SUBJ: Facility Operation and Administration

1. Purpose of This Change. This change transmits revised pages to Federal Aviation Administration Order JO 7210.3CC, Facility Operation and Administration, and the Briefing Guide.

2. Audience. This change applies to all Air Traffic Organization (ATO) personnel and anyone using ATO directives.

4. Explanation of Policy Change. See the Explanation of Changes attachment which has editorial corrections and changes submitted through normal procedures. The Briefing Guide lists only new or modified material, along with background.

5. Distribution. This change is distributed to selected offices in Washington headquarters, service area offices, regional offices, the William J. Hughes Technical Center, the Mike Monroney Aeronautical Center, all air traffic field facilities, international aviation field offices, and interested aviation public.

6. Disposition of Transmittal. Retain this transmittal until superseded by a new basic order.

7. Page Control Chart. See the page control chart attachment.

Michele Merkle
Acting Vice President, Mission Support Services
Air Traffic Organization
Explanation of Changes

Change 3

Direct questions through appropriate facility/service center office staff to the office of primary responsibility (OPR)

a. 2–1–18. PROHIBITED/RESTRICTED AREAS AND STATIONARY ALTRVS
This change clarifies the provision to waive separation buffers from active restricted areas and modifies the examples that inform facility air traffic managers when it is allowable to waive the three-mile boundary separation requirement around active special use airspace.

b. 2–1–42. ACCESS TO FALCON REPLAY SYSTEM
This change adds guidance to FAA Order JO 7210.3, Facility Operation and Administration, Chapter 2, Section 1, establishing who must have access to the Falcon Replay System.

c. 4–5–2. LETTERS TO AIRMEN
This change provides specific letters to airmen (LTA) manager support guidance for specialists in the Operations Support Groups.

d. 5–3–4. WEATHER RECONNAISSANCE FLIGHTS
This change adds a note that identifies the originator of any active Weather Reconnaissance Area (WRA) Notice to Air Missions (NOTAM) and whom to contact, should there be any mission-specific questions.

e. 6–9–1. GENERAL
This change defines Reduced Vertical Separation Minimum (RVSM) airspace to align with an updated definition being added to FAA Order JO 7110.65. Content identifying non–RVSM exceptions are changed from a note to guidance placed in new paragraphs. The term Transition Airspace, which is not found in FAA Order JO 7110.65, is eliminated and replaced with language describing the handling of non–RVSM aircraft transitioning RVSM airspace.

f. 10–1–6. SELECTING ACTIVE RUNWAYS
This change clarifies responsibilities associated with selecting active runway(s). The final authority for determining runway(s) in use rests with the Airport Traffic Control Tower (ATCT) supervisor/controller—in-charge (CIC). This change emphasizes that tailwind and crosswind considerations take precedence over delay/capacity considerations and noise abatement operations/procedures/agreements. This change cancels and incorporates Notice JO 7210.940, which was effective June 10, 2022.

g. 10–1–9. FLIGHT PROGRESS STRIP USAGE
This change will eliminate the reference to Center Radar Presentation (CENRAP) in subparagraph 10–1–9(a).

h. 12–8–1. POLICY
12–8–2. DEFINITION
12–8–3. CRITERIA
12–8–4. RESPONSIBILITIES
This change provides the criteria in FAA Order JO 7210.3 for establishing visual flight rules (VFR) waypoints for mountain pass entry points and defines the responsibilities of the organizations involved. Additionally, it requires AFS–420 concurrence prior to charting any waypoints associated with mountain passes.

i. 18–10–4. DEFINITIONS
This change adds language to paragraph 18–10–4 to emphasize that use of the Unified Ground Delay Program (UDP) is preferred when implementing a Ground Delay Program (GDP).

j. 18–21–2. DEFINITION
18–21–3. RESPONSIBILITIES
18–21–4. PROCEDURES
This change to FAA Order JO 7210.3 adds trajectory-based operations (TBO) language, and updates definitions, responsibilities, and procedures associated with the Operations Plan. This change provides the necessary information on these topics.

k. 21–3–1. SYSTEM OPERATIONS SECURITY
This change retitles Section 3 from Chapter 21 and paragraph 21–3–1 to align with the intended content.
in the section. This change to paragraph 21–3–1 updates and clarifies the line of authority for the operational role of System Operations Security’s Air Traffic Security Coordinators (ATSC).

1. Editorial Changes

Editorial changes include correcting the National Center for Environmental Information website in subparagraph 3–8–2g3(c), correcting the definition of PIREP to pilot weather report in paragraph 1–2–4, correcting the title of FAA Order 1350.14B in paragraph 4–6–1, and correcting the spelling of “dependent” in Automatic Dependent Surveillance–Addressable in paragraph 1–2–4, Abbreviations.

m. Entire Publication

Additional editorial/format changes were made where necessary. Revision bars were not used because of the insignificant nature of these changes.
<table>
<thead>
<tr>
<th>REMOVE PAGES</th>
<th>DATED</th>
<th>INSERT PAGES</th>
<th>DATED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table of Contents i through xxvi</td>
<td>5/19/22</td>
<td>Table of Contents i through xxvi</td>
<td>11/3/22</td>
</tr>
<tr>
<td>1–2–1</td>
<td>12/2/21</td>
<td>1–2–1</td>
<td>11/3/22</td>
</tr>
<tr>
<td>1–2–2 and 1–2–3</td>
<td>5/19/22</td>
<td>1–2–2 and 1–2–3</td>
<td>5/19/22</td>
</tr>
<tr>
<td>1–2–4</td>
<td>5/19/22</td>
<td>1–2–4</td>
<td>11/3/22</td>
</tr>
<tr>
<td>2–1–9</td>
<td>5/19/22</td>
<td>2–1–9</td>
<td>5/19/22</td>
</tr>
<tr>
<td>2–1–10 and 2–1–11</td>
<td>5/19/22</td>
<td>2–1–10 and 2–1–11</td>
<td>11/3/22</td>
</tr>
<tr>
<td>2–1–12 through 2–1–14</td>
<td>12/2/21</td>
<td>2–1–12 through 2–1–14</td>
<td>11/3/22</td>
</tr>
<tr>
<td>3–8–4</td>
<td>6/17/21</td>
<td>3–8–4</td>
<td>6/17/21</td>
</tr>
<tr>
<td>4–6–1 through 4–6–3</td>
<td>12/2/21</td>
<td>4–6–1 through 4–6–3</td>
<td>11/3/22</td>
</tr>
<tr>
<td>4–6–4</td>
<td>6/17/21</td>
<td>4–6–4</td>
<td>6/17/21</td>
</tr>
<tr>
<td>6–9–1 through 6–9–3</td>
<td>6/17/21</td>
<td>6–9–1 through 6–9–3</td>
<td>11/3/22</td>
</tr>
<tr>
<td>10–1–1</td>
<td>6/17/21</td>
<td>10–1–1</td>
<td>6/17/21</td>
</tr>
<tr>
<td>10–1–2 through 10–1–4</td>
<td>6/17/21</td>
<td>10–1–2 through 10–1–4</td>
<td>11/3/22</td>
</tr>
<tr>
<td>10–1–5</td>
<td>12/2/21</td>
<td>10–1–5</td>
<td>11/3/22</td>
</tr>
<tr>
<td>10–1–6</td>
<td>6/17/21</td>
<td>10–1–6 and 10–1–7</td>
<td>11/3/22</td>
</tr>
<tr>
<td>12–8–1 through 12–8–3</td>
<td>6/17/21</td>
<td>12–8–1 through 12–8–3</td>
<td>11/3/22</td>
</tr>
<tr>
<td>18–10–1</td>
<td>5/19/22</td>
<td>18–10–1</td>
<td>11/3/22</td>
</tr>
<tr>
<td>18–10–2</td>
<td>5/19/22</td>
<td>18–10–2</td>
<td>5/19/22</td>
</tr>
<tr>
<td>18–21–1 through 18–21–3</td>
<td>6/17/21</td>
<td>18–21–1 through 18–21–3</td>
<td>11/3/22</td>
</tr>
<tr>
<td>Index I–1 through I–11</td>
<td>5/19/22</td>
<td>Index I–1 through I–11</td>
<td>11/3/22</td>
</tr>
</tbody>
</table>
Table of Contents

Part 1. BASIC

Chapter 1. General

Section 1. Introduction

<table>
<thead>
<tr>
<th>Paragraph</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1–1–1. PURPOSE OF THIS ORDER</td>
<td>1–1–1</td>
</tr>
<tr>
<td>1–1–2. AUDIENCE</td>
<td>1–1–1</td>
</tr>
<tr>
<td>1–1–3. WHERE TO FIND THIS ORDER</td>
<td>1–1–1</td>
</tr>
<tr>
<td>1–1–4. WHAT THIS ORDER CANCELS</td>
<td>1–1–1</td>
</tr>
<tr>
<td>1–1–5. EXPLANATION OF CHANGES</td>
<td>1–1–1</td>
</tr>
<tr>
<td>1–1–6. EFFECTIVE DATES AND SUBMISSIONS FOR CHANGES</td>
<td>1–1–1</td>
</tr>
<tr>
<td>1–1–7. DELIVERY DATES</td>
<td>1–1–2</td>
</tr>
<tr>
<td>1–1–8. RECOMMENDATIONS FOR PROCEDURAL CHANGES</td>
<td>1–1–2</td>
</tr>
<tr>
<td>1–1–9. CONSTRAINTS GOVERNING SUPPLEMENTS AND PROCEDURAL DEViations</td>
<td>1–1–2</td>
</tr>
<tr>
<td>1–1–10. SAFETY MANAGEMENT SYSTEM (SMS)</td>
<td>1–1–2</td>
</tr>
<tr>
<td>1–1–11. REFERENCES TO FAA NON–AIR TRAFFIC ORGANIZATION</td>
<td>1–1–2</td>
</tr>
<tr>
<td>1–1–12. DISTRIBUTION</td>
<td>1–1–3</td>
</tr>
</tbody>
</table>

Section 2. Order Use

<table>
<thead>
<tr>
<th>Paragraph</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1–2–1. POLICY</td>
<td>1–2–1</td>
</tr>
<tr>
<td>1–2–2. ANNOTATIONS</td>
<td>1–2–1</td>
</tr>
<tr>
<td>1–2–3. WORD MEANINGS</td>
<td>1–2–1</td>
</tr>
<tr>
<td>1–2–4. ABBREVIATIONS</td>
<td>1–2–1</td>
</tr>
</tbody>
</table>

Chapter 2. Administration of Facilities

Section 1. General

<table>
<thead>
<tr>
<th>Paragraph</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2–1–1. INTERREGIONAL REQUIREMENTS</td>
<td>2–1–1</td>
</tr>
<tr>
<td>2–1–2. FACILITY STANDARD OPERATING PROCEDURES DIRECTIVE</td>
<td>2–1–1</td>
</tr>
<tr>
<td>2–1–3. POSITION/SECTOR BINDERS</td>
<td>2–1–1</td>
</tr>
<tr>
<td>2–1–4. REFERENCE FILES</td>
<td>2–1–1</td>
</tr>
<tr>
<td>2–1–5. RELEASE OF INFORMATION</td>
<td>2–1–2</td>
</tr>
<tr>
<td>2–1–6. CHECKING ACCURACY OF PUBLISHED DATA</td>
<td>2–1–3</td>
</tr>
<tr>
<td>2–1–7. AIR TRAFFIC SERVICE DURING PLANNED AND UNPLANNED OUTAGES</td>
<td>2–1–3</td>
</tr>
<tr>
<td>2–1–8. OPERATIONS DURING A STAFFING CONSTRAINT</td>
<td>2–1–5</td>
</tr>
<tr>
<td>2–1–9. HANDLING BOMB THREAT INCIDENTS</td>
<td>2–1–6</td>
</tr>
<tr>
<td>2–1–10. HANDLING MANPADS INCIDENTS</td>
<td>2–1–7</td>
</tr>
<tr>
<td>2–1–11. AIRPORT EMERGENCY PLANS</td>
<td>2–1–7</td>
</tr>
<tr>
<td>2–1–12. EXPLOSIVES DETECTION K–9 TEAMS</td>
<td>2–1–8</td>
</tr>
<tr>
<td>2–1–13. INTERSECTION TAKEOFFS</td>
<td>2–1–9</td>
</tr>
<tr>
<td>2–1–14. AIRCRAFT IDENTIFICATION PROBLEMS</td>
<td>2–1–9</td>
</tr>
<tr>
<td>2–1–15. APPROACH CONTROL AIRSPACE</td>
<td>2–1–9</td>
</tr>
<tr>
<td>2–1–16. AUTHORIZATION FOR SEPARATION SERVICES BY TOWERS</td>
<td>2–1–10</td>
</tr>
<tr>
<td>2–1–17. BIRD HAZARDS</td>
<td>2–1–10</td>
</tr>
<tr>
<td>Paragraph</td>
<td>Page</td>
</tr>
<tr>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>2–1–18. PROHIBITED/RESTRICTED AREAS AND STATIONARY ALTRVS</td>
<td>2–10</td>
</tr>
<tr>
<td>2–1–19. SPECIAL AIR TRAFFIC RULES (SATR) AND SPECIAL FLIGHT RULES</td>
<td>2–11</td>
</tr>
<tr>
<td>AREA (SFRA)</td>
<td></td>
</tr>
<tr>
<td>2–1–20. ATC SECURITY SERVICES FOR THE WASHINGTON, DC, SPECIAL FLIGHT</td>
<td>2–11</td>
</tr>
<tr>
<td>RULES AREA (DC SFRA)</td>
<td></td>
</tr>
<tr>
<td>2–1–21. AIRPORT TRAFFIC PATTERNS</td>
<td>2–12</td>
</tr>
<tr>
<td>2–1–22. OBSTACLE IDENTIFICATION SURFACES, OBSTACLE FREE ZONES, RUNWAY</td>
<td>2–12</td>
</tr>
<tr>
<td>SAFETY AREAS, APPROACH/DEPARTURE HOLD AREAS, AND CLEARWAYS</td>
<td></td>
</tr>
<tr>
<td>2–1–23. FACILITY IDENTIFICATION</td>
<td>2–13</td>
</tr>
<tr>
<td>2–1–24. DISPOSITION OF OBSOLETE CHARTS</td>
<td>2–13</td>
</tr>
<tr>
<td>2–1–25. OUTDOOR LASER DEMONSTRATIONS</td>
<td>2–13</td>
</tr>
<tr>
<td>2–1–26. COMBINE/RECOMBINE AN ATCT/TRACON</td>
<td>2–13</td>
</tr>
<tr>
<td>2–1–27. SUBMISSION OF AIR TRAFFIC CONTROL ASSIGNED AIRSPACE (ATCAA)</td>
<td>2–13</td>
</tr>
<tr>
<td>DATA</td>
<td></td>
</tr>
<tr>
<td>2–1–28. SUBMISSION OF SUA AND PAJA FREQUENCY INFORMATION</td>
<td>2–14</td>
</tr>
<tr>
<td>2–1–29. REPORTING UNAUTHORIZED LASER ILLUMINATION OF AIRCRAFT</td>
<td>2–14</td>
</tr>
<tr>
<td>2–1–30. REPORTING SUSPICIOUS AIRCRAFT/PILOT ACTIVITIES</td>
<td>2–14</td>
</tr>
<tr>
<td>2–1–31. REPORTING DIVERTED AIRCRAFT ARRIVING FROM INTERNATIONAL LOCATIONS</td>
<td>2–15</td>
</tr>
<tr>
<td>2–1–32. REPORTING INOPERATIVE OR MALFUNCTIONING ADS–B TRANSMITTERS</td>
<td>2–15</td>
</tr>
<tr>
<td>2–1–33. REPORTING SUSPICIOUS UAS ACTIVITIES</td>
<td>2–16</td>
</tr>
<tr>
<td>2–1–34. USE OF UAS DETECTION SYSTEMS</td>
<td>2–16</td>
</tr>
<tr>
<td>2–1–35. USE OF COUNTER UNMANNED AIRCRAFT SYSTEMS (C–UAS)</td>
<td>2–17</td>
</tr>
<tr>
<td>2–1–36. REPORTING DEATH, ILLNESS, OR OTHER PUBLIC HEALTH RISK ON BOARD</td>
<td>2–17</td>
</tr>
<tr>
<td>AIRCRAFT</td>
<td></td>
</tr>
<tr>
<td>2–1–37. OPPOSITE DIRECTION OPERATIONS</td>
<td>2–18</td>
</tr>
<tr>
<td>2–1–38. SPECIAL INTEREST SITES</td>
<td>2–19</td>
</tr>
<tr>
<td>2–1–39. TRANSPORTATION SECURITY ADMINISTRATION AND FAA JOINT OPERATING</td>
<td>2–20</td>
</tr>
<tr>
<td>PROCEDURES</td>
<td></td>
</tr>
<tr>
<td>2–1–40. DISPLAYING SPACE LAUNCH AND REENTRY AREAS ON THE SITUATION DISPLAY</td>
<td>2–20</td>
</tr>
<tr>
<td>2–1–41. DISPLAYING DEBRIS RESPONSE AREAS ON THE SITUATION DISPLAY</td>
<td>2–20</td>
</tr>
<tr>
<td>2–1–42. ACCESS TO FALCON REPLAY SYSTEM</td>
<td>2–20</td>
</tr>
</tbody>
</table>

Section 2. Responsibilities

<table>
<thead>
<tr>
<th>Paragraph</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2–2–1. LEGAL LIABILITIES OF PERSONNEL</td>
<td>2–21</td>
</tr>
<tr>
<td>2–2–2. JOB REQUIREMENTS</td>
<td>2–21</td>
</tr>
<tr>
<td>2–2–3. POSITION RESPONSIBILITY</td>
<td>2–21</td>
</tr>
<tr>
<td>2–2–4. DUTY FAMILIARIZATION AND THE TRANSFER OF POSITION RESPONSIBILITY</td>
<td>2–21</td>
</tr>
<tr>
<td>2–2–5. OPERATING INITIALS</td>
<td>2–23</td>
</tr>
<tr>
<td>2–2–6. SIGN IN/OUT AND ON/OFF PROCEDURES</td>
<td>2–23</td>
</tr>
<tr>
<td>2–2–7. CIRNOT HANDLING</td>
<td>2–24</td>
</tr>
<tr>
<td>2–2–8. GENOT HANDLING</td>
<td>2–24</td>
</tr>
<tr>
<td>2–2–9. PERSONNEL BRIEFINGS REGARDING AIR TRAFFIC BULLETIN ITEMS</td>
<td>2–25</td>
</tr>
<tr>
<td>2–2–10. LAW ENFORCEMENT INFORMATION</td>
<td>2–25</td>
</tr>
<tr>
<td>2–2–11. PERSONNEL BRIEFINGS REGARDING ORDERS, PUBLISHED</td>
<td>2–26</td>
</tr>
<tr>
<td>AERONAUTICAL DATA, AND FLIGHT PROCEDURES</td>
<td></td>
</tr>
<tr>
<td>2–2–12. SYSTEMS MANAGEMENT OF VSCS EQUIPMENT</td>
<td>2–26</td>
</tr>
<tr>
<td>2–2–13. REPORTING EQUIPMENT TROUBLE</td>
<td>2–26</td>
</tr>
</tbody>
</table>
Table of Contents

<table>
<thead>
<tr>
<th>Paragraph</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2–2–14. FACILITY DIRECTIVES REPOSITORY (FDR)</td>
<td>2–2–6</td>
</tr>
<tr>
<td>Section 3. Air Traffic Familiarization/Currency Requirements for En Route/Terminal/System Operations Facilities</td>
<td></td>
</tr>
<tr>
<td>2–3–1. GENERAL</td>
<td>2–3–1</td>
</tr>
<tr>
<td>2–3–2. APPLICATION</td>
<td>2–3–1</td>
</tr>
<tr>
<td>2–3–3. REQUIREMENTS</td>
<td>2–3–1</td>
</tr>
<tr>
<td>2–3–4. DIFFERENTIAL</td>
<td>2–3–3</td>
</tr>
<tr>
<td>2–3–5. TRACKING</td>
<td>2–3–3</td>
</tr>
<tr>
<td>Section 4. Hours of Duty</td>
<td></td>
</tr>
<tr>
<td>2–4–1. SERVICE HOURS</td>
<td>2–4–1</td>
</tr>
<tr>
<td>2–4–2. TIME STANDARDS</td>
<td>2–4–1</td>
</tr>
<tr>
<td>2–4–3. TIME CHECKS</td>
<td>2–4–1</td>
</tr>
<tr>
<td>2–4–4. STATUS OF SERVICE</td>
<td>2–4–1</td>
</tr>
<tr>
<td>Section 5. Watch Coverage–Flight Service Stations</td>
<td></td>
</tr>
<tr>
<td>2–5–1. BASIC WATCH SCHEDULES</td>
<td>2–5–1</td>
</tr>
<tr>
<td>2–5–2. DESIGNATING WATCH SUPERVISION COVERAGE</td>
<td>2–5–1</td>
</tr>
<tr>
<td>2–5–3. AREA SUPERVISION</td>
<td>2–5–1</td>
</tr>
<tr>
<td>2–5–4. RELIEF PERIODS</td>
<td>2–5–1</td>
</tr>
<tr>
<td>2–5–5. OVERTIME DUTY</td>
<td>2–5–2</td>
</tr>
<tr>
<td>2–5–6. HOLIDAY STAFFING</td>
<td>2–5–2</td>
</tr>
<tr>
<td>2–5–7. CONSOLIDATING POSITIONS</td>
<td>2–5–2</td>
</tr>
<tr>
<td>2–5–8. SUPERVISORS HOURS OF DUTY (ALASKA ONLY)</td>
<td>2–5–2</td>
</tr>
<tr>
<td>2–5–9. FACILITY COMPLEMENTS (ALASKA ONLY)</td>
<td>2–5–2</td>
</tr>
<tr>
<td>2–5–10. CONTROLLER–IN–CHARGE (CIC)/DESIGNATED LEAD SPECIALIST (DLS) TRAINING</td>
<td>2–5–2</td>
</tr>
<tr>
<td>Section 6. Watch Supervision–Terminal/En Route</td>
<td></td>
</tr>
<tr>
<td>2–6–1. WATCH SUPERVISION</td>
<td>2–6–1</td>
</tr>
<tr>
<td>2–6–2. WATCH SUPERVISION ASSIGNMENTS</td>
<td>2–6–1</td>
</tr>
<tr>
<td>2–6–3. CONTROLLER–IN–CHARGE (CIC) DESIGNATION</td>
<td>2–6–2</td>
</tr>
<tr>
<td>2–6–4. CONTROLLER–IN–CHARGE (CIC) SELECTION PROCESS</td>
<td>2–6–3</td>
</tr>
<tr>
<td>2–6–5. CONSOLIDATING POSITIONS</td>
<td>2–6–3</td>
</tr>
<tr>
<td>2–6–6. RELIEF PERIODS</td>
<td>2–6–3</td>
</tr>
<tr>
<td>2–6–7. BASIC WATCH SCHEDULE</td>
<td>2–6–4</td>
</tr>
<tr>
<td>2–6–8. OVERTIME DUTY</td>
<td>2–6–4</td>
</tr>
<tr>
<td>2–6–9. HOLIDAY STAFFING</td>
<td>2–6–4</td>
</tr>
<tr>
<td>2–6–10. ADMINISTRATIVE HOURS OF DUTY</td>
<td>2–6–4</td>
</tr>
<tr>
<td>2–6–11. FACILITY COMPLEMENTS</td>
<td>2–6–4</td>
</tr>
<tr>
<td>2–6–12. CONSOLIDATING TOWER/TRACON FUNCTIONS</td>
<td>2–6–5</td>
</tr>
<tr>
<td>2–6–13. SINGLE PERSON MIDNIGHT OPERATIONS</td>
<td>2–6–5</td>
</tr>
<tr>
<td>Section 7. Appearance and Security</td>
<td></td>
</tr>
<tr>
<td>2–7–1. PERSONNEL APPEARANCE</td>
<td>2–7–1</td>
</tr>
<tr>
<td>2–7–2. QUARTERS APPEARANCE</td>
<td>2–7–1</td>
</tr>
<tr>
<td>2–7–3. BULLETIN BOARDS</td>
<td>2–7–1</td>
</tr>
<tr>
<td>2–7–4. FOOD AND BEVERAGES</td>
<td>2–7–1</td>
</tr>
</tbody>
</table>
Paragraph | Page
---|---
2–7–5. FACILITY SECURITY | 2–7–1
2–7–6. SUSPICIOUS ACTIVITIES AROUND AIRPORTS OR FAA FACILITIES | 2–7–1
2–7–7. COOPERATION WITH LAW ENFORCEMENT AGENCIES | 2–7–1
2–7–8. FACILITY VISITORS | 2–7–2
2–7–9. SECURITY OF JOINT–USE RADAR DATA | 2–7–2

Section 8. Medical

2–8–1. GENERAL | 2–8–1
2–8–2. MEDICAL CLEARANCE REQUIREMENTS | 2–8–1
2–8–3. SPECIAL MEDICAL EVALUATIONS | 2–8–1
2–8–4. SPECIAL CONSIDERATION | 2–8–1
2–8–5. USE OF DRUGS AND SEDATIVES | 2–8–1
2–8–6. RESTRICTED DRUGS | 2–8–2
2–8–7. BLOOD DONORS | 2–8–2
2–8–8. USE OF ALCOHOL AND OTHER DRUGS | 2–8–2
2–8–9. MEDICAL STATUS DETERMINATIONS ON FG–2154s | 2–8–2

Section 9. Weather/Visibility

2–9–1. BACKUP/AUGMENTATION OF WEATHER OBSERVATIONS | 2–9–1
2–9–2. RECEIPT AND DISSEMINATION OF WEATHER OBSERVATIONS | 2–9–1
2–9–3. LIMITED AVIATION WEATHER REPORTING STATION (LAWRS) HOURS OF OPERATION | 2–9–1
2–9–4. NONNAVIGATION WEATHER SERVICE | 2–9–2
2–9–5. NATIONAL WEATHER RECORDS CENTER | 2–9–2
2–9–6. VISIBILITY CHARTS | 2–9–2
2–9–7. SITING CRITERIA FOR VISUAL WEATHER OBSERVATIONS | 2–9–2
2–9–8. RUNWAY VISUAL RANGE (RVR) EQUIPMENT | 2–9–2
2–9–9. SPECIFIC AREA MESSAGE ENCODING (SAME) WEATHER RADIOS | 2–9–3

Section 10. Wind/Altimeter Information

2–10–1. WIND INSTRUMENT SENSORS | 2–10–1
2–10–2. WIND INDICATOR CROSS CHECK | 2–10–1
2–10–3. ALTIMETER REQUIREMENTS | 2–10–1
2–10–4. COMPARISON CHECKS | 2–10–1
2–10–5. DELIVERY OF ALTIMETER SETTING TO ARTCC | 2–10–2
2–10–6. BROADCAST DENSITY ALTITUDE ADVISORY | 2–10–3

Chapter 3. Facility Equipment

Section 1. General

3–1–1. BASIC EQUIPMENT | 3–1–1
3–1–2. PERIODIC MAINTENANCE | 3–1–1
3–1–3. NATIONAL AIRSPACE SYSTEM (NAS) CHANGES | 3–1–1
3–1–4. TRAFFIC LIGHTS, GATES, AND SIGNALS | 3–1–2
3–1–5. CLEANING INSTRUMENT COVERS | 3–1–2
3–1–6. ENGINE GENERATOR TRANSFER PROCEDURES FOR ANTICIPATED POWER FAILURE | 3–1–2

Section 2. Use of Communications

3–2–1. RESPONSIBILITY | 3–2–1
Section 3. Communications Procedures

3-3-1. SERVICE “F” COMMUNICATIONS .. 3-3-1
3-3-2. TELEPHONE COMMUNICATIONS 3-3-1
3-3-3. MONITORING FREQUENCIES .. 3-3-1
3-3-4. EMERGENCY FREQUENCIES 121.5 AND 243.0 MHz 3-3-1
3-3-5. BATTERY-POWERED TRANSCEIVERS 3-3-2
3-3-6. FACILITY STATUS REPORT ... 3-3-2
3-3-7. TESTING EMERGENCY LOCATOR TRANSMITTERS 3-3-2
3-3-8. VSCS FREQUENCY BACKUP .. 3-3-3
3-3-9. VSCS RECONFIGURATIONS .. 3-3-3
3-3-10. VTABS (VSCS TRAINING AND BACKUP SYSTEM) 3-3-3
3-3-11. HEADSET TONE INCIDENTS 3-3-3
3-3-12. USE OF CORDLESS HEADSETS IN OPERATIONAL AREAS 3-3-4

Section 4. Recorders

3-4-1. USE OF RECORDER .. 3-4-1
3-4-2. ASSIGNMENT OF RECORDER CHANNELS 3-4-1
3-4-3. CHECKING AND CHANGING RECORDING EQUIPMENT 3-4-2
3-4-4. HANDLING RECORDER TAPES, DATs, OR DALR STORAGE 3-4-2
3-4-5. VSCS DATA RETENTION .. 3-4-3

Section 5. Navigational Aids

3-5-1. NAVAID MONITORING .. 3-5-1
3-5-2. SYSTEM COMPONENT MALFUNCTIONS 3-5-2
3-5-3. PROCESSING GPS ANOMALY REPORTS 3-5-2
3-5-4. ORIGINATING NOTAMs CONCERNING NAVAIDs 3-5-2

Section 6. Surveillance Source Use

3-6-1. COMMISSIONING RADAR FACILITIES 3-6-1
3-6-2. ATC SURVEILLANCE SOURCE USE 3-6-2
3-6-3. MONITORING OF MODE 3/A RADAR BEACON CODES 3-6-2
3-6-4. RADAR TARGET SIZING ... 3-6-2
3-6-5. TERMINAL DIGITAL RADAR SYSTEM AND DISPLAY SETTINGS .. 3-6-3
3-6-6. PREARRANGED COORDINATION 3-6-3
3-6-7. OPERATIONAL GUIDANCE FOR FUSION 3-6-4

Section 7. Video Maps

3-7-1. TOLERANCE FOR RADAR FIX ACCURACY 3-7-1
3-7-2. RADAR MAPPING STANDARDS 3-7-1
3-7-3. DISPLAY MAP DATA .. 3-7-1
3-7-4. INTENSITY .. 3-7-2
3-7-5. COMMON REFERENCE POINTS 3-7-2

Section 8. Other Displays

3-8-1. MINIMUM VECTORING ALTITUDE CHARTS (MVAC) FOR FACILITIES PROVIDING TERMINAL APPROACH CONTROL SERVICES 3-8-1
Section 9. Color Displays—Terminal

3–9–1. COLOR USE ON ATC DISPLAYS ... 3–9–1

Chapter 4. Correspondence, Conferences, Records, and Reports

Section 1. General

4–1–1. CORRESPONDENCE STANDARDS .. 4–1–1
4–1–2. SIGNATURE .. 4–1–1
4–1–3. SERVICE AREA REVIEW ... 4–1–1
4–1–4. CORRESPONDENCE REGARDING POLICY/PROCEDURES 4–1–1
4–1–5. IRREGULAR OPERATION ... 4–1–1
4–1–6. PRELIMINARY ENVIRONMENTAL REVIEW 4–1–1

Section 2. User Coordination/Conferences/Publicity

4–2–1. LOCAL CONFERENCES ... 4–2–1
4–2–2. PILOT/CONTROLLER OUTREACH: OPERATION RAIN CHECK 4–2–1
4–2–3. PUBLISHED ITEMS .. 4–2–2
4–2–4. COORDINATION OF ATC PROCEDURES 4–2–2

Section 3. Letters of Agreement (LOA)

4–3–1. LETTERS OF AGREEMENT ... 4–3–1
4–3–2. APPROPRIATE SUBJECTS .. 4–3–2
4–3–3. DEVELOPING LOA ... 4–3–3
4–3–4. REVIEW BY SERVICE AREA OFFICE 4–3–4
4–3–5. APPROVAL .. 4–3–4
4–3–6. COMMERCIAL SPACE LOAs ... 4–3–4
4–3–8. CANCELLATION ... 4–3–5
4–3–9. AUTOMATED INFORMATION TRANSFER (AIT) 4–3–7

Section 4. Application

4–4–1. OPERATIONS UNDER EXEMPTIONS FROM SECTION 3 OF APPENDIX D TO PART 91 SURFACE AREAS OF CLASS B AND CLASS C AIRSPACE WITHIN WHICH SPECIAL VFR WEATHER MINIMUMS ARE NOT AUTHORIZED FOR FIXED–WING AIRCRAFT ... 4–4–1
4–4–2. USE OF AIRCRAFT CALL SIGNS 4–4–1
4–4–3. RUNWAY SUPERVISORY UNITS (RSU) 4–4–1

Section 5. Other Correspondence

4–5–1. LETTERS OF PROCEDURES ... 4–5–1
4–5–2. LETTERS TO AIRMEN .. 4–5–1
4–5–3. DISPOSITION OF VOLCANIC ACTIVITY REPORTING (VAR) FORMS . 4–5–2
Section 6. Records

<table>
<thead>
<tr>
<th>Paragraph</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4–6–1. FACILITY RECORDS MANAGEMENT</td>
<td>4–6–1</td>
</tr>
<tr>
<td>4–6–2. COLLECTION OF OPERATIONAL DATA</td>
<td>4–6–1</td>
</tr>
<tr>
<td>4–6–3. FORMS PREPARATION</td>
<td>4–6–1</td>
</tr>
<tr>
<td>4–6–4. FAA FORM 7230–4, DAILY RECORD OF FACILITY OPERATION</td>
<td>4–6–1</td>
</tr>
<tr>
<td>4–6–5. PREPARATION OF FAA FORM 7230–4</td>
<td>4–6–1</td>
</tr>
<tr>
<td>4–6–6. FAA FORM 7230–10, POSITION LOG</td>
<td>4–6–3</td>
</tr>
<tr>
<td>4–6–7. AUTOMATED POSITION SIGN ON/OFF</td>
<td>4–6–5</td>
</tr>
<tr>
<td>4–6–8. TIME AND ATTENDANCE (T&A) RECORDING</td>
<td>4–6–5</td>
</tr>
</tbody>
</table>

Section 7. Reports

<table>
<thead>
<tr>
<th>Paragraph</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4–7–1. MONTHLY REPORTS</td>
<td>4–7–1</td>
</tr>
<tr>
<td>4–7–2. DELAY REPORTING</td>
<td>4–7–1</td>
</tr>
<tr>
<td>4–7–3. SYSTEM IMPACT REPORTS</td>
<td>4–7–1</td>
</tr>
<tr>
<td>4–7–4. UNIDENTIFIED FLYING OBJECT (UFO) REPORTS</td>
<td>4–7–1</td>
</tr>
</tbody>
</table>

Section 8. Freedom of Information Act (FOIA)

<table>
<thead>
<tr>
<th>Paragraph</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4–8–1. ACCIDENT/INCIDENT RECORDINGS</td>
<td>4–8–1</td>
</tr>
<tr>
<td>4–8–2. RADAR AND/OR COMPUTER DATA</td>
<td>4–8–1</td>
</tr>
<tr>
<td>4–8–3. FEES</td>
<td>4–8–1</td>
</tr>
</tbody>
</table>

Chapter 5. Special Flight Handling

Section 1. Presidential Aircraft

<table>
<thead>
<tr>
<th>Paragraph</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5–1–1. ADVANCE COORDINATION</td>
<td>5–1–1</td>
</tr>
<tr>
<td>5–1–2. THE PRESIDENT, VICE PRESIDENT, AND EXECUTIVE AIRCRAFT MONITORING</td>
<td>5–1–2</td>
</tr>
<tr>
<td>5–1–3. USE OF FAA COMMUNICATIONS CIRCUITS</td>
<td>5–1–3</td>
</tr>
<tr>
<td>5–1–4. SECURITY OF INFORMATION</td>
<td>5–1–3</td>
</tr>
<tr>
<td>5–1–5. MOVEMENT INFORMATION</td>
<td>5–1–3</td>
</tr>
<tr>
<td>5–1–6. COORDINATION</td>
<td>5–1–3</td>
</tr>
<tr>
<td>5–1–7. RESCUE SUPPORT AIRCRAFT</td>
<td>5–1–3</td>
</tr>
</tbody>
</table>

Section 2. FAA Aircraft

<table>
<thead>
<tr>
<th>Paragraph</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5–2–1. IDENTIFYING DEPARTMENT OF TRANSPORTATION (DOT) AND FAA FLIGHTS</td>
<td>5–2–1</td>
</tr>
<tr>
<td>5–2–2. FLIGHT INSPECTION AIRCRAFT</td>
<td>5–2–1</td>
</tr>
<tr>
<td>5–2–3. HIGH ALTITUDE INSPECTIONS</td>
<td>5–2–1</td>
</tr>
<tr>
<td>5–2–4. RESEARCH AND DEVELOPMENT FLIGHTS</td>
<td>5–2–1</td>
</tr>
</tbody>
</table>

Section 3. DOE and Other Aircraft

<table>
<thead>
<tr>
<th>Paragraph</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5–3–1. DEPARTMENT OF ENERGY (DOE) FLIGHTS</td>
<td>5–3–1</td>
</tr>
<tr>
<td>5–3–2. AERIAL SAMPLING/SURVEYING FOR NUCLEAR CONTAMINATION</td>
<td>5–3–1</td>
</tr>
<tr>
<td>5–3–3. DUE REGARD OPERATIONS</td>
<td>5–3–1</td>
</tr>
<tr>
<td>5–3–4. WEATHER RECONNAISSANCE FLIGHTS</td>
<td>5–3–1</td>
</tr>
<tr>
<td>5–3–5. OPEN SKIES TREATY AIRCRAFT PRIORITY FLIGHTS (F and D)</td>
<td>5–3–3</td>
</tr>
<tr>
<td>5–3–6. FOREIGN STATE DIPLOMATIC FLIGHTS</td>
<td>5–3–4</td>
</tr>
</tbody>
</table>

