

Boeing CLEEN Phase III Program Update

FAA CLEEN Consortium – Industry Day Jennifer Kolden November 8, 2023

Decarbonizing Aerospace

FLEET RENEWAL

OPERATIONAL EFFICIENCY

RENEWABLE ENERGY

ADVANCED TECHNOLOGY

Carbon Offsetting and Reduction Scheme for International Aviation

MEET CASCADE

The Boeing Cascade Climate Impact Model, or "Cascade" is a dynamic modeling tool that quantifies the power of aviation's major strategies to cut emissions. Within the tool, you can explore different decarbonization pathways and even forecast how each can impact aviation emissions through 2050.

EXPLORE CASCADE

Boeing Program CLEEN Phase III

Quiet High-Lift

Next Generation Inlet

Intelligent Operations

BOEING

Program Team – "Best of Boeing"

Demonstrator

Puget Sound

- Flight Sciences
- Systems
- Structures
- Propulsion Integration
- Product Development
- Airspace Operational Efficiency
- Flight Test, ecoDemonstrator

Huntington Beach

- Structures
- Flight Sciences

- · Boeing Sites, Team
- External Collaborations

BCW - Winnipeg, CAN

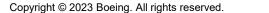
Manufacturing

University of Dayton Research Institute

St. Louis

- Flight Sciences
- Structures
- · Airspace Operational Efficiency

Airspace Operational Efficiency



Na Parina Parina Parina Parina Parina Parina Pari

- Structures
- Propulsion
- · Materials & Manufacturing

Projects & Benefits

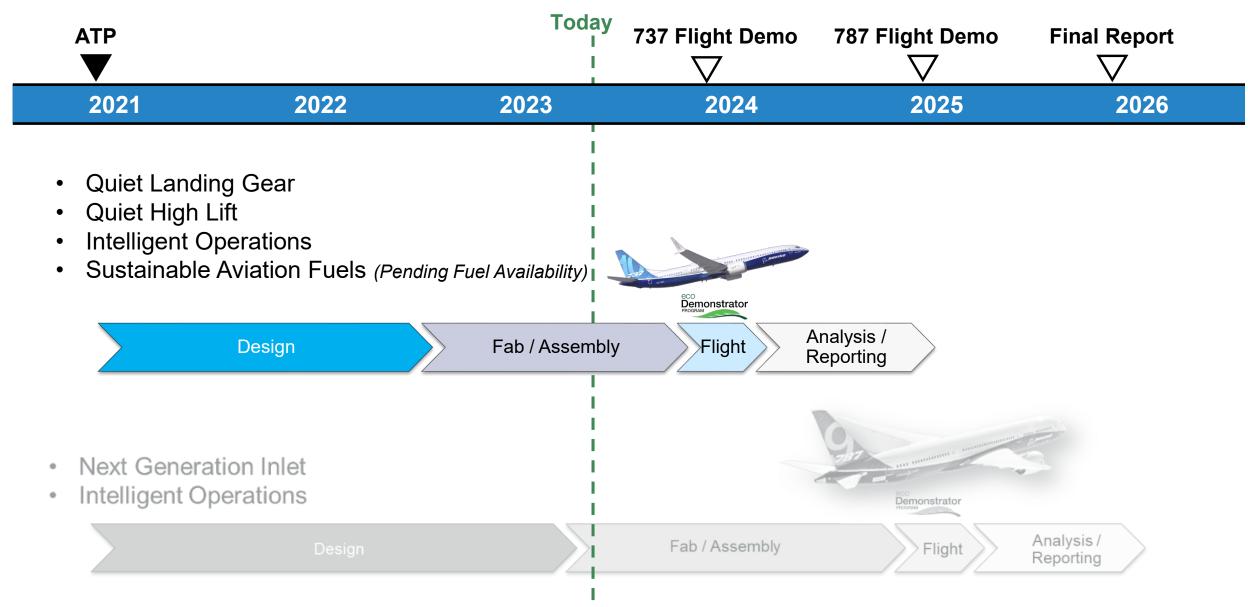
					waston bottom.
	Quiet Landing Gear	Quiet High-Lift	Next Generation Inlet	Intelligent Operations	Sustainable Aviation Fuels
Technology	Acoustically Treated Main Gear Doors Perforated Strut Shields	Outboard Flap Side Edge Fairings Outboard Flap Vortex Generators Outboard Flap Vortex Generators	 New Structural Architecture New Ice Protection System Maximize Acoustic Treated 	Noise-Optimized Flight Paths Leverages Existing Capabilities	 Higher Performing Blends Drop-in Compatibility Support Scale-up
Impact	Reduce Community Noise	Reduce Community Noise	Area Enable New Engines, Reduce Community Noise, Fuel Burn	Capabilities Reduce Community Noise, Fuel Burn	Reduce Fuel Burn, Emissions
Airframe Benefits / Metrics	Up to 0.5 EPNdB	Up to 0.5 EPNdB	1.5 EPNdB 2.0% Block Fuel	3-5 peak dBA 2% Take-off Block Fuel 5% Approach Block Fuel	2%-3% Block Fuel
Projected Fleet Impact	Reduce 65 dB community noise contours	Reduce 65 dB community noise contours	Community Noise, 82M Metric ton, CO2 reduction	Community Noise, 28M Metric ton, CO2 reduction	2950M Metric ton, CO2 reduction
Transition	2030 , 2035 Retrofit	2030 , 2035 Retrofit	2030 (partial) , 2035	2030 , 2035 Retrofit	2030 , 2035 Retrofit

