This revised order explains how to evaluate and approve aircraft, engine and propeller type design data and changes to approved type design data for military commercial derivative aircraft (MCDA). We are supplementing the standard type certification procedures in FAA Orders 8110.4, *Type Certification*, and 8130.2, *Airworthiness Certification of Aircraft and Related Products*, for the type certification and supplemental type certification of MCDA. For guidance on certification situations or conditions not covered in this order, please contact the Certification Procedures Branch, AIR-110.

David W. Hempe
Manager, Design, Manufacturing, &
Airworthiness Division
Aircraft Certification Service
Table of Contents

<table>
<thead>
<tr>
<th>Paragraph</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 1. Military Commercial Derivative Aircraft (MCDA) Program Purpose and Foundation</td>
<td></td>
</tr>
<tr>
<td>1-1. Purpose of this Order</td>
<td>1-1</td>
</tr>
<tr>
<td>1-2. Audience</td>
<td>1-1</td>
</tr>
<tr>
<td>1-3. Where Can I Find This Order</td>
<td>1-1</td>
</tr>
<tr>
<td>1-4. Basis of the Military Certification Program</td>
<td>1-1</td>
</tr>
<tr>
<td>Chapter 2. The FAA Military Certification Office (MCO)</td>
<td></td>
</tr>
<tr>
<td>2-1. MCO Scope of Work</td>
<td>2-1</td>
</tr>
<tr>
<td>2-2. MCO Roles and Responsibilities</td>
<td>2-1</td>
</tr>
<tr>
<td>2-3. How MCO Services are Funded</td>
<td>2-1</td>
</tr>
<tr>
<td>Chapter 3. Military Type Certification Projects</td>
<td></td>
</tr>
<tr>
<td>3-1. Types of Projects</td>
<td>3-1</td>
</tr>
<tr>
<td>3-2. Starting a Project</td>
<td>3-1</td>
</tr>
<tr>
<td>3-3. Application Procedure</td>
<td>3-1</td>
</tr>
<tr>
<td>3-4. Our Job as the MCO in the Application Process</td>
<td>3-1</td>
</tr>
<tr>
<td>3-5. The Certification Project Notification Form (CPN) and Addendum</td>
<td>3-1</td>
</tr>
<tr>
<td>3-6. Sensitive or Classified Military Projects</td>
<td>3-1</td>
</tr>
<tr>
<td>3-7. Project Administration</td>
<td>3-1</td>
</tr>
<tr>
<td>3-8. Using FAA Designees and Delegated Organizations</td>
<td>3-1</td>
</tr>
<tr>
<td>Chapter 4. Special Procedures for Military Projects</td>
<td></td>
</tr>
<tr>
<td>4-1. Special Conditions, Exemptions, and Rulemaking</td>
<td>4-1</td>
</tr>
<tr>
<td>4-2. Use of Delegations and Special Agreements</td>
<td>4-1</td>
</tr>
<tr>
<td>Chapter 5. Type Design</td>
<td></td>
</tr>
<tr>
<td>5-1. Type Design Conformity and Compliance</td>
<td>5-1</td>
</tr>
<tr>
<td>5-2. Conformity Inspection Requirements</td>
<td>5-1</td>
</tr>
<tr>
<td>5-3. Using Government Furnished Equipment (GFE)</td>
<td>5-2</td>
</tr>
<tr>
<td>5-4. Applicant Research And Development (R&D) Flight Testing</td>
<td>5-2</td>
</tr>
<tr>
<td>5-5. Temporary Registration Of Military Aircraft - The Bailing Process</td>
<td>5-4</td>
</tr>
<tr>
<td>5-6. Flight Test Under Military (Public Use) Operation</td>
<td>5-4</td>
</tr>
<tr>
<td>5-7. FAA Form 8130-31, Statement of Conformity- Military Aircraft</td>
<td>5-5</td>
</tr>
<tr>
<td>5-8. Production Approvals</td>
<td>5-6</td>
</tr>
</tbody>
</table>
Chapter 6. Unique Military Functions

- **6-1.** Military Equipment ... 6-1
- **6-2.** Military Functional Evaluations .. 6-1
- **6-3.** FAA Operational Restrictions/Limitations 6-1

Chapter 7. Certification of Military Systems And Equipment

- **7-1.** Certification Issues ... 7-1
- **7-2.** Determining Feasibility .. 7-1
- **7-3.** Military Equipment Ineligible For Certification 7-1
- **7-4.** GFE/SME Performance and Qualification Standards 7-2
- **7-5.** Military vs. Civil Airworthiness Qualification Testing 7-3
- **7-6.** Evaluating and Using Previously Accomplished Military Qualification Data .. 7-3
- **7-7.** Intended Function Compliance For GFE/SME 7-4
- **7-8.** Substantiating Reliability .. 7-4
- **7-9.** GFE/SME Produced Outside an FAA Approved Quality System 7-5
- **7-10.** FAA Evaluation of Equipment Not Included in the Type Design 7-6
- **7-11.** Mission Equipment Performance Criteria 7-6
- **7-12.** Technical Assistance to the FAA Using Military Expertise 7-6

Chapter 8. Methods Of Approving Military Equipment

- **8-1.** Alternate Levels of FAA Approval for Military Projects 8-1
- **8-2.** Full Approval (Equipment, Installation and Operation) 8-1
- **8-3.** Limited FAA Approval (Equipment and Installation) 8-1
- **8-4.** Safe Carriage (Equipment Approval) ... 8-2
- **8-5.** Provisions-Only .. 8-3

Chapter 9. Software Aspects Of Airborne Systems And Equipment Certification

- **9-1.** Problems With Software In Military Equipment 9-1
- **9-2.** Software Considerations ... 9-1

Chapter 10. Military Airworthiness Process

- **10-1.** Points of Contact ... 10-1
- **10-2.** Differences in Civil and Military Airworthiness 10-1
- **10-3.** Military Use of FAA Findings of Compliance 10-2
- **10-4.** Shared Certification ... 10-2
- **10-5.** Managing Civil/Military Airworthiness Seams 10-3
Chapter 11. Continued Airworthiness

11-1. Feedback ... 11-1
11-2. Service Difficulty Reports .. 11-1
11-3. Airworthiness Directives .. 11-2
11-4. Repairs and Major Alterations .. 11-3
11-5. Service Bulletins And Manufacturer’s Instructions 11-3
11-6. Type Certificate Management And Support ... 11-4
11-7. Accident Investigation .. 11-4

Chapter 12. Mcda Background

12-1. Military Commercial Derivative Aircraft (MCDA) 12-1
12-2. Military Missions ... 12-1
12-3. MCDA Certification .. 12-1

Appendix A. Levels Of Approval Table... A-1

Appendix B. Table Of Scenarios For Issuance Of Temporary Civil Certificates On Military Aircraft ... B-1

Appendix C. Military Cpn Form Addendum ... C-1

Appendix D. Statement of Conformity – Military Aircraft D-1

Appendix E. How to Complete FAA Form 8130-31 Statement of Conformity – Military Aircraft .. E-1

Appendix F. Military-Handbook-516 Background .. F-1

1. Purpose of MIL-HDBK-516 .. F-1
2. Who Uses The MIL-HDBK-516 ... F-1
3. Military Certification Basis ... F-1
4. Using Civil Standards In The Military Certification Basis F-1
5. Tailored Airworthiness Certification Criteria (TACC) F-1
6. Modification Airworthiness Certification Criteria (MACC) F-1
7. Appendix F. Military-Handbook-516 Background F-1

Appendix G. Definitions And Acronyms .. G-1
Appendix H. Administrative Information .. H-1

1. Distribution .. H-1

2. Authority to Change this Order ... H-1

3. Suggestions for Improvement ... H-1

4. Records Management .. H-1

Appendix I. FAA Form 1320-19 Directives Feedback Information I-1
Chapter 1. Military Commercial Derivative Aircraft (MCDA) Program Purpose and Foundation

1. Purpose of this Order.

 a. This order explains how to evaluate and approve type certification and related technical services for MCDA.

 b. The procedures in this order are unique for MCDA certification projects, including changes to approved type designs for aircraft, engines, and propellers. We are supplementing FAA Orders 8110.4, Type Certification, and 8130.2, Airworthiness Certification of Aircraft and Related Products, for standard type certification. Use this order in addition to Orders 8110.4 and 8130.2 for MCDA projects unless otherwise specified. For organization designation authorizations, use this order and Order 8100.15, Organization Designation Authorization Procedures.

 c. MCDA is defined as a commercially produced aircraft with an FAA TC and produced under an FAA production approval. These aircraft may then be modified to varying extent for military use, and be fully or partially approved by the FAA. The certified aircraft serves as the starting point before any modification is initiated. MCDA are generally procured and operated by the U.S. Department of Defense (DoD), Department of Homeland Security, and United States Coast Guard. DoD is the Armed Services of the United States and includes the United States Army, Navy, Marine Corps, and Air Force. In some cases, MCDA may use leased aircraft for operation by the Armed Services, or contract flights for the Armed Services (i.e., commercial air services). Commercial air services may be either Government Owned Contractor Operated (GOCO) or Contractor Owned Contractor Operated (COCO) aircraft engaged in flying military missions under contract with the U.S. government. Aircraft modifications for commercial air services must be approved and sponsored by the responsible Armed Service.

2. Audience. This Order is intended for:

 a. Aircraft Certification Service (AIR);

 b. Flight Standards Service (AFS); and

 c. Persons and organizations designated by the Administrator.

4. Basis of the Military Certification Program. In 2012, the FAA and representatives of the U.S. Armed Services signed a federal reimbursable agreement (FRA). In it, the FAA agrees to provide technical assistance, certification services, and continued airworthiness support for MCDA through our dedicated Military Certification Office (MCO). In return, the Armed
Services agree to reimburse the FAA for services rendered. For the latest revision of the FRA, contact the MCO.

a. The Armed Services’ objective is to ensure that military modifications to MCDA do not affect the level of safety afforded by compliance to the civil airworthiness requirements.

b. FAA services in support of MCDA include:

 (1) Type certification, including amended type certification and supplemental type certification;

 (2) Production certification and approval;

 (3) Airworthiness certification;

 (4) Military statement of conformity;

 (5) Continued airworthiness support, including instructions for continued airworthiness (ICA); and

 (6) Technical assistance.

c. Certification projects must have a U.S. Armed Services sponsor. This could include commercial air services, aircraft for other U.S. government agencies, and foreign governments (such as foreign military sales or security assistance programs).
Chapter 2. The FAA MCO

1. MCO Scope of Work. As the MCO, we are a part of the aircraft certification service and provide technical assistance, certification services, and continued airworthiness support for MCDA. It accepts projects from type certification applicants when the project is sponsored by a branch of the U.S. Armed Services, or the U.S. Coast Guard.

2. MCO Roles and Responsibilities.

 a. The MCO is part of AIR and provides technical assistance. The MCO executes its provisions of the FRA. It is the sole point of contact for the Armed Services and has primary responsibility for all MCDA certification projects. It is the project office for all MCDA projects, except as defined in chapter 3, paragraph 5c. in this order. The MCO executes the provisions of the FRA in conjunction with FAA manufacturing inspection and flight standards organizations. Under the FRA, the FAA performs the following services on projects sponsored by the Armed Services:

 (1) Certification, which includes type certificates (TC), amended TC (ATC), supplemental type certificates (STC), or amended STCs;

 (2) Production certification;

 (3) Airworthiness certification;

 (4) Continued airworthiness support;

 (5) Technical assistance; and

 (6) ICA.

 b. Applications for new TCs must be coordinated and approved by the Design, Manufacturing and Airworthiness Division (AIR-100).

 c. Continued airworthiness support includes:

 (1) Service difficulty reporting;

 (2) Airworthiness directives (AD);

 (3) Alternative methods of compliance (AMOC) approvals;

 (4) Approval of design data in support of repairs;

 (5) Approval of design data in support of major alterations; and

 (6) Parts manufacturer approval (PMA) for spare parts suppliers.
d. We provide technical assistance that does not determine compliance or results in issuing an FAA certificate or approval. Usually this is provided before receiving an application for certification. Our technical assistance includes consultations involving specific Armed Services flight test or specification compliance activities, life-cycle continued airworthiness, extended range operations (ETOPS), flight simulator evaluation, and other services as needed. We may also assist the military in making their own airworthiness assessments for their MCDA.

e. The MCO manager and MCDA project manager (MCDA-PM) in AIR-100 share responsibility for fulfilling the requirements of the FRA. They are responsible for establishing budgets, tracking and collecting labor costs and expenses, and initiating billing. They provide semi-annual briefings and an annual report to the Armed Services. They provide education on how the FAA certifies civil aircraft. They work with the Armed Services and type certification applicants to find airworthiness strategies for MCDA. They coordinate with and request assistance from other aircraft certification offices (ACO) and directorates. The MCDA-PM is the FAA representative to the Joint Aeronautical Commanders Group (JACG) and is the Aviation Safety (AVS) organization’s focal point for all MCDA issues.

3. Funding MCO Services. Under the terms of the FRA, the FAA receives baseline funding from the U.S. Armed Services and Coast Guard to operate the MCO. Each service is assessed a share of the cost as determined by a joint armed services working group. If a new MCDA project is beyond the scope of routine services, as specified in the FRA, a project specific support agreement (PSSA) will be required. A PSSA is funded separately by the sponsoring armed service program office. Projects identified by the MCO as being candidates for a PSSA are coordinated with the MCDA-PM. The FAA uses project and task cost accounting codes to track and bill for FAA resources used to support military programs.
Chapter 3. Military Type Certification Projects

1. Types of Projects. The MCO accepts the following types of certification project applications:

 a. TCs.

 (1) Generally, MCDA projects do not involve issuing a new TC. Most MCDA projects are major changes to existing FAA-approved commercial aircraft designs because the military wants to use, or modify, an aircraft to meet their needs. This includes issuing a TC under Title 14 of the Code of Federal Regulations (14 CFR) 21.21, 21.25, or 21.29. Applications for new TCs must be coordinated with the MCDA-PM and approved by AIR-100.

