HANDBOOK

7130.3

REPRINT: Includes Changes 1 thru 7

HOLDING PATTERN CRITERIA

August 28, 1967

U.S. DEPARTMENT OF TRANSPORTATION FEDERAL AVIATION ADMINISTRATION

RECORD OF CHANGES

DIRECTIVE NO.

7130.3

CHANGE SUPPLEMENTS		m	OPTIONAL	CHANGE	S	UPPLEMEN	пs	OPTIONAL	
BASIC					BASIC				
1				12/1/67					
2				10/22/68	1 U	、			
3				3/17/69					
4				8/19/69					
5				9/25/69					
6				5/24/72					
7				10/30/90					
1	r						<u> </u>		
						. 4			
						•			
				· · · · · · · · · · · · · · · · · · ·					
									· · · · · · · · · · · · · · · · · · ·
				·					
					••				

FAA Form 1320-5 (HO) USE PREVIOUS EDITION

SECTION 8	MANUAL CONSTRUCTION OF PATTERNS/TEMPLATES	<u>Page No.</u> 17
39. 40.	Requirement Basic Area Construction	17 17
	FIGURE 12. Construction Code for Basic Area FIGURE 13. Holding Area Airspace Dimensions	18 19
41.	Outbound End Reduction Areas	20
	FIGURE 14. Construction Code for Outbound End Areas	21
42.	Fix End Reduction Area	21
	FIGURE 15. Construction Code for Fix End Area	22
CHAPTER	3. TURBULENT AIR HOLDING PATTERNS - TURBOJET AIRCRAFT	23
* 43.	Turbojet Operation	23
• 44	Maximum Holding Speed - Turbulent Air Conditions of USAF F-4 Aircraft	23
	FIGURE 16. Turbulent Air/USAF F-4 Holding 'Pattern Sizes	23
45. 46.	When to Apply Operational Use	23 24
	FIGURE 17., 18. (Reserved)	
CHAPTER 4	• OPERATIONAL APPLICATIONS	25
47. 48. 49.	Establishing Fixes Pattern Alignment Optimum Entry Routing	25 25 25
	FIGURE 19. Zone for Entry Rerouting	26
50. 51. 52.	DME Leg Length Selection DME Holding Direction Establishing Minimum Altitudes	26 26 26

		Page No.
SECTION 8	3. MANUAL CONSTRUCTION OF PATTERNS/TEMPLATES	17
39.	Requirement	17
40.	Basic Area Construction	17
	FIGURE 12. Construction Code for Basic Area	18
	FIGURE 13. Holding Area Airspace Dimensions	19
41.	Outbound End Reduction Areas	20
	ETCUDE 16 Construction Code for Outbound End Areas	21
	FIGURE 14. Construction code for outbound and Areas	21
42.	Fix End Reduction Area	21
	TTOWN IS Construction Code for Div Drd Auss	22
	FIGURE 15. Construction Code for Fix End Area	22
CHAPTER	3. TURBULENT AIR HOLDING PATTERNS • TURBOJET AIRCRAFT	23
43.	Turbojet Operation	23
* 44	Maximum Holding Speed - Turbulent Air Conditions orUSA	F
•	F-4 Aircraft	23
	FIGURE 16. Turbulent Air/USAF F-4 Holding 'Pattern Size	s 23
45.	When to Apply	23
46.	Operational Use	24
	FIGURE 17., 18. (Reserved)	
CHAPTER 4	• OPERATIONAL APPLICATIONS	25
. –		
47.	Establishing Fixes	25
40	Optimum Entry Routing	25 25
	opermum mery nouting	
	FIGURE 19. Zone for Entry Rerouting	26
50.	DME Leg Length Selection	26
51.	DME Holding Direction	26
52.	Establishing Minimum Altitudes	26

SECTION 8	MANUAL CONSTRUCTION OF PATTERNS/TEMPLATES	<u>Page No.</u> 17
39 . 40.	Requirement Basic Area Construction	17 17
	FIGURE 12. Construction Code for Basic Area FIGURE 13. Holding Area Airspace Dimensions	18 19
41.	Outbound End Reduction Areas	20
	FIGURE 14. Construction Code for Outbound End Areas	21
42.	Fix End Reduction Area	21
	FIGURE 15. Construction Code for Fix End Area	22
CHAPTER	3. TURBULENT AIR HOLDING PATTERNS • TURBOJET AIRCRAFT	23
* 43. * 44	Turbojet Operation Maximum Holding Speed • Turbulent Air Conditions orUSAF F-4 Aircraft	23 23
	FIGURE 16. Turbulent Air/USAF F-4 Holding 'Pattern Sizes	23
45. 46.	When to Apply Operational Use	23 24
	FIGURE 17., 18. (Reserved)	
CHAPTER 4	• OPERATIONAL APPLICATIONS	25
47. 48. 49.	Establishing Fixes Pattern Alignment Optimum Entry Routing	25 25 25
	FIGURE 19. Zone for Entry Rerouting	26
50. 51. 52.	DME Leg Length Selection DME Holding Direction Establishing Minimum Altitudes	26 26 26

SECTION 8	. MANUAL CONSTRUCTION OF PATTERNS/TEMPLATES	<u>Page No.</u> 17
39 40	Requirement Basic Area Construction	17 17
	FIGURE 12. Construction Code for Basic Area FIGURE 13. Holding Area Airspace Dimensions	18 19
41.	Outbound End Reduction Areas	20
	FIGURE 14. Construction Code for Outbound End Areas	21
42.	Fix End Reduction Area	21
	FIGURE 15. Construction Code for Fix End Area	22
CHAPTER	3. TURBULENT AIR HOLDING PATTERNS - TURBOJET AIRCRAFT	23
* 43.	Turbojet Operation Maximum Holding Speed • Turbulent Air Conditions or USAF	23
	F-4 Aircraft	23
45 . 46	When to Apply Operational Use	23 23 24
	FIGURE 17., 18. (Reserved)	
CHAPTER 4	• OPERATIONAL APPLICATIONS	25
47 . 48 . 49 .	Establishing Fixes Pattern Alignment Optimum Entry Routing	25 25 25
	FIGURE 19. Zone for Entry Rerouting	26
50. 51. 52.	DME Leg Length Selection DME Holding Direction Establishing Minimum Altitudes	26 26 26