Section 4. Other Flight Requests

<table>
<thead>
<tr>
<th>Paragraph</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5–4–1. REQUESTS FOR DEVIATION FROM TRANSPONDER REQUIREMENTS</td>
<td>5–4–1</td>
</tr>
</tbody>
</table>
Paragraph | Page
--- | ---
5-4-2. REQUESTS FOR DEVIATION FROM ADS–B OUT REQUIREMENTS | 5-4-2
5-4-3. CROP DUSTER/ANTIQUE AIRCRAFT | 5-4-3
5-4-4. FLIGHT TEST OPERATIONS | 5-4-4
5-4-5. SANCTIONED SPEED RECORDS | 5-4-4
5-4-6. CERTIFYING RECORD ATTEMPTS | 5-4-4
5-4-7. PHOTOGRAMMETRIC FLIGHTS | 5-4-4
5-4-8. AEROBATIC PRACTICE AREAS | 5-4-5
5-4-9. ADS–B OUT OFF OPERATIONS | 5-4-5
5-4-10. AIRCRAFT CALL SIGNS USED FOR SENSITIVE GOVERNMENT FLIGHTS | 5-4-5

Section 5. 14 CFR Part 91, UAS Operations

5-5-1. TYPES AND AUTHORITY | 5-5-1
5-5-2. OPERATIONS | 5-5-1
5-5-3. RESPONSIBILITIES | 5-5-1
5-5-4. OPERATIONS IN CLASS A AIRSPACE | 5-5-2
5-5-5. OPERATIONS IN TERMINAL RADAR SERVICE AREA (TRSA) | 5-5-2
5-5-6. OPERATIONS IN CLASS B AIRSPACE | 5-5-2
5-5-7. OPERATIONS IN CLASS C AIRSPACE | 5-5-2
5-5-8. OPERATIONS IN CLASS D AIRSPACE | 5-5-2
5-5-9. OPERATIONS IN CLASS E AIRSPACE | 5-5-2
5-5-10. OPERATIONS IN CLASS G AIRSPACE | 5-5-2
5-5-11. LETTERS OF AGREEMENT (LOA)/MEMORANDUMS | 5-5-2

Part 2. AIR ROUTE TRAFFIC CONTROL CENTERS

Chapter 6. En Route Operations and Services

Section 1. General

6-1-1. AREAS OF OPERATION | 6-1-1
6-1-2. SECTORS | 6-1-1
6-1-3. SECTOR CONFIGURATION | 6-1-1
6-1-4. AREAS OF SPECIALIZATION | 6-1-1
6-1-5. OPERATING POSITION DESIGNATORS | 6-1-1
6-1-6. FLIGHT PROGRESS STRIP USAGE | 6-1-2
6-1-7. DISPLAY OF TIME-BASED FLOW MANAGEMENT (TBFM) INFORMATION | 6-1-2

Section 2. Sector Information Binders

6-2-1. EN ROUTE OR OCEANIC CONTROLLER TEAM CONCEPT | 6-2-1
6-2-2. EN ROUTE SECTOR INFORMATION BINDER | 6-2-1

Section 3. Operations

6-3-1. HANDLING OF SIGMETs, CWAs, AND PIREPs | 6-3-1
6-3-2. RECEIPT OF NOTAM DATA | 6-3-1
6-3-3. REVIEW AIRSPACE STRUCTURE | 6-3-1
6-3-4. FLIGHT DATA UNIT | 6-3-2
6-3-5. CHANGES TO MTR AND MOA PUBLISHED ACTIVITY SCHEDULES | 6-3-3

Section 4. Services

6-4-1. ADVANCE APPROACH INFORMATION | 6-4-1
Table of Contents

<table>
<thead>
<tr>
<th>Paragraph</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6-4-2. MINIMUM IFR ALTITUDES (MIA)</td>
<td>6-4-1</td>
</tr>
<tr>
<td>6-4-3. SPECIAL USE FREQUENCIES</td>
<td>6-4-1</td>
</tr>
<tr>
<td>6-4-4. PRACTICE INSTRUMENT APPROACHES</td>
<td>6-4-1</td>
</tr>
<tr>
<td>6-5-1. CRITERIA</td>
<td>6-5-1</td>
</tr>
<tr>
<td>6-5-2. IMPLEMENTATION AND COORDINATION</td>
<td>6-5-2</td>
</tr>
<tr>
<td>6-5-3. PREPARATION AND MAINTENANCE OF BULK STORE FILE</td>
<td>6-5-2</td>
</tr>
<tr>
<td>6-5-4. REMARKS DATA</td>
<td>6-5-2</td>
</tr>
<tr>
<td>6-6-1. GENERAL</td>
<td>6-6-1</td>
</tr>
<tr>
<td>6-6-2. FACILITY RESPONSIBILITIES</td>
<td>6-6-1</td>
</tr>
<tr>
<td>6-6-3. CRITERIA FOR PARTICIPATION</td>
<td>6-6-1</td>
</tr>
<tr>
<td>6-6-4. FORMAT CONVENTIONS</td>
<td>6-6-1</td>
</tr>
<tr>
<td>6-6-5. MESSAGE CONTENT</td>
<td>6-6-1</td>
</tr>
<tr>
<td>6-7-1. GENERAL</td>
<td>6-7-1</td>
</tr>
<tr>
<td>6-7-2. OPERATIONS SUPERVISOR–IN–CHARGE RESPONSIBILITIES</td>
<td>6-7-1</td>
</tr>
<tr>
<td>6-7-3. OPERATIONS MANAGER–IN–CHARGE RESPONSIBILITIES</td>
<td>6-7-1</td>
</tr>
<tr>
<td>6-7-4. FACILITY MANAGER RESPONSIBILITIES</td>
<td>6-7-1</td>
</tr>
<tr>
<td>6-7-5. EDST AIRSPACE CONFIGURATION ELEMENTS</td>
<td>6-7-2</td>
</tr>
<tr>
<td>6-7-6. STANDARD USE OF AUTOMATED FLIGHT DATA MANAGEMENT</td>
<td>6-7-2</td>
</tr>
<tr>
<td>6-7-7. EDST OUTAGES</td>
<td>6-7-2</td>
</tr>
<tr>
<td>6-7-8. RESTRICTIONS INVENTORY AND EVALUATION</td>
<td>6-7-3</td>
</tr>
<tr>
<td>6-7-9. TRAFFIC COUNTS AND DELAY REPORTING</td>
<td>6-7-3</td>
</tr>
<tr>
<td>6-7-10. COMPUTER DATA RETENTION</td>
<td>6-7-3</td>
</tr>
<tr>
<td>6-7-11. WAIVER TO INTERIM ALTITUDE REQUIREMENTS</td>
<td>6-7-3</td>
</tr>
<tr>
<td>6-7-12. TRANSFER OF POSITION RESPONSIBILITY</td>
<td>6-7-4</td>
</tr>
<tr>
<td>6-8-1. GENERAL</td>
<td>6-8-1</td>
</tr>
<tr>
<td>6-8-2. OPERATIONAL SUPERVISOR–IN–CHARGE RESPONSIBILITIES</td>
<td>6-8-1</td>
</tr>
<tr>
<td>6-8-3. ERROR REPAIR POSITION RESPONSIBILITIES</td>
<td>6-8-1</td>
</tr>
<tr>
<td>6-8-4. FACILITY MANAGER RESPONSIBILITIES</td>
<td>6-8-1</td>
</tr>
<tr>
<td>6-8-5. TRANSFER OF POSITION</td>
<td>6-8-2</td>
</tr>
<tr>
<td>6-8-6. ATOP CHANNEL CHAGEOVERS</td>
<td>6-8-2</td>
</tr>
<tr>
<td>6-8-7. OUTAGES</td>
<td>6-8-2</td>
</tr>
<tr>
<td>6-8-8. CONTROLLER PILOT DATA LINK COMMUNICATIONS</td>
<td>6-8-2</td>
</tr>
<tr>
<td>6-9-1. GENERAL</td>
<td>6-9-1</td>
</tr>
<tr>
<td>6-9-2. FACILITY MANAGER RESPONSIBILITIES</td>
<td>6-9-1</td>
</tr>
<tr>
<td>6-9-3. OPERATIONS MANAGER–IN–CHARGE RESPONSIBILITIES</td>
<td>6-9-1</td>
</tr>
<tr>
<td>6-9-5. NON–RVSM REQUIREMENTS</td>
<td>6-9-2</td>
</tr>
<tr>
<td>6-9-6. EQUIPMENT SUFFIX AND DISPLAY MANAGEMENT</td>
<td>6-9-2</td>
</tr>
</tbody>
</table>
Section 10. En Route Information Display System (ERIDS)

6–10–1. GENERAL .. 6–10–1
6–10–2. REQUIREMENTS ... 6–10–1

Chapter 7. En Route Data

Section 1. Performance Checks

7–1–1. RADAR PERFORMANCE CHECKS 7–1–1
7–1–2. SPECIAL RADAR ACCURACY CHECKS 7–1–1

Section 2. Deficiencies

7–2–1. DEFICIENCIES IN SYSTEM 7–2–1
7–2–2. AMPLITRON OR PARAMETRIC AMPLIFIER FAILURE 7–2–1
7–2–3. ELECTRONIC ATTACK (EA) .. 7–2–1

Chapter 8. NAS En Route Automation

Section 1. General

8–1–1. TRANSITION PROCEDURES 8–1–1
8–1–2. ALTRV FLIGHT DATA PROCESSING 8–1–1
8–1–3. COMPUTER DATA RETENTION 8–1–2
8–1–4. FLIGHT PLAN DROP INTERVAL 8–1–2

Section 2. Procedures

8–2–1. THREE MILE OPERATIONS 8–2–1
8–2–2. ADAPTED ALTIMETER SETTINGS 8–2–1
8–2–3. ADAPTATION OF EXTERNAL ALTIMETER SETTINGS 8–2–1
8–2–4. CONFLICT ALERT FUNCTION PARAMETERS 8–2–1
8–2–5. MODE C INTRUDER (MCI) ALERT PARAMETERS 8–2–1
8–2–6. E–MSAW ADAPTATION ... 8–2–2
8–2–7. INTERIM ALTITUDE FACILITY DIRECTIVE REQUIREMENTS 8–2–2
8–2–8. REQUIREMENTS FOR ERAM DATA BLOCK CHANGES WITHOUT COORDINATION ... 8–2–2
8–2–9. ERAM HOLD INFORMATION FACILITY DIRECTIVE REQUIREMENTS 8–2–2
8–2–10. ERAM SPECIAL ACTIVITY AIRSPACE (SAA) ADAPTATION 8–2–2
8–2–11. ERAM HOLDING PATTERN ADAPTATION 8–2–2
8–2–12. ERAM MASTER TOOLBAR MAP BUTTON LABEL 8–2–3
8–2–13. LOCAL INTERIM ALTITUDE 8–2–3

Section 3. Displays

8–3–1. DIGITAL MAP VERIFICATION 8–3–1
8–3–2. DATA DISPLAY FOR BLOCK ALTITUDE FLIGHTS 8–3–1
8–3–3. SELECTED ALTITUDE LIMITS 8–3–1
Chapter 9. Facility Statistical Data, Reports, and Forms

Section 1. Operational Count Data

- 9–1–1. IFR AIRCRAFT HANDLED .. 9–1–1
- 9–1–2. CATEGORIES OF OPERATIONS 9–1–1
- 9–1–3. CRITERIA FOR IFR AIRCRAFT HANDLED COUNT 9–1–1
- 9–1–4. MILITARY AIRCRAFT MOVEMENTS 9–1–2
- 9–1–5. USE OF AUTOMATED COUNTS 9–1–3
- 9–1–6. FAA FORM 7230–14, ARTCC OPERATIONS DAILY SUMMARY 9–1–3
- 9–1–7. INSTRUCTIONS FOR COMPLETING FAA FORM 7230–14 9–1–3
- 9–1–8. DISTRIBUTION AND AMENDMENT 9–1–4

Section 2. Instrument Approach Data

- 9–2–1. GENERAL ... 9–2–1
- 9–2–2. INSTRUMENT APPROACHES 9–2–1
- 9–2–3. AIRPORTS REPORTED .. 9–2–1
- 9–2–4. FAA FORM 7230–16, APPROACH DATA WORKSHEET 9–2–1
- 9–2–5. FAA FORM 7230–12, INSTRUMENT APPROACHES MONTHLY SUMMARY 9–2–1
- 9–2–6. DISTRIBUTION AND AMENDMENT 9–2–2
- 9–2–7. FORWARD COPY TO ADJACENT SERVICE AREA 9–2–2

Section 3. Other Reports and Forms

- 9–3–1. FAA FORM 7210–8, ELT INCIDENT 9–3–1

Part 3. TERMINAL AIR TRAFFIC CONTROL FACILITIES

Chapter 10. Terminal Operations, Services, and Equipment

Section 1. General

- 10–1–1. OPERATING POSITION DESIGNATORS 10–1–1
- 10–1–2. TOWER/RADAR TEAM CONCEPTS 10–1–1
- 10–1–3. MILITARY ATC BOARDS 10–1–1
- 10–1–4. SECTIONAL AERONAUTICAL AND TERMINAL AREA CHARTS 10–1–1
- 10–1–5. AREAS OF NONVISIBILITY 10–1–2
- 10–1–6. SELECTING ACTIVE RUNWAYS 10–1–2
- 10–1–7. USE OF ACTIVE RUNWAYS 10–1–2
- 10–1–8. PROCEDURES FOR OPENING AND CLOSING RUNWAYS 10–1–4
- 10–1–9. FLIGHT PROGRESS STRIP USAGE 10–1–4
- 10–1–10. LOW VISIBILITY OPERATIONS 10–1–5
- 10–1–11. MOBILE CONTROL TOWERS 10–1–5
- 10–1–12. PARTICIPATION IN LOCAL AIRPORT DEICING PLAN (LADP) 10–1–5
- 10–1–13. PRECISION OBSTACLE FREE ZONE (POFZ) 10–1–7

Section 2. Position Binders

- 10–2–1. POSITION DUTIES AND RESPONSIBILITIES 10–2–1

Table of Contents xi
Table of Contents

<table>
<thead>
<tr>
<th>Paragraph</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10–2–2. TOWER/RADAR TEAM POSITION BINDERS</td>
<td>10–2–1</td>
</tr>
<tr>
<td>Section 3. Operations</td>
<td></td>
</tr>
<tr>
<td>10–3–1. DISSEMINATION OF WEATHER INFORMATION</td>
<td>10–3–1</td>
</tr>
<tr>
<td>10–3–2. WIND INSTRUMENTS AT APPROACH CONTROL FACILITIES</td>
<td>10–3–1</td>
</tr>
<tr>
<td>10–3–3. LOW LEVEL WIND SHEAR/MICROBURST DETECTION SYSTEMS</td>
<td>10–3–1</td>
</tr>
<tr>
<td>10–3–4. RELAY OF RVR VALUES</td>
<td>10–3–2</td>
</tr>
<tr>
<td>10–3–5. ADVANCE APPROACH INFORMATION</td>
<td>10–3–2</td>
</tr>
<tr>
<td>10–3–6. ILS HEIGHT/DISTANCE LIMITATIONS</td>
<td>10–3–2</td>
</tr>
<tr>
<td>10–3–7. LAND AND HOLD SHORT OPERATIONS (LAHSO)</td>
<td>10–3–2</td>
</tr>
<tr>
<td>10–3–8. LINE UP AND WAIT (LUAW) OPERATIONS</td>
<td>10–3–3</td>
</tr>
<tr>
<td>10–3–9. VISUAL SEPARATION</td>
<td>10–3–4</td>
</tr>
<tr>
<td>10–3–11. MULTIPLE RUNWAY CROSSINGS</td>
<td>10–3–5</td>
</tr>
<tr>
<td>10–3–12. AIRPORT CONSTRUCTION</td>
<td>10–3–5</td>
</tr>
<tr>
<td>10–3–13. CHANGE IN RUNWAY LENGTH DUE TO CONSTRUCTION</td>
<td>10–3–6</td>
</tr>
<tr>
<td>10–3–14. APPROACHES TO PARALLEL RUNWAYS</td>
<td>10–3–6</td>
</tr>
<tr>
<td>Section 4. Services</td>
<td></td>
</tr>
<tr>
<td>10–4–1. AUTOMATIC TERMINAL INFORMATION SERVICE (ATIS)</td>
<td>10–4–1</td>
</tr>
<tr>
<td>10–4–2. PRETAXI CLEARANCE PROCEDURES</td>
<td>10–4–2</td>
</tr>
<tr>
<td>10–4–3. GATE HOLD PROCEDURES</td>
<td>10–4–2</td>
</tr>
<tr>
<td>10–4–4. ADVISORY SERVICE TO ARRIVING VFR FLIGHTS</td>
<td>10–4–2</td>
</tr>
<tr>
<td>10–4–5. PRACTICE INSTRUMENT APPROACHES</td>
<td>10–4–3</td>
</tr>
<tr>
<td>10–4–6. SIMULTANEOUS INDEPENDENT APPROACHES</td>
<td>10–4–3</td>
</tr>
<tr>
<td>10–4–8. SIMULTANEOUS CONVERGING INSTRUMENT APPROACHES</td>
<td>10–4–6</td>
</tr>
<tr>
<td>10–4–9. SIMULTANEOUS OFFSET INSTRUMENT APPROACHES</td>
<td>10–4–7</td>
</tr>
<tr>
<td>10–4–10. REDUCED SEPARATION ON FINAL</td>
<td>10–4–8</td>
</tr>
<tr>
<td>10–4–11. MINIMUM IFR ALTITUDES (MIA)</td>
<td>10–4–9</td>
</tr>
<tr>
<td>Section 5. Terminal Radar</td>
<td></td>
</tr>
<tr>
<td>10–5–1. SHUTDOWN OF PAR ANTENNAS</td>
<td>10–5–1</td>
</tr>
<tr>
<td>10–5–2. RADAR DISPLAY INDICATORS</td>
<td>10–5–1</td>
</tr>
<tr>
<td>10–5–3. FUNCTIONAL USE OF CERTIFIED TOWER RADAR DISPLAYS</td>
<td>10–5–1</td>
</tr>
<tr>
<td>10–5–4. ASR PERFORMANCE CHECKS</td>
<td>10–5–2</td>
</tr>
<tr>
<td>10–5–5. DEFICIENCIES IN SYSTEM</td>
<td>10–5–2</td>
</tr>
<tr>
<td>10–5–6. RADAR TOLERANCES</td>
<td>10–5–3</td>
</tr>
<tr>
<td>10–5–7. RECOMMENDED ALTITUDES FOR SURVEILLANCE APPROACHES</td>
<td>10–5–3</td>
</tr>
<tr>
<td>10–5–8. ASDE PERFORMANCE CHECKS</td>
<td>10–5–3</td>
</tr>
<tr>
<td>Section 6. Airport Lighting</td>
<td></td>
</tr>
<tr>
<td>10–6–1. GENERAL</td>
<td>10–6–1</td>
</tr>
<tr>
<td>10–6–2. OPERATION OF LIGHTS WHEN TOWER IS CLOSED</td>
<td>10–6–1</td>
</tr>
<tr>
<td>10–6–3. INCOMPATIBLE LIGHT SYSTEM OPERATION</td>
<td>10–6–1</td>
</tr>
<tr>
<td>10–6–4. APPROACH LIGHT SYSTEMS</td>
<td>10–6–2</td>
</tr>
<tr>
<td>10–6–5. VISUAL APPROACH SLOPE INDICATOR (VASI) SYSTEMS</td>
<td>10–6–3</td>
</tr>
</tbody>
</table>
Section 7. Airport Arrival Rate (AAR)

10–7–1. PURPOSE .. 10–7–1
10–7–2. POLICY .. 10–7–1
10–7–3. DEFINITIONS ... 10–7–1
10–7–4. RESPONSIBILITIES ... 10–7–1
10–7–5. CALCULATING AARs ... 10–7–1
10–7–6. OPERATIONAL AARs .. 10–7–2

Chapter 11. FAA Contract Tower Operation and Administration

Section 1. Organizational Responsibilities

11–1–1. ATO LEVEL OF SUPPORT .. 11–1–1
11–1–2. FAA HEADQUARTERS ... 11–1–1
11–1–3. ATO SERVICE CENTERS ... 11–1–1
11–1–4. AJT DISTRICT OFFICES ... 11–1–1

Section 2. Operations and Staffing

11–2–1. REQUESTS FOR ADDITIONAL SERVICES 11–2–1
11–2–2. FAA STAFFING FOR SPECIAL EVENTS 11–2–1
11–2–3. LETTERS OF AGREEMENT (LOA) 11–2–1
11–2–4. EMERGENCY AND CONTINGENCY SITUATIONS 11–2–1
11–2–5. FACILITY DIRECTIVES REPOSITORY (FDR) 11–2–1
11–2–6. FCT AIR TRAFFIC CONTROLLER ELIGIBILITY 11–2–1

Section 3. Training

11–3–1. TESTING AND CERTIFICATION 11–3–1
11–3–2. BRIEFING/TRAINING ITEMS ... 11–3–1

Section 4. Documents, Forms, and Charts

11–4–1. OPERATIONAL DIRECTIVES ... 11–4–1
11–4–2. PROVISION OF INFORMATION AND DATA 11–4–1
11–4–3. FORMS AND CHARTS .. 11–4–1
11–4–4. TRAINING MATERIAL .. 11–4–1

Section 5. Operational Documents, Directives, and Regulations

11–5–1. FAA DOCUMENTS, DIRECTIVES, AND REGULATIONS 11–5–1

Chapter 12. National Programs

Section 1. Terminal VFR Radar Services

12–1–1. PROGRAM INTENT .. 12–1–1
Paragraph Page

<table>
<thead>
<tr>
<th>Paragraph</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12–1–2. IMPLEMENTATION</td>
<td>12–1–1</td>
</tr>
<tr>
<td>12–1–3. TRSA</td>
<td>12–1–2</td>
</tr>
<tr>
<td>12–1–4. CLASS C AIRSPACE</td>
<td>12–1–2</td>
</tr>
<tr>
<td>12–1–5. CLASS B AIRSPACE</td>
<td>12–1–3</td>
</tr>
</tbody>
</table>

Section 2. Data Recording and Retention

<table>
<thead>
<tr>
<th>Paragraph</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12–2–1. DATA RECORDING</td>
<td>12–2–1</td>
</tr>
<tr>
<td>12–2–2. DATA RETENTION</td>
<td>12–2–1</td>
</tr>
<tr>
<td>12–2–3. FAULT LOG</td>
<td>12–2–2</td>
</tr>
</tbody>
</table>

Section 3. Charted VFR Flyway Planning Chart Program

<table>
<thead>
<tr>
<th>Paragraph</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12–3–1. DEFINITION</td>
<td>12–3–1</td>
</tr>
<tr>
<td>12–3–2. CRITERIA</td>
<td>12–3–1</td>
</tr>
<tr>
<td>12–3–3. RESPONSIBILITIES</td>
<td>12–3–1</td>
</tr>
</tbody>
</table>

Section 4. Helicopter Route Chart Program

<table>
<thead>
<tr>
<th>Paragraph</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12–4–1. POLICY</td>
<td>12–4–1</td>
</tr>
<tr>
<td>12–4–2. DEFINITION</td>
<td>12–4–1</td>
</tr>
<tr>
<td>12–4–3. CRITERIA</td>
<td>12–4–1</td>
</tr>
<tr>
<td>12–4–4. RESPONSIBILITIES</td>
<td>12–4–2</td>
</tr>
</tbody>
</table>

Section 5. Terminal Area VFR Route Program

<table>
<thead>
<tr>
<th>Paragraph</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12–5–1. POLICY</td>
<td>12–5–1</td>
</tr>
<tr>
<td>12–5–2. DEFINITION</td>
<td>12–5–1</td>
</tr>
<tr>
<td>12–5–3. CRITERIA</td>
<td>12–5–1</td>
</tr>
<tr>
<td>12–5–4. RESPONSIBILITIES</td>
<td>12–5–1</td>
</tr>
</tbody>
</table>

Section 6. Standard Terminal Automation Replacement System (STARS)

<table>
<thead>
<tr>
<th>Paragraph</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12–6–1. OPERATIONAL USE</td>
<td>12–6–1</td>
</tr>
<tr>
<td>12–6–2. DATA ENTRIES</td>
<td>12–6–1</td>
</tr>
<tr>
<td>12–6–3. DISPLAY DATA</td>
<td>12–6–1</td>
</tr>
<tr>
<td>12–6–4. USE OF STARS QUICK LOOK FUNCTIONS</td>
<td>12–6–1</td>
</tr>
<tr>
<td>12–6–5. AUTOMATION PROGRAM CHANGES</td>
<td>12–6–1</td>
</tr>
<tr>
<td>12–6–6. AUTOMATIC ACQUISITION/TERMINATION AREAS</td>
<td>12–6–2</td>
</tr>
<tr>
<td>12–6–7. MINIMUM SAFE ALTITUDE WARNING (MSAW) AND CONFLICT ALERT (CA)</td>
<td>12–6–2</td>
</tr>
<tr>
<td>12–6–8. MAGNETIC VARIATION AT STARS FACILITIES</td>
<td>12–6–3</td>
</tr>
<tr>
<td>12–6–9. MSAW GTM CARTOGRAPHIC CERTIFICATION, UPDATES, AND RECOMPILATION</td>
<td>12–6–3</td>
</tr>
<tr>
<td>12–6–10. DIGITAL MAP VERIFICATION</td>
<td>12–6–3</td>
</tr>
<tr>
<td>12–6–11. MODE C INTRUDER (MCI) ALERT PARAMETERS</td>
<td>12–6–3</td>
</tr>
<tr>
<td>12–6–12. OPERATIONAL MODE TRANSITION PROCEDURES</td>
<td>12–6–3</td>
</tr>
<tr>
<td>12–6–13. RADAR SELECTION PROCEDURES</td>
<td>12–6–4</td>
</tr>
<tr>
<td>12–6–14. MULTI-SENSOR RADAR OPERATIONS</td>
<td>12–6–4</td>
</tr>
</tbody>
</table>

Section 7. Safety Logic Systems Operations Supervisor/CIC Procedures

<table>
<thead>
<tr>
<th>Paragraph</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12–7–1. ASDE SYSTEM OPERATION</td>
<td>12–7–1</td>
</tr>
</tbody>
</table>
Paragraphs and Pages

<table>
<thead>
<tr>
<th>Paragraph</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12–7–2. ENSURE STATUS</td>
<td>12–7–2</td>
</tr>
<tr>
<td>12–7–3. MONITOR ALERTS AND ENSURE CORRECTIVE ACTION</td>
<td>12–7–2</td>
</tr>
<tr>
<td>12–7–4. RAIN CONFIGURATION</td>
<td>12–7–2</td>
</tr>
<tr>
<td>12–7–5. LIMITED CONFIGURATION</td>
<td>12–7–2</td>
</tr>
<tr>
<td>12–7–6. WATCH CHECKLIST</td>
<td>12–7–3</td>
</tr>
</tbody>
</table>

Section 8. VFR Waypoint Chart Program

<table>
<thead>
<tr>
<th>Paragraph</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12–8–1. POLICY</td>
<td>12–8–1</td>
</tr>
<tr>
<td>12–8–2. DEFINITION</td>
<td>12–8–1</td>
</tr>
<tr>
<td>12–8–3. CRITERIA</td>
<td>12–8–1</td>
</tr>
<tr>
<td>12–8–4. RESPONSIBILITIES</td>
<td>12–8–1</td>
</tr>
</tbody>
</table>

Section 9. Low Altitude Authorization Notification Capability

<table>
<thead>
<tr>
<th>Paragraph</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12–9–1. PROGRAM DESCRIPTION</td>
<td>12–9–1</td>
</tr>
<tr>
<td>12–9–2. UAS FACILITY MAPS (UASFM)</td>
<td>12–9–1</td>
</tr>
<tr>
<td>12–9–3. SMALL UAS (sUAS) ATC AUTHORIZATIONS</td>
<td>12–9–1</td>
</tr>
<tr>
<td>12–9–4. FURTHER COORDINATION</td>
<td>12–9–1</td>
</tr>
<tr>
<td>12–9–5. FACILITY RESPONSIBILITIES</td>
<td>12–9–2</td>
</tr>
</tbody>
</table>

Section 10. UAS Facility Maps (UASFM)

<table>
<thead>
<tr>
<th>Paragraph</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12–10–1. POLICY</td>
<td>12–10–1</td>
</tr>
<tr>
<td>12–10–2. RESPONSIBILITY</td>
<td>12–10–1</td>
</tr>
<tr>
<td>12–10–3. ASSUMPTIONS</td>
<td>12–10–1</td>
</tr>
<tr>
<td>12–10–4. AUTHORIZATION MAP DESIGN PROCEDURES CLASS B/C/D AIRSPACE</td>
<td>12–10–1</td>
</tr>
<tr>
<td>12–10–5. PROCEDURES TO CHANGE UAS FACILITY MAP (UASFM) ALTITUDES</td>
<td>12–10–2</td>
</tr>
<tr>
<td>12–10–6. PART 107 OPERATION APPROVALS</td>
<td>12–10–2</td>
</tr>
</tbody>
</table>

Chapter 13. Facility Statistical Data, Reports, and Forms

Section 1. General Information

<table>
<thead>
<tr>
<th>Paragraph</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13–1–1. GENERAL</td>
<td>13–1–1</td>
</tr>
<tr>
<td>13–1–2. COUNTING METHODS</td>
<td>13–1–1</td>
</tr>
<tr>
<td>13–1–3. QUESTIONS OR CHANGES</td>
<td>13–1–1</td>
</tr>
<tr>
<td>13–1–4. SUMMARY OF STATISTICAL REPORTS AND FORMS</td>
<td>13–1–1</td>
</tr>
<tr>
<td>13–1–5. CATEGORIES OF OPERATIONS</td>
<td>13–1–2</td>
</tr>
</tbody>
</table>

Section 2. Itinerant Operations

<table>
<thead>
<tr>
<th>Paragraph</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13–2–1. TABULATION</td>
<td>13–2–1</td>
</tr>
</tbody>
</table>

Section 3. Local Operations

<table>
<thead>
<tr>
<th>Paragraph</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13–3–1. TABULATION</td>
<td>13–3–1</td>
</tr>
</tbody>
</table>

Section 4. Overflight Operations

<table>
<thead>
<tr>
<th>Paragraph</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13–4–1. TABULATION</td>
<td>13–4–1</td>
</tr>
</tbody>
</table>

Section 5. Amending and Reviewing Data

<table>
<thead>
<tr>
<th>Paragraph</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13–5–1. AMENDED OPSNET DATA</td>
<td>13–5–1</td>
</tr>
</tbody>
</table>
Part 4. FLIGHT SERVICE STATIONS

Chapter 14. Flight Service Operations and Services

Section 1. General

14–1–1. OPERATING POSITION DESIGNATORS .. 14–1–1
14–1–2. TEMPORARY FSS .. 14–1–1
14–1–3. FLIGHT PLAN AREA ... 14–1–1
14–1–4. ICSS INTRODUCTORY ANNOUNCEMENT 14–1–1

Section 2. Position/Service Information Binders

14–2–1. RESPONSIBILITY .. 14–2–1
14–2–2. BOUNDARIES ... 14–2–1
14–2–3. POSITIONS/SERVICES .. 14–2–1

Section 3. Operations

14–3–1. AIRPORT CONDITION FILE .. 14–3–1
14–3–2. LANDING AREA STATUS CHECKS .. 14–3–1
14–3–3. LIAISON VISITS ... 14–3–1
14–3–4. DUTIES ... 14–3–1
14–3–5. TIE–IN NOTAM RESPONSIBILITY .. 14–3–1

Section 4. Services

14–4–1. PREFILED FLIGHT PLANS .. 14–4–1
14–4–2. PRACTICE INSTRUMENT APPROACHES 14–4–1
14–4–3. OPERATION OF AIRPORT LIGHTS ... 14–4–1
14–4–4. RUNWAY EDGE LIGHTS ASSOCIATED WITH MEDIUM APPROACH LIGHT SYSTEM/RUNWAY ALIGNMENT INDICATOR LIGHTS .. 14–4–1
14–4–5. LOCAL AIRPORT ADVISORY (LAA)/REMOTE AIRPORT ADVISORY (RAA)/REMOTE AIRPORT INFORMATION SERVICE (RAIS) .. 14–4–1
14–4–6. AUTOMATIC FLIGHT INFORMATION SERVICE (AFIS) – ALASKA FSSs ONLY ... 14–4–2
14–4–7. TRANSMISSION OF MESSAGES FROM AIRPORT INSPECTORS ... 14–4–3

Chapter 15. Aviation Meteorological Services and Equipment

Section 1. General

15–1–1. FAA–NWS AGREEMENT .. 15–1–1
15–1–2. CERTIFICATES OF AUTHORITY ... 15–1–1
15–1–3. LIAISON WITH AVIATION INTERESTS 15–1–1
15–1–4. TELEPHONE LISTINGS ... 15–1–1
15–1–5. MINIMUM WEATHER EQUIPMENT ... 15–1–1
15–1–6. SUPPLY–SUPPORT ... 15–1–2

Section 2. Pilot Weather Briefing

15–2–1. BRIEFING RESPONSIBILITY ... 15–2–1
Table of Contents

<table>
<thead>
<tr>
<th>Paragraph</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>15–2–2. WEATHER CHART DISPLAY</td>
<td>15–2–1</td>
</tr>
<tr>
<td>15–2–3. TELEVISION EQUIPMENT</td>
<td>15–2–1</td>
</tr>
<tr>
<td>15–2–4. FLIGHT PLANNING DISPLAY</td>
<td>15–2–1</td>
</tr>
<tr>
<td>15–2–5. FLIGHT PLANNING FORMS</td>
<td>15–2–1</td>
</tr>
<tr>
<td>15–2–6. MILITARY TRAINING ACTIVITY</td>
<td>15–2–1</td>
</tr>
<tr>
<td>15–2–7. TRANSFER OF BRIEFERS</td>
<td>15–2–1</td>
</tr>
</tbody>
</table>

Section 3. Broadcasts

| 15–3–1. STATION BROADCASTS | 15–3–1 |
| 15–3–2. COMMERCIAL BROADCAST STATIONS | 15–3–1 |

Chapter 16. Equipment

Section 1. General

16–1–1. RESPONSIBILITY	16–1–1
16–1–2. AIRCRAFT ORIENTATION PLOTTING BOARD	16–1–1
16–1–3. ORDERING OVERLAYS	16–1–1
16–1–4. LEASED EQUIPMENT SUPPLIES	16–1–1

Section 2. Frequencies

| 16–2–1. VOR AND VORTAC VOICE CHANNELS | 16–2–1 |
| 16–2–2. UHF EN ROUTE CHANNEL | 16–2–1 |

Chapter 17. Facility Statistical Data, Reports, and Forms (Alaska Only)

Section 1. General Information

| 17–1–1. FORM USAGE | 17–1–1 |
| 17–1–2. TOTAL FLIGHT SERVICES FORMULA | 17–1–1 |

Section 2. Aircraft Contacted

17–2–1. AIRCRAFT CONTACTED	17–2–1
17–2–2. LOCAL AIRPORT ADVISORY (LAA)/REMOTE AIRPORT ADVISORY (RAA)/REMOTE AIRPORT INFORMATION SERVICE (RAIS)	17–2–1
17–2–3. RADIO CONTACTS	17–2–1

Section 3. Flight Plan Count

17–3–1. FLIGHT PLAN COUNT	17–3–1
17–3–2. ADDITIONAL ITEMS	17–3–1
17–3–3. FLIGHT PLAN CHANGE EN ROUTE	17–3–1
17–3–4. FLIGHT PLAN FORMS	17–3–1

Section 4. Pilot Briefing Count

| 17–4–1. PILOT BRIEFING COUNT | 17–4–1 |
| 17–4–2. RETENTION OF FORMS CONTAINING PILOT BRIEFING (“PB”) DATA | 17–4–1 |

Section 5. Other Reports and Information

| 17–5–1. COMPLETION OF MONTHLY ACTIVITY RECORD | 17–5–1 |
Section 6. FSS Lists, Logs, and Tallies (OASIS)

17–6–1. RECORDING OF FLIGHT INFORMATION 17–6–1
17–6–2. MANAGEMENT OF LISTS AND LOGS 17–6–1
17–6–3. TALLIES PRINTING ... 17–6–1

Part 5. TRAFFIC MANAGEMENT SYSTEM

Chapter 18. Traffic Management National, Center, and Terminal

Section 1. Organizational Missions

18–1–1. TRAFFIC MANAGEMENT SYSTEM MISSION 18–1–1
18–1–2. DAVID J. HURLEY AIR TRAFFIC CONTROL SYSTEM COMMAND CENTER (ATCSCC) ... 18–1–1
18–1–3. TRAFFIC MANAGEMENT UNIT (TMU) MISSION 18–1–1

Section 2. Organizational Responsibilities

18–2–1. AIR TRAFFIC TACTICAL OPERATIONS PROGRAM 18–2–1
18–2–2. SERVICE CENTER OPERATIONS SUPPORT GROUP 18–2–1
18–2–3. ATCSCC .. 18–2–1
18–2–4. FIELD FACILITIES .. 18–2–2

