The FAA’s Office of Commercial Space Transportation (AST) licenses and regulates U.S. commercial space launch activities including launch and reentry of vehicles and operation of non-federal launch and reentry sites authorized by Executive Order 12465 and Title 51 U.S. Code, Subtitle V, Chapter 509 (formerly the Commercial Space Launch Act). Title 51 and the Executive Order also direct the U.S. Department of Transportation to encourage, facilitate, and promote U.S. commercial launches. The FAA’s mission is to license and regulate commercial launch and reentry operations and non-federal launch sites to protect public health and safety, the safety of property, and the national security and foreign policy interests of the United States.

The FAA licenses launches or reentries carried out inside the U.S. and by U.S. persons (which includes U.S. corporations) inside or outside the United States. The FAA does not license launches or reentries the U.S. Government carries out for the Government (such as those owned and operated by National Aeronautics and Space Administration (NASA) or the Department of Defense). Amateur-class rockets do not require a FAA license or permit.10

To accomplish its mission, the FAA performs the following major functions:

- Maintains an effective regulatory framework for commercial space transportation activities,
- Provides guidance to prospective commercial operators on how to comply with regulatory requirements for obtaining an authorization and operating safely,
- Evaluates applications for licenses, experimental permits, and safety element approvals for launch and reentry operations and related commercial space transportation activities,
- Evaluates applications for licenses for launch and reentry site operations,
- Monitors and enforces regulatory compliance through safety inspections of launches, reentries, sites, and other regulated commercial space activities,
- Provides U.S. Government oversight of investigations associated with the mishap of an FAA authorized launch or reentry,
- Facilitates the integration of commercial space launch and reentry operations into other modes of transportation including the National Airspace System (NAS) by establishing appropriate hazard areas and limits to ensure the protection of the public,
- Coordinates research into the safety, environmental, and operational implications of new technologies and the evolving commercial space transportation industry,

10 Per 14 CFR Chapter 1, Part 1, section 1.1: Amateur rocket means an unmanned rocket that is propelled by a motor or motors having a combined total impulse of 889,600 Newton-seconds (200,000 pound-seconds) or less; and cannot reach an altitude greater than 150 kilometers above the earth’s surface.
• Conducts outreach to the commercial space industry by hosting working groups and conferences,

• Collaborates with Government partners, such as the Department of Defense and NASA to assure consistent approaches to regulations, policy, and standards, and

• Conducts outreach to international counterparts to promote the U.S. regulatory framework across the world.

In addition to AST headquarters offices in Washington, D.C., AST maintains staff with assigned duty locations near active launch ranges to facilitate communication with space launch operators and to implement FAA’s regulatory responsibilities more efficiently. AST personnel are currently assigned to duty locations in close proximity to: Kennedy Space Center and Cape Canaveral Space Force Station in Florida; Johnson Space Center in Texas; Wallops Flight Facility in Virginia; FAA’s Western-Pacific Regional Office; Vandenberg Air Force Base, and the Mojave Air and Space Port in California. FAA also directly supports NASA’s commercial space initiatives by providing on-site staff at both the Johnson Space Center and Kennedy Space Center to coordinate the FAA’s regulatory and compliance activities with NASA’s development and operational requirements for commercial space.

Regulatory Safety Oversight Activities of FAA

The business cycle from the time a firm first contacts FAA until the last launch of a licensed operation can be several years. There are many activities performed by FAA during this cycle. The most notable activities are described here.

Pre-Application Consultation for Licenses, Experimental Permits, and Safety Element Approvals

Prospective applicants seeking commercial space transportation licenses, experimental permits, or safety element approvals are required by regulation to consult with FAA before submitting their applications. During this period, FAA assists them in identifying potential obstacles to authorization issuance and determining potential approaches to regulatory compliance. In addition, many new operators are seeking to incorporate new technologies, vehicle types, or operational models creating opportunities for FAA to assist in determining the applicable regulations or approach to regulatory compliance.