SECTION 8	MANUAL CONSTRUCTION OF PATTERNS/TEMPLATES	<u>Page No.</u> 17		
39 40	39. Requirement40. Basic Area Construction			
	FIGURE 12. Construction Code for Basic Area FIGURE 13. Holding Area Airspace Dimensions	18 19		
41.	Outbound End Reduction Areas	20		
	FIGURE 14. Construction Code for Outbound End Areas	21		
42.	Fix End Reduction Area	21		
	FIGURE 15. Construction Code for Fix End Area	22		
CHAPTER	3. TURBULENT AIR HOLDING PATTERNS • TURBOJET AIRCRAFT	23		
* 43. 4 4	Turbojet Operation Maximum Holding Speed • Turbulent Air Conditions orUSAF	23 23		
·	FIGURE 16. Turbulent Air/USAF F-4 Holding 'Pattern Sizes	23		
45 . 46	When to Apply Operational Use	23 24		
	FIGURE 17., 18. (Reserved)			
CHAPTER 4	• OPERATIONAL APPLICATIONS	25		
47. 48 49	Establishing Fixes Pattern Alignment Optimum Entry Routing	25 25 25		
	FIGURE 19. Zone for Entry Rerouting	26		
50. 51. 52.	DME Leg Length Selection DME Holding Direction Establishing Minimum Altitudes	26 26 26		

SECTION 8	MANUAL CONSTRUCTION OF PATTERNS/TEMPLATES	<u>Page No.</u> 17		
39 40	39. Requirement40. Basic Area Construction			
	FIGURE 12. Construction Code for Basic Area FIGURE 13. Holding Area Airspace Dimensions	18 19		
41.	Outbound End Reduction Areas	20		
	FIGURE 14. Construction Code for Outbound End Areas	21		
42.	Fix End Reduction Area	21		
	FIGURE 15. Construction Code for Fix End Area	22		
CHAPTER	3. TURBULENT AIR HOLDING PATTERNS • TURBOJET AIRCRAFT	23		
* 43. 4 4	Turbojet Operation Maximum Holding Speed • Turbulent Air Conditions orUSAF	23 23		
·	FIGURE 16. Turbulent Air/USAF F-4 Holding 'Pattern Sizes	23		
45 . 46	When to Apply Operational Use	23 24		
	FIGURE 17., 18. (Reserved)			
CHAPTER 4	• OPERATIONAL APPLICATIONS	25		
47. 48 49	Establishing Fixes Pattern Alignment Optimum Entry Routing	25 25 25		
	FIGURE 19. Zone for Entry Rerouting	26		
50. 51. 52.	DME Leg Length Selection DME Holding Direction Establishing Minimum Altitudes	26 26 26		

SECTION 8	MANUAL CONSTRUCTION OF PATTERNS/TEMPLATES	<u>Page No.</u> 17		
39 40	39. Requirement40. Basic Area Construction			
	FIGURE 12. Construction Code for Basic Area FIGURE 13. Holding Area Airspace Dimensions	18 19		
41.	Outbound End Reduction Areas	20		
	FIGURE 14. Construction Code for Outbound End Areas	21		
42.	Fix End Reduction Area	21		
	FIGURE 15. Construction Code for Fix End Area	22		
CHAPTER	3. TURBULENT AIR HOLDING PATTERNS • TURBOJET AIRCRAFT	23		
* 43. 4 4	Turbojet Operation Maximum Holding Speed • Turbulent Air Conditions orUSAF	23 23		
·	FIGURE 16. Turbulent Air/USAF F-4 Holding 'Pattern Sizes	23		
45 . 46	When to Apply Operational Use	23 24		
	FIGURE 17., 18. (Reserved)			
CHAPTER 4	• OPERATIONAL APPLICATIONS	25		
47. 48 49	Establishing Fixes Pattern Alignment Optimum Entry Routing	25 25 25		
	FIGURE 19. Zone for Entry Rerouting	26		
50. 51. 52.	DME Leg Length Selection DME Holding Direction Establishing Minimum Altitudes	26 26 26		

SECTION 8	MANUAL CONSTRUCTION OF PATTERNS/TEMPLATES	<u>Page No.</u> 17		
39 40	39. Requirement40. Basic Area Construction			
	FIGURE 12. Construction Code for Basic Area FIGURE 13. Holding Area Airspace Dimensions	18 19		
41.	Outbound End Reduction Areas	20		
	FIGURE 14. Construction Code for Outbound End Areas	21		
42.	Fix End Reduction Area	21		
	FIGURE 15. Construction Code for Fix End Area	22		
CHAPTER	3. TURBULENT AIR HOLDING PATTERNS • TURBOJET AIRCRAFT	23		
* 43. 4 4	Turbojet Operation Maximum Holding Speed • Turbulent Air Conditions orUSAF	23 23		
·	FIGURE 16. Turbulent Air/USAF F-4 Holding 'Pattern Sizes	23		
45 . 46	When to Apply Operational Use	23 24		
	FIGURE 17., 18. (Reserved)			
CHAPTER 4	• OPERATIONAL APPLICATIONS	25		
47. 48 49	Establishing Fixes Pattern Alignment Optimum Entry Routing	25 25 25		
	FIGURE 19. Zone for Entry Rerouting	26		
50. 51. 52.	DME Leg Length Selection DME Holding Direction Establishing Minimum Altitudes	26 26 26		

b Example Problem: Assume that propeller-driven aircraft (175K) are to bold at • fix located 12 miles from the farthest navaid used to form the fix. Altitudes involved • e 2,000 feet through 12,000 fret, Reference to Figure 3, page 5, indicates use of template No. 5 (12,000 feet). When it is applied to the fix, no conflict with other operations is indicated between 12,000 feet • d 5,000 feet. However, a SID departure route 4,000 feet and below is affected. Reference to Figure 3 indicates use of template No. 1 (4,000 feet and below). Figure 4 depicts this problem and shows that only two patterns were necessary in determining the solution.

SECTION 4. DEE APPLICATION

21. <u>SLANT-RANGE EFFECT</u>. An airborne DME odometer reading of 5 n.mi., at 30,000 feet, would indicate that an aircraft was directly over the navaid. If the aircraft maintained 5 n.mi. DME distance during descent, the flight path would form an arc beginning over the navaid to a point on the surface 5 n.mi. horizontal distance from the navaid. Therefore, near the surface a holding fix could be 5 n.mi. horizontally from the navaid, but at 13,000 feet it would be 4.5 n.mi. horizontally from the navaid. In this instance, 5 n.mi. is the fix-to-navaid

Chap 2 Par **20**

-

b Example Problem: Assume that propeller-driven aircraft (175K) are to bold at • fix located 12 miles from the farthest navaid used to form the fix. Altitudes involved • e 2,000 feet through 12,000 fret, Reference to Figure 3, page 5, indicates use of template No. 5 (12,000 feet). When it is applied to the fix, no conflict with other operations is indicated between 12,000 feet • d 5,000 feet. However, a SID departure route 4,000 feet and below is affected. Reference to Figure 3 indicates use of template No. 1 (4,000 feet and below). Figure 4 depicts this problem and shows that only two patterns were necessary in determining the solution.