Section 3. Line of Authority

18–3–1. ATCSCC .. 18–3–1
18–3–2. ARTCC .. 18–3–1
18–3–3. TERMINAL ... 18–3–1

Section 4. Supplemental Duties

18–4–1. TELEPHONE CONFERENCES ... 18–4–1
18–4–2. SPECIAL INTEREST FLIGHTS .. 18–4–1
18–4–3. ANALYSIS .. 18–4–1
18–4–4. OPERATIONS MANAGER (OM) SUPPORT 18–4–2
18–4–5. DIVERSION RECOVERY .. 18–4–2
18–4–6. VOLCANIC ASH .. 18–4–3
18–4–7. SPACE LAUNCH OR REENTRY VEHICLE MISHAPS 18–4–3

Section 5. Coordination

18–5–1. COORDINATION .. 18–5–1
18–5–2. COMMUNICATION ... 18–5–1
18–5–3. DOCUMENTATION ... 18–5–1
18–5–4. RESPONSIBILITIES ... 18–5–1
18–5–5. STATIC COORDINATION ... 18–5–3
18–5–6. EN ROUTE INTRAFACTILITY COORDINATION 18–5–4
18–5–7. TERMINAL INTERFACTILITY COORDINATION 18–5–4
18–5–8. NATIONAL TRAFFIC MANAGEMENT LOG (NTML) 18–5–4
Table of Contents

<table>
<thead>
<tr>
<th>Paragraph</th>
</tr>
</thead>
<tbody>
<tr>
<td>18–5–9. NTML FACILITY CONFIGURATION REQUIREMENTS</td>
</tr>
<tr>
<td>18–5–10. NTML PROCEDURES</td>
</tr>
<tr>
<td>18–5–11. PROCESSING REQUESTS FOR REROUTES AND RESTRICTIONS FOR FACILITIES WITH NTML</td>
</tr>
<tr>
<td>18–5–12. DELAY REPORTING</td>
</tr>
<tr>
<td>18–5–13. ELECTRONIC SYSTEM IMPACT REPORTS</td>
</tr>
<tr>
<td>18–5–14. TARMAC DELAY OPERATIONS</td>
</tr>
</tbody>
</table>

Section 6. Trajectory–Based Operations (TBO)

<table>
<thead>
<tr>
<th>Paragraph</th>
</tr>
</thead>
<tbody>
<tr>
<td>18–6–1. TRAJECTORY–BASED OPERATIONS (TBO) MISSION</td>
</tr>
<tr>
<td>18–6–2. TBO POLICY</td>
</tr>
<tr>
<td>18–6–3. TIME–BASED MANAGEMENT (TBM)</td>
</tr>
<tr>
<td>18–6–4. POLICY</td>
</tr>
<tr>
<td>18–6–5. TYPES OF TBM</td>
</tr>
<tr>
<td>18–6–6. EXCEPTION</td>
</tr>
<tr>
<td>18–6–7. TBM DATA</td>
</tr>
<tr>
<td>18–6–8. TBM APPROVAL AUTHORITY</td>
</tr>
<tr>
<td>18–6–9. FIELD FACILITY RESPONSIBILITIES FOR TBM</td>
</tr>
<tr>
<td>18–6–10. ATCSCC RESPONSIBILITIES FOR TBM</td>
</tr>
<tr>
<td>18–6–11. TBM WITHIN ARTCC AREA OF JURISDICTION</td>
</tr>
</tbody>
</table>

Section 7. Traffic Management Initiatives

<table>
<thead>
<tr>
<th>Paragraph</th>
</tr>
</thead>
<tbody>
<tr>
<td>18–7–1. GENERAL</td>
</tr>
<tr>
<td>18–7–2. BACKGROUND</td>
</tr>
<tr>
<td>18–7–3. POLICY</td>
</tr>
<tr>
<td>18–7–4. TYPES OF TMIs</td>
</tr>
<tr>
<td>18–7–5. EXCEPTION</td>
</tr>
<tr>
<td>18–7–6. TMI DATA</td>
</tr>
<tr>
<td>18–7–7. TMI APPROVAL AUTHORITY</td>
</tr>
<tr>
<td>18–7–8. PROCESSING TMI</td>
</tr>
<tr>
<td>18–7–9. FIELD FACILITY RESPONSIBILITIES FOR TMIs</td>
</tr>
<tr>
<td>18–7–10. ATCSCC RESPONSIBILITIES FOR TMI</td>
</tr>
<tr>
<td>18–7–11. TMIs WITHIN ARTCC AREA OF JURISDICTION</td>
</tr>
<tr>
<td>18–7–12. TMIs OF 10 MIT OR LESS</td>
</tr>
<tr>
<td>18–7–13. TMIs OF 25 MIT OR GREATER</td>
</tr>
<tr>
<td>18–7–14. CAPPING AND TUNNELING</td>
</tr>
</tbody>
</table>

Section 8. Flow Evaluation Area (FEA), Flow Constrained Area (FCA), and Integrated Collaborative Rerouting (ICR)

<table>
<thead>
<tr>
<th>Paragraph</th>
</tr>
</thead>
<tbody>
<tr>
<td>18–8–1. GENERAL</td>
</tr>
<tr>
<td>18–8–2. DEFINITIONS</td>
</tr>
<tr>
<td>18–8–3. FEA/FCA RESPONSIBILITIES</td>
</tr>
<tr>
<td>18–8–4. FEA/FCA PROCEDURES</td>
</tr>
<tr>
<td>18–8–5. ARTCC TO ARTCC FEA/FCA COORDINATION</td>
</tr>
<tr>
<td>18–8–6. RESPONSIBILITIES</td>
</tr>
<tr>
<td>18–8–7. PROCEDURES</td>
</tr>
<tr>
<td>18–8–8. INTEGRATED COLLABORATIVE REROUTING (ICR)</td>
</tr>
</tbody>
</table>

Section 9. Monitor Alert Parameter

<table>
<thead>
<tr>
<th>Paragraph</th>
</tr>
</thead>
<tbody>
<tr>
<td>18–9–1. PURPOSE</td>
</tr>
</tbody>
</table>
Section 10. Ground Delay Programs

18–10–1. POLICY ... 18–10–1
18–10–2. GENERAL .. 18–10–1
18–10–3. BACKGROUND .. 18–10–1
18–10–4. DEFINITIONS .. 18–10–1
18–10–5. VARIABLES IN GDPs ... 18–10–1
18–10–6. ATCSCC PROCEDURES 18–10–1
18–10–7. ARTCC PROCEDURES .. 18–10–2
18–10–8. TERMINAL PROCEDURES 18–10–3
18–10–9. AMENDING EDCTs .. 18–10–3
18–10–10. CANCELLATION PROCEDURES 18–10–3
18–10–11. DOCUMENTATION .. 18–10–4
18–10–12. USER OPTIONS ... 18–10–4
18–10–13. VFR FLIGHTS .. 18–10–4

Section 11. Airspace Flow Programs (AFP)

18–11–1. GENERAL .. 18–11–1
18–11–2. POLICY ... 18–11–1
18–11–3. RESPONSIBILITIES ... 18–11–1
18–11–4. PROCEDURES .. 18–11–1

Section 12. Collaborative Trajectory Options Program (CTOP)

18–12–1. GENERAL ... 18–12–1
18–12–2. POLICY ... 18–12–1
18–12–3. DEFINITIONS .. 18–12–1
18–12–4. ATCSCC PROCEDURES 18–12–1
18–12–5. ARTCC PROCEDURES .. 18–12–1
18–12–6. TERMINAL PROCEDURES 18–12–2
18–12–7. AMENDING EDCTs .. 18–12–2
18–12–8. CANCELLATION PROCEDURES 18–12–2
18–12–9. DOCUMENTATION .. 18–12–2

Section 13. Ground Stop(s)

18–13–1. POLICY ... 18–13–1
18–13–2. GENERAL ... 18–13–1
18–13–3. LOCAL GROUND STOP(S) 18–13–1
18–13–4. NATIONAL GROUND STOP(S) 18–13–1
18–13–5. CANCELLATION PROCEDURES 18–13–2
18–13–6. DOCUMENTATION .. 18–13–2

Section 14. Special Traffic Management Programs

18–14–1. SPECIAL EVENT PROGRAMS 18–14–1
18–14–2. COORDINATION .. 18–14–1
18–14–3. IMPLEMENTATION ... 18–14–1
Section 15. Severe Weather Management

18–15–1. GENERAL .. 18–15–1
18–15–2. DUTIES AND RESPONSIBILITIES 18–15–1

Section 16. Severe Weather Avoidance Plan (SWAP)

18–16–1. GENERAL .. 18–16–1
18–16–2. RESPONSIBILITIES ... 18–16–1

Section 17. Preferred IFR Routes Program

18–17–1. GENERAL .. 18–17–1
18–17–2. RESPONSIBILITIES ... 18–17–1
18–17–3. DEVELOPMENT PROCEDURES 18–17–1
18–17–4. COORDINATION PROCEDURES 18–17–2
18–17–5. PROCESSING AND PUBLICATION 18–17–2

Section 18. North American Route Program

18–18–1. PURPOSE .. 18–18–1
18–18–2. RESPONSIBILITIES ... 18–18–1
18–18–3. PROCEDURES .. 18–18–1
18–18–4. REPORTING REQUIREMENTS 18–18–1
18–18–5. USER REQUIREMENTS .. 18–18–1

Section 19. Coded Departure Routes

18–19–1. PURPOSE .. 18–19–1
18–19–2. DEFINITION .. 18–19–1
18–19–3. POLICY ... 18–19–1
18–19–4. RESPONSIBILITIES ... 18–19–1
18–19–5. CDR DATA FORMAT ... 18–19–1

Section 20. Route Advisories

18–20–1. PURPOSE .. 18–20–1
18–20–2. POLICY ... 18–20–1
18–20–3. EXPLANATION OF TERMS .. 18–20–1
18–20–4. ROUTE ADVISORY MESSAGES 18–20–1
18–20–5. RESPONSIBILITIES ... 18–20–2
18–20–6. PROCEDURES .. 18–20–3

Section 21. Operations Plan

18–21–1. PURPOSE .. 18–21–1
18–21–2. DEFINITION .. 18–21–1
18–21–3. RESPONSIBILITIES ... 18–21–1
18–21–4. PROCEDURES .. 18–21–2

Section 22. National Playbook

18–22–1. PURPOSE .. 18–22–1
18–22–2. POLICY ... 18–22–1
Section 23. Traffic Management (TM) Support of Non–Reduced Vertical Separation Minima (RVSM) Aircraft

18–23–1. PURPOSE ... 18–23–1
18–23–2. POLICY ... 18–23–1
18–23–3. DEFINITIONS .. 18–23–1
18–23–4. EXCEPTED FLIGHTS ... 18–23–1
18–23–5. OPERATOR ACCESS OPTIONS 18–23–1
18–23–6. DUTIES AND RESPONSIBILITIES 18–23–1

Section 24. Route Test

18–24–1. PURPOSE ... 18–24–1
18–24–2. DEFINITION ... 18–24–1
18–24–3. POLICY ... 18–24–1
18–24–4. RESPONSIBILITIES .. 18–24–1

Section 25. Time–Based Flow Management (TBFM)

18–25–1. GENERAL ... 18–25–1
18–25–2. PURPOSE ... 18–25–1
18–25–3. POLICY ... 18–25–1
18–25–4. DEFINITIONS .. 18–25–1
18–25–5. RESPONSIBILITIES .. 18–25–2

Section 26. Weather Management

18–26–1. GENERAL ... 18–26–1
18–26–2. BACKGROUND .. 18–26–1
18–26–3. POLICY ... 18–26–1
18–26–4. RESPONSIBILITIES .. 18–26–1

Part 6. REGULATORY INFORMATION

Chapter 19. Waivers, Authorizations, and Exemptions

Section 1. Waivers and Authorizations

19–1–1. PURPOSE ... 19–1–1
19–1–2. POLICY ... 19–1–1
19–1–3. RESPONSIBILITIES .. 19–1–1
19–1–4. PROCESSING CERTIFICATE OF WAIVER OR AUTHORIZATION (FAA FORM 7711–2) REQUESTS .. 19–1–2
19–1–5. PROCESSING CERTIFICATE OF WAIVER OR AUTHORIZATION RENEWAL OR AMENDMENT REQUESTS 19–1–2
19–1–6. ISSUANCE OF CERTIFICATE OF WAIVER OR AUTHORIZATION (FAA FORM 7711–1) ... 19–1–2
19–1–7. RETENTION OF CERTIFICATES OF WAIVER OR AUTHORIZATION ... 19–1–2
Paragraph	Page
19–1–8. WAIVER, AUTHORIZATION OR DENIAL PROCEDURE | 19–1–3
19–1–9. CANCELLATION OF WAIVERS AND AUTHORIZATIONS | 19–1–3

Section 2. Elimination of Fixed–Wing Special Visual Flight Rules Operations

19–2–1. PURPOSE | 19–2–1
19–2–2. POLICY | 19–2–1
19–2–3. RESPONSIBILITIES | 19–2–1

Section 3. Current Authorizations and Exemptions from Title 14, Code of Federal Regulations

19–3–1. AUTHORIZATIONS AND EXEMPTIONS FROM TITLE 14, CODE OF FEDERAL REGULATIONS (14 CFR) | 19–3–1
19–3–2. AUTHORIZATION AND EXEMPTION REQUESTS | 19–3–1

Section 4. Parachute Jump Operations

19–4–1. NONEMERGENCY PARACHUTE JUMP OPERATIONS | 19–4–1

Section 5. Moored Balloons, Kites, Parasail, Unmanned Rockets, and Unmanned Free Balloons/Objects

19–5–1. MOORED BALLOONS, KITES, PARASAIL, UNMANNED ROCKETS, AND UNMANNED FREE BALLOONS/OBJECTS | 19–5–1
19–5–2. DERELICT BALLOONS/OBJECTS | 19–5–1

Section 6. 14 CFR Part 107, sUAS Operations

19–6–1. GENERAL | 19–6–1
19–6–2. LOW ALTITUDE AUTHORIZATION AND NOTIFICATION CAPABILITY (LAANC) | 19–6–1
19–6–3. MANUAL AIRSPACE AUTHORIZATION PROCEDURES (VIA DRONEZONE) | 19–6–1
19–6–4. HEADQUARTERS/SERVICE CENTER AIRSPACE WAIVER PROCESS | 19–6–2

Chapter 20. Temporary Flight Restrictions

Section 1. General Information

20–1–1. PURPOSE | 20–1–1
20–1–2. AUTHORITY | 20–1–1
20–1–3. REASONS FOR ISSUING A TFR | 20–1–1
20–1–4. TYPES OF TFRs | 20–1–1
20–1–5. TFR NOTAM CONTENT | 20–1–1
20–1–6. TFR INFORMATION | 20–1–1
20–1–7. TFRs OUTSIDE OF THE UNITED STATES AND ITS TERRITORIES | 20–1–1
20–1–8. TFR QUESTIONS | 20–1–2

Section 2. Temporary Flight Restrictions in the Vicinity of Disaster/Hazard Areas (14 CFR Section 91.137)

20–2–1. PURPOSE | 20–2–1
20–2–2. RATIONALE | 20–2–1
20–2–3. SITUATIONS FOR RESTRICTIONS | 20–2–1
20–2–4. REQUESTING AUTHORITIES | 20–2–1
Paragraph	Page
20–2–5. ISSUING TFRs | 20–2–1
20–2–6. DEGREE OF RESTRICTIONS | 20–2–2
20–2–7. RESPONSIBILITIES | 20–2–2
20–2–8. REVISIONS AND CANCELLATIONS | 20–2–3

Section 3. Temporary Flight Restrictions in National Disaster Areas in the State of Hawaii (Section 91.138)

20–3–1. PURPOSE | 20–3–1
20–3–2. REQUESTING AUTHORITIES | 20–3–1
20–3–3. DEGREE OF RESTRICTIONS | 20–3–1
20–3–4. DURATION OF RESTRICTIONS | 20–3–1
20–3–5. ISSUING TFRs | 20–3–1

Section 4. Emergency Air Traffic Rules (14 CFR Section 91.139)

20–4–1. PURPOSE | 20–4–1
20–4–2. REQUESTING AUTHORITIES | 20–4–1
20–4–3. ISSUING TFRs | 20–4–1
20–4–4. DEGREE OF RESTRICTIONS | 20–4–1

Section 5. Flight Restrictions in the Proximity of the Presidential and Other Parties (14 CFR Section 91.141)

20–5–1. PURPOSE | 20–5–1
20–5–2. REQUESTING AUTHORITIES | 20–5–1
20–5–3. ISSUING TFRs | 20–5–1
20–5–4. DEGREE OF RESTRICTIONS | 20–5–1
20–5–5. PROCEDURES | 20–5–1

Section 6. Flight Limitation in the Proximity of Space Flight Operations (14 CFR Section 91.143)

20–6–1. PURPOSE | 20–6–1
20–6–2. REQUESTING AUTHORITIES | 20–6–1
20–6–3. DEGREE OF RESTRICTIONS | 20–6–1
20–6–4. AIRPORTS WITHIN AIRCRAFT HAZARD AREAS AND TRANSITIONAL HAZARD AREAS | 20–6–1

Section 7. Management of Aircraft Operations in the Vicinity of Aerial Demonstrations and Major Sporting Events (14 CFR Section 91.145)

20–7–1. PURPOSE | 20–7–1
20–7–2. POLICY | 20–7–1
20–7–3. RESPONSIBILITIES | 20–7–1
20–7–4. RELATED DOCUMENTS | 20–7–2
20–7–5. COORDINATION | 20–7–2
20–7–6. SPECIAL TRAFFIC MANAGEMENT PROGRAM GUIDELINES | 20–7–3
20–7–7. PROCESS FOR TFRs | 20–7–3
20–7–8. REVISIONS AND CANCELLATIONS | 20–7–4

Part 7. SYSTEM OPERATIONS SECURITY

Section 1. Organizational Missions

21–1–1. SYSTEM OPERATIONS SECURITY MISSION | 21–1–1
Section 2. Responsibilities

21–2–1. DESCRIPTION ... 21–2–1
21–2–2. TACTICAL OPERATIONS SECURITY GROUP RESPONSIBILITIES 21–2–1
21–2–3. SPECIAL OPERATIONS SECURITY GROUP RESPONSIBILITIES 21–2–1
21–2–4. STRATEGIC OPERATIONS SECURITY GROUP RESPONSIBILITIES 21–2–2
21–2–5. AIR TRAFFIC FACILITY RESPONSIBILITIES 21–2–3

Section 3. Operational Line of Authority

21–3–1. AUTHORITY FOR OPERATIONAL SECURITY–RELATED ACTIONS 21–3–1
21–3–2. AIR TRAFFIC SECURITY COORDINATOR (ATSC) 21–3–1

Section 4. Supplemental Duties

21–4–1. DOMESTIC EVENTS NETWORK (DEN) .. 21–4–1
21–4–2. PRESIDENTIAL/UNITED STATES SECRET SERVICE (USSS) SUPPORTED VIP MOVEMENT ... 21–4–1
21–4–3. SPECIAL INTEREST FLIGHTS (SIFs) ... 21–4–1
21–4–4. CONTINUITY OF OPERATIONS AND CONTINUATION OF GOVERNMENT (COOP/COG) .. 21–4–2
21–4–5. CLASSIFIED OPERATIONS ... 21–4–2
21–4–6. INTELLIGENCE ANALYSIS AND COMMUNICATION 21–4–2
21–4–7. UAS SPECIAL GOVERNMENTAL INTEREST (SGI) OPERATIONS 21–4–2

Section 5. Coordination

21–5–1. COORDINATION .. 21–5–1
21–5–2. COMMUNICATION AND DOCUMENTATION 21–5–1
21–5–3. RESPONSIBILITIES .. 21–5–1
21–5–4. UAS SGI ADDENDUM REQUEST PROCESS AND COORDINATION 21–5–1

Section 6. Special Security Instruction (SSI) (14 CFR Section 99.7)

21–6–1. PURPOSE .. 21–6–1
21–6–2. REQUESTING AUTHORITIES ... 21–6–1
21–6–3. DEGREE OF RESTRICTIONS ... 21–6–1

Section 7. Security Notice (SECNOT)

21–7–1. POLICY ... 21–7–1
21–7–2. PURPOSE .. 21–7–1
21–7–3. RESPONSIBILITIES .. 21–7–1

Appendices

Appendix 1. [RESERVED] ... Appendix 1–1
Appendix 2. [RESERVED] ... Appendix 2–1
Appendix 3. Air Carrier Aircraft for Air Traffic Activity Operations Count Appendix 3–1
Appendix 4. Glideslope Outage Authorization Request Appendix 4–1
Appendix 5. Checklist for Reported Headset Tone Incidents Appendix 5–1
Appendix 6. Commercial Space LOA Sample Templates Appendix 6–1

Index

Index .. I–1
Section 2. Order Use

1–2–1. POLICY

This order prescribes information necessary to effectively operate and administer air traffic service facilities. When a conflict arises between its provisions and those in other agency issuances, supervisors must request clarification from their respective En Route and Oceanic Operations Area, Terminal Operations Area, or Flight Service Safety and Operations Group. In the event a conflict arises between instructions in this order and the terms of a labor union contract, supervisors must abide by the contract.

e. “Shall not” or “must not” means a procedure is prohibited.

f. Singular words include the plural, and plural words include the singular.

1–2–2. ANNOTATIONS

Revised, new, or reprinted pages will be marked as follows:

a. The change number and the effective date are printed on each revised or additional page.

b. A reprinted page not requiring a change is reprinted in its original form.

c. Bold vertical lines in the margin of the text mark the location of substantive procedural, operational, or policy changes; e.g., when material affecting the performance of duty is added, revised, or deleted.

d. Statements of fact of a prefatory or explanatory nature relating to directive material are set forth as notes.

e. If a facility has not received the order/changes at least 30 days before the above effective dates, the facility must notify its service area office distribution officer.

1–2–3. WORD MEANINGS

As used in this order:

a. “Shall” or “must” means a procedure is mandatory.

b. “Should” means a procedure is recommended.

c. “May” and “need not” mean a procedure is optional.

d. “Will” indicates futurity, not a requirement for application of a procedure.

e. “Shall not” or “must not” means a procedure is prohibited.

f. Singular words include the plural, and plural words include the singular.

1–2–4. ABBREVIATIONS

As used in this order, the following abbreviations have the meanings indicated: (See TBL 1–2–1.)

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAR</td>
<td>Adapted arrival route</td>
</tr>
<tr>
<td>AAR</td>
<td>Airport arrival rate</td>
</tr>
<tr>
<td>ACDO</td>
<td>Air Carrier District Office</td>
</tr>
<tr>
<td>ACE–IDS</td>
<td>ASOS Controller Equipment–Information Display System</td>
</tr>
<tr>
<td>ACID</td>
<td>Aircraft identification</td>
</tr>
<tr>
<td>ADAR</td>
<td>Adapted departure arrival route</td>
</tr>
<tr>
<td>ADC</td>
<td>Aerospace Defense Command</td>
</tr>
<tr>
<td>ADIZ</td>
<td>Air defense identification zone</td>
</tr>
<tr>
<td>ADR</td>
<td>Adapted departure route</td>
</tr>
<tr>
<td>ADR</td>
<td>Airport departure rate</td>
</tr>
<tr>
<td>ADS–A</td>
<td>Automatic Independent Surveillance–Addressable</td>
</tr>
<tr>
<td>ADS–B</td>
<td>Automatic Independent Surveillance–Broadcast</td>
</tr>
<tr>
<td>AFP</td>
<td>Airspace Flow Program</td>
</tr>
<tr>
<td>AFRES</td>
<td>Air Force reserve</td>
</tr>
<tr>
<td>AFTN</td>
<td>Aeronautical fixed telecommunications network</td>
</tr>
<tr>
<td>AIDC</td>
<td>ATS Interfacility Data Communications</td>
</tr>
<tr>
<td>AIM</td>
<td>Aeronautical Information Manual</td>
</tr>
<tr>
<td>AIRAC</td>
<td>Aeronautical Information Regulation and Control</td>
</tr>
<tr>
<td>AIS</td>
<td>Aeronautical Information Services</td>
</tr>
<tr>
<td>AIT</td>
<td>Automated information transfer</td>
</tr>
<tr>
<td>ALD</td>
<td>Available landing distance</td>
</tr>
<tr>
<td>ALS</td>
<td>Approach light system</td>
</tr>
<tr>
<td>ALTTRV</td>
<td>Altitude reservation</td>
</tr>
<tr>
<td>AMASS</td>
<td>Airport Movement Area Safety System</td>
</tr>
<tr>
<td>AREQ</td>
<td>Approval request</td>
</tr>
<tr>
<td>ARAC</td>
<td>Army Radar Approach Control facility (US Army)</td>
</tr>
<tr>
<td>ARFF</td>
<td>Airport rescue and fire fighting</td>
</tr>
<tr>
<td>ARINC</td>
<td>Aeronautical Radio, Inc.</td>
</tr>
<tr>
<td>ARO</td>
<td>Airport Reservations Office</td>
</tr>
</tbody>
</table>

TBL 1–2–1: Abbreviations
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Meaning</th>
<th>Abbreviation</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARP</td>
<td>Airport reference point</td>
<td>CONUS</td>
<td>Continental/Contiguous/Conterminous United States</td>
</tr>
<tr>
<td>ARSR</td>
<td>Air route surveillance radar</td>
<td>COO</td>
<td>Chief Operating Officer</td>
</tr>
<tr>
<td>ART</td>
<td>ATO Resource Tool</td>
<td>COTC</td>
<td>Computer operator terminal console</td>
</tr>
<tr>
<td>ARTCC</td>
<td>Air route traffic control center</td>
<td>CPDLC</td>
<td>Controller Pilot Data Link Communications</td>
</tr>
<tr>
<td>ASDE</td>
<td>Airport surface detection equipment</td>
<td>CTRD</td>
<td>Certified Tower Radar Display</td>
</tr>
<tr>
<td>ASDE−X</td>
<td>Airport Surface Detection Equipment System − Model X</td>
<td>CTA</td>
<td>Controlled times of arrival</td>
</tr>
<tr>
<td>ASF</td>
<td>Airport stream filters</td>
<td>CWA</td>
<td>Center weather advisory</td>
</tr>
<tr>
<td>ASI</td>
<td>Altimeter setting indicator</td>
<td>CWSU</td>
<td>ARTCC Weather Service Unit</td>
</tr>
<tr>
<td>ASOS</td>
<td>Automated Surface Observing System</td>
<td>DAS</td>
<td>Delay assignment</td>
</tr>
<tr>
<td>ASP</td>
<td>Arrival sequencing program</td>
<td>DASI</td>
<td>Digital altimeter setting indicator</td>
</tr>
<tr>
<td>ASPM</td>
<td>Aviation System Performance Metrics</td>
<td>DCCWU</td>
<td>ATCSC Weather Unit</td>
</tr>
<tr>
<td>ASR</td>
<td>Airport surveillance radar</td>
<td>DSO</td>
<td>Deputy Director of System Operations</td>
</tr>
<tr>
<td>ASSC</td>
<td>Airport Surface Surveillance Capability</td>
<td>DEDS</td>
<td>Data entry display system</td>
</tr>
<tr>
<td>AT</td>
<td>Air Traffic</td>
<td>DLS</td>
<td>Designated Lead Specialist</td>
</tr>
<tr>
<td>ATA</td>
<td>Air traffic assistant</td>
<td>DME</td>
<td>Distance measuring equipment</td>
</tr>
<tr>
<td>ATC</td>
<td>Air traffic control</td>
<td>DOD</td>
<td>Department of Defense</td>
</tr>
<tr>
<td>ATCAA</td>
<td>Air traffic control assigned airspace</td>
<td>DOE</td>
<td>Department of Energy</td>
</tr>
<tr>
<td>ATCRBS</td>
<td>Air traffic control radar beacon system</td>
<td>DOT</td>
<td>Department of Transportation</td>
</tr>
<tr>
<td>ATCS</td>
<td>Air traffic control specialist</td>
<td>DP</td>
<td>Instrument Departure Procedure</td>
</tr>
<tr>
<td>ATCSCC</td>
<td>David J. Hurley Air Traffic Control System Command Center</td>
<td>DRT</td>
<td>Diversion Recovery Tool</td>
</tr>
<tr>
<td>ATCT</td>
<td>Airport traffic control tower</td>
<td>DSP</td>
<td>Departure sequencing program</td>
</tr>
<tr>
<td>ATIS</td>
<td>Automatic terminal information service</td>
<td>DTM</td>
<td>Digital terrain maps</td>
</tr>
<tr>
<td>ATM</td>
<td>Air Traffic Manager</td>
<td>DVA</td>
<td>Diverse vector area</td>
</tr>
<tr>
<td>ATO</td>
<td>Air Traffic Organization</td>
<td>DVRSN</td>
<td>Diversion</td>
</tr>
<tr>
<td>ATOP</td>
<td>Advanced Technologies and Oceanic Procedures</td>
<td>E−MSAW</td>
<td>En Route Minimum Safe Altitude Warning</td>
</tr>
<tr>
<td>ATPB</td>
<td>Air Traffic Procedures Bulletin</td>
<td>EASL</td>
<td>Existing automation service level</td>
</tr>
<tr>
<td>ATREP</td>
<td>Air Traffic representative</td>
<td>EBUS</td>
<td>Enhanced Backup Surveillance System</td>
</tr>
<tr>
<td>AWC</td>
<td>Aviation Weather Center</td>
<td>EDCT</td>
<td>Expect departure clearance time</td>
</tr>
<tr>
<td>AWIS</td>
<td>Automated weather information service</td>
<td>EDST</td>
<td>En Route Decision Support Tool</td>
</tr>
<tr>
<td>AWOS</td>
<td>Automated Weather Observing System</td>
<td>EI</td>
<td>Early Intent</td>
</tr>
<tr>
<td>CA</td>
<td>Conflict alert</td>
<td>ELT</td>
<td>Emergency locator transmitter</td>
</tr>
<tr>
<td>CAP</td>
<td>Civil Air Patrol</td>
<td>EOVM</td>
<td>Emergency obstruction video map</td>
</tr>
<tr>
<td>CARF</td>
<td>Central Altitude Reservation Function</td>
<td>EOSH</td>
<td>Environmental and Occupational Safety and Health</td>
</tr>
<tr>
<td>CAS</td>
<td>Civil Aviation Security</td>
<td>EPIC</td>
<td>El Paso Intelligence Center</td>
</tr>
<tr>
<td>CCFF</td>
<td>Collaborative Convective Forecast Product</td>
<td>ERIDS</td>
<td>En Route Information Display System</td>
</tr>
<tr>
<td>CCSD</td>
<td>Collaborative Constraint Situation Display</td>
<td>ERT</td>
<td>Embedded route text</td>
</tr>
<tr>
<td>CD</td>
<td>Clearance delivery</td>
<td>ESL</td>
<td>Emergency service level</td>
</tr>
<tr>
<td>CDM</td>
<td>Collaborative decision making</td>
<td>ESP</td>
<td>En Route sequencing program</td>
</tr>
<tr>
<td>CDR</td>
<td>Coded Departure Route(s)</td>
<td>FAA</td>
<td>Federal Aviation Administration</td>
</tr>
<tr>
<td>CDDR</td>
<td>Continuous Data Recording</td>
<td>FCA</td>
<td>Flow Constrained Area</td>
</tr>
<tr>
<td>CERAP</td>
<td>Combined Center/RAPCON</td>
<td>FCFSS</td>
<td>Federal Contract Flight Service Station</td>
</tr>
<tr>
<td>CFR</td>
<td>Code of Federal Regulations</td>
<td>FDEP</td>
<td>Flight data entry and printout</td>
</tr>
<tr>
<td>CIC</td>
<td>Controller-in-charge</td>
<td>FDIO</td>
<td>Flight data input/output</td>
</tr>
<tr>
<td>CIRNOT</td>
<td>Circuit Notice</td>
<td>FEA</td>
<td>Flow Evaluation Area</td>
</tr>
<tr>
<td>COB</td>
<td>Close of business</td>
<td>FICO</td>
<td>Flight Inspection Central Operations</td>
</tr>
<tr>
<td>FFOA</td>
<td>Freedom of Information Act</td>
<td>FOIU</td>
<td>For Official Use Only</td>
</tr>
<tr>
<td>FOUO</td>
<td>For Official Use Only</td>
<td>FOIU</td>
<td>For Official Use Only</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Meaning</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>---------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FP</td>
<td>Flight plan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FPL</td>
<td>Full performance level</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FRD</td>
<td>Fixed Radial Distance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FSA</td>
<td>Flight schedule analyzer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FSDO</td>
<td>Flight Standards district office</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FSL</td>
<td>Full service level</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FSM</td>
<td>Flight Schedule Monitor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FSS</td>
<td>Flight service station</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GA</td>
<td>General aviation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GC</td>
<td>Ground control</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GDP</td>
<td>Ground delay program(s)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GENOT</td>
<td>General notice</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GI</td>
<td>General information message</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GS</td>
<td>Ground stop(s)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HIRL</td>
<td>High intensity runway lights</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HRPM</td>
<td>Human Resource Policy Manual</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IAFDOF</td>
<td>Inappropriate Altitude for Direction of Flight</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICAO</td>
<td>International Civil Aviation Organization</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICR</td>
<td>Integrated Collaborative Rerouting</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICSS</td>
<td>Integrated communication center</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IDS</td>
<td>Information Display System</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IFR</td>
<td>Instrument flight rules</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ILS</td>
<td>Instrument landing system</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INS</td>
<td>Immigration and Naturalization Service</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IR</td>
<td>IFR MTR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ITWS</td>
<td>Integrated Terminal Weather System</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LAA</td>
<td>Local airport advisory</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LAANC</td>
<td>Low Altitude Authorization Notification Capability</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LAAS</td>
<td>Low altitude alert system</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LADP</td>
<td>Local Airport Deicing Plan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LAHOS</td>
<td>Land and hold short operations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LAWRS</td>
<td>Limited aviation weather reporting station</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC</td>
<td>Local control</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LLWAS</td>
<td>Low level wind shear alert system</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LLWAS NE</td>
<td>Low Level Wind Shear Alert System Network Expansion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LLWAS-RS</td>
<td>Low Level Wind Shear Alert System Relocation/Sustainment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LLWS</td>
<td>Low Level Wind Shear</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LOA</td>
<td>Letter of agreement</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LOGT</td>
<td>Log/tally print time</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LSAS</td>
<td>Leased Service A System</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MA</td>
<td>Monitor alert</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MALS/RAIL</td>
<td>Medium approach light system and runway alignment indicator lights</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAPPS</td>
<td>Management Association for Private Photogrammetric Surveyors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCI</td>
<td>Mode C Intruder</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MDM</td>
<td>Main display monitor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEA</td>
<td>Minimum en route IFR altitude</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEARTS</td>
<td>Micro En Route Automated Radar Tracking System</td>
<td></td>
<td></td>
</tr>
<tr>
<td>METAR</td>
<td>Aviation Routine Weather Report</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIA</td>
<td>Minimum IFR altitude</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIAWS</td>
<td>Medium Intensity Airport Weather System</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIT</td>
<td>Miles-in-trail</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MOA</td>
<td>Military operations area</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MOCA</td>
<td>Minimum obstruction clearance altitude</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MOR</td>
<td>Mandatory Occurrence Report</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MOU</td>
<td>Memorandum of understanding</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSL</td>
<td>Mean sea level</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MTI</td>
<td>Moving target indicator</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MTR</td>
<td>Military training route</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MVA</td>
<td>Minimum vectoring altitude</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NAA</td>
<td>National aeronautical association</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NADIN</td>
<td>National airspace data interchange network</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NAR</td>
<td>National Automation Request</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NAR</td>
<td>North American Routes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NAS</td>
<td>National Airspace System</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NASA</td>
<td>National Aeronautics and Space Administration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NASE</td>
<td>National Airway Systems Engineering</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NAVAID</td>
<td>Navigational aid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NCIC</td>
<td>National crime information center</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NFDD</td>
<td>National Flight Data Digest</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NHOP</td>
<td>National hurricane operations plan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NM</td>
<td>Nautical mile</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NNCC</td>
<td>National Network Control Center</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOAA</td>
<td>National Oceanic and Atmospheric Administration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOM</td>
<td>National Operations Manager</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NORAD</td>
<td>North American Aerospace Defense Command</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOS</td>
<td>National Ocean Service</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOTAM</td>
<td>Notice to Air Missions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NRP</td>
<td>North American Route Program</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NTML</td>
<td>National Traffic Management Log</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NTMO</td>
<td>National Traffic Management Officer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NTSB</td>
<td>National Transportation Safety Board</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NWS</td>
<td>National Weather Service</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NWSOP</td>
<td>National winter storm operations plan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OASIS</td>
<td>Operational and Supportability Implementation System</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OM</td>
<td>Operations Manager</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OPR</td>
<td>Office of primary responsibility</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OS</td>
<td>Operations Supervisor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OSIC</td>
<td>Operations Supervisor-in-Charge</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Meaning</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>---------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P−ACP</td>
<td>Prearranged coordination procedures</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PAR</td>
<td>Precision approach radar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PB</td>
<td>Pilot briefing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCS</td>
<td>Power Conditioning System</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PDC</td>
<td>Pre-Departure Clearance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PIC</td>
<td>Pilot-in-command</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PIREPs</td>
<td>Pilot weather reports</td>
<td></td>
<td></td>
</tr>
<tr>
<td>POC</td>
<td>Point of Contact</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PVD</td>
<td>Planned view display</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RA</td>
<td>Radar Associate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RAA</td>
<td>Remote Airport Advisory</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RADLO</td>
<td>Regional air defense liaison officer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RAIL</td>
<td>Runway alignment indicator lights</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RAIS</td>
<td>Remote Airport Information Service</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RAPCON</td>
<td>Radar Approach Control facility (USAF, USN and USMC)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RATCF</td>
<td>Radar Air Traffic Control Facility (USN and USMC)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RCAG</td>
<td>Remote communications air ground facility</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RCC</td>
<td>Rescue coordination center</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RMT</td>
<td>Route Management Tool</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ROC</td>
<td>Regional operations center</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ROG</td>
<td>Route Options Generation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ROT</td>
<td>Runway occupancy time</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RSU</td>
<td>Runway supervisory unit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RVR</td>
<td>Runway visual range</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAA</td>
<td>Special activity airspace</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAMS</td>
<td>Special Use Airspace Management System</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SATCOM</td>
<td>Satellite Communication(s)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAWs</td>
<td>Stand Alone Weather System</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SDP</td>
<td>Surveillance Data Processing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SE</td>
<td>Systems engineer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SECM</td>
<td>Safety and Environmental Compliance Manager</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SGI</td>
<td>Special Government Interest</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SIA</td>
<td>Status information area</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SID</td>
<td>Standard Instrument Departure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SIGMET</td>
<td>Significant meteorological information</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SMGCS</td>
<td>Surface movement guidance and control system</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SMIS</td>
<td>Safety Management Information System</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SMO</td>
<td>System Management Office</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SMR</td>
<td>Surface Movement Radar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOP</td>
<td>Standard operating procedure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SP</td>
<td>Support Specialist(s)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPECI</td>
<td>Nonroutine (Special) Aviation Weather Report</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STARS</td>
<td>Standard terminal automation replacement system</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STMC</td>
<td>Supervisor Traffic Management Coordinator</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STMCIC</td>
<td>Supervisory Traffic Management Coordinator-in-Charge</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STMP</td>
<td>Special traffic management program</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SUA</td>
<td>Special use airspace</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sUAS</td>
<td>Small Unmanned Aircraft System(s)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SVFR</td>
<td>Special visual flight rules</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SWAP</td>
<td>Severe weather avoidance plan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SWS</td>
<td>Surface Weather System</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T&A</td>
<td>Time and attendance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TAC</td>
<td>Terminal area chart</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TACAN</td>
<td>Tactical air navigation aid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TCA</td>
<td>Tactical Customer Advocate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TCAS</td>
<td>Traffic alert collision and avoidance system</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TCDD</td>
<td>Tower cab digital display</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TCF</td>
<td>Traffic Flow Management Convective Forecast Produce</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TDLs</td>
<td>Terminal Data Link System</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TDW</td>
<td>Terminal display workstation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TDWR</td>
<td>Terminal Doppler weather radar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TEC</td>
<td>Tower en route control</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TELCON</td>
<td>Telephone Conference</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TERPS</td>
<td>Terminal instrument procedures</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TFMS</td>
<td>Traffic Flow Management System</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TFR</td>
<td>Temporary flight restriction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TM</td>
<td>Traffic management</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TMc</td>
<td>Traffic management coordinator</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TMI</td>
<td>Traffic management initiatives</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TMO</td>
<td>Traffic Management Officer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tnu</td>
<td>Traffic management unit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRACAB</td>
<td>Terminal radar approach control in tower cab</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRACON</td>
<td>Terminal radar approach control</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRSA</td>
<td>Terminal Radar Service Area</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TSD</td>
<td>Traffic situation display</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UA</td>
<td>routine PIREPs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UAS</td>
<td>Unmanned Aircraft System(s)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UASFM</td>
<td>Unmanned Aircraft System(s) Facility Map</td>
<td></td>
<td></td>
</tr>
<tr>
<td>USS</td>
<td>Unmanned Aircraft System(s) Service Supplier</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UFO</td>
<td>Unidentified flying object</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UHF</td>
<td>Ultrahigh frequency</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UPT</td>
<td>User Preferred Trajectory</td>
<td></td>
<td></td>
</tr>
<tr>
<td>USAF</td>
<td>United States Air Force</td>
<td></td>
<td></td>
</tr>
<tr>
<td>USN</td>
<td>United States Navy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UTC</td>
<td>Coordinated universal time</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UUA</td>
<td>urgent PIREPs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VAR</td>
<td>Volcanic activity report</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VASI</td>
<td>Visual approach slope indicator</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VCE</td>
<td>VSCS/Console Equipment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VEARS</td>
<td>VSCS Emergency Access Radio System</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2–1–13. INTERSECTION TAKEOFFS

Air traffic managers at ATCTs and at FSS facilities that provide LAA will prepare an airport diagram showing intersection takeoff information as follows:

a. Indicate the actual remaining runway length from each intersection; round all actual measurements “down” to the nearest 50 feet. Obtain measurements from an authentic source and record them on the diagram.