 (2) For non-U.S. aircraft projects, a branch of the Armed Services may contract for a foreign type certificated aircraft. These aircraft may be eligible for a TC under 14 CFR 21.29. The application for a § 21.29 TC will only be accepted by the FAA if the aircraft has received a TC or equivalent from the civil aviation authority (CAA) prior to the issuance date of the Armed Services’ request for proposal. For the purposes of the FRA, this would not be considered a new TC. Since international projects may involve a foreign aviation authority, licensing agreement, and partial manufacture in the United States, the MCO coordinates with the International Policy Office (AIR-40) for guidance and project-specific policy. The FAA conducts such projects under bilateral agreements using FAA Order 8110.52, Type Validation and Post-Type Validation Procedures.

 b. ATCs. An FAA TC holder may apply to amend their TC to incorporate type design changes unique to military applications.

 c. STCs. Under 14 CFR 21.113, any person seeking to alter a product by incorporating major changes to type design, not great enough to require a new TC, can apply for an STC.

 (1) Most MCDA projects are accomplished through the STC process. To obtain FAA approval, the applicant may be the TC holder, the military prime contractor, or a third party.

 (2) A TC holder may certify an MCDA solely by STCs or in combination with an ATC. The applicant may make use of previously-approved STCs if they are compatible with other proposed military modifications. See Advisory Circular (AC) 21-40, Application Guide for Obtaining a Supplemental Type Certificate, and Order 8110.4, for conducting STC projects.

 (3) In complex modifications, there could be several interdependent design approvals. It is necessary that modifications are accomplished and approved so the end product remains in compliance with regulations. With an STC, the installer must state that the modification is compatible with previously-approved modifications. If an STC is installed and dependent on the installation of other STCs, then these should be noted in the Limitations and Conditions section of the STC. This scenario could also be accomplished using an umbrella STC, which lists the included STCs and the order of their accomplishment (see Order 8110.4 for further guidance).
Note: Post TC original equipment manufacturer (OEM) design changes and STC changes can be reviewed on MCDA. Changes from FAA Form 337, *Major Repair & Alteration*, cannot be issued for MCDA under military registration and therefore may not be applicable.

d. Amended STCs. The holder of an existing STC can apply to amend the STC to incorporate design changes. These amendments can establish an STC configuration unique to military applications, or incorporate revisions or upgrades to the original STC. Any unique military changes are noted on the supplemental data sheet or noted on the amended STC.

e. Type Design Changes. The holder of a TC or STC may incorporate design changes to the approved design following 14 CFR part 21, subpart D.

2. Starting a Project. We will not accept applications for certification of an MCDA without prior notification and authorization from the sponsoring armed service. Submit this notification in writing and include the identity of the product, the current stage of the acquisition program, and the type of FAA services requested.

3. Application Procedure.

a. Where to Apply. All applicants for MCDA type certification projects should apply directly to the MCO, regardless of the applicant’s location. Applications are made on FAA Form 8110-12, *Application for Type Certificate, Production Certificate, or Supplemental Type Certificate*, and sent to the MCO Manager at the following address:

U.S. Department of Transportation
Federal Aviation Administration
Manager, Military Certification Office (ACE-100M)
8200 East 34th Street North
Building 1000, Suite 1005
Wichita, KS 67226

b. Application Submittal Letters. In addition to the information required by 14 CFR 21.15 and Order 8110.4, the following items must be submitted with all application letters:

(1) A statement that the project supports an armed service-sponsored acquisition program, or an armed service-sponsored foreign government, other U.S. government agency, or a U.S. security assistance program;

(2) A brief description of the proposed project;

(3) Identification of the relevant U.S. Armed Services branch;
(4) The applicant’s point of contact at the sponsoring military armed service office; and

(5) Notice that the acquisition plan will exceed the time limits specified for completion of a type certification project in 14 CFR § 21.17 (c) and § 21.101(e).

4. The MCO’s Role in the Application Process. The FAA is responsible for:

 a. Verifying the military authorization to support the type certification project;

 b. Assessing the scope of the project and determining if the applicant’s proposed certification strategies are viable and feasible;

 c. Evaluating the applicant’s proposed certification plan;

 d. Determining if we can conduct the project using current certification procedures and practices;

 e. Issuing an FAA certification project number (CPN);

 f. Confirming whether the project is within the scope of baseline services (as defined in the FRA) and issuing a new PSSA if it is not. The MCDA-PM prepares and coordinates the PSSA for AIR-1 and AFS-1 signatures; and

 g. Working with the applicant and military airworthiness authority (MAA) to create an airworthiness strategy, if the proposed strategy is not viable.

5. The CPN Form and Addendum.

 a. **CPN Form.** The MCO issues the CPN for military type certification projects. A completed CPN form briefly describes the project (see FAA Order 8110.115, Certification Project Initiation and Certification Project Notification, for details).

 b. **CPN Addendum.** Military projects have unique requirements. We use an addendum to the CPN to provide more information such as type design changes and accounting codes. See appendix C in this order for the CPN addendum form. The responsible MCO-program manager completes the addendum and includes it when distributing the CPN form. Items required in the addendum are:

 (1) The sponsoring branch of the military;

 (2) The military model designation;

 (3) Labor distribution report (LDR) cost accounting string as well as project and task codes; and
c. How to Determine the Certificate Management ACO (CMACO) for the Project.

The MCO is responsible for all certification activities conducted under the FRA. It may, however, lack expertise on certain products (such as engines and rotorcraft) to execute projects on our own. The MCO will either retain a project or delegate a project to another ACO. If the MCO retains a project, it may request assistance from another ACO. When delegating a project to another ACO, the MCO will define the portions of the project that it will retain for its evaluation. For amended STCs or TCs prior to issuance of the CPN form, the MCO and the CMACO must agree on who will serve as the PM for the project using the following guidelines:

1. New STC. Most military type certification projects are applications for new STCs. The MCO will be the CMACO.

2. Amended STC. When there is an amended STC where the MCO is not the CMACO for the STC, an applicant can amend their existing STC. The MCO and CMACO for the STC must agree on how best to conduct the project using the following criteria:

 a. Amended STC – Military. For projects with an existing STC used solely on military aircraft, the CMACO for the STC should transfer the STC to the MCO. The MCO may still request assistance from that ACO.

 b. Amended STC – Civil. If the STC is used primarily for civil application but needs to be amended to include a military one, the CMACO for the STC should conduct the project.

 c. Amended STC – Shared Applications. If the STC has application on both civil and military aircraft, the MCO and ACO should determine which office can best service the applicant as the CMACO.

3. ATC Projects. The TC holder may amend their TC to modify the baseline commercial aircraft for military use. The CMACO for the aircraft will conduct the project.

d. Applicable Cost Accounting Codes. We have established LDR project and task codes for baseline services. We will establish unique LDR codes for each project covered under a PSSA. The MCDA-PM is responsible for identifying new LDR project and task codes. These codes must be established before issuing a project number and performing any work. The LDR cost account number and project and task codes are identified on the CPN addendum. All AIR personnel assigned and charging time to the project number will use the LDR cost accounting and project and task codes in the CPN addendum. FAA office managers must ensure they distribute the proper LDR codes to assigned personnel, and that the time is properly charged. Accounting for support of military projects must be accurate because we submit the collected costs for reimbursement.

e. CPN Distribution. When the MCO-PM completes the CPN and addendum, we issue the FAA project number. The MCO-PM typically distributes the CPN and addendum to:
(1) The accountable FAA directorate;
(2) The Aircraft Evaluation Group (AEG);
(3) The Manufacturing Inspection District Office (MIDO);
(4) The MCDA-PM (AIR-110);
(5) AIR-40 (for foreign projects);
(6) The CMACO; and
(7) Any other affected FAA organizations.

Note: See Order 8110.4 for a complete list.

6. Sensitive or Classified Military Projects. The MCO manager is cleared for applicable levels of sensitive or classified information as it pertains to certification of MCDA. Any contact for sensitive or classified military projects should be directed to the MCO manager. Strict policy and procedures exist with regard to the protection of data and its dispersal. As a minimum requirement, all individuals that work on an MCO project should be:

 a. Trained in the handling of classified information;
 b. Familiar with the Security Classification Guide for the program; and
 c. Trained in International Trafficking in Arms Agreement (ITAR) responsibilities.

7. Project Administration.

 a. FAA Responsibilities and General Principles of Interaction.

 (1) Use the FRA and the PSSA, if applicable, to govern the relationship between the FAA and the military.

 (2) Use 14 CFR part 21 and Order 8110.4 to manage the relationship between the FAA and applicant. Although the Armed Services are government entities, they are not party to the relationship established between the FAA and the applicant under 14 CFR part 21. Therefore, the FAA cannot disclose applicant positions, detailed technical data, or proprietary information to them. The Armed Services should coordinate with the applicant if they choose to participate in the meetings with the FAA.

 (3) Work with the applicant and the MAA to establish airworthiness requirements for the MCDA.
(4) Help potential contractors and type certification applicants to understand FAA requirements and processes.
(5) Set up a labor and expense tracking system.
 (a) Submit monthly invoices to the Armed Services.
 (b) Prepare a semi-annual summary of projects and resources expended.
 (c) Submit a budget estimate for the next year and a three-year projection by June 30.
 (d) Prepare an Annual Report for the JACG.

b. MCO-PM Roles and Responsibilities.
 (1) Manage and coordinate projects in accordance with FAA Order 8110.4 and this order.
 (2) Coordinate with MCDA-PM to determine whether a PSSA is needed.
 (3) Help prepare PSSA statement of work (SOW), detailed workload and cost estimate.
 (4) Help the ACO with problems unique to administering and executing MCDA projects for delegated projects.
 (5) Communicate policy and guidance needs related to unique military issues to the responsible aircraft certification directorates and FAA headquarters (MCDA –PM).
 (6) Serve as the focal point for any technical assistance to the MAA and the military program office.
 (7) Seek help from experts within the FAA to support the U.S. Armed Services and FAA FRA.
 (8) Serve as the point of contact for, and coordinate with, the assigned ACO program manager or project engineer for delegated projects.
 (9) Coordinate through the applicable MAA and prepare responses to inquiries from the Armed Services.
 (10) Coordinate with the MAA any aspects of the design that are not FAA-approved.
 (11) Coordinate issue papers (defined by Order 8110.115) between the applicant, the MCO, and the accountable directorate.
Participate in military program meetings representing the FAA when the invitation is extended by the sponsoring Armed Service (e.g., program management reviews, system requirements review, preliminary design review, critical design review, etc.).

c. MAA Roles and Responsibilities.

(1) Understand the rules and policy governing the relationship between the applicant and the FAA.

(2) Understand the applicant’s rights and responsibilities when pursuing FAA approval under civil regulations.

(3) Work together with the MCO to define airworthiness requirements for MCDA.

(4) Invite the FAA to participate as a consultant on FAA regulations and procedures in official military program meetings with the contractor or applicant as an airworthiness partner.

(5) Ask the FAA to present its views on specific issues, or to provide general project status from its perspective.

d. Applicant Roles and Responsibilities.

(1) Demonstrate the product meets minimum safety standards by showing compliance to the applicable regulatory requirements.

(2) Comply with requirements in 14 CFR part 21.

(3) Conduct all type certification projects according to Order 8110.4, unless otherwise addressed in this order.

(4) Submit a project specific certification plan (PSCP) providing an approach for showing compliance.

(5) Include proposed use of an authorized FAA-delegated organization, company designees, and/or qualified outside designees in the project certification plan.

(6) Cover unique aspects to the MCDA modifications in the project certification plan. Unique aspects may include interdependent STC approvals and modifications to be made by other contractors or applicants. Describe interface requirements for other STCs or “Provisions Only” approvals.

(7) Inform the MCO and military program office of modifications that are not part of the proposed type design (not FAA-approved).
(8) Identify any known or potential certification or qualification problems early in the process so there is time to resolve them.

(9) Clearly identify the content and intent of the proposed STC approval in relationship to other modifications that may be made to the aircraft.

(10) Indicate if military participation in FAA technical coordination or official board meetings is permissible. The applicant has the right to conduct business and discussions with the FAA in private.

(11) Comply with the requirements for continued airworthiness for the TC upon issuance of the certificate of approval. These requirements apply to all TC holders whether the certificate applies to civil, military, or both types of aircraft.

Note: The relationship between the Armed Services and the applicant is governed by the procurement contract. The FAA is not a party to this contract and not bound by any of its provisions.

8. **Using FAA Designees and Delegated Organizations.** The MCO should advise applicants wanting to use a delegated organization to notify the delegated organization’s managing ACO. The MCO will work with the managing ACO and Organizational Management Team of the delegated organization and MIDO for oversight of any delegated activities on MCDA projects.
Chapter 4. Special Procedures for Military Projects

1. Special Conditions, Exemptions, and Rulemaking. The Department of Defense (DoD) instructs the Armed Services to find commercial-off-the-shelf (COTS) solutions for mission fulfillment. As a policy, the Armed Services require FAA approval to the fullest extent possible to ensure MCDA meet civil airworthiness standards. FAA approval may not be possible if the military modifications are not covered by the civil regulations. In that case, rulemaking activities such as special conditions, exemptions and new airworthiness standards will not be considered except for the following circumstances:

 a. If the proposed type design change:

 (1) Has potential for civil applications, and

 (2) Is proposed for implementation on five or more aircraft, and it is likely that the aircraft may return to civil operation; or

 (3) Will be operated by the military under civil registry with a standard airworthiness certificate.

 b. The MCO-PM coordinates any request for special conditions or exemptions on a military project with the MCDA-PM.

 c. If there are design features or equipment that are not certifiable under existing regulations, we notify the applicant and the MAA that the military is responsible for establishing and maintaining airworthiness and certification criteria for these features and equipment.

2. Use of Delegations and Special Agreements. Under standard certification procedures, an applicant may use individual designees. Based on the scope of the project and the qualifications of those designees, we will work with the applicant to determine the extent of delegation or direct FAA involvement in the project. In addition, we will consider using special agreements.

 a. Items Considered for Special Agreements.

 (1) The following are examples of special agreements:

 (a) Document retention agreements where the applicant holds and maintains the complete MCDA project data file instead of submitting it to the FAA.

 (b) Any specific, special delegations for project management, approval of select test plans, and compliance findings by qualified designees normally reserved for FAA certification offices.

 (c) Project administrative functions usually conducted by FAA certification offices (such as type inspection authorization (TIA) preparation, and type board meeting
A PSCP could document these functions and be consistent with existing practices.