Technology Transition

- Boeing Product Development leveraging CLEEN III technologies
 - New Products and Retrofit
 - Acoustic lining designs
 - Low speed / high lift configuration
 - Nacelle acoustics and ice protection system
 - Advanced lower noise landing gear and flap systems
- Refine/Validate noise prediction tools and design practices
- Provide near-term capabilities/services aligned with FAA NextGen and DataComm
- Mature fuel system component readiness to enable low aromatic fuels SAF compatibility

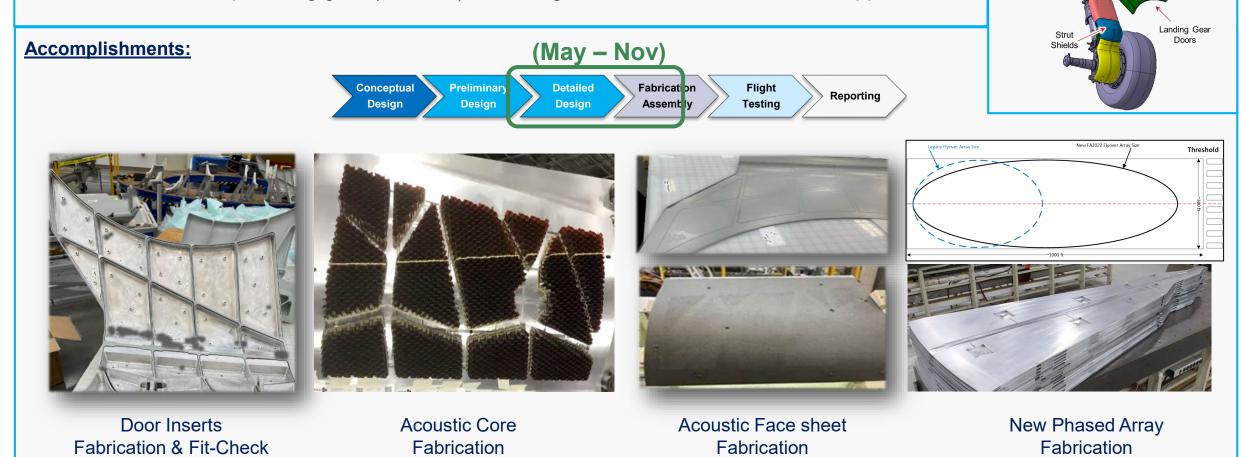
CLEEN Phase III Technologies aligned with Product Strategies and Sustainability Vision

EcoDemonstrator Program History ~ 250 projects



CLEEN Phase III Program leverages successfully proven ecoDemonstrator Program

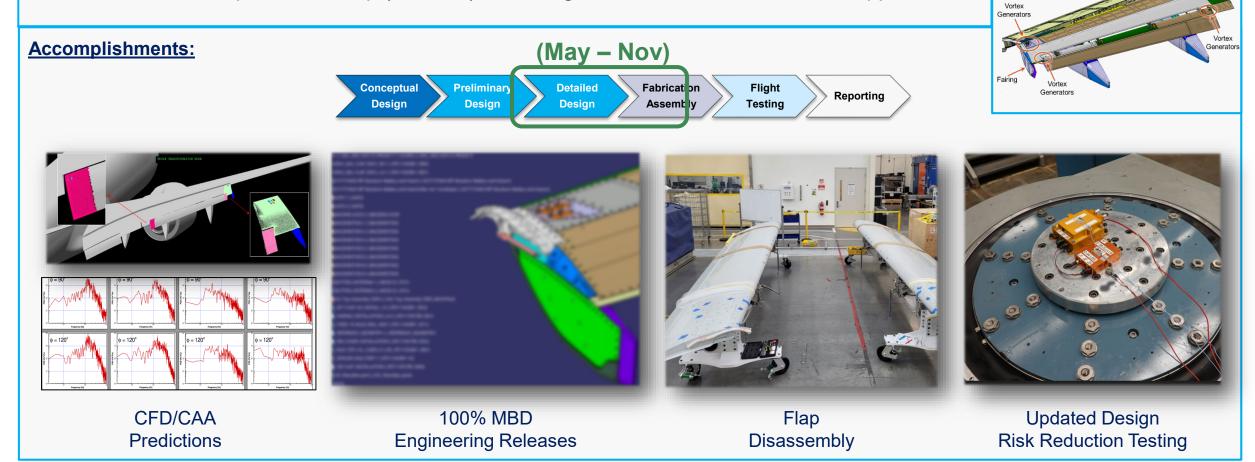
Program Timeline



Quiet Landing Gear (QLG)

