Aircraft Technology Research

REDAC Environment & Energy Sub-Committee

By: Arthur Orton & Chris Dorbian Technology & Operations Division (AEE-200) FAA Office of Environment & Energy

Date: July 25, 2024

Agenda

Aircraft Technology Research Programs

- Continuous Lower Energy, Emissions & Noise (CLEEN) Program
 - CLEEN Phase II Complete
 - CLEEN Phase III Ongoing
 - CLEEN Phase IV Planning
- Aviation Sustainability Center of Excellence (ASCENT)
- Fueling Aviation's Sustainable Transition (FAST) Tech

Interagency Coordination

- Sustainable Flight National Partnership
- Conclusions

Continuous Lower Energy, Emissions & Noise (CLEEN) Program

- FAA led public-private partnership with 1:1 cost matching from industry
- Reducing fuel burn, emissions and noise via aircraft and engine technologies and alternative jet fuels
- Conducting ground and/or flight test demonstrations to accelerate maturation of certifiable aircraft and engine technologies

	Phase I	Phase II	Phase III		
Time Frame	2010-2015	2016-2020	2021-2026		
FAA Budget	~\$125M	~\$100M	~\$125M		
Noise Reduction Goal	25 dB cumulative noise reduction cumulative to Stage 5 and/or reduces community noise exposure (new goal for Phase III)				
Fuel Burn Goal	33% reduction	40% reduction	-20% re: CAEP/10 Std.		
NO _x Emissions Reduction Goal	60% landing/take-off NO _x emissions (re: CAEP/6)	75% landing/take-off NO _x emissions (-70% re: CAEP/8)			
Particulate Matter Reduction Goal	-	-	Reduction relative to CAEP/11 Std.		
Entry into Service	2018	2026	~2031		

Energy, En

CLEEN Phase III Technologies

ILLEBEREREEEEEEEEEEEEE

Engine Core

- GE: Compact Core Low Emissions Combustor
- o GE: Advanced Thermal Management
- o GE: Hybrid Electric Integrated Generation
- Honeywell: Efficient Green High-Pressure Core
- Honeywell: Compact High-Work High-Lift Low Pressure Turbine
- Pratt & Whitney: TALON X+ Combustor
- Rolls-Royce: Axi-Cf Compressor Technologies

Airframe

- Boeing: Quiet Landing Gear
- Boeing: Quiet High-Lift System

Aircraft Systems

- GE: MESTANG III
- Boeing: Intelligent
 Operations

Sustainable Aviation Fuels

- Boeing: Higher Blend SAF Qualification
- GE: Higher Blend SAF Qualification

Fuel Emissions Noise

Nacelle, Fan, and Bypass

- America's Phenix: Erosion-Resistant Fan Blade Coating
- o Boeing: Advanced Nacelle Next Generation Inlet
- o Collins: Large Cell Exhaust Acoustic Technology
- Collins: Titanium Inner Fixed Structure
- o GE: Open Fan
- o GE: Advanced Acoustics
- Honeywell: Highly Efficient Fan Module
- Pratt & Whitney: Ultra-Quiet Reduced-Loss Fan Stage
- o Safran: Acoustic Air Inlet Lip Skin

CLEEN III Technologies – TRL Milestones

CLEEN III Technologies Continued – TRL Milestones

Recent CLEEN Phase III Accomplishments

Overall program milestones:

• Completed sixth CLEEN Phase III Consortium Meeting May 6-10, 2024 in Washington, DC

Project technical highlights:

- America's Phenix: Continued supplemental CFD analysis with University of Maryland to estimate fuel consumption impact
- Boeing: Completed Software Drop 3 for Intelligent Operations project
- Collins: Completed preliminary design review for Advanced Acoustic Exhaust technology
- GE: Airfoil manufacturing in progress for Open Fan technology
- Honeywell: Conducted low emissions combustor rig tests
- **P&W:** Completed preliminary design of TALON X+ combustor configuration for full annular rig test
- **Rolls-Royce:** Completed final build test of compressor technology at Centrifugal Stage for Aerodynamic Research (CSTAR) rig at Purdue University
- **Safran:** Revised architecture of anti-icing acoustic lip technology based on dry wind tunnel test results

Safran Wind Tunnel Test

Pratt & Whitney Combustor Technology

Upcoming CLEEN Phase III Milestones

Overall program milestones:

 Seventh CLEEN Phase III Consortium Meeting to be held November 18-22, 2024 in East Hartford, CT

Project technical highlights:

- America's Phenix: Deliver full PW2000 coated blade sets
- Boeing: Complete fabrication and assembly for Quiet Landing Gear, Quiet High Lift, and Next Generation Inlet technologies in preparation for flight test campaigns
- Collins: Complete critical design review of Advanced Acoustic Exhaust technology
- **GE:** Complete Open Fan rig hardware manufacturing
- **Honeywell:** Conduct component rig, development engine, and core engine testing of multiple technologies (fan module, combustor, high pressure compressor/turbine)
- **P&W:** Fabricate, assemble, and test TALON X+ combustor technologies in full annular and multi-sector rigs
- **Rolls-Royce:** Conduct data analysis and modeling comparisons with Purdue University on axi-cf compressor technology
- Safran: Initiate representative wind tunnel test campaign of anti-icing acoustic lip technology

