



## Leading Edge Protective Coating Against Fluid and Particulate Erosion for Turbofan Blades

**Presented to:** FAA Office of Environment and Energy, Public Presentation

By: Delta TechOps (DTO)

**GKN Aerospace (GKN)** 

MDS Coating (MDS)

America's Phenix, Inc. (AP)

Date: 3 May 2023





# Project Overview

Objective - Demonstrate MRL & TRL 8-9 the application of a LE protective coating for all Turbofan Blade configurations:



CLEEN II Flight Demo



# Rainy Day Take-off



# Wet Runway Landing



- Measured & photographed LE condition of various engines at DTO in Oct 2021, Oct 2022 and April 2023
- Measured on-wing or on inducted blades for following engines:
  - PW2000
  - PW4000
  - CF34
  - CFM56
  - BR715
  - PW1100
  - Trent 1000
  - Trent XWB
- V2500 engine test @ United, 3Q / CY23
- V2500 measurements at IAD or DEN, TBD



On-wing Repliset @ DTO



Measuring @ DTO, Oct 2022



Measuring
@ DTO, April 2023

FAA CLEEN III\_Public

#### PW1100, In-Shop at DTO

Wing mount, Low AR, hybrid Al-Li with Ti LE





#### CF34, Regional Jets @ DTO

Fuselage mounted engine – Low AR solid Ti blade







3 May 2023

FAA CLEEN III\_Public

#### PW2000, B757 @ DTO

Wing mounted engine – High AR solid Ti blade







3 May 2023

9

#### CFM56s, On-wing @ DTO

Wing mounted engine High AR (-5B) and Low AR (-7B) solid Ti blade





#### CFM56-7B, B737 On-wing



2,663 hrs ESN 962782



#### PW4000 @ DTO

Wing mounted engine – High AR solid Ti blade





#### BR715, In-Shop @ DTO

Fuselage mounted engine – Low AR hollow Ti blade



3 May 2023 FAA CLEEN III\_Public 13

#### V2500, A320 On-Wing at United Tech Ops

Fuselage mounted engine – Low AR hollow Ti blade



3 May 2023



#### Phase I – PW2000 and PW4000



#### Phase I – P8 and CFM56



#### **Fuel Consumption Impact**

- Isolated fuel consumption differences between <u>eroded</u> and <u>serviceable fan</u> <u>blades</u> on same inducted engine
- Delta completed tests on JT8D and PW2000 engines



#### **Fuel Consumption Impact**

Supplement engine tests with CFD analysis

#### CFD Work Scope

- U. Maryland to conduct CFD analysis on following engine types w/restored & eroded LE:
  - V2500
  - CF34
  - CFM56
  - PW4000 or CF6
- Scans of restored and eroded LE fan blades
- Boundary and operational conditions provided by Delta & United
- CFD Analysis will compare results from one engine test

#### **Data Collection Summary**

- Over 50 engines measured / photographed
  - CFM56 = 16
  - CF34 = 3
  - PW2000 = 10 / F117 = 2
  - PW4000 = 7
  - PW1100 GTF = 3
  - BR715 = 4
  - Trent 1000 = 7 / XWB = 1
- Documenting fuel savings
  - JT8D & PW2000 tested
  - V2500 testing in 3Q, CY23
  - U. Maryland CFD analysis on V2500, CFM56, CF34, PW4000 / CF6 and GTF
- LE cavitation measurements
  - Cavitation pits as early as 1,000 hours
  - Tends to increase between 3,000 to 5,000 hours and then flattens for remaining tour

### Phase II – Fluid Erosion Test



As part of CLEEN II and III, project used the SuRE rig at AFRL to reproduce field damage





## SuRE Test



## SuRE Test



# V2500 Test Specimen

**BlackGold**® v12.1 MD-88 Flight Demo



# PW2000 Test Specimen

**BlackGold**® v12.2 With coating enhancements



#### Phase III – PW2000 Certification

- Contracted FAA Authorized RS-DER
- Approval using Major Repair
  - PW2000 Type Certificate E17NE Rev 15
  - Following Certification Plan (594951-20-001)
- Current work
  - Executing Mechanical test plan
  - Finalizing Vibration test plan

#### PW2000 Certification

#### **Certification Overview**



#### PW2000 Certification

#### CFD and FEA of PW2000 fan blades

- Aerodynamic loads on the fan blades
- Natural frequencies and mode shapes
- Stress fields for significant modes
- Determining the coating zone





#### PW2000 models:

- Fan Blade
- Casing
- Exit guide vane
- Stator vane
- Fan-to-Shroud
- Fan-to-Disk



# High Energy Impact

- High Energy Impact testing scheduled for Q3, CY23
  - GKN repaired all the fan blade for testing
  - Coating applied by MDS in July 2023
  - Testing performed by UDRI

**Test Gun at UDRI** 







# Jelly Ball Impact Test



30

## Summary

#### **Data Collection**

- Expanded data collection. Photographs and LE depth measurements on various engine types including military engines.
- LE cavitation confirmed as low as 1,000 hours.
- LE cavitation depth tends to increase to between 3,000 and 5,000 hours and appears to flatten-out (constant mean pit depth) for remainder of tour

#### **Engine Test / Fuel Consumption Analysis**

- V2500 engine test at United Airlines
- CFD analysis by U. Maryland on V2500, CF34, CFM56, PW4000 / CF6 and an engine with LE strips

## Summary (continued)

#### PW2000 Certification

- Certification & Test Plans approved by FAA ODA
- Exposed uncoated & coated fatigue test specimens at AFRL, SuRE facility
- Conducted HCF tests on fatigue test specimens
- Conduct mechanical evaluation tests (2Q / CY23)
- Conduct jelly ball impact test at UDRI (3Q / CY23)

First full PW2000 coated sets supplied by MDS Coating, 4Q / CY23

First full PW2000 coated sets installed by Delta Airlines 1Q / CY24