NOTE—Some airports publish “declared distances” for a particular runway. These are published in the Chart Supplement U.S. or the Aeronautical Information Publication (AIP), and there is no requirement that facility personnel be made aware of them. These distances are a means of satisfying airport design criteria and are intended to be used by pilots and/or operators for preflight performance planning only. There are no special markings, signage, or lighting associated with declared distances, and they do not limit the actual runway available for use by an aircraft. Therefore, they cannot be used for any air traffic control purpose. If pilots inquire about the existence of declared distances, refer them to the Chart Supplement U.S. or the AIP.

b. If the airport authority requests that certain intersection takeoffs be denied, so indicate on the diagram.

EXAMPLE—/NO TKOFF/

c. Indicate any access points to a runway from which an intersection takeoff may be made.

2–1–14. AIRCRAFT IDENTIFICATION PROBLEMS

To alleviate any potential misunderstandings of aircraft identifications caused by duplicate, phonetically similar–sounding, or hard to distinguish registration numbers or call signs operating in the same area, facility managers must ensure that operations supervisors report those occurrences to a facility officer and that the following actions be taken.

a. Scheduled air carrier aircraft: When two or more air carriers with duplicate flight numbers or phonetically similar–sounding call signs operate within 30 minutes of each other at the same airport or within the same sector and cause an identification problem on a recurring basis, request that the flight identification numbers be changed by:

NOTE—Recurrent situations would be aircraft proceeding primarily the same direction through the same sectors three or more times a week, at least two weeks out of four consecutive weeks.

1. For carriers listed at the following web address, http://tfms.faa.gov/airlinephones.html, contact the appropriate airline office.

2. For carriers not listed on the website, contact the operator or the chief pilot of the carrier concerned. Changes to the list can be provided to the ATCSCC Facility Automation Office via the Traffic Management Officer (TMO) or the Deputy Director of System Operations (DDSO).

b. Military aircraft: Contact base operations of the departure airport and request that action be taken to have the flight identifications changed when duplicate, phonetically similar, or hard to distinguish call signs are causing a flight identification problem. If additional assistance is required, immediately advise the military representative assigned to the Service Area office.

c. Civil aircraft other than air carrier: Advise Mission Support Services, Aeronautical Information Services, at Callsigns@faa.gov when two or more designated call signs are found to be phonetically similar or difficult to pronounce and are causing a flight identification problem.

d. The designated facility officer must maintain a record of actions taken and provide feedback to operations supervisors. That record should include:

1. Date/time of occurrence.
2. Location (e.g., RUS VORTAC, sector 90, Shannon Airport).
3. Call signs involved in the occurrence.
4. Date occurrence is reported by facility.
5. Office/person that facility contacted.

2–1–15. APPROACH CONTROL AIRSPACE

With the advancement of technologies, the air traffic services provided by en route facilities and terminal facilities are becoming more integrated. Terminal airspace should be adjusted to match the services provided. Although en route services are an ARTCC
function, terminal facilities may be expected to provide some en route service. There are some areas in which an ARTCC may not have adequate radar coverage or resources, and in these areas it may be necessary to expand the terminal airspace to provide service. Conversely, at locations with nonradar approach control facilities, en route facilities may have radar coverage, and better service would be provided if some approach control airspace is recalled to the ARTCC. At certain locations, the en route facility may be able to absorb all the airspace of a nonradar approach control. Prior to implementing airspace changes, en route and terminal facility managers must work together to ensure the delegated approach control airspace best meets the needs of the airspace area.

2–1–16. AUTHORIZATION FOR SEPARATION SERVICES BY TOWERS

a. Nonapproach control towers, not equipped with a tower radar display, may be authorized to provide appropriate separation between consecutive departures based upon time or diverging courses, and between arrivals and departures, provided:

1. A LOA exists with the IFR facility having control jurisdiction which authorizes the separation responsibilities and prescribes the procedures to be used;
2. The agreement has been approved by the Area Director of Terminal Operations; and
3. There is no delegation of airspace to the tower.

b. Towers equipped with certified tower radar displays (CTRD) may be authorized to provide separation services in accordance with paragraph 10–5–3, Functional Use of Certified Tower Radar Displays.

c. An authorization for towers to provide separation services other than those prescribed in subparagraphs a and b must be supported by a staff study prepared by the authorizing facility or the Terminal Operations Service Area office which addresses at least:

1. The proposed procedures.
2. Operational benefits.
3. Operational impact.

4. Why the IFR facility is unable to provide an equal or superior level of service without the delegation.

5. Improved services to users.

6. Additional radar training.

7. The measures taken to ensure that the local controller’s ability to satisfy the FAA’s air traffic responsibilities regarding aircraft operating on the runways or within the surface area is not impaired.

8. On–site spares, maintenance support/restoration requirements.

9. Savings and/or additional costs.

10. The number of additional people required.

d. The staff study must, following the Terminal Operations Service Area review and concurrence, be forwarded to Terminal Services through System Operations Planning, and System Safety and Procedures for approval. System Operations Planning will coordinate with all affected Technical Operations Services Area Service Directors prior to finalizing their comments and recommendations.

2–1–17. BIRD HAZARDS

The air traffic manager of the ATCT must establish procedures to:

a. Ensure that any reported bird strikes or trend toward an increase in bird activity on or around the airport served by the ATCT are reported to airport management.

b. Ensure that coordination will be accomplished with airport management for the possible issuance of NOTAMs when flocks of birds roost on the runways.

NOTE-
It is the responsibility of airport management to issue any such NOTAMs.

c. Participate in local bird hazard programs when established by airport management.

2–1–18. PROHIBITED/RESTRICTED AREAS AND STATIONARY ALTRVS

FAA Order JO 7110.65, Air Traffic Control, prescribes separation requirements from special use, ATC–assigned airspace, and stationary ALTRVs. The intent in prescribing this separation requirement is to establish separation minima between
nonparticipating aircraft and certain aircraft operations inside that airspace. Some prohibited/restricted areas and stationary ALTRVs are established for security reasons or to contain hazardous activities, and do not require a boundary separation minima. These areas may be exempted from vertical and lateral separation minima when identified by facility management. In making a determination to exempt specific areas, air traffic facility managers must be guided by the following:

a. Determine the exact nature of prohibited/restricted area and stationary ALTRV utilization through direct liaison with the using agency.

b. Coordinate with the Service Center during the analysis of area utilization.

c. The following types of activity are examples of restricted area utilization which may not require application of boundary separation minima:

1. Explosives detonation.
2. Ground firing of various types.
3. VFR aircraft operations associated with the above but only in a safety, observer, or command and control capacity.
4. VFR aircraft, not directly engaging in activity for which the airspace is activated, that have been authorized by the using agency.

d. If area utilization varies between aircraft operations and other types of activity as described above, do not exempt the area from separation requirements unless a significant operational advantage can be obtained.

e. Restricted airspace with the same number but different letter suffixes are considered to be separate restricted areas. However, treat these types as one restricted area for the purpose of identifying areas for exemption from separation requirements in order to simplify application of separation minima unless a significant operational advantage can be obtained.

2–1–19. SPECIAL AIR TRAFFIC RULES (SATR) AND SPECIAL FLIGHT RULES AREA (SFRA)

The Code of Federal Regulations prescribes special air traffic rules for aircraft operating within the boundaries of certain designated airspace. These areas are listed in 14 CFR Part 93 and can be found throughout the NAS. Procedures, nature of operations, configuration, size, and density of traffic vary among the identified areas.

a. Special Flight Rules Areas are areas of airspace wherein the flight of aircraft is subject to special air traffic rules set forth in 14 CFR Part 93, unless otherwise authorized by air traffic control. Not all areas listed in 14 CFR Part 93 are Special Flight Rules Areas, but special air traffic rules apply to all areas designated as SFRA.

REFERENCE--
14 CFR Part 93, Special Air Traffic Rules.
P/CG, SPECIAL AIR TRAFFIC RULES (SATR).
P/CG, SPECIAL FLIGHT RULES AREA (SFRA).

b. Each person operating an aircraft to, from, or within airspace designated as a SATR area or SFRA must adhere to the special air traffic rules set forth in 14 CFR Part 93, as applicable, unless otherwise authorized or required by ATC.

2–1–20. ATC SECURITY SERVICES FOR THE WASHINGTON, DC, SPECIAL FLIGHT RULES AREA (DC SFRA)

ATC security services are designed to support the national security mission of the FAA and other agencies. A designated security services position has area responsibility for the purpose of security service. Such positions do not have airspace jurisdiction and are not ATC operational positions for purposes beyond the scope of this section, for example, transfer of control, communications, point–out, etc.

a. The OS/CIC must report all instances of loss of radio communication, intermittent transponder or transponder/Mode C failure, the inability to security track aircraft, and other unusual IFR/VFR flight information to the Domestic Events Network (DEN) through the appropriate lines of communication. Some examples are, but are not limited to; suspicious activities, deviation from assigned course/altitude, or other equipment malfunction that may cause an aircraft to operate in an unexpected manner. Relay all known information regarding the aircraft.

b. ATC Security Services Position: ATC Security Services Position is responsible for providing ATC security services as defined. This position does not provide air traffic control IFR separation or VFR flight following services, but is responsible for providing security services in an area comprising airspace assigned to one or more ATC operating
sectors and as such, normal airspace jurisdictional constraints do not apply.

c. Facility manager must:

1. Designate in a facility directive which existing position(s) and frequencies will be utilized to provide Security Services when required and the transition procedures from the ATC operational status to the Security Services Position.

2. Ensure that contingency plan parent and support procedures are updated regarding operational capability level (OCL) changes that affect Special Security Areas.

NOTE—
The requirement to establish an ATC Security Services Position in addition to ATC operating position does not by itself constitute a need for additional staffing nor is its purposes intended to justify or deny facility staffing needs.

d. When the Security Services position and the ATC Operating position are both staffed, detailed position responsibilities must be defined in the facility directive.

NOTE—
Airspace sectorization and the workload associated with the normal use of that airspace may degrade the ability of an ATC operation position to provide security services. When this occurs, pilots must be held outside of the security services area in accordance with FAA Order JO 7110.65, paragraph 9–2–1, Aircraft Carrying Dangerous Materials, subparagraph b2.

1. When an ATC Security Services Position is not separately staffed, the appropriate ATC operating position responsible for that airspace will assume the security service responsibilities.

2. Requests for ATC services to VFR aircraft operating within the designated area to enter positive controlled airspace must be issued by the appropriate radar position in accordance with FAA Order JO 7110.65, Air Traffic Control, and other applicable directives.

e. Adjacent Airport Operations.

1. Aircraft that will enter the designated airspace after departing controlled airports within or adjacent to security areas must be provided security services by the appropriate ATC facility having jurisdiction over the affected airspace. Procedures for handling this situation must be covered in a Letter of Agreement (LOA) or facility directive as appropriate.
directive and the signage at the intended hold position must be consistent with the phraseology identified in FAA Order JO 7110.65, paragraph 3−7−2, Taxi and Ground Movement Operations.

d. ATMs must consult with the airport authority, Flight Standards, Airports, and the Regional Runway Safety Program Manager (RSPM) when developing proposed solutions and establishing local procedures. The RSPM will assist the ATM, as needed, in initiating contact with Flight Standards and Airports.

REFERENCE—
P/CG Term – Approach/Departure Hold.

2−1−23. FACILITY IDENTIFICATION

a. Service Area Directors are the focal point to review/approve requests for waivers for facility identification changes in FAA Order JO 7110.65, Air Traffic Control, paragraph 2−4−19, Facility Identification, subparagraphs a, b, and c. The Flight Service Safety and Operations Group (AJR−B100) is the focal point to review/approve requests for waivers for facility identification changes in FAA Order JO 7110.10, Flight Services, paragraph 11−1−14, Facility Identification, subparagraph f. If the waiver request is approved, the Service Area Director or the Director of Flight Service, as appropriate, must ensure that all aeronautical publications are changed to reflect the new identification and that a Letter to Airmen is published notifying the users of the change.

b. Service Area Directors must forward a copy of the approval to System Operations Services.

2−1−24. DISPOSITION OF OBSOLETE CHARTS

a. Obsolete charts may only be disposed of by destroying, including recycling, or by giving to flight schools and other training institutions where the charts are to be used only for training in the classroom. Under no circumstances should obsolete charts be given to pilots or the general public, regardless if they are marked obsolete or not.

b. There are hundreds of changes that appear on each new edition of a chart. When pilots are given obsolete charts they are not aware of critical changes that have occurred. Further, the use of such a chart could result in a Code of Federal Regulations (CFR) violation or an accident which would have serious legal implications for the agency.

2−1−25. OUTDOOR LASER DEMONSTRATIONS

a. The Area Directors of Terminal Operations Services are the focal point for reviewing/approving requests for outdoor laser demonstrations.

b. FAA Order JO 7400.2, Procedures for Handling Airspace Matters, is the source for processing outdoor laser demonstration requests.

2−1−26. COMBINE/RECOMBINE AN ATCT/TRACON

Prior to consideration for any ATCT/TRACON to combine or recombine, a detailed staff study will be required from the facility explaining the benefit to the agency and the customer. After the Terminal Operations Service Area office review, the staff study must be forwarded to the Director of Terminal Planning. A decision to combine or recombine an ATCT/TRACON will require coordination with the ATO Chief Operating Officer.

2−1−27. SUBMISSION OF AIR TRAFFIC CONTROL ASSIGNED AIRSPACE (ATCAA) DATA

Air Traffic Service Area offices submit data on all ATCAAs used on a continuing/constant basis, and any subsequent changes to the ATCAA database to System Operations Airspace and Aeronautical Information Management for the purpose of updating the Special Use Airspace Management System (SAMS) and Aeronautical Information System. Include the following as applicable:

a. Transmittal memorandum containing a brief overview of the ATCAA, and/or changes to, FAA headquarters, and System Operations Airspace and Aeronautical Information Services. Summarize the ATCAAs or any amendments made to ATCAAs including additional changes, etc.

b. A separate attachment that contains a description of the area to include latitude/longitude points, boundaries, altitudes, times, controlling agency, using agency, and any other relevant information.

NOTE—
If only part of the description of an existing area is being
amended, the attachment should show just the changed
information rather than the full legal description.

c. A sectional aeronautical chart depicting the
final boundaries of the proposed area, including any
subdivisions.

d. Any other information that should be con-
idered by FAA headquarters.

NOTE—
ATCAA descriptive data will normally be submitted
9 weeks prior to the requested/required airspace effective
date.

2–1–28. SUBMISSION OF SUA AND PAJA
FREQUENCY INFORMATION

The Aeronautical Information Services maintain a
national database of Special Use Airspace (SUA) and
Parachute Jump Area (PAJA) controlling sector
contact information. The database is used to publish
frequencies for pilots to obtain status information for
SUAs and PAJAs. Facility managers should ensure
that the following information is forwarded to
Aeronautical Information Services:

a. Contact frequencies for existing SUAs and
PAJAs within your area of jurisdiction.

b. Any changes to contact frequencies for existing
SUAs and PAJAs within your area of jurisdiction.

c. Contact frequencies for any new SUAs or
PAJAs within your area of jurisdiction.

2–1–29. REPORTING UNAUTHORIZED
LASER ILLUMINATION OF AIRCRAFT

Consistent with the provisions of Air Traffic Service,
Duty and Operational Priorities; all Air Traffic
Control facilities, FAA Contract Towers, and Flight
Service Stations must report unauthorized laser
illumination incidents as follows:

a. Contact local law enforcement or the Federal
Bureau of Investigation (FBI) as soon as possible
providing location, description, and other pertinent
information regarding the incident;

b. Report the incident to the Domestic Events
Network (DEN) Air Traffic Security Coordinator
(ATSC);

c. Record the incident via the Comprehensive
Electronic Data Analysis and Reporting (CEDAR)
program or, if CEDAR is not available, via the
appropriate means, in accordance with FAA Order JO
7210.632, Air Traffic Organization Occurrence Reporting:

d. Provide the following information when
reporting the incident via the DEN and CEDAR:

 1. UTC date and time of event.
 2. Call Sign, or aircraft registration number.
 3. Type of aircraft.
 4. Nearest major city.
 5. Altitude.
 6. Location of event (e.g., latitude/longitude
 and/or Fixed Radial Distance (FRD)).
 7. Brief description of the event.
 8. Any other pertinent information.
 9. Law enforcement contact information.

NOTE—
Facilities without direct access to the DEN should
forward the information through the Washington
Operations Center Complex (WOCC) to the DEN.

REFERENCE—
FAA Order JO 7110.65, Para 2–9–3, Content.
FAA Order JO 7110.65, Para 10–2–14, Unauthorized Laser Illumina-
tion of Aircraft.

2–1–30. REPORTING SUSPICIOUS
AIRCRAFT/PILOT ACTIVITIES

a. Facility air traffic managers must ensure that the
operational supervisor/controller-in-charge promptly reports any suspicious aircraft/pilot
activities to the Domestic Events Network (DEN) Air
Traffic Security Coordinator (ATSC).

NOTE—
Additional information for ATC on identifying suspicious
situations is located in FAA Order JO 7610.4, Special
Operations, Chapter 7, Section 3, Suspicous Aircraft/Pilot
Activity.

b. The DEN ATSC must be notified as soon as
possible of any suspicious activity, including the
following:

 1. Radio communications are lost or not
established. Consider any IFR aircraft that is
NORDO for more than 5 minutes as suspicious. This
includes all aircraft (for example, general aviation,
law enforcement, military, medevac) regardless of
transponder code. ATC actions taken to establish
communications with the NORDO aircraft must be
reported to the DEN ATSC.
2. An aircraft fails to turn on or changes from its assigned transponder beacon code (other than approved emergency/radio failure beacon code).

3. An aircraft deviates from its assigned route of flight/altitude and refuses to return to it when instructed.

4. Phantom or inappropriate transmissions such as unusual questions about military activities or sensitive/secure areas.

5. Inconsistent or abnormal repetitive aircraft activity such as; flights over/near sites of interest or prohibited/restricted airspace, inappropriate speed or rate of climb/descent, or missed crossing restrictions or reporting points.

6. Pilot reports flight difficulties with no eventual explanation or response to ATC.

7. Any air carrier, cargo, or scheduled air taxi that requests to divert from its original destination or route for any reason other than weather or routine route changes should be considered by ATC as suspicious activity.

8. Any general aviation arriving from an international departure point that requests to divert from the original U.S. destination airport.

9. Other general aviation and non-scheduled air taxi or charter services that request to divert from the original destination or route for any unusual reason (e.g., reasons other than weather, company request, passenger request, mechanical, etc.) should be considered by ATC as suspicious activity.

10. Any other situation that may indicate a suspicious aircraft, including any reported or observed unauthorized unmanned aircraft activity or remote controlled model aircraft that deviate from normal practice areas/activity would be considered suspicious or a safety hazard.

REFERENCE—
FAA Order JO 7110.65, Para 2–1–2, Duty Priority.
Advisory Circular 91–57, Model Aircraft Operating Standards.

11. Any situation or pilot activity (for example, background noise, change in pilot’s voice characteristics, etc.) that may indicate a hijacked aircraft. Due to air to ground communications capabilities (e.g., data links, cellular phones), ATC facilities may learn of a hijack situation from alternate sources (for example, airline air operations center) rather than the aircrew itself.

2–1–31. REPORTING DIVERTED AIRCRAFT ARRIVING FROM INTERNATIONAL LOCATIONS

Any aircraft departing from an international location that diverts to a U.S. Airport, or is diverted and lands at a U.S. airport different from the original U.S. destination airport, must be reported to the Domestic Events Network (DEN) Air Traffic Security Coordinator (ATSC). In addition, any diverted aircraft that ATC identifies as suspicious (in accordance with paragraph 2–1–30) must be promptly reported to the DEN ATSC.

NOTE—
Weather, airport/runway conditions, or other unforeseen reasons may necessitate an aircraft to divert or be diverted on short notice. Reporting via the DEN assists U.S. Customs and Border Protection (CBP) with real–time notification of the airport change.

2–1–32. REPORTING INOPERATIVE OR MALFUNCTIONING ADS–B TRANSMITTERS

FAA Flight Standards Service (AFS), Safety Standards Division is responsible for working with aircraft operators to correct ADS–B malfunctions. Reports of inoperative or malfunctioning ADS–B transmitters must be forwarded to adsbfocusteam@faa.gov and must include the following information:

a. The aircraft identification used for the flight;

b. Location of the occurrence;

c. Date and time of the occurrence (UTC); and

d. Any additional information or observations that may be pertinent or helpful to AFS in their investigation.

NOTE—
The intent of this paragraph is to capture ADS–B anomalies observed by ATC, such as errors in the data (other than Call Sign Mis–Match events, which are detected and reported to AFS automatically) or instances when civil ADS–B transmissions would normally be expected but are not received (e.g., ADS–B transmissions were observed on a previous flight leg).

REFERENCE—
FAA Order JO 7210.3, Para 5–4–2, Requests for Deviation from ADS–B Out Requirements.
FAA Order JO 7210.3, Para 5–4–9, ADS–B Out OFF Operations.
FAA Order JO 7110.65, Para 5–2–22, Inoperative or Malfunctioning ADS–B Transmitter.
FAA Order JO 7110.65, Para 5–2–24, ADS–B Out OFF Operations.
2–1–33. REPORTING SUSPICIOUS UAS ACTIVITIES

Consistent with the provisions of Air Traffic Service, Duty, and Operational Priorities, all Air Traffic Control facilities, FAA Contract Towers, and Flight Service Stations must report suspicious UAS. Suspicious UAS operations may include operating without authorization; loitering in the vicinity of sensitive locations (e.g., national security and law enforcement facilities and critical infrastructure); or disrupting normal air traffic operations resulting in runway changes, ground stops, pilot evasive action, etc. Reports of a UAS operation alone do not constitute suspicious activity. Development of a comprehensive list of suspicious activities is not possible due to the vast number of situations that could be considered suspicious. ATC must exercise sound judgment when identifying situations that could constitute or indicate a suspicious activity.

a. Notify local authorities (e.g., airport/local law enforcement; airport operations; and/or the responsible Federal Security Director Coordination Center) in accordance with local facility directives, including Letters of Agreement with the airport owner/operator.

c. Record the incident via the Comprehensive Electronic Data Analysis and Reporting (CEDAR) program or, if CEDAR is not available, via the appropriate means, in accordance with FAA Order JO 7210.632, Air Traffic Organization Occurrence Reporting.

d. Notify the air traffic manager.

e. Provide the following information when reporting the incident via the DEN and CEDAR:
 1. UTC date and time of incident.
 2. Reporting source(s).
 3. Position: fixed radial distance, bearing and distance, landmark, altitude, and heading.
 4. Flight behavior (i.e., loitering, heading toward the airport).
 5. UAS type (e.g., quadcopter, fixed wing), if known.

 6. Report operational impacts in accordance with paragraph 21–4–1, Domestic Events Network (DEN), of this order.

f. Attempt to obtain additional information relevant to the suspicious UAS including:
 1. Size and color.
 2. Number of reported/sighted UAS.
 3. Location of the person(s) operating the UAS.
 4. Remote pilot information including name, address, and phone number, if obtained by local law authorities or other verifiable means.

g. Facilities must maintain a checklist that provides guidance on reporting suspicious UAS activities. At a minimum, this checklist must be available to Operations Supervisor (OS), Controller-in-Charge (CIC), and Operations Manager (OM) personnel. Facilities must consider the following for inclusion on the checklist:
 1. Items a through f of this paragraph.
 2. Contact information necessary for completing the notification requirements of this paragraph.
 3. Local factors that may be necessary in determining if an operation is suspicious (e.g., location of critical infrastructure).
 4. A requirement to notify the Regional Operations Center (ROC) for security-related events that may generate significant media or congressional interest as required by FAA Order JO 1030.3.
 5. Any other information as deemed necessary by the air traffic manager.

REFERENCE–
FAA Order JO 7110.65, Para 2–1–2, Duty Priority.
FAA Order JO 7610.4, Para 7–3–1, Application.
FAA Order JO 7210.632, Air Traffic Organization Occurrence Reporting.
P/CG Term – Suspicious UAS.

2–1–34. USE OF UAS DETECTION SYSTEMS

Airport owners/operators or local enforcement may contact ATC facilities to coordinate their acquisition, testing, and operational use of UAS detection systems. These systems and how they are used may have implications for FAA regulations for airports; potentially affect ATC and other Air Navigation
Services systems (e.g., RF interference with radars); and/or trigger airport responses (e.g., closing runways), which must be coordinated with ATC.

a. Requests by airport authorities for ATC facility cooperation/authorization in the acquisition, testing, or use of UAS detection systems will be referred to the appropriate FAA Airports District Office (ADO). The ADO will initiate internal FAA coordination, including reviews by the responsible ATO offices and facilities.

b. ATC facilities must not enter into any verbal or written agreement with a commercial vendor or an airport authority regarding UAS detection capabilities without prior coordination and approval from HQ–AJT–0.

NOTE –
1. UAS detection systems do not include the interdiction components that characterize UAS mitigation technologies, also referred to as Counter Unmanned Aircraft System (C–UAS) technologies. Only select Federal Departments and Agencies have the legal authority to use C–UAS systems in the NAS. The FAA does not support the use of this technology by other entities without this legal authorization.

2. The FAA does not advocate the use of UAS detection in the airport environment until appropriate policy and procedures are developed.

2–1–35. USE OF COUNTER UNMANNED AIRCRAFT SYSTEMS (C–UAS)

Select Departments and Agencies, which have been legally authorized to use this technology, are operationally using Counter Unmanned Aircraft System (C–UAS) in the NAS to protect certain facilities and assets. C–UAS are capable of disabling, disrupting, or seizing control of a suspicious UAS, and may integrate or be linked to UAS detection capabilities. These Departments and Agencies are required to coordinate with the FAA to assess and mitigate risks posed by these C–UAS systems. These systems and their deployment may affect ATC and other Air Navigation Services systems (e.g., RF interference with radars); which could impact other air traffic in the vicinity, including legitimate, compliant UAS flights. Additionally, the C–UAS may involve the response and deployment of ground/airborne operational security assets, which must be coordinated with ATC.

a. The Joint Air Traffic Operations Command (JATOC) Air Traffic Security Coordinator (ATSC) team, which manages the Domestic Events Network (DEN), must notify affected ATC facilities when C–UAS systems are activated.

NOTE –
Only select Federal Departments/Agencies have been legally authorized to utilize C–UAS to cover certain facilities and assets, and with coordination with the FAA to address risks to the NAS. Risk mitigation for the NAS typically includes notification to potentially affected ATC facilities.

b. The DEN must alert all ATC facilities affected by C–UAS deployment and JATOC National Operations Control Center (NOCC) of any possible operational impacts.

1. The alerts will focus on real–time reporting regarding possible operational impacts of C–UAS activities providing the affected facilities with heightened awareness to potential flight and equipment anomalies; and will allow the facilities to take actions needed to sustain safe operations.

2. The alerts must be made via landline communications and must not be broadcast over radios, shout lines, or direct dial lines to air traffic controllers on position.

3. The affected ATC facilities must not discuss C–UAS operations with any outside entity.

2–1–36. REPORTING DEATH, ILLNESS, OR OTHER PUBLIC HEALTH RISK ON BOARD AIRCRAFT

a. When an air traffic control facility is advised of a death, illness, and/or other public health risk, the following information must be forwarded to the DEN:

1. Call sign.

2. Number of suspected cases of illness on board.

3. Nature of the illness or other public health risk, if known.

4. Number of persons on board.

5. Number of deaths, if applicable.

6. Pilot’s intent (for example, continue to destination or divert).
7. Any request for assistance (for example, needing emergency medical services to meet the aircraft at arrival).

NOTE

1. If the ATC facility is not actively monitoring the DEN or does not have a dedicated line to the DEN, they must call into the DEN directly via 844-432-2962 (toll free).

2. Except in extraordinary circumstances, such as a situation requiring ATC intervention, follow-on coordination regarding the incident will not involve ATC frequencies.

3. The initial report to a U.S. ATC facility may be passed from a prior ATC facility along the route of flight.

b. Once notification of an in-flight death, illness, and/or other public health risk is provided by an ATC facility, the DEN Air Traffic Security Coordinator must ensure the Centers for Disease Control and Prevention (CDC) Emergency Operations Center (EOC) receives the following information:

 1. Call sign.
 2. Number of suspected cases of illness on board.
 3. Nature of the illness or other public health risk, if known.
 4. Number of persons on board.
 5. Number of deaths, if applicable.
 6. Departure airport.
 7. Arrival airport.
 8. Estimated time of arrival.
 9. Pilot’s intent (for example, continue to destination or divert).
 10. Any request for assistance (for example, a need for emergency medical services to meet aircraft at arrival).

REFERENCE

FAA Order JO 7110.65, Para 10–2–19, Reporting Death, Illness, or Other Public Health Risk on Board Aircraft.

2–1–37. OPPOSITE DIRECTION OPERATIONS

Opposite Direction Operations consists of IFR/VFR Operations conducted to the same or parallel runway where an aircraft is operating in a reciprocal direction of another aircraft arriving, departing, or conducting an approach.

REFERENCE

FAA Order JO 7110.65, Para 1–2–2, Course Definitions.

a. Each facility must:

 1. Determine the operational feasibility of conducting opposite direction operations.
 2. At a minimum, develop the opposite direction operations procedures necessary to accommodate aircraft that have an operational need or receiving operational priority.

REFERENCE

FAA Order JO 7110.65, Para 2–1–4, Operational Priority.

b. For aircraft receiving IFR services that are conducting opposite direction operations to the same runway, facility directives must:

 1. Define minimum cutoff points identified by distance or fixes between:

 (a) An arrival and a departure.

 (b) An arrival and an arrival.

 2. Specify that use of Visual Separation is not authorized, except at those unique locations that are operationally impacted by terrain and when issued a Letter of Authorization by the Service Area Director of Operations.

 3. Require traffic advisories to both aircraft.

EXAMPLE

OPPOSITE DIRECTION TRAFFIC (distance) MILE FINAL, (type aircraft). OPPOSITE DIRECTION TRAFFIC DEPARTING RUNWAY (number), (type aircraft). OPPOSITE DIRECTION TRAFFIC, (position), (type aircraft).

4. Require the use of a memory aid.

5. Prohibit opposite direction same runway operations with opposing traffic inside the applicable cutoff point unless an emergency situation exists.

6. Specify the position/facility responsible for ensuring compliance with cutoff points between aircraft conducting opposite direction operations.

7. Contain the following minimum coordination requirements:

 (a) Define the facility/position that is responsible for initiating coordination.

 (b) All coordination must be on a recorded line and state “Opposite Direction.” Initial coordination must include call sign, type, and arrival or departure runway.

 c. The cutoff points established under subparagraph b1 must ensure that required lateral separation exists:
1. When a departing aircraft becomes airborne and has been issued a turn to avoid conflict; or

2. When the first aircraft has crossed the runway threshold for opposite direction arrivals.

3. If the conditions in subparagraphs c1 and c2 are not met, facility directives must require action be taken to ensure that control instructions are issued to protect the integrity of the cutoff points.

d. At a minimum, the following must be considered when developing cutoff points:

1. Aircraft performance.
2. Type of approach.
3. Operational position configuration.
4. Runway configuration.
5. Weather conditions.
6. Existing facility waivers.

e. For aircraft receiving IFR services that are conducting opposite direction operations to parallel runways regardless of the distance between centerlines, facility directives must:

1. Ensure that a turn away from opposing traffic is issued when opposing traffic is inside the cutoff points defined in b1 for the other runway.

2. Specify that use of Visual Separation is authorized once a turn away from opposing traffic is issued.

REFERENCE–
FAA Order JO 7110.65, Para 7-2-1, Visual Separation.

f. For VFR aircraft that are conducting opposite direction operations to same or parallel runways, facility directives must contain procedures requiring the use of the following, including but not limited to:

1. Ensuring departing VFR aircraft are issued a turn to avoid conflict with opposing IFR/VFR traffic.
2. Traffic advisories to both aircraft.
3. State the phrase “opposite direction” if coordination is required.

4. Memory Aids.

g. All facility directives and letters of agreement addressing opposite direction operations must be approved by the Service Area Director of Operations.

REFERENCE–
FAA Order JO 7110.65, Para 3-8-4, Simultaneous Opposite Direction Operation.

2–1–38. SPECIAL INTEREST SITES

a. Supervisory/CIC personnel receiving any reports or information regarding unusual aircraft activities in the vicinity of special interest sites such as nuclear power plants, power plants, dams, refineries, etc., must immediately notify local law enforcement authorities of these reports/information and notify the overlying air traffic facility of any of these reports and the action taken. Supervisory/CIC personnel may receive reports/information from the Nuclear Regulatory Commission or other sources.

b. Air traffic facilities must promptly advise the Domestic Events Network (DEN) of any actions taken in accordance with this paragraph.

c. Individual facilities must determine which special interest sites, if any, should be displayed on maps, charts, and video displays.
2–1–39. TRANSPORTATION SECURITY ADMINISTRATION AND FAA JOINT OPERATING PROCEDURES

The requirements for Air Traffic Managers (ATM) to follow during security events, according to the Transportation Security Administration (TSA) and the FAA Joint Operating Procedures Agreement, are as follows:

a. If the TSA Federal Security Director (FSD) informs the ATM of an imminent and potentially life threatening security situation, the ATM, consistent with safety, must comply with the FSD’s requested operational response. As soon as possible after action is taken, the ATM must contact the Domestic Events Network (DEN) Air Traffic Security Coordinator (ATSC) and report any action taken.

b. The above guidance does not preclude the ATM from taking immediate action in the event the ATM learns of an imminent and potentially life threatening security situation. In such situations, as soon as possible, the ATM must notify the DEN ATSC and the FSD of the situation, along with any action taken.

