DRAFT	AC 150/5300-13B Appendix M	
8388	LDIN	Lead-in Lighting System		l
8389	LIR	Low Impact Resistant		
8390	LIRL	Low Intensity Runway Lights		
8391	LLWAS	Low Level Windshear Alert System		
8392	LNAV	Lateral Navigation		
8393	LOC	Localizer		ı
8394	LOS	Line of Sight		
8395	LP	Localizer Performance		ı
8396	LPV	Localizer Performance with Vertical Guidance		
8397	MALS	Medium Intensity Approach Lighting System		
8398	MALSF	MALS with Sequenced Flashers		
8399	MALSR	MALS with Runway Alignment Indicator Lights		
8400	MDA	Minimum Descent Altitude		
8401	MGW	Main Gear Width		
8402	MIRL	Medium Intensity Runway Lights		
8403	MM	Middle Marker		
8404	MN	Magnetic North		
8405	MPH	Miles Per Hour		
8406	MSL	Mean Sea Level		
8407	NAS	National Airspace System		
8408	NAVAID	Navigation Aid		•
8409	NCDC	National Climatic Data Center		
8410	NDB	Non-directional Beacon		
8411	NEPA	National Environmental Policy Act		
8412	NextGen	Next Generation Air Transportation System		
8413	NGS	National Geodetic Survey		•
8414	NPA	Non-Precision Approach		
8415	NPDES	National Pollution Discharge Elimination System		
8416	NPI	NAS Planning and Integration		
8417	NPIAS	National Plan of Integrated Airport Systems		•
8418	NOAA	National Oceanic and Atmospheric Administration		
8419	NOTAM	Notice to Airmen		

	7/2/2020	DRAFT	AC 150/5300-13B Appendix M
8420	NVGS	Non-Vertically Guided Survey	
8421	NWS	National Weather Service	
8422	NXRAD	Next Generation Weather Radar	I
8423	OCS	Obstacle Clearance Surface	
8424	ODALS	Omnidirectional Airport Lighting System	I
8425	OE/AAA	Obstruction Evaluation/Airport Airspace Analysis	
8426	OFA	Object Free Area	
8427	OFZ	Obstacle Free Zone	
8428	OM	Outer Marker	
8429	OSHA	Occupational Safety and Health Administration	
8430	PA	Precision Approach	l
8431	PAPI	Precision Approach Path Indicator	
8432	PFC	Passenger Facility Charge	
8433	PIR	Precision Instrument Runways	'
8434	POFZ	Precision Obstacle Free Zone	
8435	PRM	Precision Runway Monitor	
8436	PSI	Pounds per Square Inch	
8437	PVC	Point of Vertical Curve	
8438	PVI	Point of Vertical Intersection	
8439	PVT	Point of Vertical Tangency	
8440	RCO	Remote Communications Outlet	
8441	RDC	Runway Design Code	
8442	REDIM	Runway Exit Design Interactive Model	
8443	REIL	Runway End Identifier Lighting	·
8444	REL	Runway Entrance Lights	
8445	RF	Radio Frequency	
8446	RIM	Runway Incursion Mitigation	
8447	RNAV	Area Navigation	
8448	RNP	Required Navigation Performance	·
8449	ROFA	Runway Object Free Area	
8450	ROFZ	Runway Obstacle Free Zone	
8451	RON	Remain Over Night	

	7/2/2020	DRAFT	AC 150/5300-13B Appendix M
8452	RPZ	Runway Protection Zone	
8453	RSA	Runway Safety Area	
8454	RTR	Remote Transmitter/Receiver	1
8455	RVR	Runway Visual Range	
8456	RVZ	Runway Visibility Zone	
8457	RW	Runway	'
8458	RWSL	Runway Status Lights	
8459	SALS	Short Approach Lighting System	
8460	SALSF	Short Approach Lighting System with Sequence	ced Flashing Lights
8461	SER	Stop End of the Runway	
8462	SIDA	Security Identification Display Area	
8463	SMS	Safety Management System	•
8464	SOIA	Simultaneous Offset Instrument Approaches	
8465	SRE	Snow Removal Equipment	
8466	SRM	Safety Risk Management	·
8467	SSALR	Simplified Short Approach Light System with	Runway Alignment
8468	SSALS	Simplified Short Approach Light System	
8469	SSALF	Simplified Short Approach Light System with	Sequenced Flashing Lights
8470	SVG	Scalable Vector Graphics	
8471	TACAN	Tactical Air Navigation	
8472	TBW	Total Bytes Written	
8473	TCH	Threshold Crossing Height	·
8474	TDG	Taxiway Design Group	
8475	TERPS	Terminal Instrument Procedures	
8476	TESM	Taxiway Edge Safety Margin	·
8477	TH	Threshold	
8478	THL	Takeoff Hold Lights	
8479	TL	Taxilane	
8480	TLOFA	Taxilane Object Free Area	
8481	TODA	Takeoff Distance Available	
8482	TOFA	Taxiway and Taxilane Object Free Area	'
8483	TORA	Takeoff Run Available	