(2) An applicant seeking such special agreements must have a signed partnership for safety plan (PSP) and have written project management procedures. Our evaluation of the applicant’s request will consider the applicant’s proposal, history of previous MCDA projects, and the experience and qualifications of individual designees.

b. FAA-Retained Items (Projects Not Conducted by an Organizational Delegation Authority)

(1) Concurrence with a designated engineering representative (DER) “Recommend Only,” “Provisions Only” or “Safe Carriage” certifications, or FAA approvals with operational limitations, for example, the equivalent level of safety (ELOS) or special conditions.

(2) Determination of the certification basis.

(3) Acceptance of certification and conformity plans.

(4) Approval and signature of TIA prior to flight test.

(5) Aircraft flight manuals and aircraft flight manual supplements.

(6) Final approval and issue of TCs.

Note: See Order 8110.37, *Designated Engineering Representative (DER) Handbook*, for a description of limitations on delegation.

c. Limits on Special Agreements

We establish special agreements on a project-by-project basis. We can audit processes established under special agreements at any time while conducting the project.
Chapter 5. Type Design

1. Type Design Conformity and Compliance.

 a. Conformity Process. The FAA conformity process is used to establish that an article presented for compliance testing conforms to its proposed type design. The MCO coordinates conformity requests with the applicant’s local MIDO, and we honor any agreements the applicant may have in place with the local MIDO. Type design conformity requirements are essentially the same for military projects as for commercial projects, although some military hardware may present unique challenges.

 b. Military Hardware Conformity Requirements. Military hardware and included software are often produced outside an FAA-approved quality system. Without FAA oversight, there will be no FAA conformity records to document configuration control. We will consider the impact on the flight crew, safe flight and operation, and adverse effects on required equipment when we determine conformity requirements for government furnished equipment or special mission equipment (GFE/SME) produced outside an FAA-approved quality system.

 c. Military Hardware Compliance Requirements. The applicant must show compliance with the airworthiness standards. When the military equipment can comply with all applicable airworthiness standards, and type design data exists to document configuration, the equipment can be included in the FAA installation approval.

 d. Qualification of GFE or SME. This equipment may have been previously qualified by the military to military standards. Manufacturing or conformity records or qualification data may be limited compared to what we expect for civil projects. The FAA is often asked to accept this military qualification as meeting the regulations. Because of this, compliance to 14 CFR 21.33(b)(2-4) and 21.53(b) for GFE or SME may not always be possible. In these situations, we allow the applicant to segregate type design to provide approved provisions to the extent that applicable compliance findings can be accomplished. See chapter 8, paragraph 1 in this order for methods of approving military-supplied equipment.

2. Conformity Inspection Requirements.

 a. We may not require a conformity inspection of the article to subcomponent level if we determine that installed equipment is:

 (1) Non-required and non-essential for safe flight and landing of the aircraft; and

 (2) All known hazards the equipment may produce are isolated from critical aircraft functions.

 b. The FAA certification staff determines whether a conformity inspection is required. They, or their designee, can prepare the request for conformity using the processes in Order 8110.4. The following are guidelines for conformity inspection requirements of military
unique or SME:

(1) Inspections can include part and assembly conformity, installation conformity, test set-up validation, and functional test witnessing.

(2) Include specific written instructions for inspections to ensure configuration control. These instructions may differ from inspections for a new type design created for civil applications.

(3) Conformity requirements can range from a physical inspection to specific requirements including software load and functional test requirements.

(4) Conformity requirements must include consideration of any FAA tests that use the component or system that is being evaluated for certification.

(5) Include special requirements and instructions on FAA Form 8120-10, Request for Conformity.

(6) Coordinate with the MIDO to determine all conformity requirements.

3. Using GFE. Sometimes, equipment installed is GFE supplied by the military to the applicant from existing government stock, and may not be in current production. The applicant may not have access to the type design, or be able to oversee or control supplier procedures. While we must determine that the installed equipment complies with airworthiness regulations, conventional FAA conformity inspection procedures may not be possible. In such cases, the applicant and the MAA should consult with us. However, we still expect the applicant to submit a statement of conformity in accordance with 14 CFR 21.53. The applicant is responsible for evaluating any subsequent changes to the hardware’s configuration and must resolve any associated software issues in order to keep any prior FAA installation approvals valid.

4. Applicant Research and Development (R&D) Flight Testing. The applicant needs to resolve all issues concerning registration, military ownership and preparation before flight testing is conducted.

a. Registration and Airworthiness Certification Requirements for R&D Flight Testing.

(1) When the applicant does not deliver the MCDA to the military and the aircraft is the asset and property of a civil entity, we consider it a civil aircraft and under civil registration.

(2) When the MCDA incorporates modifications that are not FAA-approved (but are undergoing modifications subject to FAA or military approval), we instruct the applicant to get a special airworthiness certificate in the experimental category, applicable to the intended purpose of operation (see the Table of Scenarios for Temporary Civil Certification of Military Aircraft in appendix B for further information).
(3) While an aircraft is operating in experimental category:

(a) For any R&D purposes, we do not approve or oversee the aircraft configuration.

(b) The holder of the experimental airworthiness certificate for R&D is responsible for configuration control, airworthiness, and risk mitigation of the development aircraft.

b. What to Do before FAA Testing.

(1) Once R&D is complete, modified aircraft may be subject to military qualification flight tests and acceptance flight tests. It is important that the applicant coordinates and integrates an overall flight test plan with the FAA. We recommend that the applicant organizes an integrated test team (ITT) representing the contractor or applicant, the military, and the FAA. The military may require that all modifications made to their aircraft (including new, development, or prototype aircraft) be approved and cleared for flight by the responsible MAA. Before the FAA becomes involved, the applicant will have to obtain configuration approval from the MAA and implement flight test risk mitigation procedures defined by the military.

If the aircraft is owned by the Armed Service, the Armed Service may also place certain other requirements on personnel and/or equipment prior to flight of their aircraft (e.g., flight or airworthiness release, altitude chamber certifications, etc.). The applicant may have to obtain military qualification and approval of crew and personnel authorized to operate or be on board the aircraft. Qualification and approval must be secured before company personnel, FAA flight test personnel, and FAA designees are authorized to test the aircraft. These qualifications and training requirements need to be well established early in the project. FAA flight test pilots may need to occupy a pilot seat in order to perform tests (see Aircraft Certification Service Flight Test Operations Manual listed as a related document to Order 4040.26B on RGL and Order 8110.41A, Aircraft Certification Service FAA Flight Test Responsibilities, Procedures, And Training).

c. Type Inspection Authorization.

(1) After R&D is complete, the design is ready for type certification testing. The responsible FAA project ACO or FAA-delegated organization issues a TIA for this purpose. The TIA authorizes official conformity inspections, airworthiness inspections, and ground and flight tests necessary to fulfill certification requirements. In addition, if there are operational and airworthiness requirements to be addressed, the AEG operational evaluations will be included in the TIA.

(2) The applicant presents the aircraft for FAA conformity inspection. The MIDO issues a special airworthiness certificate in the experimental category to show compliance to the airworthiness standards, and then MCO conduct the FAA certification flight testing.

5-3
(3) We will assess and implement risk mitigation before conducting FAA certification flight tests in accordance with Order 4040.26, Aircraft Certification Service Flight Test Risk Management Program.

(4) Usually, we complete FAA certification on new MCDA before the ownership of the aircraft is transferred to the military. If we cannot, then the applicant must coordinate changes to the aircraft registration and airworthiness certificate to reflect the change in ownership. The applicant is still responsible for maintaining aircraft configuration under 14 CFR 21.35.

(5) After the flight test, the responsible ACO, or FAA-delegated organization, issues a type inspection report (TIR) parts I and II, which document the conformity inspection, test data collected and associated compliance findings.

5. Temporary Registration of Military Aircraft - the Bailing Process. In-service MCDA that are modified by the applicant in pursuit of FAA type certification approval may require an official FAA flight test to show compliance to the applicable regulations. In order to fly the aircraft, its ownership must first be established.

a. Bailed Aircraft. If the Armed Service provides a military aircraft to a contractor and “bails” the aircraft to the contractor, the aircraft may no longer be operating as a military (public use) aircraft. It is important to establish whether the aircraft is being operated for commercial purposes and flown by civilian pilots under contractor direction. For example, an in-service MCDA may be placed in the custody of a repair station or a contractor’s facility for an upgrade modification with a new STC. The contractor is allowed to operate the aircraft for six months, using the military aircraft to develop and certify the modification. The contractor may assign a company temporary registration to the aircraft. If so, the documents bailing custody of the government aircraft to the contractor are used as proof that the contractor is the agent of the owner using the company temporary registration. Military aircraft under temporary company civil registration must meet the requirements of 14 CFR part 45 for external markings.

b. Non-bailed Aircraft. If a contractor obtains civil registration on behalf of the military, the military must supply documented proof of ownership. Instead of the customary bill of sale used for commercial purposes, the military may supply a DoD Form DD-250, The Material Inspection and Receiving Report. If the aircraft has military registration, it remains under the jurisdiction of the MAA and is not eligible to receive an FAA airworthiness certificate.

6. Flight Test under Military (Public Use) Operation. In all cases requiring FAA flight test, all parties involved must follow type certification procedures. This includes the review and approval of appropriate type design data and test plans as well as the issuance of the TIA. This can also be accomplished under a letter of authorization (LOA) used in accordance with Order 8110.4. Before performing FAA certification flight tests on aircraft under military operation, the applicant obtains a military flight release and approval to test from the MAA. In general, the military aircraft is in public use operation if one of the following conditions applies:
a. The military aircraft will be operated out of a military airfield and under the control of military aircrew (military pilot-in-command). FAA personnel or designees are allowed to conduct flight-testing on board the aircraft. (Aircraft means a military public use aircraft.)

b. The military brings the aircraft to a commercial facility for modification, but retains control over maintenance and flight authorization of the aircraft (military pilot-in-command). FAA personnel or designees are allowed to conduct the certification flight-testing on board the aircraft as part of a joint test team out of the contractor’s facility. (The aircraft remains a public use aircraft.)

a. Purpose of Form 8130-31. FAA Form 8130-31 is prepared by the aircraft manufacturer or modifier using the findings of FAA inspections of the aircraft. FAA Form 8130-31 documents all deviations from the civil type certificated configuration. (See appendix D for a form sample.)

Note: FAA Form 8130-31 supersedes FAA Form 8130-2.

b. FAA Responsibilities. By mutual agreement between the FAA and the military services, the FAA follows normal inspection and surveillance procedures for new production under a TC or a production certificate (PC). They also follow normal conformity inspection procedures for certification of a prototype STC installation.

(1) FAA Form 8130-31 is used to identify deviations from FAA-approved type design on a new MCDA when completed and delivered from the manufacturer from the FAA PC. Inspection records from the manufacture of the aircraft under the PC are used to identify and document the deviation items listed on the form.

(2) The responsible MIDO or their authorized designee will sign FAA Form 8130-31 on behalf of the FAA. The form is also used to document deviations from FAA-approved type design for installation of a prototype STC installation on an MCDA design at a repair station or other facility.

(3) The FAA conformity inspection(s) conducted on the prototype STC installation are used to identify and document deviations from the FAA-approved type design incorporated during modification of the aircraft. The responsible MIDO or their authorized designee will sign the form on behalf of the FAA.

(4) For incorporation of the FAA-approved STC modification on military aircraft subsequent to the prototype installation, FAA Form 8130-31 is prepared based on inspections conducted by the FAA repair station.

(5) The form is prepared by the repair station and signed by the responsible airworthiness inspector (AI), or authorized representative of the repair station’s quality system.

5-5
(6) It is important to note that the FAA may not be able to establish conformity to FAA-approved type design for the entire in-service MCDA due to previous deviations or military-approved modifications.

(7) FAA Form 8130-31 is prepared only for the work performed to incorporate an STC, manufacturer-issued service bulletin, or other FAA-approved type design applicable to the model on the FAA TC.

c. **MAA Responsibilities.** The FAA representative or modifier submits the completed FAA Form 8130-31 to the responsible MAA. The representative of the MAA will sign the form, acknowledging the identified deviations to FAA-approved type design, and accept the responsibility to determine airworthiness and final acceptance of the aircraft configuration.

d. **Distributing FAA Form 8130-31.** After approval, the military representative retains the original Form 8130-31 for the aircraft and provides a copy of the completed form to the modifier. The applicant or modifier must forward one copy to the MCO within 60 days of issuance, including those issued by FAA designees or delegated organizations. The responsible MIDO or Flight Standards District Office (FSDO) may keep a copy for their records if so desired and incorporate it into the applicable procedures manual.

 Note: If the aircraft is sold as surplus and presented for civil certification, the applicant for the Certificate of Airworthiness is responsible for furnishing all applicable 8130-31 forms related to the aircraft from the military aircraft records. The forms are used by the FAA as part of the airworthiness determination.

8. **Production Approvals.**

 a. **Applicants for Production Approval.** We instruct applicants to obtain a production approval for a design approval they obtained from a type certification project. The applicant applies for a production approval at the geographic MIDO. The applicant’s MIDO is responsible for approving the applicant’s required quality manual and for overseeing the production system.

 b. **FAA-Approved Parts.** FAA design approval holders (DAH) must meet the requirements of 14 CFR part 21 for the manufacture and sale of any parts, subassemblies, or components. Production authority for the manufacture of these parts can be an FAA PC, PMA, or a technical standard order authorization (TSOA).

 c. **Use of FAA-Approved Parts.** The military requires that MCDA be maintained to civil standards. Parts produced for sale under FAA production approvals for MCDA are subject to the same requirements as parts installed on a civil-registered aircraft. The military relies on the civil regulatory system to oversee and control manufacturing and quality assurance of spare parts for MCDA.

 d. **Impact of Unapproved Parts for FAA-Approved Type Design.** It is possible for type certificated military aircraft to be returned to the civil sector. Replacement and
modification parts installed on the aircraft must be declared airworthy under civil airworthiness requirements. If not, they must be removed and replaced with FAA-approved parts to maintain an airworthy configuration. Failure to maintain MCDA with FAA-approved parts causes loss of configuration control and invalidates the original airworthiness certification. For this reason, many MCDA are repaired and maintained in FAA repair stations.

e. **Parts under Military Oversight.** These parts are unique to the military configuration and are not FAA-approved. Equipment, parts, and materials installed on MCDA and approved by the MAA are subject to military requirements for parts manufacture, identification, and quality assurance control. These parts are installed on the aircraft under the authority of the military, and any issues associated with authenticity, applicability, or airworthiness of the part must be coordinated through the military program office. FAA does not oversee manufacturing, quality assurance, configuration control, or stocking of these parts. Parts under military airworthiness approval should be segregated and isolated from FAA-approved replacement and/or modification parts. These parts need to be removed from the aircraft to conform with FAA-approved type design if the aircraft is to be issued a standard airworthiness certificate.
Chapter 6. Unique Military Functions

1. Military Equipment. Mission equipment can have unique military functions similar to commercial equipment with no civil application. For example, a military identification friend or foe (IFF) radio operates like a transponder. The FAA may be unable to evaluate military equipment with classified functions. We must set up special handling and procedures to address security sensitive or classified type design information. Except for the installation of this military equipment, the military aircraft may still be operated in the same way as a civilian aircraft. The military may want the equipment to comply with applicable civil safety standards to the extent they apply.

 a. Sometimes it is difficult for the applicant to show that the installed equipment complies with all applicable regulations. It may be impossible to establish whether the equipment performs its intended function in the civil environment, and the applicant may need help from the military. We instruct the applicant to contact the MCO and the MAA for assistance. The military can perform the necessary tests and provide a supporting statement that the equipment was evaluated for operational suitability and performs its intended function.

 b. The FAA can use the statement from the MAA to make the necessary compliance findings to 14 CFR 2X.1301 for the approval of the installation. For example, “The United States Air Force has found that a specific equipment[xx] as installed on a specific aircraft model [yy] provides satisfactory performance in accordance with specification [zz] and performs its intended function.” It is important to note that all the airworthiness standards must be found compliant with the system operating in all of its possible modes. The MCO will use the statement from the military to find compliance to 14 CFR 2X.1301.