Boeing Landing Gear Shields

America's Phenix Fan Blade Coating

Assessment of CLEEN Technologies' Environmental Benefits

Analytical Evaluation:

- Conducted by Georgia Tech through ASCENT COE Project 37
- Evaluating impact of technology applications through 2050

Fuel Burn Benefit:

- 51.1 billion gallons of fuel saved cumulative by 2050 from CLEEN Phase I and II
- CO₂ emissions reduced by 500 million metric tons over this time period

NOx Benefit:

CLEEN Phase I and II technology cumulatively reduce LTO NOx
 emissions by 2.79 Megatons through 2050

Noise Benefit:

 The interim assessment indicates that the CLEEN Phase I and II technologies could yield a 10% reduction in 65 DNL noise contour area by 2050 compared to continued evolution of aircraft technologies absent CLEEN's research & development investments.

Updated 04/2024. Includes domestic operations and international departures of U.S. commercial and foreign flag carriers

CLEEN Phase IV

- Plan to continue FAA's programmatic model of public-private partnership with 1:1 cost matching from industry to develop new environmentally beneficial aircraft technologies
- Solicitation planned in calendar year 2024

	Phase I	Phase II	Phase III	Phase IV (DRAFT)		
Time Frame	2010-2015	2016-2020	2021-2026	2025-2029		
FAA Budget	~\$125M	~\$100M	~\$125M	~\$190M		
Energy Efficiency / Fuel Burn Reduction Goal	33% reduction re: year 2000 baseline	40% reduction re: year 2000 baseline	-20% re: CAEP/10 Std.	-35% re: CAEP/10 Std., and/or reduces aviation's climate impacts		
Noise Reduction Goal	25 dB cumulative noise reduction cumulative to Stage 5 and/or reduces community noise exposure (new goal for Phase III)					
NO _x Emissions Reduction Goal	60% landing/take-off NO _x emissions re: CAEP/6	-70% landing/take-off NO _x emissions re: CAEP/8 (-75% re: CAEP/6)		-70% landing/take-off NO _X emissions re: CAEP/8 and/or reduces absolute NOx over the aircraft's mission		
Particulate Matter Reduction Goal	-	-	Reduction relative to CAEP/11 Std.	-50% landing/take-off nvPM number and mass re: CAEP/11		
Entry into Service	2018	2026	~2031	~2035		

ASCENT Technology Projects

- Complementary venue for university-led research on aircraft technology research and development
- Advances the industry state-of-the-art and expands the technical knowledge base
- Cuts across development of individual technologies and models
- Technical Themes:
 - Noise reduction technology modeling and development
 - System-level modeling and design considerations
 - Propulsion-airframe integration
 - Combustion
 - Turbomachinery
 - Supersonics
- Overview of projects available on ASCENT website:

https://ascent.aero/topic/Aircraft-Technology/

ASCENT Aircraft Technology Innovation Portfolio

Noise reduction technology modeling and development

- 075 Improved Engine Fan Broadband Noise Prediction Capabilities
- 076 Improved Open Rotor Noise Prediction Capabilities
- 079 Novel Noise Liner Development Enabled by Advanced Manufacturing

System-level modeling and design considerations

- 010 Aircraft Technology Modeling and Assessment
- 037 CLEEN II System Level Assessment
- 052 Comparative Assessment of Electrification Strategies for Aviation
- 064 Alternative Design Configurations to Meet Future Demand
- 095 Assessment of Fuel Cells for Powering Modern Business Jets
- 096 Future Transportation System Opportunities and Constraints
- 097 FAST-Tech System Level Assessment

Propulsion-airframe integration

- 050 Over-Wing Engine Placement Evaluation
- 063 Parametric Noise Modeling For Boundary Layer Ingesting Propulsors

Supersonics

- 047 Clean Sheet Supersonic Aircraft Engine Design and Performance
- 059 Jet Noise Modeling to Support Low Noise Supersonic Aircraft Technology Development

Combustion

- 051 Combustion concepts for next-generation aircraft engines to reduce fuel burn and emissions
- 055 Noise Generation and Propagation from Advanced Combustors
- 066 Evaluation of High Thermal Stability Fuels
- 067 Impact of Fuel Heating on Combustion and Emissions
- 068 Combustor Wall Cooling Concepts for Dirt Mitigation
- 070 Reduction of nvPM emissions via innovation in aeroengine fuel injector design
- 071 Predictive Simulation of Soot Emission in Aircraft combustors
- 074 Low Emissions Pre-Mixed Combustion Technology for Supersonic Civil Transport
- 098 Low Emissions Lean Pre-Mixed Pre-Vaporized Combustion Technology for Subsonic Civil Transport

Turbomachinery

- 056 Turbine Cooling Through Additive Manufacturing
- 092 Advanced Two-Stage Turbine Rig Development