SECTION 4. DEE APPLICATION

21. <u>SLANT-RANGE EFFECT</u>. An airborne DME odometer reading of 5 n.mi., at 30,000 feet, would indicate that an aircraft was directly over the navaid. If the aircraft maintained 5 n.mi. DME distance during descent, the flight path would form an arc beginning over the navaid to a point on the surface 5 n.mi. horizontal distance from the navaid. Therefore, near the surface a holding fix could be 5 n.mi. horizontally from the navaid, but at 13,000 feet it would be 4.5 n.mi. horizontally from the navaid. In this instance, 5 n.mi. is the fix-to-navaid

Chap 2 Par **20**

-

b Example Problem: Assume that propeller-driven aircraft (175K) are tobold at • fix located 12 miles from the farthest navaid used to form the fix. Altitudes involved • e 2,000 feet through 12,000 fret, Reference to Figure 3, page 5, indicates use of template No. 5 (12,000 feet). When it is applied to the fix, no conflict with other operations is indicated between 12,000 feet • d 5,000 feet. However, a SID departure route 4,000 feet and below is affected. Reference to Figure 3 indicates use of template No. 1 (4,000 feet and below). Figure 4 depicts this problem and shows that only two patterns were necessary in determining the solution.

SECTION 4. DEE APPLICATION

21. <u>SLANT-RANGE EFFECT</u>. An airborne DME odometer reading of 5 n.mi., at 30,000 feet, would indicate that an aircraft was directly over the navaid. If the aircraft maintained 5 n.mi. DME distance during descent, the flight path would form an arc beginning over the navaid to a point on the surface 5 n.mi. horizontal distance from the navaid. Therefore, near the surface a holding fix could be 5 n.mi. horizontally from the navaid, but at 13,000 feet it would be 4.5 n.mi. horizontally from the navaid. In this instance, 5 n.mi. is the fix-to-navaid

Chap 2 Par **20**

-

b Example Problem: Assume that propeller-driven aircraft (175K) are to hold at • fix located 12 miles from the farthest navaid used to form the fix. Altitudes involved • e 2,000 feet through 12,000 fret, Reference to Figure 3, page 5, indicates use of template No. 5 (12,000 feet). When it is applied to the fix, no conflict with other operations is indicated between 12,000 feet • d 5,000 feet. However, a SID departure route 4,000 feet and below is affected. Reference to Figure 3 indicates use of template No. 1 (4,000 feet and below). Figure 4 depicts this problem and shows that only two patterns were necessary in determining the solution.

SECTION 4. DEE APPLICATION

21. <u>SLANT-RANGE EFFECT</u>. An airborne DME odometer reading of 5 n.mi., at 30,000 feet, would indicate that an aircraft was directly over the navaid. If the aircraft maintained 5 n.mi. DME distance during descent, the flight path would form an arc beginning over the navaid to a point on the surface 5 n.mi. horizontal distance from the navaid. Therefore, near the surface a holding fix could be 5 n.mi. horizontally from the navaid, but at 13,000 feet it would be 4.5 n.mi. horizontally from the navaid. In this instance, 5 n.mi. is the fix-to-navaid

Chap 2 Par **20**

-

b Example Problem: Assume that propeller-driven aircraft (175K) are to hold at • fix located 12 miles from the farthest navaid used to form the fix. Altitudes involved are 2,000 feetthrough 12,000 fret, Reference to Figure 3, page 5, indicates use of template No. 5 (12,000 feet). When it is applied to the fix, no conflict with other operations is indicated between 12,000 feet • d 5,000 feet. However, a SID departure route 4,000 feet and below is affected. Reference to Figure 3 indicates use of template No. 1 (4,000 feet and below). Figure 4 depicts this problem and shows that only two patterns were necessary in determining the solution.

SECTION 4. DEE APPLICATION

21. <u>SLANT-RANGE EFFECT</u>. An airborne DE odometer reading of 5 n.mi., at 30,000 feet, would indicate that an aircraft was directly over the neveld. If the aircraft maintained 5 n.mi. DEE distance during descent, theflight path would form an arc beginning over the neveld to a point on the surface 5 n.mi. horizontal distance from the neveld. Therefore, near the surface • holding fix could be 5 n.mi. horizontally from the neveld, but at 13,000 feet it would be 4.5 n.mi. horizontally from the neveld. In this instance, 5 n.mi. is the fix-to-neveld

Chap 2 Par **20**

٠,

b Example Problem: Assume that propeller-driven aircraft (175K) are to hold at • fix located 12 miles from the farthest navaid used to form the fix. Altitudes involved are 2,000 feet through 12,000 feet, Reference to Figure 3, page 5, indicates use of template No. 5 (12,000 feet). When it is applied to the fix, no conflict with other operations is indicated between 12,000 feet and 5,000 feet. However, a SID departure route 4,000 feet and below is affected. Reference to Figure 3 indicates use of template No. 1 (4,000 feet and below). Figure 4 depicts this problem and shows that only two patterns were necessary in determining the solution.

SECTION 4. DEE APPLICATION

21. <u>SLANT-RANGE EFFECT</u>. An airborne DE odometer reading of 5 n.mi., at 30,000 feet, would indicate that an aircraft was directly over the neveld. If the aircraft maintained 5 n.mi. DEE distance during descent, theflight path would form an arc beginning over the nevaid to a point on the surface 5 n.mi. horizontal distance from the nevaid. Therefore, near the surface • holding fix could be 5 n.mi. horizontally from the nevaid, but at 13,000 feet it would be 4.5 n.mi. horizontally from the nevaid. In this instance, 5 n.mi. is the fix-to-nevaid

Chap 2 Par **20**

٠,

*

determine the pattern number/altitude relationship for the 230K speed group at fix-to-navaid distance 30 n.mi.... pattern No. 26 is indicated. Refer to Appendix 1, page 12. For 30 n.mi. and pattern No. 26, . . . leg_lengths/numbered areas 13/1, 14/1, 15/2, 16/2,17/3, 18/3, 19/4, and 20/4 • m_listed.

<u>Part 2</u>: Find the correct pattern/template size and leg lengths for 23,000 fret, giving consideration to protected airspace for flight operations crossing the holding course between $54 \bullet d 68$ nautical miles.