3. FAA Operational Restrictions and Limitations. The FAA may still be unable to approve actual operation of the equipment if it conflicts with civil operating rules (14 CFR subchapters F and G), is prohibited from use in the civil environment, or the operation of which may result in a noncompliance. We may approve the installation while restricting or limiting normal operation of the equipment. While it may be satisfactory to limit the operation, the installed system must still be fully compliant to the applicable airworthiness standards (14 CFR subchapter C) with the system operating in all of its possible modes.
Chapter 7. Certification of Military Systems and Equipment

1. Certification Issues. The challenges we face in type certification of MCDA involve the integration and installation of military mission systems and equipment. These problems become more complex when it is necessary to interface the mission equipment with aircraft systems. The accepted methods for compliance to civil airworthiness regulations may not have been used when the equipment was designed, for example, software requirements in accordance with RTCA Inc. document, RTCA/DO-178B, *Software Considerations in Airborne Systems and Equipment Certification*, dated December 1, 1992 (or most current revision). This does not mean the equipment cannot comply with civil airworthiness standards, but we must examine each piece of equipment to determine if an acceptable means of compliance can be determined.

 Note: 14 CFR part 25, *Transport Category Airplane*, regulatory requirements are provided here as a basic reference. Similar or parallel requirements exist for other parts such as 14 CFR parts 23, 27, 29, 33 and 36.

2. Determining Feasibility. FAA requirements and standards are for civil operations, not for military or special mission operations. Therefore, we have to evaluate each proposed modification involving the installation of GFE or SME to determine the feasibility of FAA civil certification. These types of equipment as designed may not meet all applicable airworthiness standards, and, therefore, must be redesigned to be compliant or deemed ineligible to be installed. When determining the feasibility of certification, we consider these factors:

 a. Proposed operation;

 b. Applicability of specific regulations;

 c. Acceptability of any proposed qualification; and

 d. Conformity data.

3. Military Equipment Ineligible for Certification. Some military equipment and hardware have no civil application, or may introduce operational hazards that are not compatible with civil airworthiness standards. Check with the MCO for further guidance pertaining to specific military equipment that may not be eligible for full civil certification. Generally, the FAA will not certify any of the following:

 a. Systems designed for combat (defensive or offensive armament, or carriage and delivery of weapons or ordinance);

 b. Gun systems;

 c. Missile systems;

 d. Bombing systems;
e. Electronic jamming systems;

f. Any installed system if it can pose a hazard to the aircraft, to other aircraft nearby, or to personnel or property while the aircraft is in flight or on the ground;

g. Tow targets;

h. Military organic aircraft (except as allowed by AIR-100); or

i. Specific military systems or a component, if it requires a special condition or exemption, unique only to a military or special mission function.

Note: Identify hazards for certain radars and ensure operational limitations are imposed to mitigate hazards for these cases.

4. GFE or SME Performance and Qualification Standards.

a. Comparison Analysis Matrix. FAA performance and qualification standards include advisory material and related FAA-accepted industry standards. When the equipment is qualified to a different standard, the applicant can show compliance by preparing a requirements comparison analysis matrix. The comparison analysis matrix may show that more qualification and testing may be required to meet airworthiness standards. The applicant should document the comparison analysis in a compliance report to confirm associated compliance findings. However, when there are no performance or qualification standards associated with the applicable regulations, or there are no applicable regulations, then the applicant can propose performance and/or qualification standards. See 14 CFR 25.1301(2) for operating limitations. The requirements of 14 CFR 25.1585(b) may also apply.

b. Assessing Proposed Standards to Regulatory Requirements. If the performance or qualification standards proposed are different than those defined by regulation or specified in related guidance, we will assess the proposed means of compliance.

c. FAA Imposed Standards. We may impose certain FAA or industry qualification standards or environmental conditions, even on the non-required equipment. For example, we may apply RTCA /DO-160E, Environmental Conditions and Test Procedures for Airborne Equipment, to non-required electrical equipment. This is an indirect application of 14 CFR 25.1309(a), and a direct application of § 25.1431(a) and § 25.1353(a) for showing the non-required equipment does not affect required or essential equipment. For more guidance, see AC 20-168, Certification Guidance for Installation of Non-Essential, Non-Required Aircraft Cabin Systems & Equipment (CS&E) and AC 20-169, Guidance for Certification of Military and Special Mission Modifications and Equipment for Commercial Derivative Aircraft (CDA).
5. **Military vs. Civil Airworthiness Qualification Testing.** The military often uses military-off-the-shelf (MOTS) mission equipment to meet their needs. This equipment is used on other military aircraft and has been subject to previous airworthiness qualification for the military. Because the equipment was originally designed for military use, it is qualified to military specifications instead of civil aviation standards (like RTCA/DO-160). Data may be available from previous military airworthiness qualification testing to show whether the equipment could meet civil standards. If the data is found to be insufficient to show compliance with the regulations, further testing may be necessary. This depends on the level of interface and integration with aircraft systems. Some military equipment may interface with communication, navigation, or avionics systems. In these types of applications, data from previous testing may be insufficient to determine compliance.

6. **Using Qualification Data Previously Accomplished for the Military.** Before the acceptance of previous qualification data, we must consider:

 a. **Data Compatibility with Requirements.** The applicant must determine the operational environment of the equipment and use suitable qualification requirements. General comparison to all RTCA/DO-160 requirements is not appropriate. Data must establish that all aspects of specific environmental qualification requirements are satisfied. The applicant should show how the previously accomplished data will satisfy the applicable civil standards. The applicant should also give reasons why previous test methods and data parameters show that the hardware would meet or exceed civil qualification requirements. Raw test data or the original test reports may not be enough for this purpose. We may require the applicant to write a new compliance report to show compliance (see chapter 7, paragraph 4a).

 b. **Data Credibility.** Previously accomplished qualification data used to support compliance to military specifications can come in many forms. The data may have been obtained by tests conducted solely by the equipment manufacturer, conducted by an independent test facility, or conducted under military oversight. The FAA may accept data when there are complete and accurate records of tests, analyses, or evaluations specific to the hardware. The applicant should record who conducted the testing, the location, and the date the testing occurred.

 c. **Test Article Configuration.** The data must reflect tests conducted on the specific equipment for which airworthiness qualification is proposed. The applicant must prove the tests were performed on an article representative of the hardware to be approved, and that the hardware type design was subject to design and configuration control. We should evaluate any differences in the article actually tested from the current hardware configuration. We should receive justification why the submitted data is appropriate for the intended application. Qualification by similarity to other previously approved military hardware is not sufficient to show compliance.

 d. **Concurrence for Use of Previously Accomplished Qualification Data.** The project certification plan should identify any proposed acceptance of previously accomplished qualification data. This approach requires good engineering judgment plus knowledge and experience of both civil and military airworthiness qualification requirements. FAA personnel
should consult with the MCO or other FAA technical resources available for help. FAA delegated organizations and designees should consult with their FAA advisors before making compliance findings using previously accomplished qualification data. Depending on the application, authorizing FAA offices and designee advisors may want to retain approval authority.

e. Evaluations Similar to TSOA Process. As the MCO, we can evaluate GFE or SME qualification data like articles approved under TSOA. We may accept the military specification as a minimum performance standard. We may accept the previously accomplished qualification data as evidence the hardware meets the specification. This will require analysis of the data for compatibility and additional testing may be necessary. Just like under a TSOA, a separate installation approval of the GFE or SME is required. Further analysis or testing may be required if the GFE or SME performance is affected by the installation, or where the GFE or SME can affect the aircraft’s required or essential systems.

7. Intended Function Compliance for GFE or SME. We require that the equipment, systems, and installations be designed to ensure they perform their intended functions under any foreseeable operating conditions. Therefore, specific associated performance or qualification standards apply. Follow the rules found in § 25.1309(b) and § 25.1431 and related advisory material for failure condition requirements. If the GFE or SME is qualified to a different performance or qualification standard such as a military standard, then the applicant compares and conducts more analysis and/or testing as necessary. Compliance can be accomplished as follows:

 a. GFE or SME Required. If the GFE or SME is required, is essential for safe operation, or affects the aircraft’s performance, the FAA will conduct its evaluation and make compliance findings like it does for all other required equipment.

 b. GFE or SME Not Required. If the GFE or SME is not required, is not essential for safe operation, or does not affect the aircraft’s performance, but its function is essential to the military mission of the aircraft, the compliance finding can be supported by assessments from the receiving MAA. We can request a statement from the MAA saying their tests and evaluations support the 14 CFR 25.1301(b) compliance. The applicant’s certification plan should propose that the military will verify the equipment functions properly. The military program office will present their findings to the MCO on behalf of the applicant to us (the MCO) for the type certification approval.

8. Substantiating Reliability. The applicable regulations and means of compliance can affect the design’s reliability requirements. In general, regulations that establish or govern the reliability of design include 14 CFR 25.671, 25.672, 25.901, 25.1309, and 25.1431(a). There are other specific rules such as 14 CFR 25.1307, 25.1333, and 25.1355 that are related to reliability. The reliability specified by the military or contracted between the modifier and purchaser may be different than the reliability necessary to show compliance. The applicant must show reliability to at least the level required by the FAA airworthiness requirements.
9. **GFE or SME Produced Outside an FAA-Approved Quality System.**

 a. **FAA-Approved Parts.** Aircraft parts produced for sale for installation on type certificated products must be approved under:

 (1) A TC;

 (2) A PC;

 (3) A technical standard order (TSO); or

 (4) A PMA (see 14 CFR 21.303).

 b. **Prototype Parts.** If the parts are not produced as specified in 14 CFR 21.303, the parts may be purchased parts, but must be specified in the type design (see § 21.125(b) (1) & (2) for details). Therefore, the applicant can buy prototype parts if they set up the necessary inspections and tests to show that parts meet the regulations and they keep these findings from part to part. Prototype parts become approved parts under the TC or STC design approval and the FAA approved production system. The parts can be GFE or SME if the applicant, or applicant’s supplier, can establish that they meet the requirements necessary to control configuration and provide quality oversight.

 c. **GFE Supplied by the Military.** The applicant may be able to receive the equipment from the government and do initial conformity inspections for installed units. However, the applicant may not be able to establish continued oversight of supplier quality control, or obtain PMA for spare or replacement units. If the part is a GFE or SME from U.S. Government inventory, the design must be accurately identified on the type design and the configuration must be maintained from the initial tested part to the parts being installed. The part must comply with 14 CFR 21.125(b)(1) & (2).

 d. **Military Statement of Airworthiness.** Since GFE spares and replacement parts may only be available through the military, we agree to accept a military statement of airworthiness for specific GFE components to support certification and production approvals. This statement is proof the military confirms that the article was manufactured and inspected to specification. The statement may include a stamp by the Defense Contract Management Agency (DCMA) with an official government seal, indicating that the equipment was produced to meet specifications under government oversight. The military office may give a copy to the contractor or applicant to support the applicant’s statement of conformity required on FAA Form 8130-9, Statement of Conformity. When the applicant uses this method of acceptance for GFE, then inspection, maintenance, and logistical support for this equipment is outside FAA control. The part’s sources must be documented in the ICA and production approval for spare parts.

 e. **Provisions Only.** If the aircraft is sold by the military and re-enters the civil sector, the TC holder may be unable to provide spares or comply with 14 CFR part 21 requirements. We will often limit these to “Provisions Only” approvals, or require that the type design establishes that replacement parts are available only through the U.S. Government. When the equipment has
no civil application, or is unavailable to the general public, the TC holder should provide instructions for its removal and return the aircraft to an FAA-certified configuration.

10. FAA Evaluation of Equipment Not Included in the Type Design.

 a. The FAA is responsible for certifying the aircraft as defined in the type design. All other modifications or equipment on the aircraft is the responsibility of the MAA. The modifier and the receiving MAA are responsible for evaluating and certifying that the GFE or SME is not included in the type design. The MAA will ensure that the integrity of the original FAA approval is not compromised by non-approved GFE or SME and any subsequent military-approved modifications.

 b. The military may ask that we provide technical assistance to evaluate GFE or SME installations not included in the type design. (GFE or SME will be entered on FAA Form 8130-31 as a non-conformance to type design or military deviation.) They may ask for FAA technical assistance to determine whether subsequent military modification may invalidate or interfere with the function and operation of essential equipment in the FAA-approved configuration. Our technical assistance may include evaluating aircraft and/or flight crew performance under normal operation and/or failure cases. However, unless it can be established under an FAA-approved process that the evaluated configuration on follow-on aircraft is the same as that tested, any evaluation applies only to the specific serial number of aircraft tested (like a one-only STC).