Licenses, Permits, and Safety Element Approvals

FAA authorizes commercial space transportation activities via the issuance of licenses, permits, and safety element approval. Typically, FAA issues a license with a narrow scope to a single vehicle configuration and mission trajectory. With the dynamic commercial space industry, these licenses are required to be modified to add additional vehicle configurations and mission profiles. FAA’s new regulatory regime under Part 450 allows more flexibility by allowing authorization to conduct launch or reentry activities for various vehicle configurations and trajectories from multiple sites.

Inherent in the review process is the requirement to conduct policy reviews and payload reviews. When conducting a policy review, FAA determines whether the proposed launch, reentry, or site operation presents any issues that would adversely affect U.S. national security or foreign policy interests or
be inconsistent with international obligations of the United States. If not otherwise exempt from review, FAA reviews a payload proposed for launch or reentry to determine whether the payload would jeopardize public health and safety, the safety of property, U.S. national security or foreign policy interests, or the international obligations of the United States. The policy and/or payload determination becomes part of the licensing record on which FAA’s licensing determination is based.

FAA issues launch and reentry site operator licenses and license renewals. FAA coordinates with Federal, state, and local governments and with the commercial range operators or users for commercial space licenses and operations. As part of the evaluation of applications for launch licenses, reentry licenses, and site operator licenses, FAA also conducts environmental reviews consistent with its responsibilities under the National Environmental Policy Act.

FAA anticipates issuing a growing number of safety element approvals for space launch systems equipment, processes, technicians, training, and other supporting activities. FAA reviews, evaluates, and issues safety approvals to support the continued introduction of new safety systems, safety operations applications, and safety element approval renewal applications.

Safety Analyses

FAA conducts flight safety, system safety, maximum probable loss, and explosive safety analyses to support the evaluation and issuance of licenses and permits. FAA also evaluates and analyzes the performance of a vehicle operator’s safety systems including safety-critical systems and any associated crew involved in the function of the safety system to determine how they affect public safety risk.

Inspections and Enforcement

FAA currently conducts as many as 750 pre-flight/reentry, flight/reentry, and post-flight/reentry safety inspections per year. Inspections often occur simultaneously at any of the 14 licensed commercial space launch sites, as well as at 4 Federal launch ranges and 3 exclusive-use launch sites. The establishment of non-federal launch sites requires additional inspections in areas such as ground safety that have traditionally been overseen by the U.S. Air Force (now the U.S. Space Force) at Federal ranges. At spaceports and launch sites with high launch rates (e.g., Cape Canaveral Space Force Station, Kennedy Space Center, and Vandenberg Air Force Base), at least 70 percent of inspections are typically conducted by locally based field inspectors. Currently, the FAA is leveraging a risk-based approach in order to respond to a dynamic operational tempo, minimize cost, and increase efficiency.

Mishap Investigations

Mishap events have demonstrated that FAA needs to have the capacity to oversee the investigation of at least two space launch or reentry mishaps or accidents simultaneously anywhere in the world, and to lead/oversee as many as nine investigations during a single year. FAA anticipates an increase in mishaps with new operators coming online. FAA reviews all applicant mishap plans and accident investigation procedures as part of the license and permit evaluation process.

NAS Integration

AST works in partnership with all FAA lines-of-business, notably the Air Traffic Organization (ATO) and Office of Airports (ARP) to support the safe and efficient integration of
commercial launch and reentry operations through the NAS and its system of airports and air traffic managed by the ATO. Further, AST works with the ATO and the Office of NextGen (ANG) as FAA develops technologies to facilitate safe and efficient integration of commercial launch and reentry operations through the NAS, including technologies to improve the integration of launch and reentry data into FAA air traffic control systems and technologies to improve the timely and accurate development and distribution of notices of aircraft hazard areas.

FAA’s Launch and Reentry Operations Forecast

FAA’s 5-year launch and reentry operations forecast relies on data collected from operators and prospective applicants as the starting point for its launch and reentry forecasts, tying launch and reentry forecasts directly to anticipated operations by commercial space transportation firms known to FAA. As commercial space activity is still a highly dynamic and rapidly evolving industry, FAA’s forecasting methodology continues to take a conservative view of industry growth by using historical launch activity data to establish better forecasting parameters for both new applicants and existing operators.