NOTE−
For information concerning reporting of suspicious activities around airports and FAA facilities, see JO 7210.3, paragraph 2–7–6, Suspicious Activities Around Airports or FAA Facilities.

c. For any security situation identified by TSA, in addition to those that are “imminent and life threatening,” the ATM must contact the DEN ATSC and the FSD to report the situation.

d. At airports that have both an FAA and TSA presence, the ATM and FSD must meet at least every 6 months, or within sixty days of a new ATM or FSD entering into their position, to exchange/update contact information and to discuss security-related information and plans of mutual interest.

e. The responsibilities outlined in this paragraph may be delegated as necessary.

2–1–40. DISPLAYING SPACE LAUNCH AND REENTRY AREAS ON THE SITUATION DISPLAY

Facility ATMs must develop a means to ensure that volumes of airspace depicted on an operational situation display for space launch and reentry operations are verified to be accurate.

2–1–41. DISPLAYING DEBRIS RESPONSE AREAS ON THE SITUATION DISPLAY

Facility ATMs must develop a means to ensure that, when possible, debris response areas (DRA) are displayable on operational situation displays at the start of a launch or reentry window.

NOTE−
The intent of this requirement is to allow controllers to quickly display a DRA if it is activated. If technical limitations prevent the DRA from being drawn on the operational situation display in advance of a space operation, such as if the DRA would cover an entire sector or facility, then an alternative means of providing the needed geographic area of the DRA to the controller must be used. This could be accomplished using the TSD, a paper map, or some other means.

2–1–42. ACCESS TO FALCON REPLAY SYSTEM

Air traffic managers (ATM) must assign access to the Falcon Replay System with voice for:

a. Facility management and Quality Control personnel.

b. Training Team Members.

c. Local Safety Council Members.

f. Other facility personnel deemed appropriate by the ATM or their designee.
(c) the previous 5 year average low temperature at the primary airport is documented to be less than the temperature shown in TBL 3–8–1 for the amount of ROC reduction requested. Retain temperature documentation locally with approved 7210-9. Use TBL 3–8–1 to determine the extent of mountainous terrain reduction permitted if rounding down, based on the average low temperature. Comply with the following process to determine the average low temperature.

1. Go to the National Center for Environmental Information website at www.ncei.noaa.gov.
2. Mouse over the “Resources” link on the blue bar.
3. Click on “Quick Links.”
4. Click on “Global Historical Climatology Network” link.
5. Click on “Global Summary of the Year.”
6. Accept the default date, select “Stations” in the search for field, then enter the station representing the primary airport. Then click on search.
7. Click on the airport name. When the page opens, scroll down to “View Station Data.” Select the year interested in. Then view data.
8. A report will appear, then go to the second page. Document the EMNT value. Select each relevant year and document the EMNT for that year. Then calculate the 5-year average.

TBL 3–8–1

<table>
<thead>
<tr>
<th>Requested ROC Reduction</th>
<th>Minimum Average Low Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>100’</td>
<td>-40°C/-40°F</td>
</tr>
<tr>
<td>200’</td>
<td>-35°C/-31°F</td>
</tr>
<tr>
<td>300’</td>
<td>-30°C/-22°F</td>
</tr>
<tr>
<td>400’</td>
<td>-25°C/-13°F</td>
</tr>
<tr>
<td>500’</td>
<td>-20°C/-4°F</td>
</tr>
<tr>
<td>600’</td>
<td>-15°C/5°F</td>
</tr>
<tr>
<td>700’</td>
<td>-10°C/14°F</td>
</tr>
<tr>
<td>800’</td>
<td>-5°C/23°F</td>
</tr>
<tr>
<td>900’</td>
<td>0°C/32°F</td>
</tr>
<tr>
<td>1000’</td>
<td>7°C/45°F (2°C/36°F when MVA sector is within 35 NM of issued altimeter)</td>
</tr>
</tbody>
</table>

h. Managers requesting to waive criteria contained in FAA Order 8260.3, must submit FAA Form 8260-1, Flight Procedures/Standards Waiver in conjunction with the MVA project. This waiver form will contain the criteria requested to be waived, with the operational need fully explained, and examples of how the facility will achieve an equivalent level of safety, if approved. The package will be sent to the Radar Video Mapping Team through the Service Center OSG. Upon completion of the Radar Video Mapping Team review, the package will be forwarded to the Flight Procedure Implementation and Oversight Branch. For the Flight Standards Waiver process, facility managers do not need to complete a Safety Management System evaluation. An electronic copy of the completed waiver package must be sent to Operations Headquarters Directorate, AJT-2, at 9–AJT–HQ–Correspondence.

i. MVAs must not be below the floor of controlled airspace and should provide a 300–ft buffer above the floor of controlled airspace. In some cases, this application will result in an exceptionally high MVA (for example, in areas where the floor of controlled airspace is 14,500 MSL). When operationally required to vector aircraft in underlying Class G (uncontrolled) airspace, 2 MVAs may be established. The primary MVA must be based on obstruction clearance and the floor of controlled airspace. A second, lower MVA that provides obstruction clearance only may be established. The obstruction clearance MVA must be uniquely identified; for example, by an asterisk (*). Do not consider buffer areas for controlled airspace evaluations.

j. If new charts prepared using SDAT create a significant impact on a facility’s operation, the impact must be coordinated with Operations Headquarters Directorate, AJT-2, for joint coordination with System Operations.

NOTE
Significant impacts include changes to flight tracks for turbine–powered aircraft, multiple losses of cardinal altitudes, and/or reductions in airport arrival/departure rates.

k. Air traffic managers may request to merge adjoining, like altitude MVA sectors that resulted from using differing design criteria provided the merged sectors are identified in the remarks on FAA Form 7210–9 and a statement is included with each affected sector that the merged sectors are for Radar Video Map (RVM) presentation only; for example,
Sector B, B1, and B2 are to be merged in SDAT shape files for RVM presentation only.

1. Air traffic managers must submit the request for MVACs to the appropriate Service Center OSG for review. The Service Center OSG must then forward the requested MVAC to the Radar Video Mapping Team for processing.

m. Each request must indicate the MVAC was accomplished in Web–SDAT, stored in the Web–SDAT database and when necessary, include a statement regarding the issued altimeter settings being within 65 NM of a rounded down sector and/or provides the 5–year average cold temperature.

n. Each request must include the SDAT generated Form 7210-9 with the manager’s signature and point of contact at the submitting facility. Form 7210-9 must also be an electronic copy with the manager’s signature, and imported into the MVA project file. When applicable, each Form 7210-9 must include explanations/justifications for ROC reduction requests. The MVA request with the 7210-9 will be electronically forwarded to the OSG. When the capability of electronic signatures is developed within SDAT, Form 7210-9 may be transmitted electronically between the facility, Service Center, and Radar Video Mapping Team in lieu of the paper process. SDAT will automatically store the approved MVAC package in the National Airspace System Resource (NASR).

o. When more than one chart is used, prepare those charts with the oldest review/certification date(s) first to help avoid lapses in annual review/certification requirements.

p. New charts that result in significant operational impacts must not be implemented by air traffic managers until associated changes to facility directives, letters of agreement, and controller training are completed within a period not to exceed 6–months from new chart certification.

q. Once a chart without significant operational impacts has been approved, it must be implemented as soon as possible. MVAC installations projected to be more than 60 days from date of approval must be coordinated with and approved by the Service Center OSG.

r. Air traffic managers must ensure that MVACs are periodically reviewed for chart currency and simplicity and forwarded for certification to the Radar Video Mapping Team at least once every 2 years. Charts must be revised immediately when changes affecting MVAs occur.

3–8–3. ALTITUDE ASSIGNMENTS TO S/VFR AND VFR AIRCRAFT

Where procedures require altitude assignments to S/VFR and VFR aircraft less than the established IFR altitude or MVA, facility air traffic managers must determine the need and the method for displaying the appropriate minimum altitude information.

REFERENCE–
FAA Order JO 7110.65, Para 7–5–4, Altitude Assignment.
FAA Order JO 7110.65, Para 7–8–5, Altitude Assignments.

3–8–4. EMERGENCY OBSTRUCTION VIDEO MAP (EOVM)

a. An EOVM must be established at all terminal radar facilities that have designated mountainous areas as defined in 14 CFR Part 95, Subpart B, within their delegated area of control and an available channel in their video mappers. This map is intended to facilitate advisory service to an aircraft in an emergency situation in the event an appropriate terrain/obstacle clearance minimum altitude cannot be maintained. (See FIG 3–8–1.)

NOTE–
Appropriate terrain/obstacle clearance minimum altitudes may be defined as MIA, MEA, Minimum Obstruction Clearance Altitude (MOCA), or MVA.

b. Alternatives, such as combining existing maps, eliminating a lower priority map or, as a least desirable alternative, merging the EOVM with the MVA map, must be considered when necessary to accommodate the EOVM.

c. EOVM Use: The EOVM must be used and the advisory service provided only when a pilot has declared an emergency or a controller determines that an emergency condition exists or is imminent because of the inability of an aircraft to maintain the appropriate terrain/obstacle clearance minimum altitude/s.

d. EOVM Design:

1. The basic design of the EOVM must incorporate the following minimum features:
Section 5. Other Correspondence

4–5–1. LETTERS OF PROCEDURES

a. Facility air traffic managers must prepare letters of procedure for stating specific terms regarding the release by the using agency of restricted areas as defined in 14 CFR Part 73.

b. Prepare and handle letters of procedure as follows:

1. Coordinate with the using agency procedures for the joint–use of a restricted area. (See 14 CFR Section 73.15.)

2. After coordination, send two copies of the proposed document to the Service Area office.

3. The Service Area office must review and approve or delegate the authority for approval to the facility air traffic manager. Forward to Service Area office for approval any joint–use letter that proposes procedures considered a substantial departure from the recommended format.

4. Upon receipt of approval from the Service Area office, the facility air traffic manager must prepare the final letter, incorporating Service Area office guidance, sign (along with the appropriate using agency authority), and establish an effective date allowing at least 30 days for any rulemaking actions necessitated by subparagraph 5 below, and the cartography and the distribution requirements.

5. An FAA facility must be designated in 14 CFR Part 73 as the controlling agency of any joint–use restricted area. When an ATC requirement exists in a joint–use restricted area, rulemaking action is also necessary to designate restricted areas as controlled airspace below 14,500 MSL.

6. The document must contain an effective date.

7. Send two copies to each of the participating facilities or agencies; one copy directly to the Service Area office.

4–5–2. LETTERS TO AIRMEN

a. Facility air traffic managers may approve letters to airmen to publicize new or revised services, anticipated interruptions of service, procedural changes, and other items of interest to users.

b. The Letter To Airmen must adhere to the following:

1. The Letter To Airmen must be originated in LTA Manager and disseminated via the AIM NOTAM website.

2. The Letter To Airmen is informational in nature and must not contain words which imply mandatory instructions. The words “must” and “shall” are not to be used in a Letter To Airmen.

3. Chart attachments must be used in lieu of narrative descriptions to the extent possible.

4. The signed original Letter To Airmen must be maintained by the originating facility.

5. Each Letter To Airmen must contain an effective date (UTC) and a cancellation date (UTC) and must not remain in effect beyond the date the information contained in the letter becomes obsolete or more than 24 months, whichever occurs first.

6. Issue a new Letter To Airmen for the same subject prior to the end of the 24–month period only if the information contained requires continued publication. (See FIG 4–5–1.)
c. Service Center Operations Support Groups (OSGs) must provide the following support using the electronic letters to airmen management tool—LTA Manager:
 1. Air traffic facility account management.
 2. Publish or reject letters to airmen.

4–5–3. DISPOSITION OF VOLCANIC ACTIVITY REPORTING (VAR) FORMS

Should a controller receive a completed volcanic activity report (VAR) form during a pilot briefing, the controller is directed to forward the form to the supervisor/CIC on duty. The supervisor/CIC must mail or fax the completed form to the Smithsonian Institute as specified at the bottom of the form within 24 hours of receipt.
Section 6. Records

4–6–1. FACILITY RECORDS MANAGEMENT

Manage facility records in accordance with FAA Order 1350.14, Records Management.

4–6–2. COLLECTION OF OPERATIONAL DATA

a. Air traffic managers are responsible only for the routine collection and reporting of basic operational information as authorized in this order or by the appropriate service unit. Collection of any data must be considered a secondary function and must not interfere with the accomplishment of operational duties.

b. Air traffic managers must not permit their facilities to participate in special studies and surveys nor agree to the use of facility personnel to tabulate, prepare, or forward to outside organizations or parties any special summaries, abstracts, reports, or aeronautical data unless approved in advance by the Service Area office.

4–6–3. FORMS PREPARATION

a. Exercise care when preparing forms to ensure neatness and accuracy. The forms are a part of the facility’s permanent records and subject to review by authorized personnel or agencies.

b. Except as in subparagraph c, do not erase, strikeover, or make superfluous marks or notations. When it is necessary to correct an entry, type or draw a single horizontal line through the incorrect data, initial that part of the entry, and then enter the correct data.

c. When using an automated Form 7230–4, grammatical and spelling errors may be corrected by use of delete or type–over functions. Substantive changes in contents of remarks should be accomplished by a subsequent or delayed entry. If the computer software used contains a strikeout feature, this feature may be used.

d. Authorized FAA abbreviations and phrase contractions should be used.

e. New daily forms must be put into use at the start of each day’s business.

4–6–4. FAA FORM 7230–4, DAILY RECORD OF FACILITY OPERATION

1. Each air traffic facility, where FAA telecommunications network capability exists (excluding flight service stations), must use the Comprehensive Electronic Data Analysis and Reporting (CEDAR) program to complete an automated version of FAA Form 7230–4. Any Mandatory Occurrence Report (MOR), documented in CEDAR will automatically generate an FAA Form 7230–4 entry; however, some Form 7230–4 entries do not require an MOR as addressed in paragraph 4–6–5h.

2. Where currently in use, facilities and/or TMUs may continue to use the NTML to complete an automated version of the FAA Form 7230–4.

3. If an automated method is not available to complete FAA form 7230–4, the facility and or traffic management unit must manually complete the form. An example of the Daily Record of Facility Operation follows this section. (See FIG 4–6–1.)

b. The use of FAA Form 7230–4 for individual position assignments is authorized only for the STMCIC, OSIC, OMIC, TMC, TMCIC, and CIC positions, and positions at the ATCSCC.

4–6–5. PREPARATION OF FAA FORM 7230–4

Personnel responsible for preparation of the Daily Record of Facility Operation, FAA Form 7230–4, must ensure that entries are concise, yet adequately describe the operation of the facility, including any abnormal occurrences. Prepare FAA Form 7230–4 as follows:

a. Except as provided in paragraph 4–6–4, use of a computer printout or ink is mandatory. Signatures or handwritten initials must be in either blue or black ink. Handwritten entries must be printed, rather than
Remarks section entries must be single-spaced.

b. Make all time entries in UTC, except that in the section titled “Personnel Log,” local time must be used for time and attendance purposes.

c. Complete the information required at the top of each form.

d. Make an appropriate notation under “Operating Position” to indicate the extent of the operation described on each form; e.g., “AM,” “All,” “Sector D3,” etc.

e. The first entry in the REMARKS section of each day’s form must indicate the employee responsible for the watch and must be used to show carry-over items. Items to be carried over from the preceding “Daily Record of Facility Operation” are those which will affect the current day’s Daily Record (e.g., equipment outages, runway or airspace status, or coordinated routes/procedures). The last entry on each day’s form must indicate the close of business (COB), consider midnight local time or facility closing time, if earlier, as the close of the day’s business.

f. Employees must sign on/off as follows:

1. When a typed or handwritten FAA Form 7230–4 is used, the employee assuming responsibility for the watch must sign on using their operating initials and must sign the certification statement at the bottom of the form.

2. When an automated FAA Form 7230–4 is used, in lieu of actually signing the form, the employee assuming responsibility for the watch must sign on using their name, for example, “1430 J. SMITH ON.” Entering the name of the employee assuming responsibility for the watch, in lieu of entering operating initials, serves the same purpose as signing the certification statement at the bottom of the actual form. Additionally, the employee responsible for the watch at the time that the form is printed out must sign the certification statement at the bottom of the form, as when the actual FAA Form 7230–4 is used.

3. When FAA Form 7230–4 is used to indicate position responsibility, record employees initials and exact minute on/off the position.

g. Establish and post a list of equipment checks required during each watch; e.g., recorder checks, siren check, etc. Make an entry (“WCLC”) on FAA Form 7230–4 when the watch checklist has been completed. Notify the organization responsible for corrective action on equipment malfunctions. Record equipment malfunctions, equipment released for service, notification information and/or course of action taken to correct problem, and return of equipment to service. Facilities may establish local forms and procedures for recording and disseminating equipment malfunction and restoration information. Local forms used for recording this information are considered to be supplements to FAA Form 7230–4 and must be filed with it.

NOTE—
At facilities which are closed prior to the beginning of the new business day, changes in status can occur during nonoperational hours. If the status of equipment or other facility operations has changed from status reported on previous days’ FAA Form 7230–4, changes must be noted in Watch Checklist entry, as well as time of status change, if known (e.g., WCLC – ABC VOR RTS 0700). If necessary, place an “E” in the left margin as prescribed in paragraph 4–6–5, Preparation of FAA Form 7230–4.

h. FAA Order 7210.632, Air Traffic Organization Occurrence Reporting, defines situations requiring a MOR. When a MOR is required, include enough detail in the MOR to provide an understanding of the circumstances that initiated the occurrence. Events such as tarmac delays, no-notice ground stops/holding, and accidents are documented on FAA Form 7230–4; no MOR is required for these items. Other reporting and notification requirements related to tarmac delays, no-notice ground stops/holding, and accidents may apply.

1. En route, terminal and oceanic facilities must use the CEDAR tool to record and disseminate MORs and to document the resolutions of MORs.

2. Flight service stations may use an automated version of FAA Form 7230–4 or establish local forms and procedures for recording, disseminating, and documenting the resolution of MORs. Local forms used for recording this information are considered supplements to FAA Form 7230–4 and must be filed with it.

i. Place a large letter “E” in the left hand margin beside entries on equipment malfunctions. The “E” must also be used when equipment is restored to
service. The “E” is not required for facilities using local forms if procedures are established in accordance with subparagraph g.

NOTE−
The “E” is to be used on entries related to equipment problems which require Technical Operations involvement. The “E” is not required for routine maintenance items or for carryover entries on previously entered equipment malfunctions.

j. Employees other than the person responsible for the watch who make an entry must initial or enter initials for each of their own entries.

k. Use additional forms as necessary to complete the reporting of the day’s activity.

l. Make an entry closing out FAA Form 7230−4 at the close of business.

m. The air traffic manager, or his/her designee, must initial the form after reviewing the entries to ensure that the facility operation is adequately and accurately described.

4−6−6. FAA FORM 7230−10, POSITION LOG

a. Air traffic managers must ensure that FAA Form 7230−10, Position Log, or an automated sign on/off procedure is used for position sign on/off. FAA Form 7230−10 must be prepared daily. All logs, including automated ones, must reflect 24 hours or the facility’s official operating hours, if less than 24 hours daily.

b. Position logs must be used as the sole−source record for on the job training instructor (OJTI) and evaluator time and premium pay. As a supporting document for time and attendance (T&A) purposes, position logs which document on the job training (OJT) time must be retained for one year prior to destruction.

c. Prepare FAA Form 7230−10 as follows:

1. Field 1 must contain the facility three−letter identification code.

2. Field 2 must contain a position identifier that is a maximum of five letters and/or numbers, starting in the first space on the left side of the field. Unused spaces must be left blank.

 (a) ARTCCs: ARTCCs must use sector identifiers which have been approved by the En Route and Oceanic Area Office.

 (b) TERMINALS and FSSs: When there is more than one position of a particular type, establish and use individual identifiers for each position. When only one position of a particular type exists, this field may be left blank.

3. Field 3 must contain a maximum of two letters to show the position type, as follows:

 (a) ARTCCs: Starting on the left side of the field, use position codes as follows:

<table>
<thead>
<tr>
<th>Designator</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Assistant Controller</td>
</tr>
<tr>
<td>D</td>
<td>Non−Radar Control</td>
</tr>
<tr>
<td>F</td>
<td>Flight Data</td>
</tr>
<tr>
<td>H or RA</td>
<td>Handoff, Tracker or Radar Associate</td>
</tr>
<tr>
<td>R</td>
<td>Radar Control</td>
</tr>
<tr>
<td>TM</td>
<td>Traffic Management</td>
</tr>
<tr>
<td>O</td>
<td>Other Positions</td>
</tr>
</tbody>
</table>

(b) **Terminals:** Use two-letter position codes as follows:

<table>
<thead>
<tr>
<th>Designator</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tower</td>
<td></td>
</tr>
<tr>
<td>AC</td>
<td>Approach Control Cab</td>
</tr>
<tr>
<td>CC</td>
<td>Coordinator Cab</td>
</tr>
<tr>
<td>CD</td>
<td>Clearance Delivery</td>
</tr>
<tr>
<td>FD</td>
<td>Flight Data</td>
</tr>
<tr>
<td>GA</td>
<td>Ground Control Assistant</td>
</tr>
<tr>
<td>GC</td>
<td>Ground Control</td>
</tr>
<tr>
<td>GH</td>
<td>Gate Hold</td>
</tr>
<tr>
<td>LA</td>
<td>Local Control Assistant</td>
</tr>
<tr>
<td>LC</td>
<td>Local Control</td>
</tr>
<tr>
<td>SC</td>
<td>Supervision Cab</td>
</tr>
<tr>
<td>TRACON</td>
<td></td>
</tr>
<tr>
<td>AP</td>
<td>Approach Control TRACON</td>
</tr>
<tr>
<td>AR</td>
<td>Arrival Radar</td>
</tr>
<tr>
<td>CI</td>
<td>Coordinator TRACON</td>
</tr>
<tr>
<td>DI</td>
<td>Data TRACON</td>
</tr>
<tr>
<td>DR</td>
<td>Departure Radar</td>
</tr>
<tr>
<td>FM</td>
<td>Final Monitor Radar</td>
</tr>
<tr>
<td>FR</td>
<td>Final Radar</td>
</tr>
<tr>
<td>HO</td>
<td>Handoff TRACON</td>
</tr>
<tr>
<td>NR</td>
<td>Non-Radar Approach Control</td>
</tr>
<tr>
<td>PR</td>
<td>Precision Approach Radar</td>
</tr>
<tr>
<td>SI</td>
<td>Supervision TRACON</td>
</tr>
<tr>
<td>SR</td>
<td>Satellite Radar</td>
</tr>
<tr>
<td>Tower/TRACON</td>
<td></td>
</tr>
<tr>
<td>TM</td>
<td>Traffic Management</td>
</tr>
</tbody>
</table>

(c) **FSSs:** Use two-letter codes, as follows:

<table>
<thead>
<tr>
<th>Designator</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>BC</td>
<td>Broadcast</td>
</tr>
<tr>
<td>FD</td>
<td>Flight Data</td>
</tr>
<tr>
<td>IF</td>
<td>Inflight</td>
</tr>
<tr>
<td>NO</td>
<td>NOTAM</td>
</tr>
<tr>
<td>OT</td>
<td>Other</td>
</tr>
<tr>
<td>PF</td>
<td>Preflight</td>
</tr>
<tr>
<td>WO</td>
<td>Weather Observer</td>
</tr>
</tbody>
</table>

4. Field 4 must contain the date in digit format. All spaces must be used.

5. Field 5 must contain the UTC time that the employee assumes responsibility for the position or the UTC time that the position is combined with another. For employees receiving OJT instruction or evaluation, field 5 must contain the UTC time that the OJT instruction or evaluation begins.

6. Field 6 must contain the operating initials of the employee working the position.

7. Field 7 must contain the UTC time that the employee is relieved of responsibility for the position or the UTC time that the position is decombined. For employees receiving OJT instruction or evaluation, field 7 must contain the UTC time that the OJT instruction or evaluation ends.

8. Field 8 must contain the appropriate code identified at the bottom of page 1 of the form.

9. Field 9 must contain the identifier of the position being combined with (per field 2). Field 9 may be left blank if the same entry is appropriate and entered in field 10.

10. Field 10 must contain the type of position being combined with (per field 3).

11. If the second page (back-side) of FAA Form 7230–10 is used, then fields 1, 2, 3 and 4 on that page must also be completed.

12. When a mistake is made in filling out fields 5, 6, 7, 8, 9, or 10 – if the portion of the line that is incorrect can be legibly corrected, then line out that portion only and write the correct information. If the incorrect portion cannot be legibly corrected, then line out the entire line and write the correct information on the next line.
Mission Coordination Sheet when a mission is scheduled to be flown. The FEA naming convention is the aircraft call sign. Modify the FEA when requested by the affected facilities.

(d) Coordinate with the impacted ARTCCs as required, and designate a primary ARTCC when the reconnaissance/research flights are expected to operate through airspace managed by multiple ATC facilities.

(e) Assist ATC facilities with traffic flow priorities if the hurricane reconnaissance/research flight will impact terminal traffic.

4. The ARTCC(s) must:

(a) Review the Mission Coordination Sheet.

(b) Coordinate with all impacted ATC facilities within their area(s) of responsibility;

(c) Coordinate with SUA Using Agencies in accordance with WRA Letters of Agreement (LOA), unless other coordination procedures are established by an agreement.

NOTE—An example of an agreement containing other coordination procedures for SUA is the LOA between Washington Center, New York Center, Boston Center, Jacksonville Center, Air Traffic Control System Command Center and Fleet Area Control and Surveillance Facility, Virginia Capes that defines coordination and control procedures governing the use of SUA operated by FACSFAC VACAPES.

(d) Issue the WRA NOTAM, as applicable.

NOTE—Any questions about the WRA NOTAM should be directed to the ARTCC that originated the NOTAM, not CARF.

(e) Relay any operational concerns to the ATCSCC for further evaluation and coordination.

(f) When designated by ATCSCC as the Primary ATC Facility, ARTCC responsibilities include:

(1) When necessary, coordinate with the Chief, Aerial Reconnaissance Coordinator, All Hurricanes (CARCAH) and aircrew(s) on flight plan specifics.

(2) If the mission profile changes, coordinate with the ATCSCC for FEA modifications, ensure other affected ATC facilities are aware of the change.

(3) Advise the ATCSCC and other affected ATC facilities of any mission cancellation or delay information received from the flying unit.

(g) Should it become necessary for ATC to contact a TEAL or NOAA flight and all other methods of communication are not possible (e.g., direct radio, New York Radio, San Francisco Radio, aircraft relay), CARCAH may be requested to relay messages to/from the aircraft. CARCAH may phone the appropriate ATC facility to authenticate the request.

5. Requests to change any portion of the NHOP or MOA must be coordinated with ATO System Operations Security.

5–3–5. OPEN SKIES TREATY AIRCRAFT PRIORITY FLIGHTS (F and D)

a. The ATCSCC CARF must be the FAA coordination unit between the Defense Threat Reduction Agency (DTRA) and field facilities for all OPEN SKIES operational information. This includes initial notification and follow-up information on each mission that requires priority handling.

NOTE—OPEN SKIES flights that require priority handling are located in FAA Order JO 7110.65, paragraph 9-2-23.

b. ARTCCs/CERAPs/HCF must designate and advise the CARF of a focal point within that facility for OPEN SKIES information.

c. Advance scheduled movement information of OPEN SKIES aircraft received from the DTRA will be forwarded by the CARF.

d. Upon initial notification of a priority OPEN SKIES flight, the affected ARTCCs/CERAPs/HCF must inform all SUA-using/scheduling agencies along the route of flight and any other facility/agency it deems necessary within their area of responsibility of the flight path and possible deviation path of the aircraft. A letter of agreement is required between the using agency and the controlling agency for Open Skies (F and D) aircraft to transit active SUA. When Open Skies (F and D) aircraft transit SUA, an ATC facility must provide approved separation services at all times.

NOTE—OPEN SKIES flights will not deviate from approved route of flight without ATC clearance.

DOE and Other Aircraft 5–3–3
e. The air traffic manager of each facility through which the priority OPEN SKIES aircraft transits must ensure that a supervisory specialist(s)/CIC monitors the aircraft while in the facility’s airspace. The supervisory specialist(s)/CIC must monitor the movement of the priority OPEN SKIES aircraft from the flight’s entry into the facility’s airspace until the flight exits the facility’s airspace to ensure that priority handling, separation, control, and coordination are accomplished.

NOTE—
Procedures that address GPS Radio Frequency Interference (RFI) when transiting an active GPS interference mission area are described in FAA Order JO 7610.4, paragraph 2–7–7, Stop Buzzer Procedures for GPS Interference Missions.

REFERENCE—
FAA Order JO 7110.65, Subpara 2–1–4n, Operational Priority.
TREATY ON OPEN SKIES, TREATY DOC. 102–37.

f. Air traffic facilities must notify the CARF (540-422-4212/4213) and DTRA Operations (703-767-2003) immediately in the event of any incidents or problems generated by OPEN SKIES aircraft.

g. The CARF must immediately notify System Operations Security/Strategic Operations Security for resolution of problems or incidents, if necessary.

5–3–6. FOREIGN STATE DIPLOMATIC FLIGHTS

Diplomatic clearances that authorize foreign state aircraft (military or non–military) to operate in U.S. territorial airspace for a specific time and purpose are approved by the U.S. State Department. Except for Open Skies Treaty priority flights, foreign state diplomatic flights are non–priority. Contact the FAA System Operations Support Center (SOSC) (202-267-8276 or email 9–ATOR–HQ–RT–REQ@faa.gov) with questions or issues concerning foreign state diplomatic flights.
Section 9. Reduced Vertical Separation Minimum (RVSM)

6–9–1. GENERAL

a. RVSM airspace is defined as any airspace between FL290 and FL410 inclusive, where eligible aircraft are separated vertically by 1,000 feet. Additional altitudes provide users fuel savings and operational efficiencies while providing ATC flexibility, mitigation of conflict points, enhanced sector throughput and reduced controller workload.

b. RVSM is applied in RVSM airspace over the domestic United States, Alaska, the Gulf of Mexico where the FAA provides air traffic services, the San Juan FIR, across international borders with Canada and Mexico, and the Pacific and Atlantic Oceanic airspace controlled by the FAA. All aircraft operating in RVSM airspace must be RVSM eligible unless they qualify for an exception as listed below.

c. The following non–RVSM aircraft are exceptions to the exclusive RVSM airspace, however, access may be approved, workload–permitting:

1. DoD aircraft.

2. DoD–certified aircraft operated by NASA (T38, F15, F18, WB57, S3, and U2 aircraft only).

3. MEDEVAC aircraft.

4. Aircraft being flown by manufacturers for development and certification.

5. Foreign State aircraft.

d. The following aircraft operating within oceanic airspace or transiting to/from oceanic airspace are excepted:

1. Aircraft being initially delivered to the State of Registry or Operator;

2. Aircraft that was formerly RVSM approved but has experienced an equipment failure and is being flown to a maintenance facility for repair in order to meet RVSM requirements and/or obtain approval;

3. Aircraft being utilized for mercy or humanitarian purposes;

4. Within the Oakland, Anchorage, and Arctic FIRs, an aircraft transporting a spare engine mounted under the wing.

5. Two thousand feet separation must be applied for aircraft transitioning RVSM airspace whenever one of the aircraft is not RVSM eligible.

f. Non–RVSM exception aircraft may access RVSM airspace in one of the following ways:

1. LOA: Complies with a Letter of Agreement (LOA) for operations within a single or adjacent ARTCCs.

2. File–and–Fly: Files a flight plan and makes the initial request to access RVSM airspace by requesting an ATC clearance.

g. Facilities with RVSM airspace must:

1. Provide guidance in the facility Standard Operating Procedures (SOP) for managing non–RVSM flights.

2. Where available, display the Center Monitor on the Traffic Situation Display (TSD) in each area and the Traffic Management Unit (TMU). This will aid in the coordination and decision making process for approving non–RVSM flights.

6–9–2. FACILITY MANAGER RESPONSIBILITIES

a. Ensure all facility directives are current to support RVSM.

b. Ensure all LOAs, SOPs, and Sector Position Binders are current to support RVSM.

c. Ensure airspace is continually reviewed for impact of RVSM.

d. Ensure all height deviations of 300 feet or more are recorded and forwarded to the FAA Technical Center in Atlantic City, New Jersey at NAARMO@faa.gov.

6–9–3. OPERATIONS MANAGER–IN–CHARGE RESPONSIBILITIES

Responsibilities must include but not be limited to the following:
a. Maintain an operational awareness of RVSM impact specifically any non–RVSM aircraft being worked within RVSM airspace.

b. Ensure proper coordination is accomplished between the STMC/TMU and the operations supervisors/controllers–in–charge regarding the accommodation and handling of any non–RVSM aircraft.

c. Ensure, in conjunction with the Traffic Management Officer, that monitor alert values are addressed with RVSM impacts considered.

d. Ensure the proper RVSM software is turned on.

6–9–4. OPERATIONS SUPERVISOR–IN–CHARGE/CONTROLLER–IN–CHARGE RESPONSIBILITIES

Responsibilities must include but not be limited to the following:

a. Maintain an awareness of all operational impacts associated with RVSM, specifically any non–RVSM aircraft currently within area sectors or projected to be in sectors under his/her area of responsibility.

b. Ensure sector personnel have been properly briefed regarding any known non–RVSM aircraft in or projected to be in sectors under his/her area of responsibility.

c. Ensure sector workload remains manageable when non–RVSM aircraft are in or projected to be in sectors under his/her area of responsibility.

d. Coordinate all non–RVSM aircraft with operational supervisors/CIC as appropriate, both internally and externally, to ensure the aircraft is coordinated and accepted along its route of flight.

e. Non–RVSM Exception Flights Outbound from the U.S. The operational supervisor/CIC from the last area to have communications and operational control of the aircraft in the facility where an aircraft departs RVSM airspace designated for U.S. air traffic control, or exit facility, must coordinate with the international point–of–contact in a timely manner.

f. Ensure controllers at applicable sectors have their situation display properly aligned to display the RVSM indicator depicting those non–RVSM.

6–9–5. NON–RVSM REQUIREMENTS

a. RVSM approval is required for aircraft to operate within RVSM airspace. The operator must determine that the appropriate State authority has approved the aircraft.

b. DOD, DOD–certified aircraft operated by NASA (T38, F15, F18, WB57, S3, and U2 aircraft only), MEDEVAC, aircraft operated by manufacturers for certification and development, and Foreign State exception aircraft will be accommodated in RVSM airspace on a workload permitting basis.

c. Within oceanic airspace or transiting to/from oceanic airspace aircraft being initially delivered to the State of Registry or Operator, an aircraft that was formerly RVSM approved but has experienced an equipment failure and is being flown to a maintenance facility for repair in order to meet RVSM requirements and/or obtain approval; an aircraft being utilized for mercy or humanitarian purposes; and within the Oakland, Anchorage, and Arctic FIRs, an aircraft transporting a spare engine mounted under the wing will be accommodated in RVSM airspace on a workload permitting basis.

d. Non–RVSM Exception Flights Inbound to U.S. The TMU at the facility where an aircraft penetrates RVSM airspace designated for U.S. air traffic control, or entry facility, receives the coordination from an international point–of–contact advising of an inbound non–RVSM exception. The TMU must coordinate with the operational supervisor/CIC in a timely manner.

6–9–6. EQUIPMENT SUFFIX AND DISPLAY MANAGEMENT

RVSM aircraft will file a “W” in the equipment field of an ICAO flight plan, or a suffix showing RVSM capability in a domestic flight plan (/H, /W, /L, or /Z). NAS automation shows non–RVSM aircraft with a coral box around the fourth character in the altitude segment of the data block. The conflict alert function uses the flight plan indication of RVSM capability to determine the appropriate separation standard to apply.

6–9–7. MOUNTAIN WAVE ACTIVITY (MWA)

In areas of known MWA, aircraft operators have been encouraged to report encountering this weather event
and the severity of its impact. Operators may request assistance in the form of reroutes, change of altitude, vectors, or merging target procedures.

6–9–8. WAKE TURBULENCE AND WEATHER RELATED TURBULENCE

a. Domestic: Aircraft experiencing turbulence can be anticipated to advise ATC and request a clearance for mitigation in the form of vectors, altitude change, or to fly an offset.

b. Oceanic: Aircraft experiencing turbulence can be anticipated to advise ATC and request a revised clearance. In instances where a revised clearance is not possible or practicable, the aircraft may fly a lateral offset not to exceed 2NM from the assigned route or track. Advise ATC as soon as practical and return to the assigned route when the offset is no longer required.

6–9–9. SUSPENSION OF RVSM

a. Domestic: RVSM will not be suspended in domestic airspace. Should turbulence or other weather phenomena require, separation can be increased in a defined area and thoroughly coordinated operationally.

b. Oceanic: Air Traffic Service providers will consider suspending RVSM procedures within affected areas when pilot reports of greater than moderate turbulence are received. Within airspace where RVSM procedures are suspended, the vertical separation minimum between all aircraft will be 2,000 feet above FL290.
Part 3. TERMINAL AIR TRAFFIC CONTROL FACILITIES

Chapter 10. Terminal Operations, Services, and Equipment

Section 1. General

10–1–1. OPERATING POSITION DESIGNATORS

a. The following designators may be used to identify operating positions in a terminal. (See TBL 10–1–1.)