11. Mission Equipment Performance Criteria. FAA standards may be different than what is required by the military contract. The MAA is responsible for overseeing and validating that the end product meets military performance and data requirements. These military requirements do not invalidate the requirements that must be met to obtain a TC. The following are examples of military requirements that exceed or differ from civil certification standards:

 a. Environmental qualification to military standards or to standards desired.

 b. Performance standards to military objectives desired.

 c. Demonstration of mission equipment performance throughout the design envelope.

 d. Effects aircraft system failures may have on the mission systems and equipment.

 e. Military mission reliability requirements.

 f. Military-desired formats for aircraft Flight Manual Supplement (FMS), maintenance manuals, ICA, and other data.

12. Technical Assistance to the FAA Using Military Expertise. The military often uses new technologies that could have civil application. These new technologies may comply with existing FAA regulations, but military experience has shown we might need additional requirements. The military may have criteria adapted for acceptance of specific technologies not presently provided for in the regulations. The FAA through the MCO can consider and benefit
by using DoD guidance and policy to support approval of these new technologies. These new
technologies adapted to aircraft design are considered under special conditions. We instruct the
applicant to consult us in these special circumstances.
Chapter 8. Methods of Approving Military Equipment

1. Alternate Levels of FAA Approval for Military Projects.

 a. A complete civil type certification approval is required under civil registration in order for individual aircraft to be eligible for a standard airworthiness certificate. The objective is to ensure the final aircraft configuration is in full compliance with all applicable airworthiness requirements. While MCDA aircraft do not typically require a civil standard airworthiness certificate, military operational policy mirrors 14 CFR part 91. The military services recognize and rely on the level of safety afforded by type certification of MCDA.

 b. Some military mission equipment may not be fully certifiable, or data may be unavailable to substantiate compliance. In other cases, the equipment may be certifiable, but has no civil application, or operating it in the civil environment may be prohibited. The safety aspects of integrating and installing the equipment with the baseline commercial aircraft must still be defined and evaluated by the MAA and the FAA. Here, we may consider issuing different levels or partial approvals for modifications to MCDA. FAA certification personnel are instructed to contact the MCO before issuing any partial approval for MCDA. See appendix A for the Levels of Approval Table.

2. Full Approval (Equipment, Installation and Operation). Full FAA approval of associated systems and equipment must meet the following requirements:

 a. The same requirements for a commercial modification to a civil aircraft. Include type design data, compliance substantiation, FMS, maintenance and continued airworthiness documentation.

 b. All applicable airworthiness regulations. Ensure the operation is compatible and eligible for use on a civil aircraft of the same type without special restrictions or limitations.

3. FAA Approval with Operational Limitations (Equipment and Installation). Some military equipment may have no civil application or may only be authorized for public use for military operations.

 a. Limited FAA approval of associated systems and equipment must meet the same requirements as for a commercial modification to a civil aircraft, including type design data, compliance substantiation, aircraft FMS, maintenance and continued airworthiness documentation:

 (1) All applicable airworthiness standards.

 (2) Special operational limitations and restrictions are required.

 b. The FAA may need help from the military to evaluate and determine compliance with this type of equipment because of the restriction on civil operation. Under limited FAA approval, the "intended function" should be determined by following the guidance in chapter 6,
Unique Military Functions. Intended function for mission equipment may be coordinated and documented by a letter from the military authority to the MCO (on behalf of the applicant) to assist in making necessary compliance findings. Care must be taken for GFE cockpit controller installations to make sure all civil certification requirements are met.

c. If mission equipment is incompatible with civil use and requires prior authorization for operation, installation approvals must have limitations and restrictions identified on the STC description. Operational restrictions or limitations must also be incorporated in the aircraft FMS. For example: "Equipment installed by this STC is intended for military, public-use, or government use aircraft only. Operation of this equipment on civil aircraft without prior authorization is prohibited."

d. If operating the equipment during maintenance, it must be authorized by the military, and any limitations and restrictions must be included in both the aircraft FMS and ICA.

e. If the limitations and restrictions can be followed, these installations may be legally permissible to install on an aircraft of civil registry.

f. The aircraft is operated as a public-use aircraft that needs to carry and operate the equipment for which operational limitations are imposed.

4. Safe Carriage (Equipment Approval). Installing military systems and/or equipment for “safe carriage” is a partial approval, signifying that the military hardware and equipment comply with applicable regulations in a non-functional state. The requirements are:

a. The FAA examines the physical aspects of the installation including aerodynamic effects, structural provisions, cabin safety, weight and balance, and noise requirements. (See 14 CFR part 36, Noise Requirements.)

b. The installation, as defined on the type design, complies with regulations and poses no hazard to the aircraft.

c. Type design data must include physical and dimensional definition of the installed hardware.

d. Other data necessary to establish compliance with this equipment as installed in the aircraft.

e. Approval includes any modifications made to aircraft structure or systems to accommodate installation of the equipment. Approval does not authorize or allow the installed equipment to operate.

f. Equipment must be disconnected from power sources, antenna couplers, and other interfaces with the aircraft and these interfaces on aircraft type design are safely capped and stowed.
g. Cockpit controls are not included as part of the type design, if the equipment is controlled or will interface with the cockpit. The type design may incorporate blanking plates or other means to show that the equipment is not approved for function and cannot be enabled or operated from the cockpit.

h. The equipment is not covered in the aircraft FMS and ICA.

i. Maintenance covers only that required for removal of aircraft provisions (structure, mounts, wiring, etc.) and physical attachment for securing equipment to the aircraft.

j. “Safe Carriage” approvals cannot be extended to weapons, pyrotechnics, or any other hazardous materials that would otherwise be prohibited from carriage on a commercial aircraft.

k. The receiving MAA is responsible for design approval, equipment qualification, system integration, compatibility, system architecture, functionality, and interface with aircraft systems, operation, and airworthiness approval for the installed equipment.

5. Provisions Only. The equipment is not included as part of type design. The FAA may work with the applicant and the military to define “Provisions Only” approvals to support subsequent installation of military equipment. Working together with the applicant and military helps to understand the safety implications of installing non-FAA-approved equipment. Provisions Only approvals are not on-board installation approvals for the military equipment. They allow modifications or define limits for future military installations. Provisions Only approvals assess and approve aircraft structure, design characteristics, or system capabilities to handle defined and predetermined structural loads, interface or attachment provisions, and electrical power requirements. To the extent defined in type design, the requirements for Provisions Only approvals are that they must:

a. Accurately define the criteria for which the provisions are designed.

b. Meet applicable airworthiness requirements.

c. Address approvals in the aircraft FMS and ICA. Maintenance instructions cover only those required for installed aircraft provisions (structure, mounts, wiring, etc.).

d. Include the specific criteria for which the provisions are approved on the description of the type design change, or reference a document that establishes all interface points and design limits.

e. Include any modification made to aircraft structure or systems to accommodate future installation of predetermined military equipment. Aircraft systems provisions must be disconnected from power sources, antenna couplers, and other interfaces with the aircraft and these interfaces on aircraft type design are safely capped and stowed.
Chapter 9. Software Aspects of Airborne Systems and Equipment Certification

1. Problems with Software in Military Equipment. When an applicant develops new software for systems and equipment certification, they can use RTCA DO-178 as an acceptable means for approval. This guidance is recognized by the FAA under AC 20-115B, Airborne Software Assurance. The applicant can use this guidance to gain approval of mission equipment software and interface software between mission equipment and other aircraft systems and equipment. However, military mission equipment can contain embedded software not developed according to applicable FAA guidance and policy. It must be determined whether this military mission equipment can be approved as part of an FAA-certified installation.

 a. Eligible for Equipment and/or Installation Approval. We may approve military mission equipment software for installation and operation. Such approval can be performed if any of the following conditions apply:

 (1) The mission equipment is isolated and has no effect on other aircraft systems and equipment.

 (2) The mission equipment is integrated and the software design assurance level corresponds to the system level safety assessment criticality.

 (3) Alternative methods or additional substantiation is provided to obtain an equivalent level of design assurance for the mission equipment software if RTCA/DO-178 objectives are not completely met.

 b. Ineligible for Equipment and/or Installation Approval. Sometimes we cannot approve mission equipment for installation and operation because compliance with the applicable software guidance cannot be found. This mission equipment’s installation and operation must be evaluated and approved by the MAA.

2. Software Considerations. The following two factors characterize a system’s interface with the aircraft and its consequence on FAA software approval.

 a. Isolated (No Effect on Other Systems). Mission equipment is a completely self-contained system with no data dependence or interface with any other aircraft systems and equipment. The embedded mission equipment software executes in isolation, for example, without dependencies on other aircraft systems and without other systems being dependent on its functionality or outputs. The mission equipment software criticality can be assessed as “no effect” which correlates to Software Level E. Additionally, the mission equipment must comply with other applicable regulations to be approved for installation and operation.

 b. Integrated Mission Equipment. If the mission equipment software interfaces with other on-board FAA-certified equipment, the relationships of the interfaces with aircraft systems must be defined. Consider the following examples when evaluating the protocols and interfaces between the mission equipment and the aircraft systems and equipment:
(1) Mission equipment is a passive receiver of data. The aircraft systems and equipment only provide data to the mission equipment without any acknowledgement or data transfer back from the mission equipment. No information is transmitted to the aircraft systems that could interfere with function or operation of the aircraft. The mission equipment software criticality can be assessed as “no effect” which correlates to Software Level E. Additionally, the mission equipment must comply with other applicable regulations to be approved for installation and operation.

(2) Mission equipment is an active transmitter of data to aircraft systems.

(a) The aircraft systems and equipment that receive data from the mission equipment implements partitioning protection through a combination of software and hardware. The interfacing path with mission equipment data is clearly separated from other interface paths within the aircraft systems and equipment. If the architecture shows the mission equipment software as having “no effect” on the aircraft systems, then the software level can be assigned as Level E. Additionally, the mission equipment must comply with other applicable regulations to be approved for installation and operation.

(b) The aircraft systems and equipment that receive data cannot be partitioned and/or the interface path is not clearly separated from the mission equipment. The aircraft safety assessment will provide a safety criticality of the mission equipment software. If the mission equipment software can satisfy the design assurance objectives associated with its assessed safety criticality and the mission equipment complies with other applicable regulations, it can be approved for installation and operation.

(c) The mission equipment is part of an integrated modular architecture (IMA) system, and the mission equipment interfaces with aircraft systems and equipment. The aircraft safety assessment will provide a safety criticality of the mission equipment software. If the mission equipment software can satisfy the design assurance objectives associated with its assessed safety criticality and the mission equipment complies with other applicable regulations, it can be approved for installation and operation as part of the IMA system.

c. **Alternate Methods of Software Approval.** If the RTCA/DO-178 objectives for the assessed safety criticality level of the mission equipment software are not completely satisfied, alternative methods or additional substantiation must be provided to show the required design assurance for the mission equipment software.
Chapter 10. Military Airworthiness Process

1. **Points of Contact.** The MCO coordinates with and serves military airworthiness technical organizations and program offices. These organizations have airworthiness responsibility for all military platforms operated by their branch of the Armed Services. They use the FAA determination of compliance for MCDA to support their own determination of airworthiness. The technical organizations with airworthiness responsibility for military aircraft are:

 U.S. Air Force
 Director, Air Force Life Cycle Management Center/EN-EZ
 Technical Airworthiness Authority
 2145 Monahan Way, Bldg 28
 Wright-Patterson AFB, Ohio 45433
 Phone: 937-255-0060
 Fax: 937-255-5899

 U.S. Army
 Director, Aviation Engineering Directorate
 RDME-AE
 Building 4488, Suite C-100
 Redstone Arsenal, Alabama 35898
 Phone: 256-313-8400
 Fax: 256-313-3196

 U.S. Navy
 Director of Airworthiness (NAVAIR 4.0P)
 22244 Cedar Point Road
 Building 460, Room 228
 Patuxent River, MD 20670-1163
 Phone: 301-342-0307
 Fax: 301-342-3667

 U.S. Coast Guard
 HU-25/G-V/MCSA - System Manager
 Aeronautical Engineering (CG-41)
 2100 2nd St. S.W.
 Washington, DC. 20593

2. **Differences in Civil and Military Airworthiness.**

 a. **Scope of Authority.** The FAA and MAA are responsible for certification and approval of aircraft under their jurisdictions. The FAA provides regulatory oversight of the type certification process stemming from Title 49 of the United States Code (U.S.C.). The military issues airworthiness policy through Title 10 U.S.C. In addition, the military is the owner or operator of the aircraft.
b. **FAA Limits of Authority.** Because the FAA is a civil regulatory agency, there are limits to the services the FAA gives the military. The Armed Services use FAA certification services to help them establish airworthiness for their MCDA, but FAA regulatory oversight is limited to TC and production approval holders (PAH). The FAA does not have jurisdiction over the maintenance of aircraft and has limited jurisdiction over the operation of aircraft under military registration.

c. **Military Airworthiness Risk Management.** Unlike the FAA, where the airworthiness standards are established federal regulations, the MAA will tailor airworthiness requirements to each model of military aircraft, depending on the aircraft’s mission. These airworthiness requirements become contractual specifications between the military service and their prime contractor, which may or may not be the TC holder for the aircraft. Because the military mission may include combat and operation in hostile environments, the military can accept higher risks. This approach is not acceptable in type certification under 14 CFR.

3. **Military Use of FAA Findings of Compliance.** When the military purchases an MCDA, they rely on our finding of compliance to the civil airworthiness standards to establish an airworthiness baseline. They may impose additional criteria over and above the civil airworthiness standards (such as for survivability and crashworthiness). The military’s use of the FAA finding of compliance is similar to the way the FAA and CAA operate under bilateral agreements.

4. **Shared Certification.**

 a. **FAA and Military Combined Approvals.** The complete approval or certification of an MCDA can be considered a “hybrid” of FAA certification and military approvals since we approve some type design changes and the military approves some modifications. These “junctions” or “seams” between FAA and military approvals are evaluated and integrated by the MAA into the aircraft certification as a whole. The military’s management and integration of the civil and military processes for safety and airworthiness of the aircraft is crucial in determining the airworthiness of the MCDA. The military coordinates with the type certification applicant to ensure that all aspects of the airworthiness of the MCDA platform flow between civil and military processes. Those aspects of the modification that do not meet civil certification requirements must have criteria defined under the guidelines of MIL-HDBK-516, *Airworthiness Certification Criteria*, dated September 26, 2005, or most current revision. The contractor is responsible for qualifying or demonstrating compliance to the MAA.

 b. **Configuration Control.** When the MCDA leaves FAA oversight, configuration control becomes the responsibility of the MAA and military operator. Each Armed Service uses different processes to maintain configuration control of MCDA, but all require documenting configuration changes in the maintenance records. These MCDA aircraft are often returned to FAA repair stations or other civil facilities for contract maintenance. The military must ensure that processes are established and maintained for maintenance records and configuration control and maintenance personnel know to use these processes. In addition to being critical for safety while in military service, maintenance records are critical in establishing civil airworthiness if the aircraft is sold and returned to civil operation. Some commercial aircraft are leased by the military, which make every attempt to keep the aircraft configuration as close as possible to
certified type design. The military may also require that all records kept and maintenance performed on their aircraft be accomplished in accordance with commercial practices.