There are several factors that magnify the challenges associated with predicting the number of launches and reentries to expect in a given year. They include:

- list of firms intending to launch or actually launch is dynamic,
- continued development of new technologies,
- launch rates for reusable launch vehicles,
- commercial human spaceflight by both government astronauts and private citizens,
- dynamic nature of flight test programs, and
- mishaps.

New technologies [e.g., reusable launch vehicles] allow a faster operational tempo, and at the same time, early use of these technologies can increase the probability of a mishap. A mishap can drastically impact launch plans for one or more firms. Investigations and subsequent “return to flight” for firms impacted by a mishap can take months. FY2024 forecast data was collected in summer 2023 and finalized in September-November 2023.

There are reasons for optimism around the future of space activity moving forward. Space data, products, and services provide tangible benefits and economic opportunity to the American people as well as people all over the world. Firms are motivated towards new technology that is expected to increase launch cadences year over year. Interest and demand for space tourism as well as demands for placement of satellites and other equipment is anticipated to grow with each successful space mission. Likewise, as launch/reentry activities increase investment opportunities are also expected to grow with the global space economy approaching $1 trillion through the next decade. FAA has licensed approximately 676 launch/reentries since 1989, with 47% or 316 launch/reentries occurring in just the past five years (FY2019-2023). FY2023 actuals were the highest in U.S. history at 113, accounting for 17% of the activity since 1989.
FAA Aerospace Forecast Fiscal Years 2024–2044

FAA is forecasting launch and re-entry activity to increase from a low-high range of 134-156 in FY2024 to a low-high range of 195-338 by FY2028. Much of this increase is attributable to the lineup of reusable vehicles, the growing demand for commercial satellite services, and the expectation for increased human space exploration. Considering these factors, the following table and graph provide FAA’s forecasts through 2028, as well as historical activity.

FAA’s Authorized Operations Forecasts

<table>
<thead>
<tr>
<th>Year</th>
<th>Forecast High</th>
<th>Forecast Low</th>
<th>Actual</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015</td>
<td>25</td>
<td>22</td>
<td>14</td>
</tr>
<tr>
<td>2016</td>
<td>29</td>
<td>25</td>
<td>17</td>
</tr>
<tr>
<td>2017</td>
<td>26</td>
<td>17</td>
<td>22</td>
</tr>
<tr>
<td>2018</td>
<td>38</td>
<td>33</td>
<td>35</td>
</tr>
<tr>
<td>2019</td>
<td>44</td>
<td>34</td>
<td>32</td>
</tr>
<tr>
<td>2020</td>
<td>46</td>
<td>36</td>
<td>33</td>
</tr>
<tr>
<td>2021</td>
<td>44</td>
<td>52</td>
<td>64</td>
</tr>
<tr>
<td>2022</td>
<td>73</td>
<td>61</td>
<td>74</td>
</tr>
<tr>
<td>2023</td>
<td>94</td>
<td>134</td>
<td>113</td>
</tr>
<tr>
<td>2024</td>
<td>156</td>
<td>128</td>
<td></td>
</tr>
<tr>
<td>2025</td>
<td>172</td>
<td>141</td>
<td></td>
</tr>
<tr>
<td>2026</td>
<td>206</td>
<td>181</td>
<td></td>
</tr>
<tr>
<td>2027</td>
<td>257</td>
<td>195</td>
<td></td>
</tr>
<tr>
<td>2028</td>
<td>338</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

It is important to note all FAA-authorized commercial space operations are included in this forecast, regardless of where they occurred in the world. That is, not all launch and reentry activity occur at one location, for example, at Cape Canaveral, Florida. In the past year, FAA licensed launches and reentries throughout the world, including multiple reentries in the Pacific and Atlantic Oceans and eight licensed launches from New Zealand. This forecast, however, does not include launch activity not authorized by the FAA (e.g., launches the Government carries out for the Government), launch activity for other nations, and this forecast is not tied exclusively to satellite demand.

Additional Factors Affecting Forecast Accuracy

Commercial space transportation is a rapidly evolving industry. The industry’s growth through technological innovation and the development of new markets increases the challenges associated with forecasting commercial space transportation operations.