<u>Referiot</u>: o Figure 3, pagend5 determine the appropriate pattern...No. 18. Refer to Appendix 1, page 10, and find leg lengths . . . 7/2, 8/2, 9/3, 10/3, 11/4, • d 12/4. When template No. 18 is applied to the fix it shows that numbered areas 3 and 4 overlap the protected airspace for the flight operation which taker place between 54 and 68 nautical miles. This will make it necessary, in the final solution, to choose • leg length for which numbered areas 3 and 4 are not required.

<u>Part 3: Find the correct pattern/template size for 13,000 feet.</u>

<u>Referiour</u> Figure 3, page 5, and determine the appropriate pattern . . No. 10. Refer to Appendix 1, page 9, and find lag lengths . . . 4/2, 5/3, 6/3, 7/4, and 8/4. When template No. LO is applied to the fix it shows no confliction with other flight operations.

<u>Final Solution to Problem 2</u>: The range of leg lengths listed in Part 1 (FL 390) are: 13 n.mi. through 20 n.mi. Compare the findings of Part 1 with Part 2; i.e., the 13 n.mi. minimum leg length with the maximum leg length not requiring numbered areas 3 and 4 . . . 8 n.mi. Since the leg lengths are not compatible, a change will be required when aircraft descend below FL 240. Consequently, a n y leg length in the 13 n.mi. to 20 n.mi. range can be selected for aircraft holding between FL 390 and FL 240. Part 3 (14,000') findings indicate • maximum leg length of 8 n.mi. This is compatible with Part 2 findings. Therefore, an 8 n.mi. leg length is selected to serve MHA through 23,000 feet.

Summary of Solution: Protected airspace and leg lengths for a 30 n.mi. (fix-to-nevaid) fix shall be based upon:

(1) FL 390 - FL 240 inclusive, pattern No. 26 including all numbered areas, any leg length 13 n.mi. - 20 n.mi. inclusive.

*

determine the pattern number/altitude relationship for the 230K speed group at fix-to-nevaid distance 30 n.mi. . . . pattern No. 26 is indicated. Refer to Appendix 1, page 12. For 30 n.mi. and pattern No. 26, . . . leg lengths/numbered areas 13/1, 14/1, 15/2, 16/2, 17/3, 18/3, 19/4, • nd 20/4 • m listed.

<u>Part 2</u>: Find the correct pattern/template size and leg lengths for 23,000 fret, giving consideration to protected airspace for flight operations crossing the holding course between 54 and 68 nautical miles.

<u>Part3: Find the correct pattern/template size for 13,000 feet.</u>

<u>Referion</u> Figure 3, page 5, and determine the \bullet ppropriate pattern . . . No. 10. Refer to Appendix 1, page 9, and find lag lengths . . . 4/2, 5/3, 6/3, 7/4, and 8/4. When template No. 10 is applied to the fix it shows no confliction with other flight operations.

<u>Final Solution to Problem 2</u>: The range Of leg lengths listed in Part 1 (FL 390) are: 13 n.mi. through 20 n.mi. Compare the findings of Part 1 with Part 2; i.e., the 13 n.mi. minimum leg length with the maximum leglength not requiring numbered • reas 3 and 4 . . . 8 n.mi. Since the leg lengths are not compatible, a change will be required when aircraft descend below FL 240. Consequently, any leg length in the 13 n.mi. to 20 n.mi. range can be selected for • ircraft holding between FL 390 and FL 240. Part 3 (14,000') findings indicate • maximum leg length of 8 n.mi. This is compatible with Part 2 findings. Therefore, an 8 n.mi. leg length is selected to serve MEA through 23,000 feet.

<u>Summary of Solution</u>: Protected airspace and leg lengths for a 30 n.mi. (fix-to-nevaid) fix shall be based upon:

(1) FL 390 - FL 240 inclusive, pattern No. 26 including all numbered areas, any leg length 13 n.mi. - 20 n.mi. inclusive.

*

determine the pattern number/altitude relationship for the 230K speed group at fix-to-nevaid distance 30 n.mi. . . . pattern No. 26 is indicated. Refer to Appendix 1, page 12. For 30 n.mi. and pattern No. 26, . . . leg lengths/numbered areas 13/1, 14/1, 15/2, 16/2, 17/3, 18/3, 19/4, • nd 20/4 • m listed.

<u>Part 2</u>: Find the correct pattern/template size and leg lengths for 23,000 fret, giving consideration to protected airspace for flight operations crossing the holding course between 54 and 68 nautical miles.

Part 3: Find the correct pattern/template size for 13,000 feet.

<u>Referion</u> Figure 3, page 5, and determine the \bullet ppropriate pattern . . . No. 10. Refer to Appendix 1, page 9, and find lag lengths . . . 4/2, 5/3, 6/3, 7/4, and 8/4. When template No. 10 is applied to the fix it shows no confliction with other flight operations.

<u>Final Solution to Problem 2</u>: The range Of leg lengths listed in Part 1 (FL 390) are: 13 n.mi. through 20 n.mi. Compare the findings of Part 1 with Part 2; i.e., the 13 n.mi. minimum leg length with the maximum leglength not requiring numbered • reas 3 and 4 . . . 8 n.mi. Since the leg lengths are not compatible, a change will be required when aircraft descend below FL 240. Consequently, any leg length in the 13 n.mi. to 20 n.mi. range can be selected for • ircraft holding between FL 390 and FL 240 . Part 3 (14,000') findings indicate • maximum leg length of 8 n.mi. This is compatible with Part 2 findings. Therefore, an 8 n.mi. leg length is selected to serve MEA through 23,000 feet.

<u>Summary of Solution</u>: Protected airspace and leg lengths for a 30 n.mi. (fix-to-nevaid) fix shall be based upon:

(1) FL 390 - FL 240 inclusive, pattern No. 26 including all numbered areas, any leg length 13 n.mi. - 20 n.mi. inclusive.

*

determine the pattern number/altitude relationship for the 230K speed group at fix-to-nevaid distance 30 n.mi. . . . pattern No. 26 is indicated. Refer to Appendix 1, page 12. For 30 n.mi. and pattern No. 26, . . . leg lengths/numbered areas 13/1, 14/1, 15/2, 16/2, 17/3, 18/3, 19/4, • nd 20/4 • m listed.

<u>Part 2</u>: Find the correct pattern/template size and leg lengths for 23,000 fret, giving consideration to protected airspace for flight operations crossing the holding course between 54 and 68 nautical miles.

<u>Part 3</u>: Find the correct pattern/template size for 13,000 feet.

<u>Referion</u> Figure 3, page 5, and determine the \bullet ppropriate pattern . . . No. 10. Refer to Appendix 1, page 9, and find lag lengths . . . 4/2, 5/3, 6/3, 7/4, and 8/4. When template No. 10 is applied to the fix it shows no confliction with other flight operations.