5. Managing Civil or Military Airworthiness Seams.

 a. Both military and civil airworthiness processes depend on evaluating the airworthiness integrity of the aircraft as a whole. The FAA’s type certification process requires the applicant to prepare associated hazard assessments and safety analyses at the aircraft level. They are to use defined processes to ensure the integrity of the type certificated configuration. Military modifications to the aircraft depend on military qualification or acceptance processes, and may not be compatible with FAA type certification processes.

 b. The hybrid tailored airworthiness certification criteria (TACC) and modification airworthiness certification criteria (MACC) includes the management of the ‘seams’ between FAA-certificated baseline aircraft and modifications installed to meet military mission needs. The farther the hybrid aircraft varies from the FAA-certified baseline, the more its airworthiness depends on military qualification processes. Aircraft level functional hazard assessments and system safety assessments may need to be re-developed by the contractor or applicant to encompass the military-approved modifications. Since this falls outside of the FAA’s type certificated configuration, we cannot require the contractor or applicant to submit these documents to us as compliance substantiation.

 c. The responsibility for integration and oversight of the configuration falls on the MAA and their contractor. The military may need technical assistance from the FAA or its designees (as advisors) to evaluate military-approved modifications and to develop integrated aircraft-level assessments for hybrid aircraft.
Chapter 11. Continued Airworthiness

1. Feedback.

 a. FAA and Military Reciprocal Feedback. Continued airworthiness problems with commercial aircraft can also affect MCDA. The military may use the MCDA for different or more demanding mission profiles than the civil version (or vice versa). Feedback from the military on continued airworthiness problems for these aircraft can be valuable for early identification of issues that may affect the civil fleet. It is in our best interest, and that of the military and manufacturer as well, to use what we learn from all sources to keep the entire fleet airworthy. Our support for continued airworthiness of the MCDA fleet is one of the keystones of the FRA.

 b. DAH Responsibilities.

 (1) The original aircraft manufacturer or modifier must support the continued airworthiness for any product where a design approval is held. 14 CFR 21.3 requires the DAH to report certain failures, malfunctions, and defects on type-certificated products. This requirement includes the MCDA. These 14 CFR 21.3 reports are to be made to the CMACO. If the CMACO receives a 14 CFR 21.3 report for an incident on a certificated product that occurred during military operation or occurred on a civil aircraft and has the potential to affect the MCDA of the same type, they must notify the MCO.

 (2) The MCO should receive 14 CFR 21.3 reports directly from DAHs where the MCO is the CMACO. We agree to provide continued airworthiness support that includes:

 (a) Monitoring of service difficulty reports;

 (b) AMOC approvals;

 (c) Approval of design data in support of repairs; and

 (d) Approval of design data in support of major alterations.

 (3) Military operators are encouraged to submit service difficulty information on MCDA related to maintenance and operations. The FAA can utilize information submitted by the military to make decisions impacting the safety for both civil and military models.

2. Service Difficulty Reports.

 a. We collect service difficulty reports using the existing FAA system for continued airworthiness of the baseline commercial fleet. Some data is currently being entered for MCDA that are maintained using commercial maintenance facilities under 14 CFR 145.221 (a) and (b). The military also currently uses some of our databases to support their commercial derivative fleet. We and the DoD will continue to work together to improve the existing systems and
consider whether military-unique processes should be developed.

b. The DAH is required to submit specific information for MCDA in accordance with 14 CFR part 21. There is an opportunity for more information to be obtained similar to that required under 14 CFR part 121 for civil aircraft operators. The military operator is encouraged to submit service difficulty information on MCDA related to maintenance and operations that parallels the requirements in 14 CFR part 121. In many cases, the military’s aircraft comprise a significant portion of the aircraft type being operated. The FAA can utilize information submitted by the military to make decisions impacting the safety for both civil and military models.

3. ADs. ADs issued against the type certificated baseline aircraft can identify aircraft serial numbers that are U.S.-registered aircraft, foreign-registered civil aircraft, and MCDA under military registration. Mandatory compliance with the AD is limited to aircraft operating under U.S. civil registration. We will take appropriate action when an unsafe condition is identified on a type-certificated product, regardless of what actions their foreign civil authorities or MAAs take. A type certificated-aircraft seeking to return to U.S. civil registry must comply with all applicable FAA ADs.

a. Military Compliance. When an AD affects an MCDA, the military can comply with or terminate action for the AD on the aircraft. Military policy generally requires incorporating ADs on MCDA. However, depending on the potential safety impact, mission priorities, and other considerations, the military has discretionary authority for implementation. If a memorandum of agreement (MoA) includes a provision for pooling military and civilian parts, then they must comply with all ADs.

b. Notification of Unsafe Conditions. For MCDA where the military is the sole operator, the military notifies the MCO of any potential unsafe condition. We must consider appropriate action for type certificated products unique to military operation because military aircraft and personnel could be at risk, and the MCDA could also later return to the civil sector with an uncorrected unsafe condition. Under the MoA, we send safety information and technical recommendations for continued airworthiness to the military for MCDA.

c. AMOC. Because the MCDA may be operated or maintained in a different environment than in the civil fleet, the military may want to meet the provisions of an AD differently than the way specified for the civil sector. The responsible MAA can ask us for an AMOC for the AD. Just as an AD’s AMOC is not mandatory for the military, they may want to obtain our technical concurrence or non-concurrence to address the safety issue. Because our original AD did not apply to aircraft under military registration, we do not “grant approval” to the military’s requested AMOC. The U.S. Armed Forces can submit and obtain FAA concurrence with their request for an AMOC by following the process defined in FAA Order 8110.103, Alternative Methods of Compliance (AMOC).
4. Repairs and Major Alterations.

 a. The military can request our approval of design data to support repairs or major alterations on FAA-approved type design. FAA designees may approve such data (see Order 8110.37). Design data approvals for these repairs or alterations are kept in the maintenance records. This enables the MAA to document the airworthiness technical review. It also greatly reduces our burden to determine airworthiness of the aircraft, should it ever return to the civil sector.

 b. The FAA or its designees may make compliance findings for design data supporting major alterations or major repairs by considering the FAA type certificated product and the civil certification basis. It is important to remember that military modifications to the aircraft could compromise the basic approvals or use of this data. The MAA should use the FAA or designee findings as supplemental information in determining their approval of repairs and alterations on specific MCDA. The military should perform repairs and alterations in a manner consistent with 14 CFR part 43 if the aircraft is to return to civil operation.

 c. ACOs should allow use of designee approvals and associated FAA forms to assist the military for their approval of repairs and alterations to MCDA. This is consistent with using designee approvals for foreign-registered aircraft when the United States is the State of Design. The FAA does not have the authority to complete and approve major repairs and alterations (field approval process) on military aircraft that do not have a U.S. civil registration.

5. Service Bulletins and Manufacturer’s Instructions.

 a. ICA. MCDA are often supported with the same publications used for maintaining the civil aircraft. Publications required for operating and maintaining the aircraft in the civil sector include maintenance manuals, illustrated parts catalogs, wiring diagrams, manufacturer’s technical data, and ICA.

 b. Format. Publications developed for commercial operations are formatted in civil standards. Conversion and re-publication of the entire body of publications to military specifications is costly, particularly when the military modifications do not significantly impact maintenance concepts for the baseline aircraft. Depending on the planned logistical support for the fielded military platform, the military might replace or supplement some commercial publications with maintenance and operations documents in technical order (TO) format. Nevertheless, the applicant must submit all required maintenance instructions in civil format to obtain FAA approval. FAA designees can use FAA Form 8110-3 to approve technical data that supports major repairs or alterations.

 c. Requirements. We require TC holders to produce suitable maintenance documents and ICA to support the product according to civil maintenance practices. Standardized commercial formats are necessary, so maintenance can be accomplished in FAA civil repair stations using FAA-certificated personnel. Formatting requirements and FAA approval for some of these documents are mandatory for the applicant to obtain the TC for the product. If there are changes or modifications to a type design, applicants or TC holders must update these documents
to reflect the changes. Other information issued by the TC holder to maintain product airworthiness, like manufacturer’s service bulletins, must also be issued in a format consistent with commercial practices used for the original type certificated aircraft. If equivalent documents unique to military application are required, the manufacturer and military customer may agree to a way of creating them.

d. **Continued Airworthiness.** The applicant must prepare ICA in accordance with 14 CFR §§ 23.1529, 25.1529, 27.1529 and 29.1529. Operation of the aircraft as a military aircraft can affect the ICA of the civil type design. The ICA must cover any approved part of the type design. The military may contract with the aircraft manufacturer or modifier to include the ICA for non-approved equipment. However, they are not part of the FAA-accepted ICA.

6. **TC Management and Support.**

 a. TCs obtained to provide airworthiness for MCDA require maintenance and support, as do TCs used in civil applications. Our ability to regulate, oversee and maintain continued airworthiness in the civil sector depends on the TC maintenance and support by the TC holder. TC holders must discharge the responsibilities in 14 CFR part 21. If the support is not provided, type certificated products in the civil sector won’t stay eligible for standard airworthiness certificates. The TC holder may be subject to certificate action and may have to surrender their certificate.

 b. If an applicant obtains a TC exclusively for a commercial derivative product, and they change the type design configuration without our approval, the original product cannot be considered airworthy. If no civil aircraft are operating in this configuration, we have no authority to prevent unapproved changes from being implemented on the military aircraft. This issue is of great concern to us because:

 (1) Continued operational and airworthiness support becomes impossible because we must know whether the incorporated type design changes comply with the applicable airworthiness standards, or if they invalidate original compliance findings.

 (2) The type certificated product is no longer eligible for civil use if the aircraft is returned to the civil sector. Conformity to approved type design may be impossible to establish.

 c. We can support MCDA only if the certificated portions of the type design are maintained and updated when changes are incorporated. Failure of the TC holder to perform this function or failure of the military to keep the military-approved changes under separate configuration control may cause us to revoke the TC because continued airworthiness cannot be supported.

7. **Accident Investigation.**

 a. The DoD is responsible for, and conducts its own, investigations of incidents or accidents involving military aircraft. 49 U.S.C. allows the FAA to participate in military accident investigations when an FAA function is involved or if the DoD asks for our help. The
military commander in charge of the investigation is responsible for informing us of an accident and including us in the accident investigation. We may also become involved at the request of a senior member of an aircraft safety investigation board or the director of a military safety center. When we are asked to support a military incident or accident investigation, the prime FAA party is the assigned flight standards organization. See FAA Order 8020.11, Aircraft Accident and Incident Notification, Investigation, and Reporting, chapter 7, for FAA participation procedures in military accident or incident investigations.

b. We may also separately investigate a military aircraft mishap to carry out our responsibilities. The military service involved will help FAA personnel by making material evidence and military witnesses available. Consult the MCO for further guidance for support of military accident investigations.
Chapter 12. MCDA Background

1. MCDA Background.

 a. History. Since 1976, the DoD has come under various congressional mandates to, whenever possible, procure non-developmental items and equipment which are referred to as COTS products. To carry out these mandates, the Armed Services have developed procurement procedures related to aircraft and their modification for military use. These procurements by the Armed Services makes FAA Type Certification a contractual requirement. Armed Services instructions or directives, seeking to gain maximum cost savings, require the services to "maintain the type-design." This keeps the FAA involved, not just in initial approval, but in the life-cycle of the aircraft.

 b. MCDA and the Military. The U.S Armed Services operates a large fleet of MCDA and regularly procure new commercial aircraft. The baseline MCDA were designed and certified to meet minimum civil airworthiness standards. The armed services desire, to the maximum extent possible, to certify their modifications to MCDA to civil standards to best support the efficient design, maintenance, and operation of MCDA.

 c. The FRA (formerly known as the Inter-agency Memorandum of Agreement). The FRA creates an airworthiness partnership between FAA and the armed services. The agreement supports MCDA using civil airworthiness standards where it is practical and consistent with military policy. The agreement allows the military to use FAA services on a reimbursable basis and establishes the sharing of technical expertise between the aviation authorities to help develop airworthiness solutions for MCDA.

2. Military Missions. Many MCDA used by the military have missions comparable to the missions of the baseline aircraft in the civil sector: passenger carrying, very important person transport, and cargo hauling. The FRA was created to help maintain the same level of safety established for the baseline aircraft when it is modified into a military configuration. The military establishes those requirements for individual aircraft depending on their mission. However, there are highly modified MCDA for which the military has determined that using civil airworthiness standards is impractical.