	7/2/2020	DRAFT	AC 150/5300-13B Appendix M
8484	TPP	U.S. Terminal Procedures Publication	
8485	TRACON	Terminal Radar Approach Control Facility	I
8486	TSA	Taxiway/Taxilane Safety Area	
8487	TVOR	Terminal Very High Frequency Omnidirectional Range	
8488	TW	Taxiway	ı
8489	UAS	Unmanned Aircraft Systems	
8490	USC	United States Code	
8491	UFC	Unified Facilities Criteria	
8492	UHF	Ultra-High Frequency	
8493	USDA	United States Department of Agriculture	
8494	USGS	U.S. Geological Survey	
8495	V	Visual	
8496	VASI	Visual Approach Slope Indicator	
8497	VFR	Visual Flight Rules	
8498	VGS	Vertically Guided Survey	
8499	VGSI	Visual Guidance Slope Indicator	
8500	VHF	Very High Frequency	
8501	VMC	Visual Meteorological Conditions	
8502	VNAV	Vertical Navigation	·
8503	VOR	VHF Omnidirectional Range	
8504	VORTAC	VHF Omnidirectional Range Collocated Tactical Air	
8505	$V_{ m REF}$	Reference landing speed	
8506	V_{SO}	Stall speed	
8507	VSR	Vehicle Service Road	
8508	WAAS	Wide Area Augmentation System	·
8509	WCAM	Weather Camera	
8510	WEF	Wind Equipment F-400	·
8511	WHSV	Wildlife Hazard Site Visit	
8512	WME	Wind Measuring Equipment	'

7/2/2020

Page Intentionally Blank

APPENDIX N. INDEX

8515	A/B-I AircraftG-2	8558	Aligned TaxiwaysJ-32
8516	A/B-I Small Aircraft G-1	8559	AOA vehicle service road6-7
8517	A/B-II Aircraft G-4	8560	Approach and Departure Reference CodesK-
8518	A/B-II Small AircraftG-3	8561	1
8519	A/B-III AircraftG-5	8562	Approach lead-in lighting system (LDIN).6-
8520	A/B-IV AircraftG-6	8563	35
8521	Accelerate-Stop Distance Available (ASDA)	8564	Approach Lighting System (ALS)6-28, D-
8522	1-4	8565	11
8523	AcronymsM-1	8566	Approach Procedure with Vertical Guidance
8524	Acute-angled exit taxiway 1-8	8567	(APV)1-6
8525	Advisory Circulars (ACs) 1-19	8568	Approach reference code (APRC) K-1
8526	Aeronautical Studies 1-16	8569	Approach Reference Code (APRC) 1-6
8527	Aeronautical Study1-4	8570	ApronE-1
8528	Aeronautical survey 1-16	8571	Apron design considerations 5-20
8529	Air Operations Area (AOA)1-4	8572	Apron design objectives5-3
8530	Air Traffic Control Facilities (ATC-F)1-5	8573	Apron Taxiway4-46
8531	Aircraft1-5	8574	Apron taxiways and taxilanes 4-46
8532	Aircraft Approach Categories (AAC)1-13	8575	Apron types 5-2
8533	Aircraft Approach Category (AAC) 1-5	8576	Aprons5-1
8534	Aircraft characteristics A-1	8577	ARFF access roads6-8
8535	Aircraft characteristics database A-3	8578	Automated Dependent Surveillance
8536	Airfield pavements6-6	8579	Broadcast (ADS-B)6-50
8537	Airfield roadways6-6	8580	Automated Surface Observing System
8538	Airfield Systems and Facilities 6-1	8581	(ASOS)6-47
8539	Airplane1-5	8582	Automated Weather Observing System
8540	Airplane Design Group (ADG) 1-5	8583	(AWOS)6-47
8541	Airport1-5	8584	Beacon
8542	Airport aeronautical survey3-67	8585	Blast fence
8543	Airport Data	8586	Blast Fence 6-10
8544	Airport Design Group (ADG)1-13	8587	Blast pad1-6
8545	Airport elevation	8588	Bridge 6-1
8546	Airport Layout Plan (ALP)1-5, 1-15		Building Restriction Line (BRL) 1-6
8547	1	8590	e
8548	Airport Reference Code (ARC) 1-5	8591	Bypass taxiway1-6
8549	Airport Reference Point (ARP)1-5	8592	Bypass taxiways
8550	Airport rotating beacon	8593	C/D/E-I Aircraft
8551	Airport security	8594	C/D/E-II Aircraft G-8
8552	Airport Surface Detection Equipment	8595	C/D/E-III Aircraft
8553	Airport Surface Detection Equipment	8596	C/D/E-IV Aircraft
8554	(ASDE)	8597	C/D/E-V Aircraft G-11 C/D/E-VI Aircraft G-12
8555	Airport Traffic Control Toyor (ACTC) 6-25	8598	
8556	Aligned toxinony	8599	Categories
8557	Aligned taxiway 1-6	8600	Category-I (CAT-I)1-6