<u>Final Solution to Problem 2</u>: The range Of leg lengths listed in Part 1 (FL 390) are: 13 n.mi. through 20 n.mi. Compare the findings of Part 1 with Part 2; i.e., the 13 n.mi. minimum leg length with the maximum leglength not requiring numbered • reas 3 and 4 . . . 8 n.mi. Since the leg lengths are not compatible, a change will be required when aircraft descend below FL 240. Consequently, any leg length in the 13 n.mi. to 20 n.mi. range can be selected for • ircraft holding between FL 390 and FL 240 . Part 3 (14,000') findings indicate • maximum leg length of 8 n.mi. This is compatible with Part 2 findings. Therefore, an 8 n.mi. leg length is selected to serve MEA through 23,000 feet.

<u>Summary of Solution</u>: Protected airspace and leg lengths for a 30 n.mi. (fix-to-nevaid) fix shall be based upon:

(1) FL 390 - FL 240 inclusive, pattern No. 26 including all numbered areas, any leg length 13 n.mi. - 20 n.mi. inclusive.

*

determine the pattern number/altitude relationship for the 230K speed group at fix-to-nevaid distance 30 n.mi. . . . pattern No. 26 is indicated. Refer to Appendix 1, page 12. For 30 n.mi. and pattern No. 26, . . . leg lengths/numbered areas 13/1, 14/1, 15/2, 16/2, 17/3, 18/3, 19/4, • nd 20/4 • m listed.

<u>Part 2</u>: Find the correct pattern/template size and leg lengths for 23,000 fret, giving consideration to protected airspace for flight operations crossing the holding course between 54 and 68 nautical miles.

<u>Part 3</u>: Find the correct pattern/template size for 13,000 feet.

<u>Referict</u>o Figure 3, page 5, and determine the \bullet ppropriate pattern . . . No. 10. Refer to Appendix 1, page 9, and find lag lengths . . . 4/2, 5/3, 6/3, 7/4, and 8/4. When template No. 10 is applied to the fix it shows no confliction with other flight operations.

<u>Final Solution to Problem 2</u>: The range Of leg lengths listed in Part 1 (FL 390) are: 13 n.mi. through 20 n.mi. Compare the findings of Part 1 with Part 2; i.e., the 13 n.mi. minimum leg length with the maximum leglengthnot requiring numbered • reas 3 and 4 . . . 8 n.mi. Since the leg lengths are not compatible, a change will be required when aircraft descend below FL 240. Consequently, any leg length in the 13 n.mi. to 20 n.mi. range can be selected for • ircraft holding between FL 390 and FL 240 . Part 3 (14,000') findings indicate • maximum leg length of 8 n.mi. This is compatible with Part 2 findings. Therefore, an 8 n.mi. leg length is selected to serve MEA through 23,000 feet.

<u>Summary of Solution</u>: Protected airspace and leg lengths for a 30 n.mi. (fix-to-nevaid) fix shall be based upon:

(1) FL 390 - FL 240 inclusive, pattern No. 26 including all numbered areas, any leg length 13 n.mi. - 20 n.mi. inclusive.

*

determine the pattern number/altitude relationship for the 230K speed group at fix-to-nevaid distance 30 n.mi. . . . pattern No. 26 is indicated. Refer to Appendix 1, page 12. For 30 n.mi. and pattern No. 26, . . . leg lengths/numbered areas 13/1, 14/1, 15/2, 16/2, 17/3, 18/3, 19/4, • nd 20/4 • m listed.

<u>Part 2</u>: Find the correct pattern/template size and leg lengths for 23,000 fret, giving consideration to protected airspace for flight operations crossing the holding course between 54 and 68 nautical miles.

<u>Part 3</u>: Find the correct pattern/template size for 13,000 feet.

<u>Referict</u>o Figure 3, page 5, and determine the \bullet ppropriate pattern . . . No. 10. Refer to Appendix 1, page 9, and find lag lengths . . . 4/2, 5/3, 6/3, 7/4, and 8/4. When template No. 10 is applied to the fix it shows no confliction with other flight operations.

<u>Final Solution to Problem 2</u>: The range Of leg lengths listed in Part 1 (FL 390) are: 13 n.mi. through 20 n.mi. Compare the findings of Part 1 with Part 2; i.e., the 13 n.mi. minimum leg length with the maximum leglengthnot requiring numbered • reas 3 and 4 . . . 8 n.mi. Since the leg lengths are not compatible, a change will be required when aircraft descend below FL 240. Consequently, any leg length in the 13 n.mi. to 20 n.mi. range can be selected for • ircraft holding between FL 390 and FL 240 . Part 3 (14,000') findings indicate • maximum leg length of 8 n.mi. This is compatible with Part 2 findings. Therefore, an 8 n.mi. leg length is selected to serve MEA through 23,000 feet.

<u>Summary of Solution</u>: Protected airspace and leg lengths for a 30 n.mi. (fix-to-nevaid) fix shall be based upon:

(1) FL 390 - FL 240 inclusive, pattern No. 26 including all numbered areas, any leg length 13 n.mi. - 20 n.mi. inclusive.

*

determine the pattern number/altitude relationship for the 230K speed group at fix-to-nevaid distance 30 n.mi. . . . pattern No. 26 is indicated. Refer to Appendix 1, page 12. For 30 n.mi. and pattern No. 26, . . . leg lengths/numbered areas 13/1, 14/1, 15/2, 16/2, 17/3, 18/3, 19/4, • nd 20/4 • m listed.

<u>Part 2</u>: Find the correct pattern/template size and leg lengths for 23,000 fret, giving consideration to protected airspace for flight operations crossing the holding course between 54 and 68 nautical miles.

<u>Part 3</u>: Find the correct pattern/template size for 13,000 feet.

<u>Referict</u>o Figure 3, page 5, and determine the \bullet ppropriate pattern . . . No. 10. Refer to Appendix 1, page 9, and find lag lengths . . . 4/2, 5/3, 6/3, 7/4, and 8/4. When template No. 10 is applied to the fix it shows no confliction with other flight operations.

<u>Final Solution to Problem 2</u>: The range Of leg lengths listed in Part 1 (FL 390) are: 13 n.mi. through 20 n.mi. Compare the findings of Part 1 with Part 2; i.e., the 13 n.mi. minimum leg length with the maximum leglengthnot requiring numbered • reas 3 and 4 . . . 8 n.mi. Since the leg lengths are not compatible, a change will be required when aircraft descend below FL 240. Consequently, any leg length in the 13 n.mi. to 20 n.mi. range can be selected for • ircraft holding between FL 390 and FL 240 . Part 3 (14,000') findings indicate • maximum leg length of 8 n.mi. This is compatible with Part 2 findings. Therefore, an 8 n.mi. leg length is selected to serve MEA through 23,000 feet.