TBL 10–1–1
Operating Position Designators

<table>
<thead>
<tr>
<th>Designator</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. AD</td>
<td>Arrival Data (Radar)</td>
</tr>
<tr>
<td>2. AP</td>
<td>Approach Control</td>
</tr>
<tr>
<td>3. AR</td>
<td>Arrival Control (Radar)</td>
</tr>
<tr>
<td>4. CC</td>
<td>Coordinator (Tower)</td>
</tr>
<tr>
<td>5. CD</td>
<td>Clearance Delivery</td>
</tr>
<tr>
<td>6. CI</td>
<td>Coordinator (Radar)</td>
</tr>
<tr>
<td>7. DC</td>
<td>Departure Control</td>
</tr>
<tr>
<td>8. DD</td>
<td>Departure Data (Radar)</td>
</tr>
<tr>
<td>9. DR</td>
<td>Departure Control (Radar)</td>
</tr>
<tr>
<td>10. EN</td>
<td>Flight Service</td>
</tr>
<tr>
<td>11. FD</td>
<td>Flight Data</td>
</tr>
<tr>
<td>12. GC</td>
<td>Ground Control</td>
</tr>
<tr>
<td>13. LC</td>
<td>Local Control</td>
</tr>
<tr>
<td>14. OM</td>
<td>Operations Manager</td>
</tr>
<tr>
<td>15. OS</td>
<td>Operations Supervisor</td>
</tr>
<tr>
<td>16. PAR</td>
<td>Precision Approach Radar</td>
</tr>
<tr>
<td>17. STMCIC</td>
<td>Supervisory Traffic Management Coordinator–in–Charge</td>
</tr>
</tbody>
</table>

b. Facility air traffic managers may use designators other than those listed to accommodate local situations.

10–1–2. TOWER/RADAR TEAM CONCEPTS

There are no absolute divisions of responsibilities regarding position operations. The tasks to be completed remain the same whether one, two, or three people are working positions within a tower cab/facility/sector. The team, as a whole, has responsibility for the safe and efficient operation of the tower cab/facility/sector.

10–1–3. MILITARY ATC BOARDS

a. Commanders at USAF bases with flight operations have been directed by USAF to establish airfield operations boards. Among other things, the boards develop recommendations for improving ATC and airfield services and attempt to resolve local air traffic problems.

b. The ATCT manager, his/her representative, or the ATREP at these bases may be designated as a member of the board. The FAA member must inform the board that his/her participation does not commit the FAA to abide by the board’s recommendations even though they may be approved or even suggested by him/her.

10–1–4. SECTIONAL AERONAUTICAL AND TERMINAL AREA CHARTS

a. Terminal Area Charts (TACs) provide detailed information needed for flight within or in the vicinity of Class B airspace. Visual checkpoints are depicted on TACs, and at some locations, on Sectional Charts.

b. VFR Flyway Planning Charts are published on the back of existing TACs. Facilities with a TAC desiring publication of a VFR Flyway Planning Chart should submit requests through the appropriate Service Area Director of Air Traffic Operations. Additional charts may be considered after all Class B airspace locations have been completed. VFR Flyway Planning Charts, which are intended to
facilitate VFR transition through high density areas, depict generalized VFR routing clear of major controlled traffic flows which may be used as alternatives to flight within Class B airspace. Pictorial ground references and VFR checkpoints are provided to aid visual navigation. These charts are designed for information and planning purposes and are not intended to discourage VFR operations within Class B airspace. Pilot compliance with recommended flyways and associated altitudes is strictly voluntary. Controllers must not assign a charted VFR flyway to a pilot as part of a clearance nor predicate separation of aircraft on any expected pilot compliance with the depicted altitudes.

c. Facility air traffic managers must review VFR checkpoints published on Sectionals, TACs, and VFR Flyway Planning Charts for accuracy, completeness, and reasonableness. Nearby ATCT that make use of the same area depicted on the charts must agree upon the checkpoints to be depicted.

d. Submit changes or revisions to VFR checkpoints to System Operations Airspace and Aeronautical Information Management at least 10 weeks prior to the scheduled publication date.

e. If required, a list of checkpoints may be developed in association with local flight schools and fixed base operators for local use. They may only be used with local users who participated in developing the list. They may not be charted or published.

10–1–5. AREAS OF NONVISIBILITY

Air traffic managers of towers located where portions of the airport surface are normally designated movement areas and/or where portions of the airport traffic pattern are not visible from the tower must, after coordination with the airport management, issue a letter to airmen describing the condition. The recommended wording is:

a. “Due to obstructed vision, (facility identification) tower is unable to provide airport traffic control service in following areas: (describe the areas).”

b. “Due to the movement of uncontrolled ground traffic, (facility identification) tower is unable to provide airport traffic control service in the following areas: (describe the areas).”

c. “Use caution, the following areas are not visible from the (facility name) tower: (describe the areas, traffic pattern, active runway).”

10–1–6. SELECTING ACTIVE RUNWAYS

The ATCT supervisor/CIC determines which runway/s are designated RUNWAY IN USE / ACTIVE RUNWAY / DUTY RUNWAY.

a. Coordinate with affected facilities.

b. Select the RUNWAY IN USE / ACTIVE RUNWAY / DUTY RUNWAY by considering all known factors that may in any way affect the safety of takeoff/landing operations including the initial departure and the instrument approach phases of flight within terminal area airspace. Factors to consider include: surface wind direction and velocity (including gusts), wind shear / microburst alerts/reports, airport conditions, primary airport and adjacent airport traffic flows, weather activity, arrival/departure restrictions (and other airport-specific traffic management initiatives), environmental factors, etc.

NOTE—Consider the adverse effect of short-duration changes when selecting active runways or airport configurations. For example, “chasing the wind” could have adverse effects.

c. Responsibility for designating RUNWAY IN USE / ACTIVE RUNWAY / DUTY RUNWAY may be further delegated; however, a facility directive must be issued to define specific coordination requirements.

d. Tailwind and crosswind considerations take precedence over delay/capacity considerations, and noise abatement operations/procedures/agreements.

e. ATCTs must formalize, in their Standard Operating Procedures (SOP) and Letters of Agreement (LOAs) (as applicable), local procedures compliant with the provisions of this paragraph.

10–1–7. USE OF ACTIVE RUNWAYS

a. Facility air traffic managers must issue a facility directive containing procedures to ensure the efficient use of runways, positive control and coordination of aircraft/vehicles on or near active runways. Authorization for aircraft/vehicles to taxi/proceed on or along an active runway, for purposes other than crossing, must be provided via
direct communications on the appropriate local control frequency. This authorization may be provided on the ground control frequency after coordination with local control is completed for those operations specifically described in a facility directive.

b. Facility air traffic managers must develop procedures to be included in a facility directive for the mandatory use of an approved memory aid at the appropriate operational position/s for:

1. Runway status (CLOSED/INACTIVE)
2. Runway crossing
3. Vehicle, personnel or equipment on active runway/s
4. Land and Hold Short Operations (LAHSO)
5. Line Up and Wait (LUAW)
6. Landing clearance

c. Approved memory aids will be maintained in the Runway Safety Memory Aid Toolbox. The use of memory aids that are not maintained in the toolbox must be approved by Operations – Headquarters AJT-2 through the appropriate Service Area Director of Air Traffic Operations.

NOTE—
Director approved memory aids must be coordinated with Runway Safety for inclusion in the memory aid toolbox.

d. Facility air traffic managers must include local procedures in the facility directive to assist the local and ground controllers in maintaining awareness of aircraft positions on the airport.

REFERENCE—
FAA Order JO 7110.65, Para 3–1–4, Coordination Between Local and Ground Controllers.

e. FAA Order JO 7110.65, Air Traffic Control, contains procedures for the control of aircraft/vehicle movements on active runways. Exceptions may be authorized, upon approval by the Terminal Operations Service Area Director, to allow prearranged coordination where equivalent procedural safeguards exist to preclude a loss of separation. Exceptions must be limited to complex locations with clearly demonstrated extraordinary requirements that cannot be met through the application of the standard procedures in FAA Order JO 7110.65, Air Traffic Control. The following are required:

1. A facility directive that clearly defines ground/local/cab coordinator responsibilities and contains safeguards to prevent inadvertent use of runways by local/ground/cab coordinator at the same time and do not rely solely on visual observation (look–and–go).

2. The use of the cab coordinator in runway crossing procedures must have restraints to guard against unanticipated actions by the local controller to prevent traffic conflicts. Coordinators must not approve runway crossings in front of aircraft on the runway awaiting takeoff without first coordinating with the local controller. Similar restraints should be included with regard to landing aircraft; e.g., cutoff points that ensure the runway is clear before landing aircraft arrive over the threshold. Based on a direct knowledge of the local controller’s instant traffic situation, the cab coordinator may authorize ground control to conduct an operation across an active runway. The cab coordinator must ensure the timeliness of all such operations and initiate any necessary action to prevent runway crossing incidents. When not absolutely certain of local control’s traffic, the cab coordinator may still effectively function as a communications link between the local controller and the ground controller.

3. A separate facility directive must explicitly outline the responsibilities of the cab coordinator in authorizing active runway crossings. This directive must address and clearly answer the questions of the cab coordinator’s function, authority, and accountability in these operations. The Terminal Operations Service Area Director must review and approve this facility directive prior to its implementation.

4. The Terminal Operations Service Area Director must forward a copy of the approved facility directive to the Director of System Operations Airspace and Aeronautical Information Services.

f. Facility air traffic managers at instrumented airports with operating control towers must, in addition to the above, annually review local airport surface diagrams to ensure that the runway centerline heading information is current. This may be accomplished by comparing the posted magnetic headings of the runways shown on the airport obstruction chart, corrected to the current magnetic variation for the facility, with the heading shown on the airport surface diagram. The air traffic manager must review local departure procedures to ensure
continued compatibility with the runway headings posted on the airport surface diagram.

g. Air traffic managers must develop a facility directive which specifically defines the responsibilities of local and ground control to ensure that coordination is accomplished to accommodate an aircraft exiting the runway which must enter another taxiway/runway/ramp area, other than the one used to exit the landing runway, in order to taxi clear of the runway.

NOTE—
This directive is only required at facilities where an aircraft exiting the runway must enter another taxiway/runway/ramp area, other than the one used to exit the landing runway, in order to taxi clear of the runway.

10–1–8. PROCEDURES FOR OPENING AND CLOSING RUNWAYS

Each ATM:

a. Must ensure that the authority, responsibility, and procedures to be used when opening or closing a runway are defined in an LOA with airport management/military operations office. Items which should be addressed, if relevant, are: the use of barriers/visual aids (lighted or unlighted “X”, barricades, etc.), portions of the closed runway available for ground operations such as crossings, and information for issuing NOTAMs. Other items may be included, as appropriate.

NOTE—
Only the airport management/military operations office can close or open a runway.

b. Must develop and provide a tailored checklist to be used when opening and closing a runway. A facility directive must designate the position responsible for completing the checklist. Items which should be included, if relevant, are:

1. Coordination.
 (a) Airport management.
 (b) Intrafacility.
 (c) Interfacility.
 (d) Technical operations.
 (e) Traffic management.
2. Memory aids.
4. Status information area.
5. Airfield lighting.
6. NAVAIDs.
7. ATIS.
8. Entry on the daily log.

c. May increase the number of items and/or the level of detail of the opening and closing checklist as they deem necessary.

d. Must ensure that a facility directive includes procedures for the mandatory use of an approved memory aid that indicates the status of the runway (CLOSED/INACTIVE).

e. Must implement approved memory aids and develop procedures outlining their use.

NOTE—
When implementing these procedures, one should consider short-term versus long-term closures as well as planned versus unplanned processes.

REFERENCE—
FAA Order JO 7110.65, Para 3-3-1, Landing Area Condition.
FAA Order JO 7110.65, Para 3-3-2, Closed/Unsafe Runway Information.
FAA Order JO 7110.65, Para 4-7-12, Airport Conditions.
FAA Order JO 7210.3, Para 4–7–3, System Impact Reports.
FAA Order JO 7210.3, Para 10–1–7, Use of Active Runways.
FAA Order JO 7210.3, Para 18–5–13, Electronic System Impact Reports.

10–1–9. FLIGHT PROGRESS STRIP USAGE

Air traffic managers at automated terminal radar facilities may waive the requirement to use flight progress strips provided:

a. Back–up systems such as multiple radar sites/systems are utilized.

b. Local procedures are documented in a facility directive. These procedures should include but not be limited to:

1. Departure areas and/or procedures.
2. Arrival procedures.
3. Overflight handling procedures.
4. Transition from radar to nonradar.

c. No misunderstanding will occur as a result of no strip usage.

d. Unused flight progress strips, facility developed forms and/or blank notepads must be provided for controller use.
e. Facilities must revert to flight progress strip usage if back-up systems referred to in subparagraph a above are not available.

10–1–10. LOW VISIBILITY OPERATIONS

a. Facility air traffic managers must participate in developing a local SMGCS plan when the airport is under the guidelines of the National SMGCS plan.

REFERENCE—
AC 120–57, Surface Movement Guidance and Control System (SMGCS).

b. Facility air traffic managers must ensure all operational personnel are properly briefed prior to the effective date of local SMGCS plan. All air traffic procedures included in the SMGCS plan must be contained in a facility directive.

10–1–11. MOBILE CONTROL TOWERS

a. Mobile control towers must be used at FAA locations:

1. To provide services during a move from an old tower structure into a new tower.

2. When repairs, rehabilitation, or installation of new equipment make the tower structure temporarily uninhabitable.

3. During periods of natural emergency; e.g., the tower structure has been damaged by fire, accident, or wind.

4. During national emergencies as required by the DOD at FAA and non–FAA locations.

b. Mobile control towers may be used at non–FAA locations when requested by flying organizations, cities, or other political entities to assist in the operation of fly–ins, air races, etc., provided:

1. The Terminal Operations Area Office, after careful consideration of a request to use FAA personnel and/or equipment, determines that the service is required and can be made available without:

 (a) Jeopardizing FAA activities.

 (b) Interfering with the gainful employment of competent non–Federal personnel.

2. Non–Federal personnel selected to support the event are properly certificated and rated in accordance with 14 CFR Part 65 for the airport.

3. The requesting organization is apprised that the mobile unit is subject to immediate recall should an emergency arise.

10–1–12. PARTICIPATION IN LOCAL AIRPORT DEICING PLAN (LADP)

a. Officials, at airports operating under 49 CFR Part 1540/1542 and 14 CFR Part 139 subject to icing weather conditions with control towers, should develop LADPs in order to involve all interested parties in the deicing/anti–icing process. Aircraft departing from airports without a LADP are not exempt from any traffic management initiative.

b. The operators of these airports have been requested to host meetings involving airport users and air traffic in a partnership effort to achieve common solutions to local aircraft ground deicing/anti–icing problems. The emphasis is on developing local strategies that minimize the amount of time an aircraft spends on the ground after being deiced/anti–iced.

NOTE—
Deicing is the process of removing existing frozen precipitation, frost, or ice from aircraft surfaces. Anti–icing is the process of preventing accumulation of frozen contaminants on aircraft surfaces. Both processes may involve the application of various fluids to the aircraft.

c. Air traffic managers who receive requests from airport operators to participate in these meetings will use the following guidance:

1. When requested by the airport operator, the air traffic manager must participate in the development of a LADP. Since a LADP can affect an airport arrival rate and/or departure rate, the air traffic manager must include the participation of the air traffic manager from the appropriate ARTCC, who must participate and/or utilize their traffic management unit (TMU). The plan will be reviewed and updated annually. The plan must include:

 (a) A clear definition of triggering mechanism(s) used to implement the LADP, e.g., holdover tables, visible precipitation.

 (b) Assignment of responsibility to notify air traffic of implementation and cessation of the LADP.
NOTE—
Air traffic facilities should not become the triggering mechanism except in rare circumstances. If air traffic is designated as the triggering mechanism, submit the proposed LADP to the Terminal Operations Service Area office for approval.

2. Develop or enhance local strategies to manage the number of aircraft at the departure runway queues and minimize the amount of time an aircraft spends on the ground after being deiced.

3. Gate hold procedures, when used as part of a LADP, should be initiated at the time the plan is implemented. The application of gate hold procedures during deicing/anti-icing operations are not predicated on other requirements of FAA Order JO 7210.3.

NOTE—
The pilot—in—command remains the final authority as to aircraft operation. Air traffic is not responsible for tracking or adherence to aircraft holdover times.

4. Coordinate the expected start time, actual start time and stop time of the LADP with the appropriate ARTCC TMU. The ARTCC TMU will forward these times to the ATCSCC.

5. Balance the airport flow to accommodate demand. Adjust the arrival rate with the departure rate. These rates should reflect the number of operations expected to occur during deicing/anti-icing conditions and facilitate minimizing the amount of time an aircraft spends on the ground after being deiced/anti—iced.

6. Aircraft operators at LADP airports are responsible for complying with issued Expect Departure Clearance Time (EDCT) times and will not be exempted from compliance with these times. However, once an aircraft has been deiced/anti—iced, it must be released unless a ground stop applicable to that aircraft is in effect. If a facility believes aircraft operators are not performing deicing/anti—icing in a manner consistent to meet the EDCT time, the facility must notify the ATCSCC through the appropriate TMU.

7. Allocate the available departure slot capacity, when departure rates are reduced because of deicing, consistent with available resources. Facilities should consider the following un-prioritized list of options when developing departure allocation procedures.

(a) OPTION A: First come, first served. When departure demand exceeds capacity, the air traffic facility will minimize departure delays at the runway queue by using gatehold or an equivalent procedure.

(b) OPTION B: Air traffic will determine the departure allocation based upon the departure rate and the stated demand, obtained directly from the users, during a specified time period. For example, air traffic will coordinate with each user and receive their demand for a 15-minute time period. Then, based upon the total airport departure demand for the 15-minute time period, determine the number of flights which the user will be allocated, advise each user, and determine which flights they will use to fill their allocation.

(c) OPTION C: Airport users determine the departure allocation. Air traffic will notify the users of the departure rate in effect and the users will then advise air traffic which flights they will use to fill their allocation. Air traffic will provide input on the coordination process but will not accept an active role in developing the departure allocation.

(d) OPTION D: Air traffic determines the departure rate and informs the users of the number of operations expected during a specific time period. Air traffic determines the total percentage of each users’ daily operations based upon a “typical busy day” by dividing each of the users total daily operations by the airports total daily operations. Then, air traffic determines each users hourly share by multiplying the users daily percentage times the departure rate. The users will then distribute their hourly share evenly throughout the specific time intervals.

NOTE—
1. Air traffic may or may not take an active role in determining the percentage of each user’s operations on a “typical busy day” and each user’s hourly share.
2. If a user has only one aircraft scheduled per hour, attempts should be made to accommodate it.

8. Provide coordination, communication, and feedback with the parties included in the plan. Coordination should take place when airports are forecast to have icing conditions, during deicing/anti—icing and after deicing/anti—icing, to effect necessary adjustments. Prior to and after each winter season, the airport participants should assess the efficiency of the airport plan and address any specific concerns.
9. Develop an air traffic facility training program. Prior to each winter deicing/anti-icing season, conduct annual controller refresher training including, but not limited to, awareness of and sensitivity to the peculiar nature of deicing/anti-icing operations, icing conditions, and minimizing delays at the runway departure queue.

10–1–13. PRECISION OBSTACLE FREE ZONE (POFZ)

Coordinate with the Airport Division and Flight Standards to determine if precision approach operations are impacted by the POFZ. ILS hold lines will need to be relocated if aircraft (vertical surfaces) or vehicles fall within the POFZ.
Section 8. VFR Waypoint Chart Program

12–8–1. POLICY

a. The VFR Waypoint Chart Program was established to provide VFR pilots with a supplemental tool to assist with position awareness while navigating visually in aircraft equipped with area navigation (RNAV) receivers. The program’s purpose is to enhance safety, reduce pilot deviations, and provide navigation aids for pilots unfamiliar with an area in or around Class B, Class C, Special Use Airspace (SUA), and commonly flown mountain passes. The use of VFR waypoints does not relieve the pilot of any responsibility to comply with the requirements of 14 CFR Part 91.

b. This program contains the process for developing and submitting requests for inclusion of VFR waypoints on VFR navigational charts.

12–8–2. DEFINITION

A VFR waypoint is a predetermined geographical point depicted on a chart for transitioning and/or circumventing controlled airspace, SUA, and/or commonly flown mountain passes, that is defined relative to a visual reporting point or in terms of latitude/longitude coordinates.

12–8–3. CRITERIA

Use the following criteria for establishing VFR waypoints on VFR navigation charts. Establishment of VFR waypoints should be minimized to reduce chart clutter and complexity. RNAV and Global Positioning System aircraft will more accurately fly over a specific point and this should be considered when developing VFR waypoints. Avoid placement of VFR waypoints directly over heavily populated or sensitive structures or areas; e.g., hospitals, government buildings, schools, power plants, etc.

a. Applications.

1. Avoidance of specific airspace; e.g., Class B, SUA, etc. VFR waypoints must not be used to define airspace boundaries.

2. Support VFR flyway routes with entry and exit points, and, when necessary, intermediate waypoints.

NOTE—For VFR routes, refer to Section 7, Terminal Area VFR Route Program.

3. Assist in identifying VFR checkpoints (visual reporting points) where the associated landmark is difficult to discern.

NOTE—When a VFR waypoint is associated with a VFR checkpoint, the name of that checkpoint must be used in ATC communications.

4. Identify natural entry points for commonly flown mountain passes charted on VFR navigational charts. VFR waypoints are not to be used to create mountain pass routes. VFR waypoints that denote the entry of a commonly flown mountain pass must:

 a) Be collocated with a VFR checkpoint at the start of the confined terrain leading to the mountain pass.

 b) Be located at least 1 statute mile laterally from rapidly rising terrain.

 c) Identify the lowest elevation feature in reasonably close proximity (i.e., a stream or river channel).

 d) Avoid placement near features that may be obscured by clouds.

5. VFR waypoints are not for use in ATC communications; therefore, the VFR waypoint names are not pronounceable. If it is desired that a VFR waypoint be used for communications, then a new VFR checkpoint must be established. VFR checkpoints can be established by submitting a request to Aeronautical Information Services, through the Service Area Operations Support Group (OSG) describing the checkpoint and providing the latitude/longitude location.

6. VFR waypoints must not be used for those navigational aids, airports, etc., which currently exist in the Aeronautical Information Services (AIS) database. When a VFR waypoint is desired where a fix already exists in the database, locate the VFR waypoint in the general vicinity considered the next most desired location.

b. VFR chart depiction:

1. VFR waypoint names (for computer–entry and flight plans) consist of five letters beginning with

VFR Waypoint Chart Program 12–8–1
VFR waypoints associated with VFR checkpoints will not have the waypoint symbology depicted; the Interagency Air Committee (IAC) checkpoint symbol will remain. Only the five–letter identifier will be charted next to the name of the checkpoint.

3. VFR waypoints will be illustrated using the IAC waypoint symbology.

4. The latitude/longitude for each waypoint will be published in FAA Order JO 7350.9, Location Identifiers.

12–8–4. RESPONSIBILITIES

a. Proponent. Any interested party may recommend the addition of VFR waypoints to VFR navigation charts or helicopter charts via the appropriate air traffic facility.

b. Air traffic facilities must:

1. Prepare VFR waypoint recommendations. The most important task in preparing the recommendation is coordination with local aviation interests; i.e., Aircraft Owners and Pilots Association, FAA Safety Team (FAAST), Flight Service Station (FSS), military, law enforcement, etc. Flight Procedures and Airspace Group (AFS–420) concurrence is required in writing when establishing VFR waypoints associated with mountain passes.

NOTE–As FSSs play an integral part in the VFR flight planning process, they may serve as a valuable resource in identifying VFR waypoint recommendations.

2. After consensus with all affected air traffic facilities and local aviation interests on the need and location of the proposed VFR waypoints, submit a package to the respective Service Area OSG containing:

(a) A new or revised VFR navigation chart depicting the location and five–letter name of each waypoint/checkpoint.

(b) A completed Appendix D, FAA Form 8260–2, Data Worksheet, in accordance with FAA Order 8260.19, Flight Procedures and Airspace. A list of available VFR waypoint five–letter names can be obtained from the Service Area OSG or from Aeronautical Information Services (AIS). Flight checks are not required.

(c) A textual description of each waypoint including the name and latitude/longitude.

(d) A graphic or satellite image with the precise point of the VFR waypoint depicted. It is critical that the depictions be easily readable by the Aeronautical Charting Group, En Route and Visual Charting Team in order to verify the position for accurate charting.

(e) Justification/supporting rationale, and Flight Procedures and Airspace Group (AFS–420) concurrence for VFR waypoints for mountain passes.

c. The Service Area OSG must:

1. Provide assistance to the air traffic facility, if requested, to prepare the textual description of each waypoint including the name and latitude/longitude and/or to depict the VFR waypoints on a satellite image.

2. Approve the VFR waypoint charting and ensure compliance with the prescribed criteria. If approval is granted, the Service Area OSG must forward the package to Aeronautical Information Services at least 12 weeks prior to the planned implementation date. The planned implementation date must coincide with a publication date of the respective VFR navigation chart.

3. Coordinate overall activity when multiple facilities are affected by the planned use of VFR waypoints such as numerous VFR waypoints on a VFR chart.

4. Maintain the VFR waypoint forms (FAA Form 8260–2, Radio Fix and Holding Data Record) to include corrections, changes, or modifications, as necessary.

5. Conduct annual reviews.

d. Aeronautical Information Services, Aeronautical Data Team (ADT) must:

1. Review the incoming VFR waypoint proposals for completeness.

2. Verify that the requested five–letter “VP” combinations are available for use.

3. Forward the package to Aeronautical Charting Group, Enroute and Visual Charting Team for verification of the geographic positions.
4. Upon verification, the Visual Charting Team must notify the Aeronautical Data Team prior to publication in the National Flight Data Digest (NFDD).

5. Maintain VFR waypoint forms (FAA Form 8260–2) to include corrections, changes, or modifications, as necessary.

e. Visual Charting Team must:

1. Review the incoming VFR waypoint proposals for completeness.

2. Coordinate with the Aeronautical Data Team for the resolution of any geographic positions that require FAA Form 8260–2 revisions; provide the Aeronautical Data Team with verification that geographic positions are ready for publication in the checkpoints are published in the NFDD.

3. Coordinate with the Aeronautical Data Team to ensure that any new or revised VFR geographic positions are ready for publication in the checkpoints are published in the NFDD.

4. Publish VFR waypoint geographic positions on appropriate VFR charts.
Ground Delay Programs (GDP) must be applied to all aircraft departing airports in the contiguous U.S., as well as, from select Canadian airports. Aircraft that have been assigned an EDCT in a GDP should not be subject to additional delay. Exceptions to this policy are miles–in–trail and departure/en route spacing initiatives that have been approved by the ATCSCC. GDP procedures do not apply to facilities in Alaska.

A GDP is a TM process administered by the ATCSCC; when aircraft are held on the ground in order to manage capacity and demand at a specific location, by assigning arrival slots. The purpose of the program is to support the TM mission and limit airborne holding. It is a flexible program and may be implemented in various forms depending upon the needs of the air traffic system. The EDCT is calculated based on the estimated time en route and the arrival slot. It is important for aircraft to depart as close as possible to the EDCT to ensure accurate delivery of aircraft to the impacted location. GDPs provide for equitable assignment of delays to all system users.

In the past, GDPs were issued manually, followed by software called Groverjack. These systems were based on the Official Airline Guide data, and did not take into account dynamic changes the system users made to their schedule. The Flight Schedule Monitor (FSM) was developed through the collaborative decision making (CDM) process with system users to provide a dynamic method of implementing and managing GDPs. System users submit schedule changes to FSM, which keeps a current up–to–the–minute schedule of flights. The Flight Schedule Analyzer (FSA) is used to monitor and review the effectiveness of GDPs.

Ground Delay Programs (GDP) may be modified and affected due to changing conditions. Some of those variables include, but are not limited to, GDP Adjustments, Diversion Recovery, and User Options.

a. GDP Adjustments. The ATCSCC may make revisions and compressions to the GDP as conditions at the airport or within the airspace change.

b. Diversion Recovery. During periods where there are a large number of diverted flights, the GDP may be adjusted to provide priority for the recovery of aircraft diversions over non-diverted flights.

c. User Options. Users are permitted to exchange and substitute Controlled Times of Arrival (CTA) congruent with CDM agreements concerning substitutions.

Upon receipt of information that traffic flows have been or are expected to be impacted and that significant delays will result, the ATCSCC must:

a. Conference affected facilities and system users, as appropriate, to determine AARs and review system demand and other known or anticipated factors.

b. Determine when implementation of a GDP is appropriate and the flow rate to be used.
Consideration will be given to the impact on other air traffic control facilities and user groups.

c. Transmit an ATCSCC advisory providing information to air traffic control facilities and user groups about the implementation, revision, compression, and cancellation of a GDP. Except for the cancellation of a GDP, the ATCSCC advisory must include the following items:

1. Airport.
2. Delay Assignment Mode.
3. Aggregate Demand List (ADL) Time.
4. Program Type. (Optional)
5. Arrivals Estimated For.
6. Program Rate.
7. Flights Included.
8. Scope.
9. Additional Facilities Included.
10. Exempt Facilities.
11. Canadian Airports Included. (When applicable.)
12. Delay Assignment Table Applies To. (Optional.)
13. Maximum Delay or Delay Limit. (As appropriate).
15. Reason.

d. Transmit the DAS table to ARTCC TMUs via TFMS and the NADIN circuits, if appropriate.

e. Transmit EDCTs to ARTCCs and linked system users.

NOTE—A CT message is automatically transferred to the ARTCC’s computers by the ETMS and appears on flight progress strips as an EDCT. In the event of a communication failure between the ETMS and the NAS computer, the CT message can be manually entered by the ARTCC TMC with ATCSCC approval.

f. Input ATCSCC coordinated modifications to EDCT into FSM.

NOTE—Modifications may be made through TFMS.

g. Continually monitor, adjust, and cancel GDPs, as appropriate, and transmit an ATCSCC advisory as necessary.

h. Provide an EDCT or DAS when requested by an ARTCC.

i. Coordinate with affected facilities to ensure the GDP is adequately managing the demand.

j. Obtain arrival and departure counts from affected facilities, as appropriate.

k. Utilize the TSD and FSM to monitor traffic flow patterns, obtain estimated arrival counts, or obtain airborne delay estimates.

l. When appropriate and workload permitting, utilize FSA to monitor the GDP.

18–10–7. ARTCC PROCEDURES

The ARTCC TMU must:

a. Issue a General Information message (GI) to all towers and FSSs advising of the GDP. In some instances, verbal notification, in addition to a GI, may enhance the dissemination of information.

b. Issue EDCT information to non–FDEP/FDIO equipped towers and other users in sufficient time for proper planning and control actions. This does not include non–FDEP towers that are satellites of TRACON/RAPCON facilities. The TRACON/RAPCON is responsible for satellite EDCTs.

c. Evaluate the Delay Assignment Mode and assign EDCTs, as appropriate.

1. For DAS, assign an EDCT using the DAS table to aircraft that do not receive an EDCT and are destined to an affected airport within their ARTCC boundaries. Contact the ATCSCC for aircraft destined to an airport outside their ARTCC boundaries.

2. For GAAP, contact the ATCSCC for an EDCT for aircraft that do not receive an EDCT.

d. Keep the ATCSCC apprised of cancellations and diversions to or from the affected airport.

e. Relay information to the ATCSCC when advised by a terminal facility about EDCT issues.

f. Request a revised EDCT from the ATCSCC when notified by the terminal facility that a flight will be unable to depart within EDCT parameters as defined in FAA Order JO 7110.65, Air Traffic Control.
Section 21. Operations Plan

18–21–1. PURPOSE

Establishes the process, structure and responsibilities for developing, managing and implementing a daily strategic plan for air traffic operations in the National Airspace System (NAS).

18–21–2. DEFINITION

a. The Operations Plan (OP): The OP is a plan for management of the NAS and is formulated, developed, and maintained by the Air Traffic Control System Command Center (ATCSCC) Planning Team (PT) in collaboration with FAA and customer weather forecasters, ATCSCC personnel, Air Route Traffic Control Center (ARTCC), District Traffic Management Officers (TMO) or designees, terminals, airline planners, international facilities, military, general aviation planners, and other FAA field facility management personnel. The Operations Planning Webinar (PW) is conducted via a web-based application to include an audio dial-in capability.

b. Advance Plan (AP): The AP is for advanced (next day or later) management of the NAS. The AP is developed by the PT after collaboration with the same personnel as the OP.

c. Trigger: A specific event/critical decision window (CDW) that causes a specific traffic management initiative (TMI)/time-based management (TBM) operation to be implemented or modified.

1. A trigger is for planning purposes and is intended to reduce coordination when implementing or modifying the specified TMI/TBM operation.

2. All en route facilities impacted by the TMI/TBM operation must be contacted prior to implementing the TMI/TBM operation in response to the trigger.

3. En route facilities must relay TMIs/TBM operations to affected terminal facilities within its area of jurisdiction.

4. All triggers will be identified by “IF, THEN” clauses in the OP.

EXAMPLE–
IF thunderstorms develop as forecast on J96, THEN ZKC will initiate the ORD BDF1 Playbook route.

d. The OP will specify:

1. Terminal constraints: facilities where delays are expected to be 15 minutes or greater.

2. En route constraints: facilities where expanded miles-in-trail, deviations, and tactical reroutes may be required.

18–21–3. RESPONSIBILITIES

a. The PT provides operational same day analysis and support, advanced planning, and historical review to provide greater predictability and reliability in managing NAS performance. Responsibilities include:

1. Deliver a detailed Advance Plan (AP) to identify the next day’s potential NAS impacts and TMIs/TBM operations as well as multi-day outlooks containing potential constraints and initiatives.

2. Identify aviation system efficiencies while using historical NAS performance data and trends to develop effective advance planning strategies.

3. Provide historical data analysis, demand projections, and potential mitigation strategies for future constraint management.

4. Use post-event analysis and lessons learned to define and implement future strategies and operational triggers based on past performance and outcomes.

5. Gather and share timely and continuous feedback with operational personnel to provide increased data, weather knowledge, and tools for analytical use and planning.

b. The ATCSCC PT must:

1. Lead the development of the OP.

2. Formulate the OP through coordination with PT members using the OP timeline.

3. Brief the National Operations Manager (NOM), National Traffic Management Officer (NTMO), and other ATCSCC operational elements on the OP.
4. Post the OP on the ATCSCC website and issue as a numbered advisory.

5. Document agreed-upon triggers in the OP.

6. Maintain the PW.

c. The NOM must:

1. Direct the NTMO, ATCSCC operational units, and personnel on implementation of the OP.

2. Coordinate with and provide direction to FAA facilities on implementation of the OP.

d. The District TMO or designee must:

1. Provide input to the AP.

2. Participate via the PW in formulation and development of the OP when stated in the previous OP, when requested later by the ATCSCC, or when issues within the facility warrant participation.

3. Provide input on:
 (a) Equipment outages having an operational impact;
 (b) Internal initiatives;
 (c) Terminal constraints;
 (d) Route closure/recovery information;
 (e) Anticipated use of airborne rerouting;
 (f) Anticipated use of TBM;
 (g) Anticipated TMI; or
 (h) Other issues which may impact operations (i.e., staffing, special events, etc.). (See FIG 18–21–1, Operational Planning Webinar Checklist.)

4. Brief and direct facility Operational Supervisors, Traffic Management Supervisors, Traffic Management Units, and operational personnel on the implementation of the OP and gather additional information for the next conference.

5. Coordinate with and provide direction to underlying facilities on the implementation of the OP.

6. Monitor and assess the OP, notifying the ATCSCC of problems that may impact the OP.

7. Provide operational feedback for use in post-operational evaluation of the OP.

e. Terminal Facility Management must:

1. When notified by the District TMO or designee, or ATCSCC PT, participate in the PW.

2. Brief and direct facility operational personnel on actions required by the OP.

3. Monitor and assess the OP, notifying the ATCSCC of problems that may impact the OP.

4. Participate in the AP when necessary or notified.

18–21–4. PROCEDURES

a. The PW participants are FAA and customer weather forecasters, FAA District TMO or designee, other FAA field facility management personnel, airline strategic planners, ATCSCC personnel, international facilities, and military and general aviation system customers.

b. The ATCSCC is delegated the authority to direct the operation of the PW for the FAA.

1. The ATCSCC will notify those FAA facilities required to participate as part of the PW.

2. Military, international, and general aviation entities will be included as necessary.

c. The PT collaborates on the formation of the OP. The OP is continuously evaluated, and updated or amended, as necessary.

d. Weather information provided by National Weather Service meteorologists will be used in the conference. If there is a collaborative product of weather information, developed by both government and industry meteorologists, it will be used as the primary source for the PW.

e. OP timeline (all times local/Eastern): The OP Timeline provides a continuous process and method for group decision-making and collaboration in dealing with system constraints. Modification of the timeline, participation, and scheduling is done at the discretion of the PT and as directed by the ATCSCC. The PT conducts and facilitates the PW with FAA field facilities and NAS customers beginning at 7:15 a.m. Eastern time, then every 2 hours, unless otherwise coordinated, with the last Webinar usually being conducted at 9:15 p.m. Webinar duration should be less than 30 minutes. Discuss recurring issues (e.g., VIP movements, overnight cargo operations) as necessary.