8601	Category-II (CAT-II)1-6	8647	Federal Regulations1-3, 1-23
8602	Category-III (CAT-III)1-6	8648	Fencing for GA airportsE-20
8603	Channelized taxiing design method 4-4	8649	Fillet and turn design4-21
8604	Circling approach1-6	8650	Fixed-by-function Navigation Aid
8605	Clearing RequirementsI-4	8651	(NAVAID)1-8
8606	Clearway (CWY)1-6, 3-50	8652	Frangibility6-24
8607	Cockpit over centerline steering A-1	8653	Frangible 1-8
8608	Cockpit to Main Gear Distance (CMG)1-6	8654	Fuel facilitesE-17
8609	Codes1-13	8655	GA hangarsE-12
8610	Commercial Service Airport1-7	8656	GA terminal buildingE-16
8611	Compass calibration pad1-7, 6-14	8657	General aviation1-8
8612	Compass calibration pad surveyF-1	8658	General aviation apronE-1
8613	Compass calibration pad SurveyF-1	8659	General facility criteria 6-22
8614	Conventional (box) hangarE-13	8660	Glidepath Angle (GPA) 1-8
8615	Corporate hangarE-14	8661	Glideslope (GS) 1-8
8616	Critical Aircraft1-7, 2-2	8662	Grass (turf) runway 3-64
8617	Crossover taxiway 1-7	8663	GS antenna 6-41
8618	Crossover taxiways4-39	8664	HangarE-1, E-12
8619	Curve design method4-2	8665	Hangar apron5-2
8620	Decision Altitude 1-7	8666	Hangar doors E-15
8621	Declared distances 1-7	8667	Hangar utilitiesE-16
8622	Declared Distances H-1	8668	Hazard to air navigation1-8
8623	Definitions1-4	8669	Height Above Airport (HAA)1-8
8624	Deicing apron (pad)5-2	8670	Height Above Touchdown (HAT) 1-8
8625	Departure End of Runway (DER) 1-7	8671	Helicopter (rotary wing) parking position 5-2
8626	Departure reference code (DPRC) K-3	8672	High speed exit taxiway1-8, 4-39
8627	Departure Reference Code (DPRC) 1-7	8673	High-speed exit taxiways4-35
8628	Design Principles2-1	8674	Holding bays for runway ends 4-43
8629	Displaced threshold1-7	8675	Hot spot1-9, 4-8
8630	Distance Measuring Equipment (DME)6-42	8676	Hot spots design method4-8
8631	Drainage6-5	8677	Inner-approach OFZ (IA-OFZ) 3-35
8632	End-Around Taxiway (EAT) 1-7, 4-47	8678	Inner-transitional OFZ (OFZ)3-35
	End-Around Taxiway (EAT) Screen D-1		Instrument Approach Procedures 3-65
8634	End-around taxiways (EAT)4-47	8680	Instrument Flight Procedure (IFP) 1-9
8635	Engineering Briefs (EBs)1-21	8681	Instrument Landing System (ILS)6-39, D-12
8636	Entrance taxiway1-8	8682	Island1-9
8637	Entrance taxiways 4-25	8683	Jet blast3-69, C-1
8638	Environmental protection 1-4	8684	Jet BLAST 4-54
8639	Exit taxiway1-8	8685	Jet blast/exhaust 6-22
8640	Exit Taxiway4-31	8686	Joint-use airport1-9
8641	Exit taxiways 4-30	8687	Landing Distance Available (LDA)1-7, 1-9
8642	FAA Documents (other) 1-24	8688	Large aircraft1-9
8643	FAA Forms 1-23	8689	Lead-in lighting6-35
8644	FAA Orders1-22	8690	Lighting3-65, 4-53, 4-54, 6-3, 6-28
8645	Facilities and equipment near runways6-22	8691	Line of sight (LOS) for taxiways, taxilanes,
8646	Federal Assistance Program1-17	8692	and TSAs4-51