<u>Summary of Solution</u>: Protected airspace and leg lengths for a 30 n.mi. (fix-to-nevaid) fix shall be based upon:

(1) FL 390 - FL 240 inclusive, pattern No. 26 including all numbered areas, any leg length 13 n.mi. - 20 n.mi. inclusive.

- 41. <u>OUTBOUND END REDUCTION AREAS</u>. Construct reduction areas by using Figure 14, and the following directions:
 - a. For patterns 1 through 6 locate points **f4,f3**, at one mile intervals from point F along a line parallel to the holding course. Locate points **e4, e3**, at one mile intervals from E along line E-C.
 - b. For patterns 7 through 18 proceed as in subparagraph a., except locate "f" and "e" points at two mile intervals.
 - c. For pattern 19 and above locate points f4, f3, and f2 at two mile intervals from point F along a line parallel to the holding course. Locate points e4, e3, and e2, at two mile intervals from E along line E-C.
 - d. Use distance F-M for the radius of all arcs formed per the following:
 - (1) Place compass center at H and draw a short arc above M.
 - (2) Place compass center at f4 and draw an arc across the arc formed in step (1).
 - (3) Place compass center at intersection of arcs formed by steps(1) and (2), and connect f4-H.
 - (4) Place compass center at **e4** and draw a short arc below **M**.
 - (5) Place compass center at f4 and draw an arc across the arc formed in step (4).
 - (6) Place compass center at intersection of arcs formed by steps(4) and (5), and connect f4-e4.
 - (7) Repeat steps (1) through (6), using appropriate "e" and "f" points, to form the other e-f and f-h arcs.
 - e. Arcs / formed by following subparagraph d., instructions depict the outbound end numbered areas. These areas are numbered 2 through 4 for patterns 1 through 18, and 1 through 4 for patterns 19 and above,

- 41. <u>OUTBOUND END REDUCTION AREAS</u>. Construct reduction areas by using Figure 14, and the following directions:
 - a. For patterns 1 through 6 locate points **f4, f3,** at one mile intervals from point F along a line parallel to the holding course. Locate points **e4, e3,** at one mile intervals from E along line E-C.
 - b. For patterns 7 through 18 proceed as in subparagraph a., except locate "f" and "e" points at two mile intervals.
 - c. For pattern 19 and above locate points f4, f3, and f2 at two mile intervals from point F along a line parallel to the holding course. Locate points e4, e3, and e2, at two mile intervals from E along line E-C.
 - d. Use distance F-M for the radius of all arcs formed per the following:
 - (1) Place compass center at H and draw a short arc above M.
 - (2) Place compass center at f4 and draw an arc across the arc formed in step (1).
 - (3) Place compass center at intersection of arcs formed by steps(1) and (2), and connect f4-H.
 - (4) Place compass center at e4 and draw a short arc below M.
 - (5) Place compass center at f4 and draw an arc across the arc formed in step (4).
 - (6) Place compass center at intersection of arcs formed by steps(4) and (5), and connect f4-e4.
 - (7) Repeat steps (1) through (6), using appropriate "e" and "f" points, to form the other e-f and f-h arcs.
 - e. Arcs / formed by following subparagraph d., instructions depict the outbound end numbered areas. These areas are numbered 2 through 4 for patterns 1 through 18, and 1 through 4 for patterns 19 and above,

- 41. <u>OUTBOUND END REDUCTION AREAS</u>. Construct reduction areas by using Figure 14, and the following directions:
 - a. For patterns 1 through 6 locate points f4, f3, at one mile intervals from point F along a line parallel to the holding course. Locate points e4, e3, at one mile intervals from E along line E-C.
 - b. For patterns 7 through 18 proceed as in subparagraph a., except locate "f" and "e" points at two mile intervals.
 - c. For pattern 19 and above locate points f4, f3, and f2 at two mile intervals from point F along a line parallel to the holding course. Locate points e4, e3, and e2, at two mile intervals from E along line E-C.
 - d. Use distance F-M for the radius of all arcs formed per the following:
 - (1) Place compass center at H and draw a short arc above M.
 - (2) Place compass center at f4 and draw an arc across the arc formed in step (1).
 - (3) Place compass center at intersection of arcs formed by steps(1) and (2), and connect f4-H.
 - (4) Place compass center at e4 and draw a short arc below M.
 - (5) Place compass center at f4 and draw an arc across the arc formed in step (4).
 - (6) Place compass center at intersection of arcs formed by steps(4) and (5), and connect f4-e4.
 - (7) Repeat steps (1) through (6), using appropriate "e" and "f" points, to form the other e-f and f-h arcs.
 - e. Arcs / formed by following subparagraph d., instructions depict the outbound end numbered areas. These areas are numbered 2 through 4 for patterns 1 through 18, and 1 through 4 for patterns 19 and above,

- 41. <u>OUTBOUND END REDUCTION AREAS</u>. Construct reduction areas by using Figure 14, and the following directions:
 - a. For patterns 1 through 6 locate points f4, f3, at one mile intervals from point F along a line parallel to the holding course. Locate points e4, e3, at one mile intervals from E along line E-C.
 - b. For patterns 7 through 18 proceed as in subparagraph a., except locate "f" and "e" points at two mile intervals.
 - c. For pattern 19 and above locate points f4, f3, and f2 at two mile intervals from point F along a line parallel to the holding course. Locate points e4, e3, and e2, at two mile intervals from E along line E-C.
 - d. Use distance F-M for the radius of all arcs formed per the following:
 - (1) Place compass center at H and draw a short arc above M.
 - (2) Place compass center at f4 and draw an arc across the arc formed in step (1).
 - (3) Place compass center at intersection of arcs formed by steps(1) and (2), and connect f4-H.
 - (4) Place compass center at e4 and draw a short arc below M.
 - (5) Place compass center at f4 and draw an arc across the arc formed in step (4).
 - (6) Place compass center at intersection of arcs formed by steps(4) and (5), and connect f4-e4.
 - (7) Repeat steps (1) through (6), using appropriate "e" and "f" points, to form the other e-f and f-h arcs.
 - e. Arcs / formed by following subparagraph d., instructions depict the outbound end numbered areas. These areas are numbered 2 through 4 for patterns 1 through 18, and 1 through 4 for patterns 19 and above,