Increase in Flights Over Previous Projections

The FY2024 forecast includes a slight increase in flights over the FY2023 forecast for the high forecast and a significant increase over last year for the low forecast. This
change is largely a result of two factors: increased projections for flights by Space Exploration Technologies Corp. (SpaceX) due to its continued deployment of its Starlink communications satellites and decreased projects for other flights because of the bankruptcy of Virgin Orbit and the decision to cancel future Relativity Space’s Terran 1 flights, discussed in further detail below. Roughly 60% of SpaceX’s flights are largely to launch its Starlink satellite internet constellation. These satellites will also need to be replaced in five years from when they launched. The forecast shows a high of 338 projected launches in FY2028.

Changes to The List of Firms Intending to Launch

As previously mentioned, the list of firms intending to launch or that actually launch is dynamic. During the past year, Virgin Orbit filed for bankruptcy protection. It ceased operations and sold its assets and equipment to other aerospace companies. Other market changes could certainly occur in the future.

Move to Larger Launch Vehicles

As previously mentioned, SpaceX is working on a successor to the Falcon rockets, the Starship, which would be fully and rapidly reusable and could substantially reduce the number of future Falcon 9 launches needed for Starlink deployment. In addition, Relativity Space’s Terran 1 is being stopped in favor of the larger Terran R. The medium-heavy lift rocket is targeted for its first launch in 2026.

New Commercial Launch Technologies and Operations are Emerging Rapidly

The commercial space transportation industry is exploring a variety of new technologies and new approaches to space launch and reentry. In late 2015, both Blue Origin and Space Exploration Technologies Corp. (SpaceX) successfully demonstrated the reusability of their vertically launched rockets. Both companies are now developing a new generation of much larger orbital vehicles that will launch and land in a vertical configuration. In 2022, 56 of 60 Falcon 9 launches were accomplished using reused boosters. While these new orbital-class vehicles are expected to lead to increases in the number of annual launch and reentry operations over the next four years, if the trend is realized, greater increases may continue in the future, as the upper end of the forecast shows in fiscal years 2024 through 2028. Other U.S. commercial entities are also developing several launch vehicles for medium and small payloads. In the medium launch sector ULA’s Vulcan, Rocket Lab’s Neutron, and Relativity Space’s Terran R vehicles are scheduled to begin launching over the next few years. In the small launch vehicle sector Virgin Orbit’s LauncherOne, Relativity Space’s Terran 1, ABL’s RS1, Firefly’s Alpha, Astra Rocket 3 have all made their first launch attempts during the past few years. At the same time, state and local governments are joining with commercial firms to promote additional launch and reentry sites, and some firms are seeking to establish launch sites for their exclusive use. This added launch capacity sets the stage for simultaneous operations and an increase in the number operations per year.

New Markets for Commercial Space Transportation Continue to Emerge

The continuing development of commercial space transportation technology has spurred new markets for commercial space transportation services. As the commercialization of space flight demand increases on suborbital and orbital launches, new and reusable vehicles are emerging. With SpaceX and Blue Origin leading the way for reusable rocket
development, there are a number of other private companies following suit. The introduction of reusable rockets is a significant cost reducer and thereby encourages more exploration into space.

States and municipalities have sought to open new spaceports to attract commercial space transportation and associated high-tech firms and create technology hubs for research and development. In 2021, Blue Origin flew its first crewed human space flight mission into space and has conducted 6 total human space flight suborbital launches. Since 2008, NASA has managed the Commercial Resupply Services (CRS) program, which acquires transportation services from commercial providers to deliver cargo to and from the International Space Station (ISS). Starting in 2021 through 2023, SpaceX successfully transported NASA astronauts to the ISS 7 times and returned NASA astronauts from the ISS to Earth 6 times. Boeing’s vehicle for NASA’s crewed missions (Starliner) is scheduled for its first test flight no earlier than April 2024 with its first planned human space flight mission no earlier than August 2025. The commercial vehicles used by NASA for cargo and crew transportation will have other commercial applications that increase the capabilities of the commercial space transportation industry as a whole.

Looking further afield, there are several companies in the regulatory pipeline seeking authority to land commercial vehicles on the Moon, establish private-sector space stations, service satellites on-orbit, and establish launch sites using non-traditional technologies like railguns and tube launchers. The rapidly growing commercial space transportation industry will continue to demand FAA products and services enabling safe space transportation.