8693	LOC antenna 6-40	8739	Precision Runway1-11
8694	Local Government Role1-19	8740	RampE-1
8695	Low Impact Resistant (LIR) Support. 1-9	8741	Ramps 5-1
8696	Low Level Windshear Alert System	8742	Recommended Practice (definition) 1-2
8697	(LLWAS)6-49	8743	Related Documents and Regulations 1-19
8698	Main Gear Width (MGW)1-9	8744	Remote apron 5-2
8699	Marking4-53, 4-54	8745	Remote transmitter/receiver (RTR) . 6-26
8700	Marking and lighting3-65, 6-3, 6-28	8746	Remote Transmitter/Receiver (RTR)6-26
8701	Minimum Descent Altitude (MDA) 1-9	8747	Requirement (definition)1-2
8702	Mitigating runway incursion risksJ-15	8748	Rotating beacon 6-37
8703	Modification to Standards1-9	8749	RSA developmentI-1
8704	Movement area 1-9	8750	Runway 1-11
8705	NAS facilities and equipment 6-20	8751	Runway access design method 4-5
8706	Navigation Aid (NAVAID)1-8, 1-10, D-11	8752	Runway Additional InformationI-1
8707	Navigational aid access roads 6-9	8753	Runway design B-1, G-1
8708	Non-directional beacon (NDB) 6-45	8754	Runway Design Code (RDC)1-11, 1-14
8709	Non-FAA Documents 1-24	8755	Runway Design Standards Matrix 3-69
8710	Non-movement area1-10	8756	Runway design standards matrix footnotes
8711	Non-Precision Approach (NPA) 1-10	8757	G-13
8712	Non-precision runway1-10	8758	Runway End Identifier Lighting (REIL)6-36
8713	Non-Vertically Guided Survey (NVGS)3-69	8759	Runway incursion 1-11
8714	Object1-10	8760	Runway Object Free Area (ROFA). 3-44
8715	Object ClearingI-4	8761	Runway Obstacle Free Zone (ROFZ)3-35
8716	Object Free Area (OFA) 1-10	8762	Runway Protection Zone (RPZ)1-11, 3-44
8717	Obligations1-18	8763	Runway Safety Area (RSA)1-11
8718	Obstacle1-10	8764	Runway Safety Area (RSA) grades . 3-60
8719	Obstacle Clearance Surface (OCS) 1-10	8765	Runway Status Lights (RWSL) 6-50
8720	Obstacle Free Zone (OFZ)1-10	8766	Runway to taxiway separation4-33, 4-34, 4-
8721	Obstruction to air navigation 1-10	8767	36
8722	Overlapping RSAsI-5	8768	Runway Visual Range1-11
8723	Parallel taxiway1-10	8769	Runway Visual Range (RVR) 6-43
8724	Parallel taxiways4-18	8770	Runway/Runway intersections 3-58
8725	Parallel taxiways/taxilanes for dissimilar	8771	Runway/taxiway intersections 4-24
8726	ADGs4-10	8772	Runway/taxiway intersections 3-58
8727	Part 139 1-3	8773	Security of airports6-12
8728	Part 1542 1-4	8774	Segmented circle 6-46
8729	Part 157 1-3	8775	Shade shelterE-14
8730	Part 77 1-3	8776	Shoulder 1-12
8731	Passenger terminal apron 5-2	8777	Signs4-53, 4-54
8732	Perimeter security road6-8	8778	Small aircraft1-12
8733	Policy1-1	8779	Standard (definition) 1-2
8734	Policy for Airport Development 1-1	8780	State Role 1-18
8735	Precision Approach (PA) 1-11	8781	Stopway3-51, 3-52
8736	Precision Approach Path Indicator (PAPI) 6-	8782	Straight segment taxiway/taxilane width4-8
8737	37	8783	Surface gradient3-53, 4-51
8738	Precision Obtacle Free Zone (POFZ)3-40	8784	T- hangarE-13