- 41. <u>OUTBOUND END REDUCTION AREAS</u>. Construct reduction areas by using Figure 14, and the following directions:
 - a. For patterns 1 through 6 locate points f4, f3, at one mile intervals from point F along a line parallel to the holding course. Locate points e4, e3, at one mile intervals from E along line E-C.
 - b. For patterns 7 through 18 proceed as in subparagraph a., except locate "f" and "e" points at two mile intervals.
 - c. For pattern 19 and above locate points f4, f3, and f2 at two mile intervals from point F along a line parallel to the holding course. Locate points e4, e3, and e2, at two mile intervals from E along line E-C.
 - d. Use distance F-M for the radius of all arcs formed per the following:
 - (1) Place compass center at H and draw a short arc above M.
 - (2) Place compass center at f4 and draw an arc across the arc formed in step (1).
 - (3) Place compass center at intersection of arcs formed by steps(1) and (2), and connect f4-H.
 - (4) Place compass center at e4 and draw a short arc below M.
 - (5) Place compass center at f4 and draw an arc across the arc formed in step (4).
 - (6) Place compass center at intersection of arcs formed by steps(4) and (5), and connect f4-e4.
 - (7) Repeat steps (1) through (6), using appropriate "e" and "f" points, to form the other e-f and f-h arcs.
 - e. Arcs / formed by following subparagraph d., instructions depict the outbound end numbered areas. These areas are numbered 2 through 4 for patterns 1 through 18, and 1 through 4 for patterns 19 and above,

- 41. <u>OUTBOUND END REDUCTION AREAS</u>. Construct reduction areas by using Figure 14, and the following directions:
 - a. For patterns 1 through 6 locate points f4, f3, at one mile intervals from point F along a line parallel to the holding course. Locate points e4, e3, at one mile intervals from E along line E-C.
 - b. For patterns 7 through 18 proceed as in subparagraph a., except locate "f" and "e" points at two mile intervals.
 - c. For pattern 19 and above locate points f4, f3, and f2 at two mile intervals from point F along a line parallel to the holding course. Locate points e4, e3, and e2, at two mile intervals from E along line E-C.
 - d. Use distance F-M for the radius of all arcs formed per the following:
 - (1) Place compass center at H and draw a short arc above M.
 - (2) Place compass center at f4 and draw an arc across the arc formed in step (1).
 - (3) Place compass center at intersection of arcs formed by steps(1) and (2), and connect f4-H.
 - (4) Place compass center at e4 and draw a short arc below M.
 - (5) Place compass center at f4 and draw an arc across the arc formed in step (4).
 - (6) Place compass center at intersection of arcs formed by steps(4) and (5), and connect f4-e4.
 - (7) Repeat steps (1) through (6), using appropriate "e" and "f" points, to form the other e-f and f-h arcs.
 - e. Arcs / formed by following subparagraph d., instructions depict the outbound end numbered areas. These areas are numbered 2 through 4 for patterns 1 through 18, and 1 through 4 for patterns 19 and above,

- 50. <u>DME LEG LENGTH SELECTION</u>. Whenever possible *use* a leg length longer than the minimum listed. This will enhance inbound course bracketing.
- 51. <u>DME HOLDING DIRECTION</u>. An inbound holding course toward the **navaid** has the following advantages over an inbound **holding course** away from the **navaid**:
 - **a.** It provides a greater choice of leg lengths.
 - b. When associated with an instrument approach, normally, the aircraft on the inbound holding course will be on-course toward the approach navaid.
- 52. <u>ESTABLISHING MINIMUM ALTITUDES</u>. **MHA's** are determined by Flight Standards Service.
- 53. <u>MILITARY TURBOJET TRAINING BASES</u>. Although holding airspace protection may be based on 230 Knot pattern sizes, establishment of 265 Knot pattern sizes also may be feasible. Adding the capability of accommodating most supersonic military aircraft, at military turbojet training bases, may be desirable and is encouraged.
- 54. HOLDING PATTERNS ON/ADJACENT TO ILS COURSES. Patterns established close to/overlying an ILS localizer course below 5,000 feet, between the outer marker and the localizer antenna, shall not permy t the inbound holding course to coincide with the inbound ILS course. See Figure 20.
- 1/ Due to the possibility of creating reflected unwanted signals.

- 50. <u>DME LEG LENGTH SELECTION</u>. Whenever possible *use* a leg length longer than the minimum listed. This will enhance inbound course bracketing.
- 51. <u>DME HOLDING DIRECTION</u>. An inbound holding course toward the **navaid** has the following advantages over an inbound **holding course** away from the **navaid**:
 - **a.** It provides a greater choice of leg lengths.
 - b. When associated with an instrument approach, normally, the aircraft on the inbound holding course will be on-course toward the approach navaid.
- 52. <u>ESTABLISHING MINIMUM ALTITUDES</u>. **MHA's** are determined by Flight Standards Service.
- 53. <u>MILITARY TURBOJET TRAINING BASES</u>. Although holding airspace protection may be based on 230 Knot pattern sizes, establishment of 265 Knot pattern sizes also may be feasible. Adding the capability of accommodating most supersonic military aircraft, at military turbojet training bases, may be desirable and is encouraged.
- 54. HOLDING PATTERNS ON/ADJACENT TO ILS COURSES. Patterns established close to/overlying an ILS localizer course below 5,000 feet, between the outer marker and the localizer antenna, shall not permy t the inbound holding course to coincide with the inbound ILS course. See Figure 20.
- 1/ Due to the possibility of creating reflected unwanted signals.

- **50.** <u>DME LEG LENGTH SELECTION</u>. Whenever possible *use* a leg length longer than the minimum listed. This will enhance inbound course bracketing.
- 51. <u>DME HOLDING DIRECTION</u>. An inbound holding course toward the **navaid** has the following advantages over an inbound **holding course** away from the **navaid**:
 - **a.** It provides a greater choice of leg lengths.
 - b. When associated with an instrument approach, normally, the aircraft on the inbound holding course will be on-course toward the approach navaid.
- 52. <u>ESTABLISHING MINIMUM ALTITUDES</u>. **MHA's** are determined by Flight Standards Service.
- 53. <u>MILITARY TURBOJET TRAINING BASES</u>. Although holding airspace protection may be based on 230 Knot pattern sizes, establishment of 265 Knot pattern sizes also may be feasible. Adding the capability of accommodating most supersonic military aircraft, at military turbojet training bases, may be desirable and is encouraged.
- 54. HOLDING PATTERNS ON/ADJACENT TO ILS COURSES. Patterns established close to/overlying an ILS localizer course below 5,000 feet, between the outer marker and the localizer antenna, shall not permy t the inbound holding course to coincide with the inbound ILS course. See Figure 20.
- 1/ Due to the possibility of creating reflected unwanted signals.