3. MCDA Certification.

 a. Establishing Airworthiness Requirements. DoD policy requires all MCDA to meet civil certification airworthiness criteria for mission-oriented modifications to the maximum extent possible. DoD policy requires full civil certification for those military aircraft operated the same way as the baseline MCDA counterpart. Other MCDA may have missions not equivalent to civil operations. They may have equipment installed that does not comply with applicable civil certification regulations or lacks applicable civil certification standards. In these cases, establishing airworthiness requirements may require using civil certification standards where practical, and establishing military airworthiness requirements for other modifications. The Armed Services may approve the airworthiness for these aircraft by accepting civil criteria.
and FAA approval for some modifications. They will perform subsequent military airworthiness qualification for those items that cannot be shown to meet civil airworthiness standards.

b. **FAA Authority.** FAA authority is limited by the responsibilities outlined in our congressional charter and the regulatory requirements established in 14 CFR, particularly with respect to the certification and operation of military aircraft. Civil regulations do establish requirements that civil TC holders must meet, whether the civil TC is used for civil or military purposes. On MCDA, FAA authority is limited to certification, management, and administration of the applicable civil type and production approvals. Once these tasks are complete, and the aircraft is delivered to the DoD, authority for oversight of further modifications and airworthiness responsibility are assumed by the military.
Appendix A. Levels of Approval Table

<table>
<thead>
<tr>
<th>Level and Standards applied</th>
<th>Airworthiness Authority</th>
<th>Approval</th>
<th>Installation</th>
<th>Civil Use Limitations</th>
<th>Example**(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FULL APPROVAL</td>
<td>FAA</td>
<td>x x x</td>
<td>Equipment & Installation</td>
<td>None</td>
<td>Some Military Radios & Navigation Equipment</td>
</tr>
<tr>
<td>All applicable CFRs and DoD performance standards</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LIMITED FAA APPROVAL</td>
<td>FAA (may need assistance from military to determine compliance)</td>
<td>x x 1</td>
<td>Equipment & Installation Approved</td>
<td>(1) Restrictions/limitations on civil use of equipment. Operation of certain lasers and carriage of pyrotechnics prohibited.</td>
<td>IFF transponder</td>
</tr>
<tr>
<td>All applicable CFRs and DoD performance standards</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAFE CARRIAGE APPROVAL</td>
<td>FAA and Armed Services</td>
<td>x 2 -</td>
<td>(2) Equipment installed but not connected to aircraft systems</td>
<td>Equipment is non-operational</td>
<td>Jamming equipment</td>
</tr>
<tr>
<td>CFR applicable to the type design (non-operational equipment)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PROVISIONS ONLY</td>
<td>FAA and Armed Services</td>
<td>- - -</td>
<td>Equipment not FAA-approved; NA</td>
<td>Equipment not installed</td>
<td>Projectiles & other weapons</td>
</tr>
<tr>
<td>CFR applicable to the type design (structural, & electrical provisions)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

E = Equipment Approval
I = Installation Approval
O = Operational Approval

(1), (2) = defines note in the corresponding row
**(3) = These examples are dependent upon examination of specific equipment and associated functions.
Appendix B. Table of Scenarios for Issuance of Temporary Civil Certificates on Military Aircraft

<table>
<thead>
<tr>
<th>Modification Scenario</th>
<th>Airworthiness Certificate Used</th>
<th>Operation Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 New production aircraft not delivered by the PAH. Civil pilots and FAA/DER flight</td>
<td>Form 8130-7 Special flight permit for production flight testing. Operating limitations added to</td>
<td>Civil operation - aircraft must not exceed production flight operating</td>
</tr>
<tr>
<td>test aircraft using TIA to show compliance.</td>
<td>Form 8130-7. (Refer to FAA Order 8130.2 for additional information).</td>
<td>envelope. If it does, issue Form 8130-7 Experimental - Purpose Show Compliance</td>
</tr>
<tr>
<td>2 New production aircraft delivered to military (DD250). Aircraft immediately bail</td>
<td>Form 8130-7 Experimental - Purpose Show Compliance. Operating limitations added to Form 8130-7</td>
<td>Civil operation</td>
</tr>
<tr>
<td>ed back to PAH for maintenance and modification. Civil pilots and FAA/DER flight test</td>
<td></td>
<td></td>
</tr>
<tr>
<td>aircraft using TIA to show compliance.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Aircraft delivered to military and entered into military operation. Aircraft bail</td>
<td>Form 8130-7 Experimental - Purpose Show Compliance. Operating limitations added to Form 8130-7</td>
<td>Civil operation</td>
</tr>
<tr>
<td>ed back to repair station / manufacturer for maintenance and modification. Civilian FAA/DER flight test pilots test in accordance with a TIA.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 Aircraft delivered to military and entered into military operation. Aircraft bail</td>
<td>Form 8130-7 Experimental - Purpose Show Compliance. Operating limitations added to Form 8130-7</td>
<td>Civil operation</td>
</tr>
<tr>
<td>ed back to repair station / manufacturer for maintenance and modification. Civilian FAA/DER flight test pilots test aircraft in accordance with a TIA. A military pilot is usually required to occupy a pilot seat.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 Aircraft delivered to military and entered into military operation. Aircraft</td>
<td>No FAA airworthiness required since military performs all maintenance and flight operations using military policy. Operating limitations added to TIA.</td>
<td>Public operation</td>
</tr>
<tr>
<td>maintained and operated by military at military base or location. Civilian FAA/DER flight test pilots test aircraft in accordance with a TIA. A military pilot is usually required to occupy a pilot seat.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Appendix C. Military CPN Form Addendum

This is an addendum to the Standardized Certification Project Notification (CPN) form identified in Appendix 1 of FAA Order 8110.4. Distribute this addendum with the Standardized CPN form to add information about FAA type certification projects on U.S. military commercial derivative aircraft.

(To be completed by FAA Military Certification Office)

FAA MCO Project Number: ____________________________
Applicant: __
Aircraft Manufacturer and Model: _______________________
Military Model Designation: ___________________________
Sponsoring Armed Service: ____________________________
Project Description: __________________________________

MCO Program Manager: ________________________________

(Requires coordination with CMACO before establishing project)

Affects Existing FAA TC/STC #: ________________________ N/A: _____
Certificate Management Aircraft Certification Office (CMACO): ________ N/A: _____

_____ Project retained by MCO
_____ and, Transfer CMACO responsibilities to MCO (STCs only)
_____ Project to be coordinated between MCO and CMACO
_____ Project assigned to CMACO

Cost Accounting Information

FAA Aircraft Certification Service personnel will use the following LDR code and task codes for labor reporting when charging time in support of this project.

LDR Project code: ____________________________
LDR task code(s): ____________________________

(To be completed by CMACO and returned to MCO. Required for MCO military projects affecting CMACO type certificate action or design approvals)

Date: ____________________________
From: Manager, Aircraft Certification Office (CMACO), XXX-xxx
To: Manager, Military Certification Office (MCO), ACE-100M

_____ We will transfer the subject STC to the MCO for execution and certificate action-----:

_____ We will remain the CMACO for the subject certificate, but authorize the MCO to approve design changes associated with the defined military project:

_____ We accept assignment and will conduct the military type certification project ----__and have assigned Project Engineer _______________________ to coordinate the project through the FAA MCO.
Appendix D. Statement of Conformity – Military Aircraft Form

A. DESCRIPTION OF AIRCRAFT

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Model</th>
<th>Manufacturer's Serial No.</th>
<th>Military Model Designation</th>
<th>Military Serial No.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Contract No.: Registration Markings Displayed on Subject Aircraft

B. CONTRACTOR INFORMATION

Contractor Name and Facility Address:

<table>
<thead>
<tr>
<th>FAA Delegated Organization:</th>
<th>Yes</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>FAA Delegated Organization:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FAA Repair Station No.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

New Aircraft Manufactured Under Production Certificate (Complete Section E)
Modification of In-Service Aircraft Using FAA Approved Type Design (Complete Section F)

C. GROUND INSPECTION AND FLIGHT TEST

<table>
<thead>
<tr>
<th>Contractor’s Ground Inspection and Flight Test</th>
<th>FAA Ground Inspection and/or Flight Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date Completed</td>
<td>Date Completed</td>
</tr>
<tr>
<td>Approved By</td>
<td>Approved By</td>
</tr>
<tr>
<td>(Signature of Authorized Company Representative)</td>
<td>(Signature of Authorized Representative)</td>
</tr>
<tr>
<td>(Title)</td>
<td>(FAA Office, Delegated Organization, Repair Station, or Designee No.)</td>
</tr>
</tbody>
</table>

D. MILITARY ACCEPTANCE OF DEVIATIONS TO FAA APPROVED TYPE DESIGN

The cognizant receiving military authority acknowledges the identified deviations to the FAA approved type design for the subject commercial derivative aircraft and is responsible to determine airworthiness and final acceptance for the removal, or installation of, modifications, installations, or articles listed hereon.

<table>
<thead>
<tr>
<th>(Responsible Military Airworthiness Authority or Authorized Designee)</th>
<th>(Date)</th>
</tr>
</thead>
</table>
STATEMENT OF CONFORMITY – MILITARY AIRCRAFT

E. STATEMENT OF CONFORMITY – INITIAL DELIVERY OF NEW AIRCRAFT

This certifies that the aircraft described above has been manufactured in conformity with the data forming the basis for Type Certificate No. ____________, and any revision or modification thereof approved by the FAA, dated as of ____________.

The subject aircraft has also been modified by installation of the following FAA Approved type design changes (i.e. Supplemental Type Certificate(s), Manufacturer’s Approved Service Bulletin, etc.):

<table>
<thead>
<tr>
<th>STC Number/Service Bulletin/Other</th>
<th>Description of Modification</th>
<th>STC Holder</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

☐ There are no identified deviations to FAA approved type design.

☐ MILITARY DEVIATIONS. FAA conformity inspection(s) of the aircraft configuration have identified deviations in configuration from the FAA approved type design which are not FAA certified or approved, but may be required or specified by military contract. The deviations may include articles which have been either (REMOVED) or (ADDED) to the FAA approved type design configuration. (Deviations are listed in Part G of this Statement of Conformity)

F. STATEMENT OF CONFORMITY – MODIFICATION OF IN-SERVICE MILITARY AIRCRAFT

The subject aircraft has been modified by installation of the following FAA Approved Supplemental Type Certificate(s) with the consent and permission of the Supplemental Type Certificate (STC) holder(s), Manufacturer’s Approved Service Bulletins, or other listed FAA approved data. FAA inspection(s) of the subject installation(s) have determined that the modifications are in accordance with the approved data, and any revision or modification thereto approved by the FAA, dated as of ____________.

<table>
<thead>
<tr>
<th>STC Number/Service Bulletin/Other</th>
<th>Description of Modification</th>
<th>STC Holder</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

☐ There are no identified deviations to FAA approved type design.

☐ MILITARY DEVIATIONS. FAA conformity inspection(s) of the aircraft configuration have identified deviations in configuration from the FAA approved type design which are not FAA certified or approved, but may be required or specified by military contract. The deviations may include articles which have been either (REMOVED) or (ADDED) to the FAA approved type design configuration. These deviations are listed in Part G of this statement of conformity.
STATEMENT OF CONFORMITY – MILITARY AIRCRAFT

G. DEVIATIONS TO FAA APPROVED TYPE DESIGN

The following articles are part of the FAA approved type design configuration and have been found by FAA inspection to be (REMOVED), or never installed, on the subject aircraft. Installation of these articles will be required to restore the aircraft to an FAA approved configuration:

<table>
<thead>
<tr>
<th>Type Design (Article Part Number and Installation Drawing Number)</th>
<th>Article Description</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The following articles are not included as part of the FAA approved type design configuration and have been found by FAA inspection(s) to be installed on the subject aircraft. Removal of these articles will be required to restore the aircraft to an FAA approved configuration:

<table>
<thead>
<tr>
<th>Type Design (Article Part Number and Installation Drawing Number)</th>
<th>Article Description</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Appendix E. How to Complete FAA Form 8130-31, Statement of Conformity – Military Aircraft

1. **Part A: Description of Aircraft.** The aircraft manufacturer or modifier provides information on the military aircraft.

2. **Part B: Contractor Information.** Provide the name and address of the military contractor. This may be an aircraft manufacturer responsible for delivering the new aircraft, or a modifier responsible for installing FAA approved modification(s) to in-service military aircraft. State whether the contractor holds an FAA delegated organization used to conduct FAA type certification design approvals.

3. **Part C: Ground Inspection and Flight Test.** (Complete after Parts E, F, and G) The authorized contractor representative signs Part C signifying the company ground inspections and flight tests of the aircraft have been completed and the information supplied on the form by the contractor is true and correct. Present the form to the FAA aviation safety inspector, FAA designee, or FAA delegated organization airworthiness representative. FAA approval signifies the information on the statement of conformity is supported by the applicable FAA ground inspections and flight tests. The FAA or FAA designee retains custody of the Form 8130-31 after signatures for Part C are completed, and submits the form to the military airworthiness authority. Copies of the form may be retained for the record of the authorizing MIDO or FSDO; the original should be forwarded to the FAA MCO within 60 days of issuance.

4. **Part D: Military Acceptance of Deviations to FAA Approved Type Design.** The designated MAA or their designee signs Part D. (Contact the FAA MCO if the military representative authorized to sign the form has not been identified.) The MAA’s signature indicates they have waived civil compliance for the type design deviations, are responsible for making appropriate airworthiness determinations, and accept the aircraft in the defined configuration for military purposes. If there are no deviations, the military signature will indicate that the aircraft is accepted with all modifications incorporated using FAA approved type design data. The military representative retains the original Form 8130-31 for the military aircraft records, and after approval gives copies of the completed form to the modifier.

 Note: You can use continuation pages for Parts E, F, and G as necessary.

5. **Part E: Statement of Conformity- Initial Delivery of New Aircraft.** Completed by the aircraft manufacturer for new MCDA presented to the military for initial acceptance. Identifies the FAA approved type design for the aircraft has been manufactured by reference to the TC number, and any other FAA approved modifications incorporated by STCs. By marking the appropriate box, the manufacturer confirms there are no deviations to FAA approved type design, or that deviations are identified and listed in Part G.

6. **Part F: Statement of Conformity- Modification of In-Service Military Aircraft.** Completed by an aircraft modifier contracted to incorporate FAA approved type design changes to an in-service MCDA that is eventually presented to the military for acceptance. Identifies the
FAA approved type design that the subject aircraft has been modified to and references the incorporated STC(s). By marking the appropriate box, the modifier confirms there are no deviations to FAA approved type design associated with the work performed, or that deviations are identified and listed in Part G.

7. Part G: Deviations to FAA Approved Type Design.

a. In the top section, list non-conformances identified from inspection records. Include installations, assemblies or components that are part of the FAA approved type design configuration, but were removed (or never installed) on the aircraft. These deviations to type design may have been specified or necessary to make the aircraft compatible for military use.

b. In the bottom section, list non-conformances identified from inspection records. Include installations, assemblies or components that are not part of the FAA approved type design configuration, but were added or installed on the aircraft. These deviations to type design may also have been specified or necessary to make the aircraft compatible for military use.

c. In Part G, include enough detail to document the exact configuration of the new aircraft referenced in Part E, or document the configuration changes made to the in-service aircraft identified in part F. (We recognize that aircraft-level FAA conformity inspection may be impractical or impossible for in-service military aircraft.) Refer to deviations using the engineering type design (installation drawings, assembly drawings, or detail part numbers), and any other information necessary. The form can reference military modification drawings or installed components as deviations that are not included in the FAA approved type design. The manufacturer or modifier may also attach diagrams, reference material, or notes and comments to define the aircraft configuration, which may be helpful if the aircraft is later subject to FAA airworthiness determination.
Appendix F. Military Handbook 516- Background

1. **Purpose of MIL-HDBK-516.** MIL-HDBK-516, *Airworthiness Certification Criteria*, can be used in determining airworthiness for all military manned and unmanned, fixed and rotary wing air vehicle systems. The military uses the MIL-HDBK-516 as a guide to ensure all aspects of airworthiness for the aircraft and installed systems have suitable criteria established for evaluation. It is a tool used to outline general airworthiness evaluation criteria for principal and system level aircraft components from a military perspective.