8785	Takeoff Distance Available (TODA). 1-7	8812	TDG 2 tableJ-9, J-10	
8786	Takeoff Run Available (TORA) 1-7	8813	TDG 3 table	
8787	Taxiing design method4-2	8814	TDG 4 tableJ-11	
8788	Taxilane1-12, 4-1, 4-14, 4-46	8815	TDG 5 tableJ-11	
8789	Taxilane Object Free Area (TLOFA)4-15	8816	TDG 6 tableJ-12	
8790	Taxiway 1-12	8817	TDG tablesJ-8	
8791	Taxiway Additional InformationJ-1	8818	Three Node Concept4-4	
8792	Taxiway bridges4-54	8819	Three-path concept design method 4-3	
8793	Taxiway centerline1-12	8820	Threshold (TH) 1-12	
8794	Taxiway design4-1	8821	Threshold Crossing Height (TCH) 1-12	
8795	Taxiway Design Group (TDG)1-12, 1-15, 4-	8822	Tunnel 6-1	
8796	2, 4-33, 4-34, 4-36, J-8	8823	Turf runway 3-64	
8797	Taxiway Edge Safety Margin (TESM)1-12	8824	Vehicle access and parkingE-17	
8798	Taxiway fillet designJ-1	8825	Vertically Guided Survey (VGS) 3-69	
8799	Taxiway fillet design dimensionsJ-1	8826	Very High Frequency Omnidirectional	
8800	Taxiway fillet design rationaleJ-1	8827	Range (VOR) 6-44	
8801	Taxiway fillet design toolsJ-3	8828	Visibility categories2-2	
8802	Taxiway fillet design transitionsJ-2, J-3	8829	Visibility Minimums1-14	
8803	Taxiway Safety Area (TSA) 1-12	8830	Visual runway 1-13	
8804	Taxiway separations4-9	8831	Wash PadE-19	
8805	Taxiway shoulder4-50	8832	Wash RacksE-19	
8806	Taxiway turnarounds4-45	8833	Weather camera (WCAM)6-48	
8807	Taxiway/taxilane clearance requirements4-9	8834	Wind analysisB-1	
8088	Taxiway Object Free Area (TOFA). 4-15	8835	Wind cone 6-46	
8809	Taxiway/Taxilane Safety Area (TSA)4-15	8836	Wind equipment F-400 (WEF) 6-48	
8810	TDG 1A tableJ-8	8837	Wingspan 1-13	
8811	TDG 1B tableJ-9			

Advisory Circular Feedback

If you find an error in this AC, have recommendations for improving it, or have suggestions for new items/subjects to be added, you may let us know by (1) mailing this form to Manager, Airport Engineering Division, Federal Aviation Administration ATTN: AAS-100, 800 Independence Avenue SW, Washington DC 20591 or (2) faxing it to the attention of the Office of Airport Safety and Standards at (202) 267-5383.

Subj	ject: AC 150/5300-13B	Date:	
Plea	se check all appropriate line items:		
	An error (procedural or typographical) has been in .	noted in paragraph	on page
	Recommend paragraph on pag	e	be changed as follows:
	In a future change to this AC, please cover the fo (Briefly describe what you want added.)	llowing subject:	
	Other comments:		
	I would like to discuss the above. Please contact	me at (phone numb	oer, email address).
	-		
Subi	mitted by:	Date:	