NOTE–
The time intervals may be varied; however, each OP and
associated advisory will state the time for the next Conference.

FIG 18–21–1

Operational Planning Webinar Checklist

<table>
<thead>
<tr>
<th>Review the Current OP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Review the applicable weather information</td>
</tr>
</tbody>
</table>

Input from the Areas

- Staffing
- Combined Sectors
- Current/Anticipated Weather Constraints
- Anticipated Initiatives
- Equipment
- Anticipated Traffic Volume
- Constraints/Other

Input from Approaches and Towers

- Staffing
- Current/Anticipated Weather Constraints
- Equipment
- Current Configuration and AAR
- Anticipated Configuration and AAR
- Other

Other Constraints

- VIP Movement
- Special Events
- Military Activities
- Diversions
- Launch/recovery activities

Flow Constrained Areas

- Current
- Anticipated Rerouting
- Pathfinders
- Recovery

Anticipated TBM Operations

- Alternatives
- Triggers Needed
- Exit Strategy Needed
- Airborne Metering
- Surface Metering
- Outages

Anticipated Traffic Management Initiatives

- Alternatives
- Triggers Needed
- Exit Strategy Needed
Section 3. Operational Line of Authority

21–3–1. AUTHORITY FOR OPERATIONAL SECURITY–RELATED ACTIONS

Under the general supervision of the Director, System Operations Security, the Manager of Tactical Operations Security is authorized to direct security–related air traffic actions coordinated through ATC facilities, to support national defense, homeland security, and law enforcement efforts. The manager operationally executes these actions through the ATO’s Air Traffic Security Coordinators (ATSC).

21–3–2. AIR TRAFFIC SECURITY COORDINATOR (ATSC)

a. Air Traffic Security Coordinators (ATSCs) are air traffic control specialists that have been provided with additional training and responsibilities in the area of air security and air defense.

b. The ATSC works under the general supervision of the Tactical Manager. In the absence of the Tactical Manager, the ATSC responsible for the Domestic Events Network (DEN) assumes the operational responsibility of System Operations Security.

c. ATSCs assigned to liaison positions will normally be directly assigned at the Commanding General Officer staff level, such as Continental NORAD Region (CONR) or NORAD.
Index

[References are to page numbers]

A

ACCIDENT/INCIDENT RECORDINGS, 4–8–1
ADAPTED ALTIMETER SETTINGS, 8–2–1
Administration of Facilities
ATS Continuity, 2–1–3
Authorization for Separation, 2–1–10
Checking Published Data, 2–1–3
Duty Familiarization, 2–2–1
Equipment Trouble, 2–2–6
Facility Directives Repository, 2–2–6
Handling MANPADS Incidents, 2–1–7
Interregional Requirements, 2–1–1
Position Responsibilities, 2–2–1
Position/Sector Binders, 2–1–1
Reference Files, 2–1–1
Release of Information, 2–1–2
Sign In/Out and On/Off Procedures, 2–2–3
Standard Operating Procedures, 2–1–1
VSCS Equipment, 2–2–6
ADS–B OUT OFF OPERATIONS, 5–4–5
ADS–B TRANSMITTERS, REPORTING INOPERATIVE OR MALFUNCTIONING ADS–B TRANSMITTERS, 2–1–15
ADVANCE APPROACH INFORMATION, 6–4–1, 10–3–2
ADVISORY SERVICE TO ARRIVING VFR FLIGHTS, 10–4–2
AERONAUTICAL ADVISORY STATIONS (UNICOM/MULTICOM), 3–2–2
Air Traffic Control Assigned Airspace (ATCAA), 2–1–13
AIR TRAFFIC FACILITY RESPONSIBILITIES, 21–2–3
Air Traffic Security Coordinator (ATSC), 21–3–1
Air Traffic Tactical Operations Programs, 18–2–1
Aircraft
DOE, 5–3–1
Aerial Sampling/Surveying, 5–3–1
Due Regard Operations, 5–3–1
Weather Reconnaissance Flights, 5–3–1
Flight Inspection, 5–2–1
High Altitude Inspections, 5–2–1
Identification Problems, 2–1–9
Identifying DOT/FAA, 5–2–1
Open Skies Treaty Aircraft Priority Flights (F and D), 5–3–3
R & D Flight, 5–2–1
AIRCRAFT CALL SIGNS USED FOR SENSITIVE GOVERNMENT FLIGHTS, 5–4–5
Airport, Traffic Patterns, 2–1–12
Airport Arrival Rate (AAR), 10–7–1
Airport Construction, 10–3–5
Change in Runway Length, 10–3–6
Airport Emergency Plans, 2–1–7
Airport Lighting, 10–6–1
AIRPORTS, SUSPICIOUS ACTIVITIES, 2–7–1
Altimeter Requirements, 2–10–1
Altimeter Setting to ARTCC, 2–10–2
Altitude Assignments, S/VFR and VFR, 3–8–4
ALTRV FLIGHT DATA PROCESSING, 8–1–1
AMPLITRON OR PARAMETRIC AMPLIFIER FAILURE, 7–2–1
Appearance, 2–7–1
Approach Control Airspace, 2–1–9
Approach Light Systems, 10–6–2
APPROACHES TO PARALLEL RUNWAYS, 10–3–6
AREAS OF NONVISIBILITY, 10–1–2
ARFF, 2–1–7
ARTCC to ARTCC Coordination Procedures, 18–8–2
Responsibilities, 18–8–2
ARTCC to ARTCC FEA/FCA Coordination, 18–8–2
ASDE PERFORMANCE CHECKS, 10–5–3
ASR PERFORMANCE CHECKS, 10–5–2
ATC SURVEILLANCE SOURCE USE, 3–6–2
ATIS, 10–4–1
ATOP, 6–8–1
ATOP Channel Changeovers, 6–8–2
ATSC. See Air Traffic Security Coordinator
AUTHORIZED MESSAGES NOT DIRECTLY ASSOCIATED WITH AIR TRAFFIC SERVICES, 3–2–1
Automated Position Sign On/Off, 4–6–5
AUTOMATED WEATHER DISPLAY STATUS, 8–3–1
AUTOMATIC ACQUISITION/TERMINATION AREAS, 12–6–2
AUTOMATION PROGRAM CHANGES, 12–6–1

B
BACKUP/AUGMENTATION OF WEATHER OBSERVATIONS, 2–9–1
Bird Hazards, 2–1–10
Blood Donors, 2–8–2
Bomb Threats, 2–1–6
Briefing, Air Traffic Bulletin, 2–2–5
Briefings, Order Changes, 2–2–6

C
C–UAS, 2–1–17
CA, 12–6–2
CALCULATING AARs, 10–7–1
Capping and Tunneling, 18–7–4
CATEGORIES OF OPERATIONS, 9–1–1
CHANGES TO MTR AND MOA PUBLISHED ACTIVITY SCHEDULES, 6–3–3
Charts
Disposition of Obsolete, 2–1–13
EOVM, 3–8–4
Minimum Vectoring Altitude, 3–8–1
CLASS B AIRSPACE, 12–1–3
CLASS C AIRSPACE, 12–1–2
Classified Operations, 21–4–2
CLEANING INSTRUMENT COVERS, 3–1–2

Color Displays–Terminal, Color Use on ATC Displays, 3–9–1
Combine/Recombine an ATCT/TRACON, 2–1–13
Communications
Battery–powered Transceivers, 3–3–2
CIRNOT Handling, 2–2–4
Emergency Frequencies, 3–3–1
Facility Status Report, 3–3–2
GENOT Handling, 2–2–4
Monitoring Frequencies, 3–3–1
Service "F", 3–3–1
Telephone, 3–3–1
Testing ELT, 3–3–2
Use of Communications, 3–2–1
FBI Use, 3–2–1
VSCS Frequency Backup, 3–3–3
VSCS Reconfigurations, 3–3–3
VTABS, 3–3–3
Comparison Checks, 2–10–1
COMPUTER DATA RETENTION, 8–1–2
Conferences
Coordination of Procedures, 4–2–2
Local, 4–2–1
Published Items, 4–2–2
CONFLICT ALERT FUNCTION PARAMETERS, 8–2–1
Continuity of Operations and Continuation of Government (COOP/COG), 21–4–2
COOP/COG. See Continuity of Operations and Continuation of Government
Coordination
Communication and Documentation, 21–5–1, 21–6–1
Coordination, 21–5–1
Responsibilities, 21–5–1, 21–6–1
Correspondence
Disposition of VAR, 4–5–2
Irregular Operation, 4–1–1
Letters of Procedures, 4–5–1
Letters to Airmen, 4–5–1
Policy/Procedures, 4–1–1
Preliminary Environmental Review, 4–1–1
Service Area Review, 4–1–1
Standards, 4–1–1
COUNTER UNMANNED AIRCRAFT SYSTEMS (C–UAS), 2–1–17
CRITERIA FOR IFR AIRCRAFT HANDLED COUNT, 9–1–1
[References are to page numbers]

CWAs, 6–3–1

DATA DISPLAY FOR BLOCK ALTITUDE
FLIGHTS, 8–3–1
DATA RECORDING, 12–2–1
DATA RETENTION, 12–2–1
DEBRIS RESPONSE AREAS, DISPLAYING ON
THE SITUATION DISPLAY, 2–1–20
DEVIATIONS IN SYSTEM, 7–2–1, 10–5–2
DEN. See Domestic Events Network
Density Altitude Broadcast, 2–10–3
Derelict Balloons/Objects, 19–5–1
DIGITAL MAP VERIFICATION, 8–3–1, 12–6–3
DISSEMINATION OF WEATHER
INFORMATION, 10–3–1
Domestic Events Network (DEN), 21–4–1

E–Mivism Adaptation, 8–2–2
EDST. See En Route Decision Support Tool
(EDST)
ELECTRONIC ATTACK (EA), 7–2–1
ELT Incident, 9–3–1
En Route
Areas of Operation, 6–1–1
Areas of Specialization, 6–1–1
Computer Interface, 6–6–1
Flight Progress Strip, Usage, 6–1–2
General, 6–1–1
Operating Position Designators, 6–1–1
Operations, 6–3–1
Sector Information Binders, 6–2–1
Sectors, 6–1–1
Configuration, 6–1–1
Services, 6–4–1
Stored Flight Plan, 6–5–1
Stored Flight Plan Program
Bulk Store File
Maintenance, 6–5–2
Preparation, 6–5–2
Coordination, 6–5–2
Criteria, 6–5–1
Implementation, 6–5–2
Remarks Data, 6–5–2

EN ROUTE CONTROLLER TEAM CONCEPT,
6–2–1
En Route Data
Deficiencies, 7–2–1
Performance, 7–1–1
En Route Decision Support Tool (EDST), 6–7–1
Computer Data Retention, 6–7–3
Outages, 6–7–2
Responsibilities, Facility Manager, 6–7–1
Responsibilities, Operations Manager—in–
Charge, 6–7–1
Responsibilities, Operations Supervisor—in–
Charge, 6–7–1
Restrictions Inventory and Evaluation, 6–7–3
Standard Use of Automated Flight Data Manage-
ment, 6–7–2
Traffic Counts and Delay Reporting, 6–7–3
Transfer of Position Responsibility, 6–7–4
URET Airspace Configuration Elements, 6–7–2
Waiver, Interim Altitude Requirements, 6–7–3

En Route Information Display System, 6–10–1
General, 6–10–1

EN ROUTE SECTOR INFORMATION BINDER,
6–2–1
Equipment
Frequencies, 16–2–1
General, 16–1–1

EQUIVALENT LATERAL SPACING
OPERATIONS (ELSO), 10–3–8
ERAM HOLD INFORMATION FACILITY
DIRECTIVE REQUIREMENTS, 8–2–2
ERAM HOLDING PATTERN ADAPTATION ,
8–2–2
ERAM MASTER TOOLBAR MAP BUTTON
LABEL, 8–2–3
ERAM SPECIAL ACTIVITY AIRSPACE (SAA)
ADAPTATION , 8–2–2
ERIDS, 6–10–1
Establishing Diverse Vector Area, 3–8–7

Index
Explosives Detection, 2–1–8

F

FAA FACILITIES, SUSPICIOUS ACTIVITIES, 2–7–1

Facility
Identification, 2–1–13
Visitors, 2–7–2

FACILITY COMPLEMENTS (ALASKA ONLY), 2–5–2

Facility Directives Repository (FDR), 2–2–6

Facility Equipment
Basic, 3–1–1
Color Displays–Terminal, 3–9–1
Generator Transfer Procedures, 3–1–2
Maintenance, 3–1–1

FACILITY SECURITY, 2–7–1

Facility Statistical Data
Amending and Reviewing Data, 13–5–1
General, 13–1–1
Instrument Approach, 9–2–1
Itinerant Operations, 13–2–1
Local Operations, 13–3–1
Operational Count, 9–1–1
Other Reports and Forms, 9–3–1
Overflight Operations, 13–4–1

Facility Statistical Data (Alaska Only)

Aircraft Contacted, 17–2–1
Flight Plan Count, 17–3–1
FSS Lists, Logs, and Tallies (OASIS), 17–6–1
General, 17–1–1
Pilot Briefing Count, 17–4–1
Reports and Information, 17–5–1

FALCON REPLAY SYSTEM, 2–1–20

Familiarization/Currency Requirements, 2–3–1

FAULT LOG, 12–2–2

FDR. See Facility Directives Repository

FEA/FCA PROCEDURES, 18–8–1

FEA/FCA RESPONSIBILITIES, 18–8–1

FEES, 4–8–1

FLIGHT DATA UNIT, 6–3–2

FLIGHT PLAN DROP INTERVAL, 8–1–2

FLIGHT PROGRESS STRIP USAGE, 10–1–4

Flight Request
Aerobatic Practice, 5–4–5
Certifying Record Attempts, 5–4–4
Crop Duster/Antique, 5–4–3
Deviation, 5–4–1
Flight Test, 5–4–4
Photogrammetric Flights, 5–4–4
Sanctioned Speed, 5–4–4

Flight Requests, Deviation from ADS–B Out
Requirements, 5–4–2

Flight Service Operations
General, 14–1–1
Operations, 14–3–1
Positions/Services, 14–2–1
Services, 14–4–1
 Flight Plan, Prefiled, 14–4–1

Flight Service Station
Operations
 Landing Area, Status Check, 14–3–1
 Liaison Visits, 14–3–1
 Tie–In NOTAM Responsibility, 14–3–1

Position/Service Information Binders, Position/
Services, 14–2–1

FOREIGN STATE DIPLOMATIC FLIGHTS, 5–3–4

Forms

7210–8, 9–3–1, 9–3–3
7230–10, 4–6–3, 4–6–7
7230–12, 9–2–1, 9–2–2
7230–13, 17–5–1
7230–14, 9–1–3, 9–1–4
7230–16, 9–2–1
7230–4, 4–6–1, 4–6–6, 18–5–4
7233–1, 17–3–1, 17–4–1
7233–4, 17–3–1, 17–4–1
7233–5, 17–4–1
Preparation, 4–6–1

FUNCTIONAL USE OF CERTIFIED TOWER
RADAR DISPLAYS, 10–5–1

G

Gate Hold Procedures, 10–4–2

GO–AROUND/MISSED APPROACH, 10–3–7
HANDLING OF SIGMETs, CWAs, AND PIREPs, 6–3–1
HEADSET TONE INCIDENTS, 3–3–3
Hours of Duty, 2–4–1
Service Hours, 2–4–1
Status of Service, 2–4–1

IFR AIRCRAFT HANDLED, 9–1–1
ILS/MLS HEIGHT/DISTANCE LIMITATIONS, 10–3–2
INCOMPATIBLE LIGHT SYSTEM OPERATION, 10–6–1
Information, Law Enforcement, 2–2–5
Intelligence Analysis and Communication, 21–4–2
INTERIM ALTITUDE FACILITY DIRECTIVE REQUIREMENTS, 8–2–2

JOB REQUIREMENTS, 2–2–1

LADP, 10–1–5
LAND AND HOLD SHORT OPERATIONS (LAHSO), 10–3–2
Law Enforcement, Cooperation with, 2–7–1
LAWRS Hours of Operation, 2–9–1
Legal Liabilities of Personnel, 2–2–1
LETTERS OF AGREEMENT, 4–3–1
Aircraft Call Signs, 4–4–1
APPROPRIATE SUBJECTS, 4–3–2
APPROVAL, 4–3–4
AUTOMATED INFORMATION TRANSFER (AIT), 4–3–7
CANCELLATION, 4–3–5
COMMERCIAL SPACE, 4–3–4
Commercial Space LOA Templates, Appendix 6–1

DEVELOPING, 4–3–3
Operations Under Exemptions, 4–4–1
REVIEW, 4–3–4
REVISIONS, 4–3–5
RSU, 4–4–1
LINE UP AND WAIT (LUAW) OPERATIONS, 10–3–3
LOA, 4–3–1
LOCAL INTERIM ALTITUDE, 8–2–3
Low Altitude Authorization Notification Capability, 12–9–1
SMALL UAS (sUAS) ATC AUTHORIZATIONS, 12–9–1
LOW LEVEL WIND SHEAR/MICROBURST DETECTION SYSTEMS, 10–3–1
LOW VISIBILITY OPERATIONS, 10–1–5
LUAW, 10–3–3

MAGNETIC VARIATION AT STARS FACILITIES, 12–6–3
MANPADS, Handling MANPADS Incidents, 2–1–7
Maps, Video
Common Reference Points, 3–7–2
Intensity, 3–7–2
Mapping Standards, 3–7–1
Tolerance for Fix Accuracy, 3–7–1
Video Map Data, 3–7–1
Medical, 2–8–1
Alcohol, 2–8–2
Clearance Requirements, 2–8–1
Drugs and Sedatives, 2–8–1
Special Evaluations, 2–8–1
Status, 2–8–2
Meteorological Services and Equipment
Broadcasts, 15–3–1
General, 15–1–1
Weather Briefing, 15–2–1
MIA, 10–4–9
MILITARY AIRCRAFT MOVEMENTS, 9–1–2
MILITARY ATC BOARDS, 10–1–1
MILITARY HEADQUARTERS, 1–1–2
MINIMUM IFR ALTITUDES (MIA), 6−4−1
MINIMUM SAFE ALTITUDE WARNING (MSAW) AND CONFLICT ALERT (CA), 12−6−2
MINIMUM VECTORING ALTITUDE CHARTS (MVAC) PREPARATION (TERMINAL/MEARTS), 3−8−1
MOBILE CONTROL TOWERS, 10−1−5
MODE C INTRUDER (MCI) ALERT PARAMETERS, 8−2−1, 12−6−3
MSAW, 12−6−2
MSAW GTM CARTOGRAPHIC CERTIFICATION, UPDATES, AND RECOMPILATION, 12−6−3
MULTI−SENSOR RADAR OPERATIONS, 12−6−4
MULTIPLE RUNWAY CROSSINGS, 10−3−5

N
NAS Changes, 3−1−1
NAS En Route Automation Displays, 8−3−1
General, 8−1−1
Procedures, 8−2−1
National Playbook, 18−22−1
National Programs
Data Recording and Retention, 12−2−1
Helicopter Route Chart, 12−4−1
Standard Terminal Automation Replacement System (STARS), 12−6−1
Terminal Area VFR Route, 12−5−1
Terminal VFR Radar Services, 12−1−1
VFR Planning Chart, 12−3−1
National Traffic Management Log, 18−5−1
Navigational Aids
Malfunctions, 3−5−2
Monitoring, 3−5−1
Originating NOTAMs, 3−5−2
NONAVIATION WEATHER SERVICE, 2−9−2

Controller Pilot Data Link Communications, 6−8−2
Error Repair Position Responsibilities, 6−8−1
Facility Manager Responsibilities, 6−8−1
General, 6−8−1
Operational Supervisor–In−Charge Responsibilities, 6−8−1
Outages, 6−8−2
Transfer of Position, 6−8−2

OPERATING INITIALS, 2−2−3
OPERATING POSITION DESIGNATORS, 10−1−1
OPERATION OF LIGHTS WHEN TOWER IS CLOSED, 10−6−1
OPERATIONAL AARs, 10−7−2
OPERATIONAL GUIDANCE FOR FUSION, 3−6−4
Operational Line of Authority
Air Traffic Security Coordinator (ATSC), 21−3−1
AUTHORITY FOR OPERATIONAL SECURITY−RELATED ACTIONS, 21−3−1
OPERATIONAL MODE TRANSITION PROCEDURES, 12−6−3
OPERATIONAL SECURITY−RELATED ACTIONS, AUTHORITY, 21−3−1
Operations and Staffing, 11−2−1
Operations Security, Strategic and Tactical Coordination, 21−5−1
Operational Line of Authority, 21−3−1
Organizational Missions, 21−1−1
Supplemental Duties, 21−4−1
Opposite Direction Operations, 2−1−18
Organizational Missions
Special Operations Security Mission, 21−1−1
System Operations Security Mission, 21−1−1
Tactical Operations Security Mission, 21−1−1
Organizational Responsibilities, 11−1−1
Outdoor Laser Demonstrations, 2−1−13

P
PARTICIPATION IN LOCAL AIRPORT DEICING PLAN (LADP), 10−1−5
[References are to page numbers]

Pilot/Controller Outreach Operation Rain Check, 4–2–1
PIREPs, 6–3–1
POSITION DUTIES AND RESPONSIBILITIES, 10–2–1
Practice Instrument Approaches, 6–4–1, 10–4–3
Precision Approach Path Indicator (PAPI) Systems, 10–6–3
Precision Obstacle Free Zone (POFZ), 10–1–7
Presidential Aircraft
 Communications Circuits, Use of, 5–1–3
 Coordination, 5–1–1, 5–1–3
 Monitoring, 5–1–2
 Movement, 5–1–3
 Rescue Support, 5–1–3
 Security of Information, 5–1–3
Presidential Movement, 21–4–1
Pretaxi Clearance Procedures, 10–4–2
PROCEDURES FOR OPENING AND CLOSING RUNWAYS, 10–1–4
PROCESSING GPS ANOMALY REPORTS, 3–5–2
Prohibited/Restricted Areas, 2–1–10
PURPOSE, Coordination, 21–6–1

Q
Quality Assurance Review, 4–6–1

R
RADAR AND/OR COMPUTER DATA, 4–8–1
RADAR DISPLAY INDICATORS, 10–5–1
RADAR PERFORMANCE CHECKS, 7–1–1
RADAR SELECTION PROCEDURES, 12–6–4
RADAR TOLERANCES, 10–5–3
RAIN CONFIGURATION, 12–7–2
RECEIPT OF NOTAM DATA, 6–3–1
RECOMMENDED ALTITUDES FOR SURVEILLANCE APPROACHES, 10–5–3
Recorders, Tape
Assignment of Channels, 3–4–1
Use of, 3–4–1
VSCS Data Retention, 3–4–3
Recording Equipment
 Checking and Changing, 3–4–2
 Handling Tapes, DATs or DALR Storage, 3–4–2
Records
 Collection of Data, 4–6–1
 Facility, 4–6–1
Reduced Separation on Final, 10–4–8
Reduced Vertical Separation Minimum, 6–9–1
Equipment Suffix and Display Management, 6–9–2
Facility Manager Responsibilities, 6–9–1
General, 6–9–1
Mountain Wave Activity, 6–9–2
Non–RVSM Operator Coordination Requirements, 6–9–2
Operations Manager–In–Charge Responsibilities, 6–9–1
Operations Supervisor–In–Charge/Controller–In–Charge Responsibilities, 6–9–2
Suspension of RVSM, 6–9–3
Wake Turbulence and Weather Related Turbulence, 6–9–3
REENTRY VEHICLE MISHAPS, 18–4–3
Regulatory Information
 Authorizations and Exemptions, 19–3–1
 Fixed–wing SVFR, 19–2–1
 Moored Balloons, Kites, and Unmanned Rockets, 19–5–1
 Parachute Jump, 19–4–1
 Temporary Flight Restrictions, 20–1–1
 Waivers and Authorizations, 19–1–1
RELAY OF RVR VALUES, 10–3–2
REPORTING
 DEATH, ILLNESS, OR OTHER PUBLIC HEALTH RISK ON BOARD AIRCRAFT, 2–1–17
 DIVERTED AIRCRAFT ARRIVING FROM INTERNATIONAL LOCATIONS, 2–1–15
 INOPERATIVE OR MALFUNCTIONING ADS–B TRANSMITTERS, 2–1–15
 SUSPICIOUS UAS ACTIVITIES, 2–1–16
Reports
 Delay Reporting, 4–7–1
 Monthly, 4–7–1
[References are to page numbers]

System Impact, 4–7–1
Unidentified Flying Object, 4–7–1

REQUIREMENTS FOR ERAM DATA BLOCK
CHANGES WITHOUT COORDINATION, 8–2–2

Responsibilities, 21–2–1
RESTRICTED DRUGS, 2–8–2
REVIEW AIRSPACE STRUCTURE, 6–3–1
Route Advisories, 18–20–1
Route Test, 18–24–1, 18–25–1

Runway
Intersection Takeoffs, 2–1–9
Obstacle Identification, 2–1–12

RUNWAY AND TAXIWAY LIGHTS, 10–6–4

RUNWAY EDGE LIGHTS ASSOCIATED WITH
MEDIUM APPROACH LIGHT
SYSTEM/RUNWAY ALIGNMENT
INDICATOR LIGHTS, 10–6–4

RUNWAY FLOODLIGHTS, 10–6–4
RUNWAY STATUS LIGHTS (RWSL), 10–6–4
RUNWAY VISUAL RANGE (RVR)
EQUIPMENT, 2–9–2
RVR EQUIPMENT, 2–9–2
RWSL, 10–6–4

S

Safety Logic Systems Operations Supervisor/CIC
Procedures, 12–7–1
Safety Logic Systems Supervisor/CIC Procedures
ASDE, 12–7–1
Ensure Status, 12–7–2
Limited Configuration, 12–7–2
Monitor Alerts and Ensure Corrective Action,
12–7–2
Watch Checklist, 12–7–3
SAME, 2–9–3
SATR, 2–1–11
SECTIONAL AERONAUTICAL AND
TERMINAL AREA CHARTS, 10–1–1
Security, 2–7–1
Security Notice (SECNOT), 21–7–1

SECURITY OF JOINT–USE RADAR DATA,
2–7–2
SELECTED ALTITUDE LIMITS, 8–3–1
SELECTING ACTIVE RUNWAYS, 10–1–2
SFRA, 2–1–11
SHUTDOWN OF PAR ANTENNAS, 10–5–1
SIFs. See Special Interest Flights
SIGMETs, 6–3–1
SIMULTANEOUS CONVERGING
INSTRUMENT APPROACHES, 10–4–6
SIMULTANEOUS INDEPENDENT
APPROACHES, 10–4–3
Simultaneous Offset Instrument Approaches,
10–4–7
SIMULTANEOUS WIDELY–SPACED
PARALLEL OPERATIONS, 10–4–5
SINGLE PERSON MIDNIGHT OPERATIONS,
2–6–5
SINGLE SITE COVERAGE STAGE A
OPERATIONS, 8–2–1
SITUATION DISPLAY
DISPLAYING DEBRIS RESPONSE AREAS,
2–1–20
DISPLAYING REENTRY AREAS, 2–1–20
DISPLAYING SPACE LAUNCH, 2–1–20
SPACE LAUNCH MISHAPS, 18–4–3
SPECIAL AIR TRAFFIC RULES, 2–1–11
SPECIAL FLIGHT RULES AREA, 2–1–11
Special Interest Flights (SIFs), 21–4–1
SPECIAL INTEREST SITES, 2–1–19
SPECIAL OPERATIONS SECURITY GROUP
RESPONSIBILITIES, 21–2–1
Special Operations Security Mission, 21–1–1
SPECIAL RADAR ACCURACY CHECKS,
7–1–1
Special Security Instructions (SSI) (14 CFR
Section 99.7), 21–6–1
SPECIAL USE FREQUENCIES, 6–4–1
SPECIFIC AREA MESSAGE ENCODING
(SAME) WEATHER RADIOS, 2–9–3
STRATEGIC OPERATIONS SECURITY GROUP RESPONSIBILITIES, 21–2–2

STRATEGIC OPERATIONS SECURITY MISSION, 21–1–1

SUA and PAJA Frequency Information, 2–1–14

sUAS Operations, 19–6–1
LOW ALTITUDE AUTHORIZATION AND
NOTIFICATION CAPABILITY (LAANC), 19–6–1
14 CFR Part 107, 19–6–1
AIRSPACE WAIVER PROCESS, 19–6–2
MANUAL AIRSPACE AUTHORIZATION PROCEDURES (VIA DRONEZONE), 19–6–1

Supplemental Duties
Classified Operations, 21–4–2
Continuity of Operations and Continuation of
Government (COOP/COG), 21–4–2
Domestic Events Network (DEN), 21–4–1
Intelligence Analysis and Communication, 21–4–2
Presidential Movement, 21–4–1
Special Interest Flights (SIFs), 21–4–1

Surveillance Source Use
Commissioning Facilities, 3–6–1
Monitoring Mode 3/A Codes, 3–6–2
Prearranged Coordination, 3–6–3
System and Display Setting, 3–6–3
Target Sizing, 3–6–2

SUSPICIOUS ACTIVITIES AROUND
AIRPORTS OR FAA FACILITIES, 2–7–1

Suspicious Aircraft/Pilot Activities, 2–1–14
System Operations Security, Operations Security:
Tactical, Special, and Strategic, 21–1–1

System Operations Security Mission, 21–1–1

T & A Recording, 4–6–5
TACTICAL OPERATIONS SECURITY GROUP RESPONSIBILITIES, 21–2–1

Tactical Operations Security Mission, 21–1–1
Takeoff Clearance, 10–3–5
TBM, 18–6–1

TBO, 18–6–1
Temporary Flight Restrictions, 20–1–1
Terminal Operations, Services, and Equipment
Airport Arrival Rate (AAR), 10–7–1
General, 10–1–1
Lighting, 10–6–1
Operations, 10–3–1
Position Binders, 10–2–1
Radar, 10–5–1
Services, 10–4–1

Time Checks, 2–4–1
Time Standards, 2–4–1

TIME–BASED MANAGEMENT (TBM), 18–6–1
APPROVAL AUTHORITY, 18–6–1
ATCS MCC RESPONSIBILITIES, 18–6–2
FIELD FACILITY RESPONSIBILITIES, 18–6–1
POLICY, 18–6–1
TBM WITHIN ARTCC AREA OF JURISDICTION, 18–6–2
TYPES, 18–6–1

TOWER/RADAR TEAM CONCEPTS, 10–1–1
TOWER/RADAR TEAM POSITION BINDERS, 10–2–1
Traffic Lights, Gates, and Signals, 3–1–2
Traffic Management
ARTCC to ARTCC FEAFCA Coordination, 18–8–2
Coded Departure Routes, 18–19–1
Coordination, 18–5–1
Flow Constrained Area (FCA), 18–8–1
Flow Evaluation Area (FEA), Flow Constrained Area (FCA), Ingetrated Collaborative Rerouting (ICR), 18–8–1
Ground Delay Programs, 18–10–1
Ground Stop(s), 18–11–1, 18–13–1
Initiatives, 18–7–1
Line of Authority, 18–3–1
Monitor Alert Parameter, 18–9–1
North American Route Program, 18–12–1,
18–18–1
Organizational Missions, 18–1–1
Preferred IFR Routes Program, 18–17–1
Responsibilities, 18–2–1
Severe Weather Management, 18–15–1
Special Programs, 18–14–1
Supplemental Duties, 18–4–1
SWAP, 18–16–1
[References are to page numbers]

Traffic Management (TM) Support of Non–Reduced Vertical Separation Minima (RVSM) Aircraft, 18–23–1
Trajectory–Based Operations (TBO), 18–6–1
MISSION, 18–6–1
POLICY, 18–6–1
TRANSITION PROCEDURES, 8–1–1
TRANSPORTATION SECURITY ADMINISTRATION AND FAA JOINT OPERATING PROCEDURES, 2–1–20

TRSA, 12–1–2

U

UAS, REPORTING SUSPICIOUS ACTIVITIES, 2–1–16
UAS DETECTION SYSTEMS, 2–1–16
UAS FACILITY MAP (UASFM), PROCEDURES TO CHANGE ALTITUDES, 12–10–2
UAS Facility Maps (UASFM), 12–10–1
UAS Facility Maps (UASFM)
AUTHORIZATION MAP DESIGN PROCEDURES CLASS B/C/D AIRSPACE, 12–10–2
PART 107 OPERATION APPROVALS, 12–10–2
UAS Operations, 5–5–1
14 CFR Part 91, 5–5–1
CLASS A AIRSPACE, 5–5–2
CLASS B AIRSPACE, 5–5–2
CLASS C AIRSPACE, 5–5–2
CLASS D AIRSPACE, 5–5–2
CLASS E AIRSPACE, 5–5–2
CLASS G AIRSPACE, 5–5–2
LETTERS OF AGREEMENT (LOA), 5–5–2
MEMORANDUMS, 5–5–2
RESPONSIBILITIES, 5–5–1
TERMINAL RADAR SERVICE AREA (TRSA), 5–5–2
TYPES AND AUTHORITY, 5–5–1
UAS SGI ADDENDUM REQUEST PROCESS AND COORDINATION, 21–5–1
UAS SPECIAL GOVERNMENTAL INTEREST (SGI) OPERATIONS, 21–4–2
UASFM, 12–10–1

Unauthorized Laser Illumination of Aircraft, 2–1–14
USE OF ACTIVE RUNWAYS, 10–1–2
USE OF OTHER THAN FAA COMMUNICATIONS CIRCUITS, 3–2–1
USE OF STARS QUICK LOOK FUNCTIONS, 12–6–1

V

VFR Waypoint Chart Program, 12–8–1
Criteria, 12–8–1
Definition, 12–8–1
Policy, 12–8–1
Responsibilities, 12–8–2
Visual Approach Slope Indicator (VASI) Systems, 10–6–3
VISUAL SEPARATION, 10–3–4
Volcanic Ash, 18–4–3

W

Watch Coverage, 2–5–1
Area Supervision, 2–5–1
Consolidating Positions, 2–5–2
CONTROLLER–IN–CHARGE (CIC), 2–5–2
DEVELOPED LEAD SPECIALIST (DLS), 2–5–2
Holiday Staffing, 2–5–2
Overtime Duty, 2–5–2
Relief Periods, 2–5–1
Schedules, 2–5–1
Supervision Coverage, 2–5–1
Supervisors Hours of Duty (Alaska Only), 2–5–2
Watch Supervision
Assignments, 2–6–1
Basic Watch Schedule, 2–6–4
CIC, 2–6–1
Consolidating Positions, 2–6–3
Controller–in–Charge Designation, 2–6–2
Controller–in–Charge Selection, 2–6–3
Holiday Staffing, 2–6–4
Manager, 2–6–1
Overtime Duty, 2–6–4
Relief Periods, 2–6–3
Supervisor, 2–6–1
Weather/Visibility, 2–9–1
[References are to page numbers]

Dissemination, 2–9–1
Record Center, 2–9–2
Visibility Charts, 2–9–2
Visual Observations, 2–9–2
Wind Indicator Cross Check, 2–10–1

Wind Instrument Sensors, 2–10–1
WIND INSTRUMENTS AT APPROACH
CONTROL FACILITIES, 10–3–1
BRIEFING GUIDE
Table of Contents

<table>
<thead>
<tr>
<th>Paragraph Number</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2–1–18</td>
<td>PROHIBITED/RESTRICTED AREAS AND STATIONARY ALTRVS</td>
<td>BG–3</td>
</tr>
<tr>
<td>2–1–42</td>
<td>ACCESS TO FALCON REPLAY SYSTEM</td>
<td>BG–4</td>
</tr>
<tr>
<td>4–5–2</td>
<td>LETTERS TO AIRMEN</td>
<td>BG–5</td>
</tr>
<tr>
<td>5–3–4</td>
<td>WEATHER RECONNAISSANCE FLIGHTS</td>
<td>BG–5</td>
</tr>
<tr>
<td>6–9–1</td>
<td>GENERAL</td>
<td>BG–6</td>
</tr>
<tr>
<td>10–1–6</td>
<td>SELECTING ACTIVE RUNWAYS</td>
<td>BG–8</td>
</tr>
<tr>
<td>10–1–9</td>
<td>FLIGHT PROGRESS STRIP USAGE</td>
<td>BG–9</td>
</tr>
<tr>
<td>12–8–1</td>
<td>POLICY</td>
<td>BG–10</td>
</tr>
<tr>
<td>12–8–2</td>
<td>DEFINITION</td>
<td>BG–10</td>
</tr>
<tr>
<td>12–8–3</td>
<td>CRITERIA</td>
<td>BG–10</td>
</tr>
<tr>
<td>12–8–4</td>
<td>RESPONSIBILITIES</td>
<td>BG–10</td>
</tr>
<tr>
<td>18–10–4</td>
<td>DEFINITIONS</td>
<td>BG–13</td>
</tr>
<tr>
<td>18–21–2</td>
<td>DEFINITION</td>
<td>BG–13</td>
</tr>
<tr>
<td>18–21–3</td>
<td>RESPONSIBILITIES</td>
<td>BG–13</td>
</tr>
<tr>
<td>18–21–4</td>
<td>PROCEDURES</td>
<td>BG–13</td>
</tr>
<tr>
<td>Chapter 21,</td>
<td>Line of Authority</td>
<td>BG–21</td>
</tr>
<tr>
<td>Section 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21–3–1</td>
<td>SYSTEM OPERATIONS SECURITY</td>
<td>BG–21</td>
</tr>
</tbody>
</table>
1. PARAGRAPH NUMBER AND TITLE:
2–1–18. PROHIBITED/RESTRICTED AREAS AND STATIONARY ALTRVS

2. BACKGROUND: FAA Order JO 7210.3 provides guidance to facility management for waiving, in certain cases, the 3-mile boundary separation requirement between nonparticipating aircraft and active special use airspace, Air Traffic Control Assigned Airspace (ATCAAs), and stationary Altitude Reservations (ALTRVs). However, it has been suggested this guidance lacks clarity and should be harmonized with direction in FAA Order JO 7110.65, paragraph 9–3–2.