2. **Who Uses the MIL-HDBK-516.** The military airworthiness handbook is approved for use by all departments and agencies of the DoD. MIL-HBK-516 is the fundamental document used by the military system program manager, chief engineer, and contractors to define their military aircraft airworthiness certification basis.

3. **Military Certification Basis.** MIL-HDBK-516 criteria are tailored and applied to establish the airworthiness criteria and a military certification basis for a new military platform. The defined military certification basis is used and tailored as required at any point throughout the life of an aircraft when an airworthiness determination is necessary, especially when there is a change to the baseline.

4. **Using Civil Standards in the Military Certification Basis.** The contractor can use the referenced technical guidance documents in MIL-HDBK-516 to establish military specifications for a new military organic aircraft (aircraft developed specifically for military use with no civil counterpart). For existing commercial aircraft procured by the military, FAA civil airworthiness standards apply to a type certificated MCDA unless military modifications make compliance with the civil requirement impractical. If that’s the case, then the contractor can use existing military criteria for the modifications, or establish new criteria by writing specific requirements applicable to the individual aircraft type. The contractor follows this process to establish the military certification basis for the new aircraft. The resulting airworthiness requirements may then be established as contractual specifications. For MCDA with missions comparable to the similar civil aircraft, FAA certification requirements may satisfy most, if not all, of the MIL-HDBK-516 airworthiness criteria. The certification basis for the MCDA may use the baseline civil certification basis to a large extent.

5. **Tailored Airworthiness Certification Criteria (TACC).** When a new aircraft platform is procured by the military, MIL-HDBK-516 can be used as a starting point for airworthiness requirements. Not all of the airworthiness criteria in MIL-HDBK-516 apply to every type of military aircraft or subsequent modification. Platform-unique, previously undefined criteria may need to be added to fully address safety aspects of unique configurations. Therefore, the total set of MIL-HDBK-516 criteria is tailored to identify a complete subset of applicable airworthiness criteria, creating the system’s certification basis. This military certification basis is then fully documented and maintained under strict configuration control. This military certification basis is known as the TACC. The TACC of a MCDA is often the closest thing to a detail specification that is available for a civil/military hybrid. The rules the military uses developing a TACC are as follows:
a. Identify each criterion as either applicable or non-applicable, considering system or product complexity, type, data, and intended use. Document the rationale for identifying any criteria as non-applicable.

b. Do not delete or modify applicable criteria in any manner. However, if a portion of otherwise applicable criteria does not apply, identify the applicable and non-applicable portions, and document the rationale.

c. Add more applicable criteria with specific measurable parameters, where appropriate (they add value to the definition of airworthiness requirements).

6. **MACC.** The military can require MACC for all modifications to in-service aircraft that affect the airworthiness of the aircraft. The military program office will develop additional criteria, as appropriate, for any capabilities or systems not fully addressed or contained in the MIL-HDBK-516 TACC. The criteria may be reduced in scope to only those criteria for which the modification needs to be evaluated. Guidance for preparation and final acceptance of the TACC or MACC is coordinated between the contractor/applicant/modifier and the responsible military program manager assigned to the project.
Appendix G. Definitions and Acronyms

<table>
<thead>
<tr>
<th>14 CFR</th>
<th>Title 14 of the Code of Federal Regulations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Airworthiness Seam</td>
<td>The junction between FAA and military findings of airworthiness and the determination of an integration of these approvals in a military/civil aircraft configuration.</td>
</tr>
<tr>
<td>ACO</td>
<td>Aircraft certification office.</td>
</tr>
<tr>
<td>AD</td>
<td>Airworthiness directive.</td>
</tr>
<tr>
<td>AEG</td>
<td>Aircraft evaluation group.</td>
</tr>
<tr>
<td>AI</td>
<td>Airworthiness inspector.</td>
</tr>
<tr>
<td>AMOC</td>
<td>Alternative methods of compliance.</td>
</tr>
<tr>
<td>Armed Services</td>
<td>The military services of the United States including the United States Army, Navy, Marine Corps, and Air Force.</td>
</tr>
<tr>
<td>ATC</td>
<td>Amended type certificate.</td>
</tr>
<tr>
<td>AVS</td>
<td>The FAA’s office of Aircraft Safety. Includes the Aircraft Certification Service (AIR), Flight Standards Service (AFS), Office of Accident Investigation (AAI), Quality, Integration and Executive Services (AQS), Office of Aerospace Medicine (AAM), Air Traffic Safety Oversight Service (AOV), and the Office of Rulemaking (ARM).</td>
</tr>
<tr>
<td>Bailing</td>
<td>Transferring legal responsibility and ownership of the aircraft from the military to the civil applicant or from the civil owner to the military. Bailing is typically used to conduct a FAA flight test and TIA.</td>
</tr>
<tr>
<td>CAA</td>
<td>Civil aviation authority.</td>
</tr>
<tr>
<td>CMACO</td>
<td>The Certificate Management Aircraft Certification Office. Manages the original type certificate project. The CMACO also manages continued airworthiness for all products they approve for as long as the product is in service.</td>
</tr>
<tr>
<td>Term</td>
<td>Definition</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Contractor Logistic Support</td>
<td>Logistics and maintenance support from the original equipment manufacturer or contractor for the military aircraft.</td>
</tr>
<tr>
<td>Combat</td>
<td>Offensive armament, or carriage and delivery of weapons or ordinance.</td>
</tr>
<tr>
<td>COTS</td>
<td>Commercial-off-the-shelf.</td>
</tr>
<tr>
<td>CPN</td>
<td>Certification projection notification.</td>
</tr>
<tr>
<td>DAH</td>
<td>Design approval holder.</td>
</tr>
<tr>
<td>DCMA</td>
<td>Defense Contractor Management Agency.</td>
</tr>
<tr>
<td>DD250</td>
<td>Government acceptance form for items procured by the military (such as aircraft). The instrument of transfer for an aircraft from the manufacturer to the military.</td>
</tr>
<tr>
<td>Deliverable Data Items</td>
<td>Drawings, analysis, and data specified in a contract for delivery to a customer.</td>
</tr>
<tr>
<td>DER</td>
<td>Designated engineering representative.</td>
</tr>
<tr>
<td>DoD</td>
<td>Department of Defense. Includes the Departments of the Army, Navy, Marine Corps, and Air Force.</td>
</tr>
<tr>
<td>ELOS</td>
<td>Equivalent level of safety.</td>
</tr>
<tr>
<td>ETOPS</td>
<td>Extended Operations.</td>
</tr>
<tr>
<td>FAA</td>
<td>Federal Aviation Administration.</td>
</tr>
<tr>
<td>FRA</td>
<td>Federal reimbursable agreement</td>
</tr>
<tr>
<td>FSNO</td>
<td>Flight standards district office.</td>
</tr>
<tr>
<td>GFE</td>
<td>Government furnished equipment.</td>
</tr>
<tr>
<td>Government Aircraft Asset</td>
<td>Aircraft owned by the military.</td>
</tr>
<tr>
<td>Government Inventory/Stock</td>
<td>The fleet and DoD parts inventory.</td>
</tr>
</tbody>
</table>
Hybrid

Aircraft configuration where some type design changes have been shown to meet civil standards and are approved by the FAA, and some modifications have been approved by the military.

ICA

Instructions for continued for airworthiness.

IFF

Identification Friend or Foe. Military avionics equipment that provides electronic identification of aircraft.

IMA

Integrated modular architecture.

ITAR

International Trafficking in Arms Agreement.

ITT

Integrated test team.

JACG

Joint Aeronautical Commanders Group

JALC

Joint Aeronautical Logistics Commanders.

Joint Test Team

FAA, applicant, and military flight-test groups who establish a test program to satisfy both civil certification requirements and military qualification and performance requirements.

LDR

The FAA labor distribution reporting system. Used to document labor charges for project work.

LOA

Letter of authorization.

MAA

Military airworthiness authority.

MACC

Modification airworthiness certification criteria. Process used to determine the “military certification basis” for a modification to a specific military aircraft, as provided in MIL-HDBK-516.

MCDA

Military commercial derivative aircraft. Civil aircraft procured or acquired by the military.

MCDA-PM

Military commercial derivative aircraft project manager.

MCO

Military Certification Office. The FAA office dedicated to providing technical assistance and certification services, and continued airworthiness support for MCDA. MCO is located in Wichita, Kansas.
<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCO-PM</td>
<td>Military Certification Office program manager.</td>
</tr>
<tr>
<td>MIDO</td>
<td>Manufacturing inspection district office.</td>
</tr>
<tr>
<td>MIL-HDBK-516</td>
<td>Military airworthiness handbook. Reference used by all military for manned and unmanned, fixed and rotary wing air vehicle systems.</td>
</tr>
<tr>
<td>Military Mission</td>
<td>Military use and operation of an aircraft.</td>
</tr>
<tr>
<td>MoA</td>
<td>Memorandum of Agreement. The 2004 agreement between the FAA and U.S. Armed Services Representatives. FAA provides technical assistance, certification services, and continued airworthiness support for MCDA through its dedicated MCO. U.S. reimburses the FAA yearly.</td>
</tr>
<tr>
<td>MOTS</td>
<td>Military off-the-shelf.</td>
</tr>
<tr>
<td>MOU</td>
<td>Memorandum of Understanding.</td>
</tr>
<tr>
<td>Necessary Requirements</td>
<td>Standards and regulations needed to certify a MCDA.</td>
</tr>
<tr>
<td>OEM</td>
<td>Original equipment manufacturer.</td>
</tr>
<tr>
<td>Organic Aircraft</td>
<td>Aircraft developed and qualified to military specification without a civil type certificate.</td>
</tr>
<tr>
<td>TC</td>
<td>Type certificate.</td>
</tr>
<tr>
<td>TC holder</td>
<td>The person or entity having a legal right to the type certificate.</td>
</tr>
<tr>
<td>PAH</td>
<td>Production approval holder.</td>
</tr>
<tr>
<td>PC</td>
<td>Production certificate.</td>
</tr>
<tr>
<td>Platform</td>
<td>Baseline aircraft or rotorcraft type. May be modified for military use into a special mission configuration.</td>
</tr>
</tbody>
</table>
PM Project manager.

PMA Parts manufacturer approval.

PSCP Project specific certification plan.

PSSA Program specific service agreement. Defines FAA technical assistance and certification services required to support a specific military program. Establishes agreement for reimbursement of costs.

PSP Partnership for safety plan. Agreement between an applicant and FAA outlining roles and responsibilities and general expectations for type certification projects.

R&D Research and development.

RTCA Organization that develops industry standards for electronic equipment and avionics.

RTCA/DO An RTCA document.

Safe Carriage FAA approved military hardware or equipment to be carried on board the aircraft, included as part of type design, but not certified for operation. Complies with applicable civil regulations where installed, and has been determined not to affect airworthiness of the aircraft. Does not include military ordinance, pyrotechnics, or other military hardware that may pose hazards to aircraft or occupants.

SME Special mission equipment.

STC Supplemental type certificate.

TACC Tailored airworthiness certification criteria. Process to determine a military “type certification basis” for a specific military aircraft type as defined by Mil Handbook 516.

TIA Type inspection authorization. Used in FAA flight test to outline requirements for showing compliance.

TIR Type inspection report. FAA report written to support a TIA.
TO
Technical orders. Support documentation and maintenance instructions used by the military to support aircraft.

TSO
Technical standard order. Design approval for Part 21, Subpart O.

TSOA
Technical standard order authorization.
Appendix H. Administrative Information

1. Distribution. Distribute this order to Washington headquarters branch levels of the Aircraft Certification Service, Flight Standards Service, and Office of Environment and Energy; to branch level of the regional aircraft certification directorates and regional flight standards divisions; to all aircraft certification field offices, the Military Certification Office (MCO), to the International Policy Office, all aircraft evaluation groups (AEG), and to all designated engineering representatives (DER).

2. Authority to Change This Order. The issuance, revision, or cancellation of the material in this order is the responsibility of AIR’s Certification Procedures Branch (AIR–110). This branch will accomplish all changes, as required, to carry out the FAA’s responsibility to provide for managing revoked, suspended, surrendered, and abandoned type certificates and supplemental type certificates.

3. Suggestions for Improvement. If you find deficiencies, need clarification or want to suggest improvements to this order, send FAA Form 1320-19, Directive Feedback Information, (written or electronically) to the Aircraft Certification Service, Administrative Services Branch, AIR-510, Attention: Directives Management Officer. You can also send a copy to the Aircraft Certification Service, AIR-100, Attention: Comments to Order 8110.101. If you urgently need an interpretation, contact the Certification Procedures Branch, AIR-110 at 202-267-1575. Always use Form 1320-19, in appendix I, to follow up each verbal conversation.

4. Records Management. Refer to Orders 0000.1, FAA Standard Subject Classification System; 1350.14, Records Management; and 1350.15, Records, Organization, Transfer, and Destruction Standards; or your office Records Management Officer or Directives Management Officer for guidance regarding retention or disposition of records.
Directive Feedback Information

Please submit any written comments or recommendation for improving this directive, or suggest new items or subjects to be added to it. Also, if you find an error, please tell us about it.

Subject: Order______________________________

To: Directive Management Officer, 9-AWA-AVS-AIR-DMO@faa.gov

(Please check all appropriate line items)

☐ An error (procedural or typographical) has been noted in paragraph ______ on page ______.

☐ Recommend paragraph ______ on page ______ be changed as follows:
 (attach separate sheet if necessary)

☐ In a future change to this directive, please include coverage on the following subject:
 (briefly describe what you want added)

☐ Other comments:

☐ I would like to discuss the above. Please contact me.

Submitted by: ______________________________ Date: ________________

Telephone Number: __________________ Routing Symbol: __________________

Sample FAA Form 1320–19 (10-98)