Develop landing gear (airframe) technologies to reduce aircraft noise at approach **Objective:**

Lookahead:


Complete Fabrication & Assembly – 1Q24 Flight Testing – 2Q24

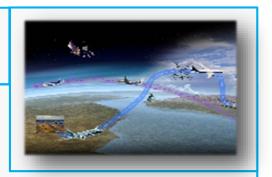
Quiet High Lift (QHL)

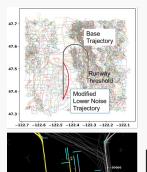
Objective: Develop outboard flap (airframe) technologies to reduce aircraft noise at approach

Lookahead:

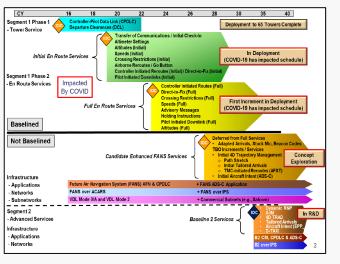
Complete Fabrication & Assembly – 1Q24 Flight Testing – 2Q24

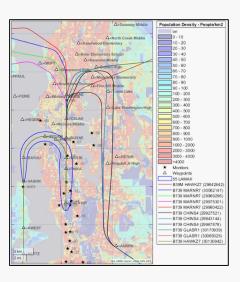
Intelligent Operations (IO)




Objective:

Develop aircraft operational noise reduction technology to reduce aircraft noise at take-off & approach


Accomplishments:



FAA Data Comm Coordination

Procedure Optimization & Pilot Simulations

Noise Impact Assessments

CDR

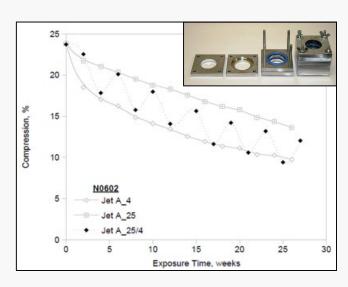
Procedures/Systems Updates & Software Development (Drop 3) – 1Q24

Flight Test – 2Q24 & 2Q25

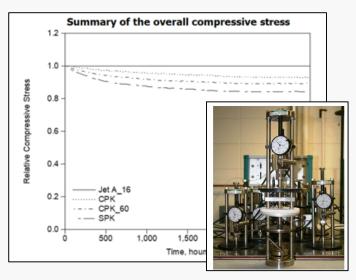
Lookahead:

Sustainable Aviation Fuels (SAF)

Objective:

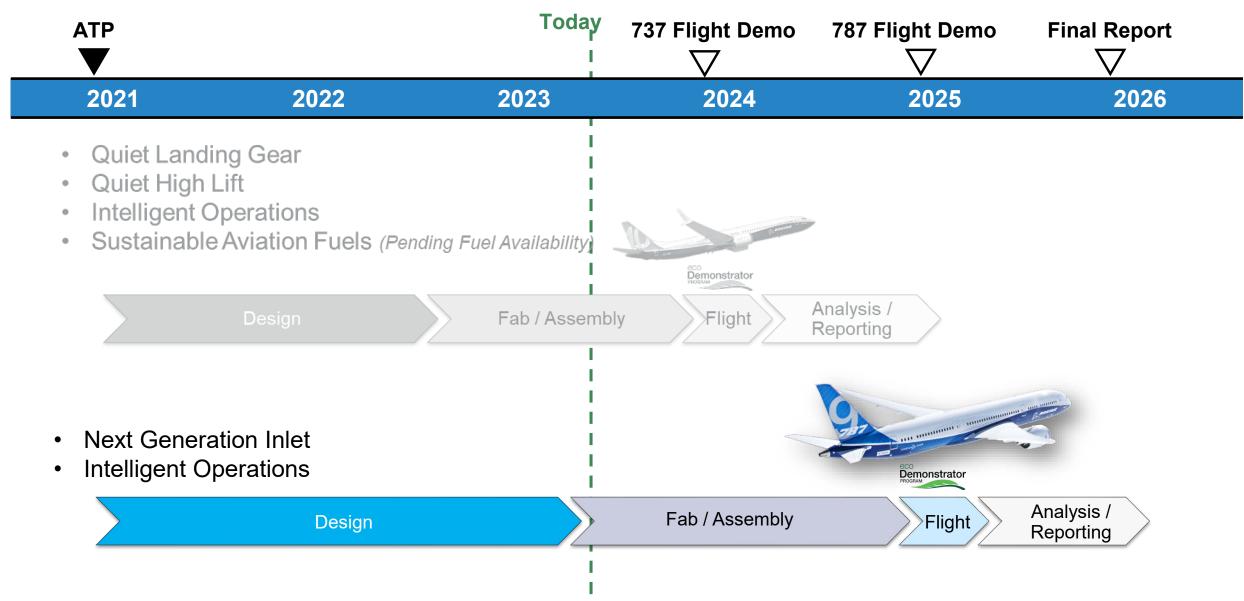

Mature fuel system component readiness to enable low aromatic fuels -SAF compatibility

Accomplishments (May – Nov):


Phase 1 Test Report **Public Release**

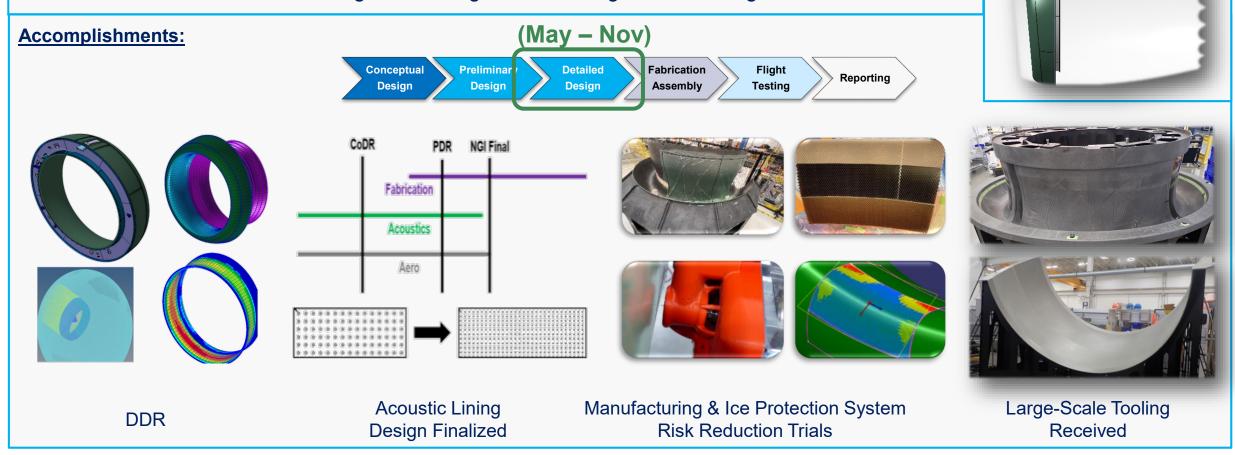
Phase 1 Switch Loading

Phase 2 **Thermal Cycling**


Lookahead:

Complete UDRI Phase 2 Lab Testing – 1Q24 Flight Test – 2Q24 (Pending Fuel Availability)

Program Timeline


Next Generation Inlet (NGI)

Objective:

Develop inlet (engine) technologies to reduce noise at take-off and approach and address reduced-length inlet integration challenges of UHB engines

Lookahead:

Complete Engineering Releases & MRL5 Assessment – 4Q23 Complete Fabrication & Assembly – 2Q24

Summary & Next Steps

Project	Conceptual Design	Preliminary Design	Detailed Design	Fabrication & Assembly	Flight Testing	Reporting
QLG	✓	✓	✓	In-Work	2Q24	2Q25
QHL	\checkmark	✓	\checkmark	In-Work	2Q24	2Q25
NGI	✓	✓	\checkmark	Started	2Q25	2Q26
Ю	✓	✓	\checkmark	NA	2Q24, 2Q25	2Q26
SAF	UDRI Phas	se 1 Complete / F	Phase 2 Test –	ECD 1Q24	2Q24	1Q25

Projects on-track to meet TPMs that address FAA goals

Acronyms

ATP Authority to Proceed

CAA **Computational Aero-Acoustics**

CDR **Critical Design Review**

CFD Computational Fluid Dynamics

dBA Decibels, A-weighted

DDR Detailed Design Review

EPNdB Effective Perceived Noise, Decibels

MBD Model Based Definition

MRL **Manufacturing Readiness Level**

SAF Sustainable Aviation Fuel

SDR Software Design Review

SRR **System Requirements Review**

UDRI **University of Dayton Research Institute**

UHB Ultra High Bypass

VG **Vortex Generators**