3. CHANGE:

OLD

FAA Order JO 7110.65, Air Traffic Control, prescribes separation requirements from special use, ATC-assigned airspace, and stationary ALTRVs. In recognition of the fact that prohibited/restricted areas and stationary ALTRVs may be established for security reasons or to contain hazardous activities not directly involving aircraft operations, provision is made for exempting these areas from vertical and radar separation minima if the areas have been identified by facility management. The intent in prescribing separation requirements from special use, ATC-assigned airspace, and stationary ALTRVs is to establish a buffer between nonparticipating aircraft and aircraft operations inside special use, ATC-assigned airspace, and stationary ALTRVs. As such, the buffer serves as an extra safety margin in consideration of possible operational, procedural, or equipment variances. Application of the separation prescribed in FAA Order JO 7110.65 is not considered necessary whenever the prohibited/restricted airspace and stationary ALTRV does not contain aircraft operations because these areas typically provide an internal buffer based upon the exact type of activity taking place. In making a determination to exempt specific areas, air traffic facility managers must be guided by the following:

a. Determine the exact nature of prohibited/restricted area and stationary ALTRV utilization through direct liaison with the using agency.

b. Coordinate with the Service Area office during the analysis of area utilization.

c. The following types of activity are examples of restricted area utilization which often will not require application of separation minima:

NEW

FAA Order JO 7110.65, Air Traffic Control, prescribes separation requirements from special use, ATC-assigned airspace, and stationary ALTRVs. The intent in prescribing this separation requirement is to establish separation minima between nonparticipating aircraft and certain aircraft operations inside that airspace. Some prohibited/restricted areas and stationary ALTRVs are established for security reasons or to contain hazardous activities, and do not require a boundary separation minima. These areas may be exempted from vertical and lateral separation minima when identified by facility management. In making a determination to exempt specific areas, air traffic facility managers must be guided by the following:

b. Coordinate with the Service Center during the analysis of area utilization.

c. The following types of activity are examples of restricted area utilization which may not require application of boundary separation minima:
1. Explosives detonation.
2. Ground firing of various types.

3. Aircraft operations associated with the above in a safety, observer, or command and control capacity only; i.e., the aircraft is not directly engaging in activity for which the airspace was designated and is operating visual flight rules (VFR).

Add

4. VFR aircraft, not directly engaging in activity for which the airspace is activated, that have been authorized by the using agency.

1. PARAGRAPH NUMBER AND TITLE: 2–1–42. ACCESS TO FALCON REPLAY SYSTEM

2. BACKGROUND: The Falcon Replay System with voice is a PC–based tool that allows specified users to analyze video and audio from National Airspace System (NAS) radar sessions. On October 31, 2016, a policy memorandum was issued by the Director, Safety and Technical Training (AJI), to identify certain users. This change will incorporate user guidance from that memorandum into FAA Order JO 7210.3, Facility Operation and Administration, Chapter 2, Section 1.

3. CHANGE:

<table>
<thead>
<tr>
<th>OLD</th>
<th>NEW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add</td>
<td>2–1–42. ACCESS TO FALCON REPLAY SYSTEM</td>
</tr>
<tr>
<td>Add</td>
<td>Air traffic managers (ATM) must assign access to the Falcon Replay System with voice for:</td>
</tr>
<tr>
<td>Add</td>
<td>a. Facility management and Quality Control personnel.</td>
</tr>
<tr>
<td>Add</td>
<td>b. Training Team Members.</td>
</tr>
<tr>
<td>Add</td>
<td>c. Local Safety Council Members.</td>
</tr>
<tr>
<td>Add</td>
<td>f. Other facility personnel deemed appropriate by the ATM or their designee.</td>
</tr>
</tbody>
</table>
1. **PARAGRAPH NUMBER AND TITLE:** 4–5–2. LETTERS TO AIRMEN

2. **BACKGROUND:** Letters to airmen (LTAs) publicize new or revised services, anticipated interruptions of service, procedural changes, and other items of interest to users. In 2013, the Aeronautical Information Management Program Office created an electronic tool for LTA management, the LTA Manager. Roles and responsibilities were assigned for users and Service Center Operations Support Groups (OSGs). However, when FAA Order JO 7210.3 was amended to reflect these changes, the OSGs’ roles were not included.

3. **CHANGE:**

<table>
<thead>
<tr>
<th>OLD</th>
<th>NEW</th>
</tr>
</thead>
<tbody>
<tr>
<td>4–5–2. LETTERS TO AIRMEN</td>
<td>4–5–2. LETTERS TO AIRMEN</td>
</tr>
<tr>
<td>a. Facility air traffic managers may issue letters to airmen to publicize new or revised services, anticipated interruptions of service, procedural changes, and other items of interest to users.</td>
<td>a. Facility air traffic managers may approve letters to airmen to publicize new or revised services, anticipated interruptions of service, procedural changes, and other items of interest to users.</td>
</tr>
<tr>
<td>b through FIG 4–5–I</td>
<td>No Change</td>
</tr>
<tr>
<td>Add</td>
<td>c. Service Center Operations Support Groups (OSGs) must provide the following support using the electronic letters to airmen management tool—LTA Manager:</td>
</tr>
<tr>
<td>Add</td>
<td>1. Air traffic facility account management.</td>
</tr>
<tr>
<td>Add</td>
<td>2. Publish or reject letters to airmen.</td>
</tr>
</tbody>
</table>

1. **PARAGRAPH NUMBER AND TITLE:** 5–3–4. WEATHER RECONNAISSANCE FLIGHTS

2. **BACKGROUND:** To allow for proper distribution, the Central Altitude Reservation Function (CARF) identifier is used by the issuing Air Route Traffic Control Center (ARTCC) to publish a Weather Reconnaissance Area (WRA) Notice to Air Missions (NOTAM). However, the CARF unit does not issue the NOTAM and would not be the appropriate entity to provide any WRA information in response to a field inquiry.

3. **CHANGE:**

<table>
<thead>
<tr>
<th>OLD</th>
<th>NEW</th>
</tr>
</thead>
<tbody>
<tr>
<td>5–3–4. WEATHER RECONNAISSANCE FLIGHTS</td>
<td>5–3–4. WEATHER RECONNAISSANCE FLIGHTS</td>
</tr>
<tr>
<td>Title through b4(c) NOTE</td>
<td>No Change</td>
</tr>
<tr>
<td>(d) Issue the WRA NOTAM, as applicable.</td>
<td>No Change</td>
</tr>
<tr>
<td>Add</td>
<td>NOTE—Any questions about the WRA NOTAM should be directed to the ARTCC that originated the NOTAM, not CARF.</td>
</tr>
</tbody>
</table>
1. PARAGRAPH NUMBER AND TITLE: 6–9–1. GENERAL

2. BACKGROUND: Although guidance regarding controller responsibilities for aircraft operating in or transitioning through Reduced Vertical Separation Minimum (RVSM) airspace is provided in this paragraph, the actual parameters of the airspace are absent. Further comparisons of FAA Order JO 7210.3 and FAA Order JO 7110.65 indicate inconsistent or undefined language describing RVSM airspace and operations in that airspace. To avoid confusion when applying the guidance found in this paragraph, ATO Safety and Training has requested the addition of the definition of RVSM airspace found in Advisory Circular (AC) 91−85B, Authorization of Aircraft and Operators for Flight in Reduced Vertical Separation Minimum (RVSM) Airspace, 14 CFRs 91.180 and 91.706.

3. CHANGE:

<table>
<thead>
<tr>
<th>OLD</th>
<th>NEW</th>
</tr>
</thead>
<tbody>
<tr>
<td>6–9–1. GENERAL</td>
<td>6–9–1. GENERAL</td>
</tr>
<tr>
<td>a. RVSM reduces vertical separation between FL290 and FL410 from 2,000 feet to 1,000 feet for those aircraft approved for operation within these altitude strata. The six additional altitudes provide the users fuel savings and operational efficiencies while providing ATC flexibility, mitigation of conflict points, enhanced sector throughput and reduced controller workload for air traffic control operations.</td>
<td>a. RVSM airspace is defined as any airspace between FL290 and FL410 inclusive, where eligible aircraft are separated vertically by 1,000 feet. Additional altitudes provide users fuel savings and operational efficiencies while providing ATC flexibility, mitigation of conflict points, enhanced sector throughput and reduced controller workload.</td>
</tr>
<tr>
<td>b. RVSM is applied in that airspace from FL290 through FL410 over the domestic United States, Alaska, the Gulf of Mexico where the FAA provides air traffic services, the San Juan FIR, across international borders with Canada and Mexico, and the Pacific and Atlantic Oceanic airspace controlled by the FAA. There are two forms of RVSM airspace:</td>
<td>b. RVSM is applied in RVSM airspace over the domestic United States, Alaska, the Gulf of Mexico where the FAA provides air traffic services, the San Juan FIR, across international borders with Canada and Mexico, and the Pacific and Atlantic Oceanic airspace controlled by the FAA. All aircraft operating in RVSM airspace must be RVSM eligible unless they qualify for an exception as listed below.</td>
</tr>
</tbody>
</table>

1. RVSM Airspace. Use of the term RVSM airspace refers to the RVSM exclusive environment. Aircraft operating in this airspace must be RVSM approved.

NOTE:

1. The following non–RVSM aircraft are exceptions to the exclusive RVSM airspace. However, access will be on a workload–permitting basis:
 a. DOD aircraft.
 b. DOD–certified aircraft operated by NASA (T38, F15, F18, WB57, S3, and U2 aircraft only).
 c. MEDEVAC aircraft.
 d. Aircraft being flown by manufacturers for development and certification.
 e. Foreign State aircraft.
2. The following aircraft operating within oceanic airspace or transiting to/from oceanic airspace are excepted:
 a. Aircraft being initially delivered to the State of Registry or Operator;
 b. Aircraft that was formerly RVSM approved but has experienced an equipment failure and is being flown to a maintenance facility for repair in order to meet RVSM requirements and/or obtain approval;
 c. Aircraft being utilized for mercy or humanitarian purposes;
 d. Within the Oakland, Anchorage, and Arctic FIRs, an aircraft transporting a spare engine mounted under the wing.

3. Aircraft not approved for RVSM operations may transition through RVSM airspace to operate above or below.

2. Transition Airspace. Airspace where both RVSM aircraft and non−RVSM aircraft may be accommodated at all altitudes and RVSM approval is not required. Transition airspace connects airspace wherein conventional separation is applied to RVSM airspace. One thousand feet vertical separation can only be applied between RVSM aircraft. Two thousand feet separation must be applied between non−RVSM aircraft or whenever one of the aircraft is non−RVSM.

 c. The following non−RVSM aircraft are exceptions to the exclusive RVSM airspace, however, access may be approved, workload−permitting:
 1. DoD aircraft.
 2. DoD−certified aircraft operated by NASA (T38, F15, F18, WB57, S3, and U2 aircraft only).
 3. MEDEVAC aircraft.
 4. Aircraft being flown by manufacturers for development and certification.
 5. Foreign State aircraft.

 d. The following aircraft operating within oceanic airspace or transiting to/from oceanic airspace are excepted:

 1. Aircraft being initially delivered to the State of Registry or Operator;
 2. Aircraft that was formerly RVSM approved but has experienced an equipment failure and is being flown to a maintenance facility for repair in order to meet RVSM requirements and/or obtain approval;
1. PARAGRAPHS NUMBER AND TITLE: 10–1–6. SELECTING ACTIVE RUNWAYS

2. BACKGROUND: Aircraft arrival and departure operations generally use the runway(s) most nearly aligned with the wind direction when the wind velocity is 5 knots or more. Other considerations such as runway length, available approach aids, noise abatement, delay/capacity considerations, and other factors may influence the selection of active runways.

National Transportation Safety Board (NTSB) recommendation A–10–109 included recommendations concerning runway selection criteria that proactively considers current and developing wind conditions, including gusts. In addition, this change is responsive to safety issues identified in Air Traffic Safety Action Program (ATSAP) Corrective Action Request (CAR) 2012–009 Runway Configurations – Tailwind/Crosswind Operations.

3. CHANGE:

OLD

10–1–6. SELECTING ACTIVE RUNWAYS

Add

NEW

10–1–6. SELECTING ACTIVE RUNWAYS

The ATCT supervisor/CIC determines which runway(s) are designated RUNWAY IN USE / ACTIVE RUNWAY / DUTY RUNWAY.

a. Coordinate with affected facilities.
b. Determination of the active runway/s requires consideration of all known factors that may in any way affect the safety of takeoff/landing operations including the initial departure and the instrument approach phases of flight within terminal area airspace. (See FAA Order JO 7110.65, paragraph 2–1–16, paragraph 2–1–18, paragraph 2–6–1 thru paragraph 2–6–6, paragraph 3–1–8, paragraph 3–3–1 thru paragraph 3–5–3, etc.)

NOTE—Example of items to be considered are: surface wind direction and velocity, wind shear/microburst alerts/reports, adjacent airport traffic flows, severe weather activity, IFR departure restrictions, environmental factors, etc.

Add

Add

Add

b. Select the RUNWAY IN USE / ACTIVE RUNWAY / DUTY RUNWAY by considering all known factors that may in any way affect the safety of takeoff/landing operations including the initial departure and the instrument approach phases of flight within terminal area airspace. Factors to consider include: surface wind direction and velocity (including gusts), wind shear / microburst alerts/reports, airport conditions, primary airport and adjacent airport traffic flows, weather activity, arrival/departure restrictions (and other airport–specific traffic management initiatives), environmental factors, etc.

NOTE—Consider the adverse effect of short-duration changes when selecting active runways or airport configurations. For example, “chasing the wind” could have adverse effects.

c. Responsibility for designating RUNWAY IN USE / ACTIVE RUNWAY / DUTY RUNWAY may be further delegated; however, a facility directive must be issued to define specific coordination requirements.

d. Tailwind and crosswind considerations take precedence over delay/capacity considerations, and noise abatement operations/procedures/agreements.

e. ATCTs must formalize, in their Standard Operating Procedures (SOP) and Letters of Agreement (LOAs) (as applicable), local procedures compliant with the provisions of this paragraph.

1. PARAGRAPH NUMBER AND TITLE: 10–1–9. FLIGHT PROGRESS STRIP USAGE

2. BACKGROUND: Prior to the completion of the Terminal Automation Modernization and Replacement (TAMR) / Standard Terminal Automation Replacement System (STARS) initiative, Center Radar Presentation (CENRAP) was used as a limited functioning backup radar system for terminal facilities if and when their radar failed. In 2021, however, the TAMR/STARS implementation was completed system–wide. TAMR/STARS offers the adoption of Air Route Surveillance Radar (ARSR) and Common Air Route Surveillance Radar (CARSR) en route sensors into the terminal radar automation platform and does not interface with the CENRAP system. Consequently, CENRAP no longer exists and all references to it should be deleted.
3. **CHANGE:**

OLD

10–1–9. **FLIGHT PROGRESS STRIP USAGE**

Air traffic managers at automated terminal radar facilities may waive the requirement to use flight progress strips provided:

a. Back–up systems such as multiple radar sites/systems or single site radars with CENRAP are utilized.

NEW

10–1–9. **FLIGHT PROGRESS STRIP USAGE**

No Change

a. Back–up systems such as multiple radar sites/systems are utilized.

1. **PARAGRAPH NUMBER AND TITLE:**

12–8–1. POLICY
12–8–2. DEFINITION
12–8–3. CRITERIA
12–8–4. RESPONSIBILITIES

2. **BACKGROUND:** At the October 2019 Aeronautical Charting Meeting, the Aircraft Owners and Pilots Association initiated a workgroup to establish the charting of visual flight rules (VFR) waypoints to assist pilots with the identification of entry points for commonly flown mountain passes. Since 2003, language has been included in FAA Order JO 7210.3, Facility Operation and Administration, noting Flight Standards would provide guidance on the usage of VFR waypoints for this application. This new policy accounts for the recommendations of the mountain pass workgroup and incorporates guidelines that would be used for the placement of VFR waypoints at commonly flown mountain pass entry points.

3. **CHANGE:**

OLD

12–8–1. **POLICY**

a. The VFR Waypoint Chart Program was established to provide VFR pilots with a supplemental tool to assist with position awareness while navigating visually in aircraft equipped with area navigation (RNAV) receivers. The program’s purpose is to enhance safety, reduce pilot deviations, and provide navigation aids for pilots unfamiliar with an area in or around Class B, Class C, and Special Use Airspace (SUA). The use of VFR waypoints does not relieve the pilot of any responsibility to comply with the requirements of 14 CFR Part 91.

NEW

12–8–1. **POLICY**

a. The VFR Waypoint Chart Program was established to provide VFR pilots with a supplemental tool to assist with position awareness while navigating visually in aircraft equipped with area navigation (RNAV) receivers. The program’s purpose is to enhance safety, reduce pilot deviations, and provide navigation aids for pilots unfamiliar with an area in or around Class B, Class C, Special Use Airspace (SUA), and commonly flown mountain passes. The use of VFR waypoints does not relieve the pilot of any responsibility to comply with the requirements of 14 CFR Part 91.
OLD

12–8–2. DEFINITION

A VFR waypoint is a predetermined geographical point depicted on a chart for transitioning and/or circumventing controlled and/or SUA that is defined relative to a visual reporting point or in terms of latitude/longitude coordinates.

NEW

12–8–2. DEFINITION

A VFR waypoint is a predetermined geographical point depicted on a chart for transitioning and/or circumventing controlled airspace, SUA, and/or commonly flown mountain passes, that is defined relative to a visual reporting point or in terms of latitude/longitude coordinates.

OLD

12–8–3 CRITERIA

4. Guidance for the development of VFR waypoints to identify mountain passes/routes is or will be provided in Flight Standards' directives.

NEW

12–8–3 CRITERIA

No Change

4. Identify natural entry points for commonly flown mountain passes charted on VFR navigational charts. VFR waypoints are not to be used to create mountain pass routes. VFR waypoints that denote the entry of a commonly flown mountain pass must:

(a) Be collocated with a VFR checkpoint at the start of the confined terrain leading to the mountain pass.

(b) Be located at least 1 statute mile laterally from rapidly rising terrain.

(c) Identify the lowest elevation feature in reasonably close proximity (i.e., a stream or river channel).

(d) Avoid placement near features that may be obscured by clouds.

No Change

No Change

No Change

b. VFR chart depiction:

1. VFR waypoint names (for computer-entry and flight plans) consist of five letters beginning with the letters “VP” and are retrievable from navigation databases.

2. VFR waypoints associated with VFR checkpoints will not have the waypoint symbology depicted; the Interagency Air Cartographic Committee (IACC) checkpoint symbol will remain. Only the five-letter identifier will be charted next to the name of the checkpoint.

2. VFR waypoints associated with VFR checkpoints will not have the waypoint symbology depicted; the Interagency Air Committee (IAC) checkpoint symbol will remain. Only the five-letter identifier will be charted next to the name of the checkpoint.
3. VFR waypoints will be illustrated using the IACC waypoint symbology.

4. The latitude/longitude for each waypoint will be published in FAA Order JO 7350.9, Location Identifiers, and on one of the panels of the appropriate chart.

OLD

12–8–4. RESPONSIBILITIES

a. Proponent. Any interested party may recommend the addition of VFR waypoints to VFR navigation charts or helicopter charts via the appropriate air traffic facility.

b. Air traffic facilities must:

1. Prepare VFR waypoint recommendations. The most important task in preparing the recommendation is coordination with local aviation interests; i.e., Aircraft Owners and Pilots Association, FAA Safety Team (FAAST), Flight Service Station (FSS), military, law enforcement, etc.

NOTE—
As FSSs play an integral part in the VFR flight planning process, they may serve as a valuable resource in identifying VFR waypoint recommendations.

2. After consensus with all affected air traffic facilities and local aviation interests on the need and location of the proposed VFR waypoints, submit a package to the respective Service Area OSG containing:

b2(a) through b2(c)

(d) A graphic or satellite image with the precise point of the VFR waypoint depicted. It is critical that the depictions be easily readable by the Aeronautical Charting Group, Enroute and Visual Charting Team in order to verify the position for accurate charting.

(e) Justification/supporting rationale.

NEW

12–8–4. RESPONSIBILITIES

No Change

1. Prepare VFR waypoint recommendations. The most important task in preparing the recommendation is coordination with local aviation interests; i.e., Aircraft Owners and Pilots Association, FAA Safety Team (FAAST), Flight Service Station (FSS), military, law enforcement, etc. Flight Procedures and Airspace Group (AFS–420) concurrence is required in writing when establishing VFR waypoints associated with mountain passes.

No Change

No Change

No Change

(d) A graphic or satellite image with the precise point of the VFR waypoint depicted. It is critical that the depictions be easily readable by the Aeronautical Charting Group, Enroute and Visual Charting Team in order to verify the position for accurate charting.

(e) Justification/supporting rationale, and Flight Procedures and Airspace Group (AFS–420) concurrence for VFR waypoints for mountain passes.
4. Publish VFR waypoint geographic positions in the Chart Supplement U.S. and on appropriate VFR charts.

1. PARAGRAPH NUMBER AND TITLE: 18–10–4. DEFINITIONS

2. BACKGROUND: FAA Order JO 7210.3, Facility Operation and Administration, Change 2, added a definition for Unified Ground Delay Program (UDP) in paragraph 18–10–4. The definition did not specify the use of UDP as preferred when implementing a Ground Delay Program.

3. CHANGE:

OLD

18–10–4. DEFINITIONS

d. Unified Ground Delay Program (UDP). This program type addresses the mix of scheduled and unscheduled (i.e., pop–ups) demand based on the following parameters: number of reserved pop–ups, target delay multiplier, and delay limit.

NEW

18–10–4. DEFINITIONS

No Change
d. Unified Ground Delay Program (UDP). A preferred method that addresses the mix of scheduled and unscheduled (i.e., pop–ups) demand based on the following parameters: number of reserved pop–ups, target delay multiplier, and delay limit.

1. PARAGRAPH NUMBER AND TITLE:

18–21–2. DEFINITION
18–21–3. RESPONSIBILITIES
18–21–4. PROCEDURES

2. BACKGROUND: Trajectory–based operations (TBO) have been identified as the foundational air traffic management method for strategically planning, managing, and optimizing flights throughout the National Airspace System (NAS). Guidance contained in FAA Order JO 7210.3, Facility Operation and Administration, does not adequately convey TBO procedures, responsibilities or concepts, nor sufficient references or language emphasizing the importance of time–based management (TBM) in achieving TBO goals. This change provides the necessary information on these topics.
3. CHANGE:

OLD

18–21–2. DEFINITION

a. The Operations Plan (OP): The OP is a plan for management of the NAS. The OP is a collaboratively developed plan. The OP is derived by the Planning Team (PT) after collaboration with the FAA and customer’s weather forecasters, FAA Air Route Traffic Control Center (ARTCC), Traffic Management Officer (TMO) or designee, other FAA field facility management personnel, airline planners, Air Traffic Control System Command Center (ATCSCC) personnel, international facilities, military, and general aviation system customers.

NEW

18–21–2. DEFINITION

a. The Operations Plan (OP): The OP is a plan for management of the NAS and is formulated, developed, and maintained by the Air Traffic Control System Command Center (ATCSCC) Planning Team (PT) in collaboration with FAA and customer weather forecasters, ATCSCC personnel, Air Route Traffic Control Center (ARTCC), District Traffic Management Officers (TMO) or designees, terminals, airline planners, international facilities, military, general aviation planners, and other FAA field facility management personnel. The Operations Planning Webinar (PW) is conducted via a web–based application to include an audio dial–in capability.

b. Advance Plan (AP): The AP is for advanced (next day or later) management of the NAS. The AP is developed by the PT after collaboration with the same personnel as the OP.

c. Trigger: A specific event/critical decision window (CDW) that causes a specific traffic management initiative (TMI)/time-based management (TBM) operation to be implemented or modified.

1. A trigger is for planning purposes and is intended to reduce coordination when implementing or modifying the specified TMI/TBM operation.

2. All en route facilities impacted by the TMI/TBM operation must be contacted prior to implementing the TMI in response to the trigger.

3. En route facilities must relay TMIs/TBM operations to affected terminal facilities within its area of jurisdiction.

4. All triggers will be identified by “IF, THEN” clauses in the OP.

EXAMPLE–

IF thunderstorms develop as forecast on J96, THEN ZKC will initiate the ORD BDF1 Playbook route.

c. The OP will specify:

Add

b. Trigger: A specific event that causes a specific traffic management initiative (TMI) to be implemented.

1. A trigger is for planning purposes and is intended to reduce coordination when implementing the specified TMI.

2. All en route facilities impacted by the TMI must be contacted prior to implementing the TMI in response to the trigger.

3. En route facilities must relay TMIs to affected terminal facilities within their area of jurisdiction.

4. All triggers will be identified by “IF, THEN” clauses in the OP.

EXAMPLE–

IF thunderstorms develop as forecast on J96, THEN ZKC will initiate the ORD BDF1 Playbook route.

c. The OP will specify:
OLD

18–21–3. RESPONSIBILITIES

a. The ARTCC TMO or their designee must:

1. Participate via the PT Conference in the formulation and development of the OP when stated on the previous OP, or requested later by the ATCSCC, or issues within the facility arise that may require inclusion in the OP.

2. Provide input on:

 (a) Equipment outages having an operational impact;

 (b) Internal initiatives;

 (c) Terminal constraints;

 (d) Route closure/recovery information;

 (e) Anticipated Traffic Management Initiatives (TMI) necessary to manage the system; or

 (f) Other issues which may impact operations (i.e., staffing, special events, etc.). See FIG 18–21–1, Operational Planning Conference Checklist.

3. Brief and direct facility Operational Supervisors, Traffic Management Supervisors, Traffic Management Units, and operational personnel on the implementation of the OP and gather additional information for the next Conference.

4. Coordinate with and provide direction to underlying facilities on the implementation of the OP.

5. Monitor and assess the OP, notifying the ATCSCC of problems that may impact the OP.

6. Provide operational feedback for use in post-operational evaluation of the OP.

b. The ATCSCC must:

NEW

18–21–3. RESPONSIBILITIES

a. The PT provides operational same day analysis and support, advanced planning, and historical review to provide greater predictability and reliability in managing NAS performance. Responsibilities include:

1. Deliver a detailed Advance Plan (AP) to identify the next day’s potential NAS impacts and TMIs/TBM operations as well as multi-day outlooks containing potential constraints and initiatives.

2. Identify aviation system efficiencies while using historical NAS performance data and trends to develop effective advance planning strategies.

3. Provide historical data analysis, demand projections, and potential mitigation strategies for future constraint management.

4. Use post-event analysis and lessons learned to define and implement future strategies and operational triggers based on past performance and outcomes.

5. Gather and share timely and continuous feedback with operational personnel to provide increased data, weather knowledge, and tools for analytical use and planning.

b. The ATCSCC PT must:
1. **Maintain the Planning Team (PT) Conference.**

2. **Maintain a web page for publicizing the OP to aviation systems users.**

 Add

 Add

 Add

 Add

 c. The ATCS National Operations Manager (NOM) must:

 1. **Direct the facility National Traffic Management Officer (NTMO), ATCS operational units, and personnel on implementation of the OP.**

 2. Coordinate with and provide direction to FAA facilities on implementation of the OP.

 d. The ATCS CC must:

 1. **Lead the PT in development of the OP.**

 2. **Formulate the OP through coordination with PT members using the OP timeline.**

 3. **Brief the National Operations Manager (NOM), National Traffic Management Officer (NTMO), and other ATCS operational elements on the OP.**

 4. **Post the OP on the ATCS CC website and issue as a numbered advisory.**

 5. **Document agreed-upon triggers in the OP.**

 6. **Maintain the PW.**

 c. The NOM must:

 1. Direct the NTMO, ATCS CC operational units, and personnel on implementation of the OP.

 No Change

 d. The District TMO or designee must:

 1. **Provide input to the AP.**

 2. Participate via the PW in formulation and development of the OP when stated in the previous OP, when requested later by the ATCS CC, or when issues within the facility warrant participation.

 3. **Provide input on:**

 (a) **Equipment outages having an operational impact:**

 (b) **Internal initiatives:**

 (c) **Terminal constraints:**

 (d) **Route closure/recovery information:**

 (e) **Anticipated use of airborne rerouting:**

 (f) **Anticipated use of TBM:**

 (g) **Anticipated TMI:** or

 (b) **Other issues which may impact operations (i.e., staffing, special events, etc.).**

 (See FIG 18-21-1, Operational Planning Webinar Checklist.)
4. Post the OP on the ATCSCC web site and issue as a numbered advisory.

5. Document agreed upon triggers in the OP.

 e. The Terminal Facility Management must:

 1. When notified by the ARTCC TMO or designee or ATCSCC PT, participate in the PT Conference.

 e2 through e3

 Add

 Add

4. Brief and direct facility Operational Supervisors, Traffic Management Supervisors, Traffic Management Units, and operational personnel on the implementation of the OP and gather additional information for the next conference.

5. Coordinate with and provide direction to underlying facilities on the implementation of the OP.

6. Monitor and assess the OP, notifying the ATCSCC of problems that may impact the OP.

7. Provide operational feedback for use in post-operational evaluation of the OP.

 e. Terminal Facility Management must:

 1. When notified by the District TMO or designee, or ATCSCC PT, participate in the PW.

 No Change

 4. Participate in the AP when necessary or notified.

OLD

18–21–4. PROCEDURES

a. The PT is composed of FAA and customer weather forecasters, FAA ARTCC’s TMO, or designee, other FAA field facility management personnel, airline strategic planners, ATCSCC personnel, international facilities, and military and general aviation system customers.

b. The ATCSCC has been delegated the authority to direct the operation of the PT Conference for the FAA.

 1. The ATCSCC will notify those FAA facilities required to participate as part of the PT Conference.

 2. Military, international, and general aviation entities will be included as necessary.

c. The PT collaborates on the formation of the OP. The OP is normally developed for the hour beginning after the Conference commences and through the subsequent eighteen (18) hours. The OP is updated, amended, and evaluated on a recurring basis.

NEW

18–21–4. PROCEDURES

a. The PW participants are FAA and customer weather forecasters, FAA District TMO or designee, other FAA field facility management personnel, airline strategic planners, ATCSCC personnel, international facilities, and military and general aviation system customers.

b. The ATCSCC is delegated the authority to direct the operation of the PW for the FAA.

 1. The ATCSCC will notify those FAA facilities required to participate as part of the PW.

 No Change

c. The PT collaborates on the formation of the OP. The OP is continuously evaluated, and updated or amended, as necessary.
d. Weather information provided by National Weather Service meteorologists will be used in the conference. If there is a collaborative product of weather information, developed by both government and industry meteorologists, it will be used as the primary source for the OP Conference.

e. OP Timeline (all times local/eastern): The OP Timeline provides a method for group decision-making and collaboration in dealing with system constraints. Modification of the timeline, participation, and scheduling is done at the discretion of the PT and as directed by the ATCSCC.

1. 5:00 a.m. – National Weather TELCON: ATCSCC PT monitors the weather TELCON, receives midnight operational briefing, and collaborates with select FAA facilities and users for the next amendment.

2. 6:00 a.m. – Amendment to the OP is published on the ATCSCC web page and through an ATCSCC numbered advisory.

3. 6:00–7:00 a.m. – Individual team entities conduct an assessment of operation in preparation for the OP Conference. The ATCSCC identifies and notifies FAA facilities required to participate in the PT Conference.

4. 7:15 a.m. – Planning Conference conducted: The OP is developed by the PT.

5. 8:00 a.m. – The OP is published on the ATCSCC web site and via numbered advisory.

6. 8:00–9:00 a.m. – Individual team entities conduct an assessment of operation in preparation for the OP Conference.

7. 9:15 a.m. – Planning Conference conducted: The OP is developed by the PT.

NOTE –
Conference/planning cycle repeats every 2 hours or as conditions warrant. The time intervals may be varied; however, each OP and associated advisory will state the time for the next Conference.
Operational Planning Conference Checklist

<table>
<thead>
<tr>
<th>Review the Current OP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Review the applicable weather information</td>
</tr>
</tbody>
</table>

Input from the Areas

- Staffing
- Combined Sectors
- Anticipated Initiatives
- Equipment
- Anticipated Traffic Volume
- Constraints/Other

Input from Approaches and Towers

- Current Configuration and AAR
- Anticipated Configuration and AAR
- Other

Miscellaneous

- VIP Movement
- Special Events
- Military Activities
- Diversions

Flow Constrained Areas

- Current
- Anticipated
- Pathfinders
- Recovery

Anticipated Traffic Management Initiatives

- Alternatives
- Triggers Needed
- Exit Strategy Needed
NEW

FIG 18–21–1

Operational Planning Webinar Checklist

<table>
<thead>
<tr>
<th>Review the Current OP</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Review the applicable weather information</td>
<td></td>
</tr>
<tr>
<td>Input from the Areas</td>
<td></td>
</tr>
<tr>
<td>♦ Staffing</td>
<td></td>
</tr>
<tr>
<td>♦ Combined Sectors</td>
<td></td>
</tr>
<tr>
<td>♦ Current/Anticipated Weather Constraints</td>
<td></td>
</tr>
<tr>
<td>♦ Anticipated Initiatives</td>
<td></td>
</tr>
<tr>
<td>♦ Equipment</td>
<td></td>
</tr>
<tr>
<td>♦ Anticipated Traffic Volume</td>
<td></td>
</tr>
<tr>
<td>♦ Constraints/Other</td>
<td></td>
</tr>
<tr>
<td>Input from Approaches and Towers</td>
<td></td>
</tr>
<tr>
<td>♦ Staffing</td>
<td></td>
</tr>
<tr>
<td>♦ Current/Anticipated Weather Constraints</td>
<td></td>
</tr>
<tr>
<td>♦ Equipment</td>
<td></td>
</tr>
<tr>
<td>♦ Current Configuration and AAR</td>
<td></td>
</tr>
<tr>
<td>♦ Anticipated Configuration and AAR</td>
<td></td>
</tr>
<tr>
<td>♦ Other</td>
<td></td>
</tr>
<tr>
<td>Other Constraints</td>
<td></td>
</tr>
<tr>
<td>♦ VIP Movement</td>
<td></td>
</tr>
<tr>
<td>♦ Special Events</td>
<td></td>
</tr>
<tr>
<td>♦ Military Activities</td>
<td></td>
</tr>
<tr>
<td>♦ Diversions</td>
<td></td>
</tr>
<tr>
<td>♦ Launch/recovery activities</td>
<td></td>
</tr>
<tr>
<td>Flow Constrained Areas</td>
<td></td>
</tr>
<tr>
<td>♦ Current</td>
<td></td>
</tr>
<tr>
<td>♦ Anticipated Rerouting</td>
<td></td>
</tr>
<tr>
<td>♦ Pathfinders</td>
<td></td>
</tr>
<tr>
<td>♦ Recovery</td>
<td></td>
</tr>
<tr>
<td>Anticipated TBM Operations</td>
<td></td>
</tr>
<tr>
<td>♦ Alternatives</td>
<td></td>
</tr>
<tr>
<td>♦ Triggers Needed</td>
<td></td>
</tr>
<tr>
<td>♦ Exit Strategy Needed</td>
<td></td>
</tr>
<tr>
<td>♦ Airborne Metering</td>
<td></td>
</tr>
<tr>
<td>♦ Surface Metering</td>
<td></td>
</tr>
<tr>
<td>♦ Outages</td>
<td></td>
</tr>
<tr>
<td>Anticipated Traffic Management Initiatives</td>
<td></td>
</tr>
<tr>
<td>♦ Alternatives</td>
<td></td>
</tr>
<tr>
<td>♦ Triggers Needed</td>
<td></td>
</tr>
<tr>
<td>♦ Exit Strategy Needed</td>
<td></td>
</tr>
</tbody>
</table>
1. PARAGRAPH NUMBER AND TITLE:
Chapter 21, Section 3. Line of Authority
21–3–1. SYSTEM OPERATIONS SECURITY

2. BACKGROUND: This update corrects ambiguous language concerning the System Operations Security operational line of authority pertaining to Air Traffic Security Coordinators (ATSCs).

3. CHANGE:

<table>
<thead>
<tr>
<th>OLD</th>
<th>NEW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section 3. Line of Authority</td>
<td>Section 3. Operational Line of Authority</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OLD</th>
<th>NEW</th>
</tr>
</thead>
<tbody>
<tr>
<td>21–3–1. SYSTEM OPERATIONS SECURITY</td>
<td>21–3–1. AUTHORITY FOR OPERATIONAL SECURITY–RELATED ACTIONS</td>
</tr>
</tbody>
</table>

Deputy Director of System Operations (DDSO) and Manager, Tactical Operations Security are under the general supervision of the Director, System Operations Security. And as such, have been delegated all the rights and responsibilities of the Director.

Under the general supervision of the Director, System Operations Security, the Manager of Tactical Operations Security is authorized to direct security-related air traffic actions coordinated through ATC facilities, to support national defense, homeland security, and law enforcement efforts. The manager operationally executes these actions through the ATO's Air Traffic Security Coordinators (ATSC).