- 50. <u>DME LEG LENGTH SELECTION</u>. Whenever possible *use* a leg length longer than the minimum listed. This will enhance inbound course bracketing.
- 51. <u>DME HOLDING DIRECTION</u>. An inbound holding course toward the **navaid** has the following advantages over an inbound **holding course** away from the **navaid**:
 - **a.** It provides a greater choice of leg lengths.
 - b. When associated with an instrument approach, normally, the aircraft on the inbound holding course will be on-course toward the approach navaid.
- 52. <u>ESTABLISHING MINIMUM ALTITUDES</u>. **MHA's** are determined by Flight Standards Service.
- 53. <u>MILITARY TURBOJET TRAINING BASES</u>. Although holding airspace protection may be based on 230 Knot pattern sizes, establishment of 265 Knot pattern sizes also may be feasible. Adding the capability of accommodating most supersonic military aircraft, at military turbojet training bases, may be desirable and is encouraged.
- 54. HOLDING PATTERNS ON/ADJACENT TO ILS COURSES. Patterns established close to/overlying an ILS localizer course below 5,000 feet, between the outer marker and the localizer antenna, shall not permy t the inbound holding course to coincide with the inbound ILS course. See Figure 20.
- 1/ Due to the possibility of creating reflected unwanted signals.

- 50. <u>DME LEG LENGTH SELECTION</u>. Whenever possible *use* a leg length longer than the minimum listed. This will enhance inbound course bracketing.
- 51. <u>DME HOLDING DIRECTION</u>. An inbound holding course toward the **navaid** has the following advantages over an inbound **holding course** away from the **navaid**:
 - **a.** It provides a greater choice of leg lengths.
 - b. When associated with an instrument approach, normally, the aircraft on the inbound holding course will be on-course toward the approach navaid.
- 52. <u>ESTABLISHING MINIMUM ALTITUDES</u>. **MHA's** are determined by Flight Standards Service.
- 53. <u>MILITARY TURBOJET TRAINING BASES</u>. Although holding airspace protection may be based on 230 Knot pattern sizes, establishment of 265 Knot pattern sizes also may be feasible. Adding the capability of accommodating most supersonic military aircraft, at military turbojet training bases, may be desirable and is encouraged.
- 54. HOLDING PATTERNS ON/ADJACENT TO ILS COURSES. Patterns established close to/overlying an ILS localizer course below 5,000 feet, between the outer marker and the localizer antenna, shall not permy t the inbound holding course to coincide with the inbound ILS course. See Figure 20.
- 1/ Due to the possibility of creating reflected unwanted signals.

- 50. <u>DME LEG LENGTH SELECTION</u>. Whenever possible *use* a leg length longer than the minimum listed. This will enhance inbound course bracketing.
- 51. <u>DME HOLDING DIRECTION</u>. An inbound holding course toward the **navaid** has the following advantages over an inbound **holding course** away from the **navaid**:
 - **a.** It provides a greater choice of leg lengths.
 - b. When associated with an instrument approach, normally, the aircraft on the inbound holding course will be on-course toward the approach navaid.
- 52. <u>ESTABLISHING MINIMUM ALTITUDES</u>. **MHA's** are determined by Flight Standards Service.
- 53. <u>MILITARY TURBOJET TRAINING BASES</u>. Although holding airspace protection may be based on 230 Knot pattern sizes, establishment of 265 Knot pattern sizes also may be feasible. Adding the capability of accommodating most supersonic military aircraft, at military turbojet training bases, may be desirable and is encouraged.
- 54. HOLDING PATTERNS ON/ADJACENT TO ILS COURSES. Patterns established close to/overlying an ILS localizer course below 5,000 feet, between the outer marker and the localizer antenna, shall not permy t the inbound holding course to coincide with the inbound ILS course. See Figure 20.
- 1/ Due to the possibility of creating reflected unwanted signals.

- 50. <u>DME LEG LENGTH SELECTION</u>. Whenever possible *use* a leg length longer than the minimum listed. This will enhance inbound course bracketing.
- 51. <u>DME HOLDING DIRECTION</u>. An inbound holding course toward the **navaid** has the following advantages over an inbound **holding course** away from the **navaid**:
 - **a.** It provides a greater choice of leg lengths.
 - b. When associated with an instrument approach, normally, the aircraft on the inbound holding course will be on-course toward the approach navaid.
- 52. <u>ESTABLISHING MINIMUM ALTITUDES</u>. **MHA's** are determined by Flight Standards Service.
- 53. <u>MILITARY TURBOJET TRAINING BASES</u>. Although holding airspace protection may be based on 230 Knot pattern sizes, establishment of 265 Knot pattern sizes also may be feasible. Adding the capability of accommodating most supersonic military aircraft, at military turbojet training bases, may be desirable and is encouraged.
- 54. HOLDING PATTERNS ON/ADJACENT TO ILS COURSES. Patterns established close to/overlying an ILS localizer course below 5,000 feet, between the outer marker and the localizer antenna, shall not permy t the inbound holding course to coincide with the inbound ILS course. See Figure 20.
- 1/ Due to the possibility of creating reflected unwanted signals.

.

2/4

9.

10.

11.

12.

13.

13

15.

14.

17.

16.

.

2/4

9.

10.

11.

12.

13.

13

15.

14.

17.

16.

.

2/4

9.

10.

11.

12.

13.

13

15.

14.

17.

16.

.

2/4

9.

10.

11.

12.

13.

13

15.

14.

17.

16.

.

2/4

9.

10.

11.

12.

13.

13

15.

14.

17.

16.

.

2/4

9.

10.

11.

12.

13.

13

15.

14.

17.

16.

.

2/4

9.

10.

11.

12.

13.

13

15.

14.

17.

16.

.

2/4

9.

10.

11.

12.

13.

13

15.

14.

17.

16.

.

2/4

9.

10.

11.

12.

13.

13

15.

14.

17.

16.

2

H

-

ы

S

62

7130.3 8/28/67

2

თ

Ø

Ŧ

g

5

¢

ð

2

Distance in Nautical Miles

0

2

S

62

2

H

Appendix 3 Page 1

<u>0</u>

თ

Ø

g

5

¢

n

2

Distance in Nautical Miles

0-

-12

-16

- 14

DME

<u>0</u>

0-

ō

S

ά

6-

-12

-16

- 14

7130.3 8/28/67

DME

or

36+

34

32-

ģ 2826-

2

4

H

s. S Ś

မ် ģ

2

0

4 ģ

26-

2

4

H

s. S Ś

မ် ģ

2

0

4 ģ

62

ģ 28-

34

ō

S

ά

6-

7130.3 8/28/67

DME

or