ASCENT Aircraft Technology Innovation Portfolio

As we look to future planning, are

there gaps in our ASCENT aircraft

tech portfolio that we should be

Noise reduction technology modeling and development

- 075 Improved Engine Fan Broadband Noise Prediction Capabilities
- 076 Improved Open Rotor Noise Prediction Capabilities
- 079 Novel Noise Liner Development Enabled by Advanced Manufacturing

System-level modeling and design considerations

- 010 Aircraft Technology
- 037 CLEEN II System L Request for feedback:
- 052 Comparative Asses
- 064 Alternative Design (
- 095 Assessment of Fue
- 096 Future Transportati
- 097 FAST-Tech System

Propulsion-airframe integrat

- 050 Over-Wing Engine
- 063 Parametric Noise M Propulsors

Supersonics

- 047 Clean Sheet Supersonic Aircraft Engine Design and Performance
- 059 Jet Noise Modeling to Support Low Noise Supersonic Aircraft Technology Development

working?

Blue = ended or ending after this period of performance

Combustion

- 051 Combustion concepts for next-generation aircraft engines to reduce fuel burn and emissions
- 055 Noise Generation and Propagation from Advanced Combustors
- 066 Evaluation of High Thermal Stability Fuels

Combustion and Emissions Concepts for Dirt Mitigation ions via innovation in aero-

oot Emission in Aircraft

Combustion Technology

-Mixed Pre-Vaporized bsonic Civil Transport

Additive Manufacturing

092 – Advanced Two-Stage Turbine Rig Development

FAST Program Overview

The new Fueling Aviation's Sustainable Transition (FAST) discretionary grant program will make investments to accelerate production and use of sustainable aviation fuels and the development of **low-emission aviation technologies** to support the U.S. aviation climate goal to achieve net zero greenhouse gas emissions by 2050. (Legislative Authority: Section 40007 of the Inflation Reduction Act of 2022)

- Grants will carry out projects located in the United States that:
 - Produce, transport, blend or store sustainable aviation fuel (FAST-SAF) \$244,530,000
 - Develop, demonstrate, and apply low-emission aviation technologies (FAST-Tech) \$46,530,000
- Eligible entities include: state and local governments, airports, air carriers, academic and research institutions, other aviation industry, and nonprofits
- Federal cost-share is 75% of project cost (90% for small or non-hub airport awardees)
- Notice of Funding Opportunity (NOFO) released on Sept 25, 2023; closed on Dec 4, 2023
- FAA anticipates announcing awards in Summer 2024

FAST Status / Next Steps

- Notice of Funding Opportunity opened 9/25/23 and closed 12/4/23
- Significant response
 - More than 120 applications
- In the process of evaluating applications, developing recommended award package, and gaining departmental concurrence
 - Enlisted support from DOE, NASA, Volpe, DOT, and AEE-400
- Targeting announcing awards in Summer 2024

Types of Interagency Coordination

- Engaging in multiple forums to coordinate aircraft technology development activities, plans, and strategy:
 - NASA Aeronautics Independent Review Panels
 - Advanced Turbine Technology for Affordable Mission Capability (ATTAM) Steering Committee
 - Propulsion Power Systems Alliance (PPSA) leadership team
 - Continuous ad hoc engagement
- Mutual regular engagement in technology development technical reviews
 - Particularly with the programs under the NASA Sustainable Flight National Partnership (SFNP) umbrella
- Always looking for ways to leverage and complement each other's programs and projects
- NASA involvement in technical evaluations of AEE R&D solicitations, and vice versa

Summarizing FAA Environmental Aircraft Technology Programs

CLEEN

- Industry partnership with 50/50 cost share via cooperative agreements
- Focused on taking TRL 3-5 technologies through TRL 6-7 to reduce technical risk and put technologies on a path for entry into service ~5 years after conclusion of R&D
- Focused technology development with additional benefits to enhancing analysis and design tools

Aviation Sustainability Center of Excellence (ASCENT)

- Academic partnership with 50/50 cost share via grants
- Focused on applied R&D at any TRL
- Advances state of the art of knowledge broadly in the industry
- Covers: new discrete technologies, enhanced analysis and design tools, and improved physics modeling

Fueling Aviation's Sustainable Transition via Technology (FAST-Tech)

- Industry and/or academia partnership with 75% FAA cost share via grants
- Explicitly focused on low-emissions technologies
- Potential focus areas:
 - Designing, prototyping, and testing of discrete low-emission aviation technologies, and
 - Enhancing aircraft and engine technology testing and demonstration capabilities to accelerate development and demonstration of a broad range of low-emission aircraft technologies.

Conclusions

- CLEEN Phase III continues our efforts to accelerate maturation of environmental aircraft technologies into the fleet (2021-2026)
 - Many major demonstrations this year and next

CLEEN Phase IV Planning

- Continue internal development/approval process of solicitation

• Next CLEEN Consortium Meeting:

- November 8-22, 2024 in East Hartford, CT (Pratt & Whitney)
- ASCENT aircraft technology development continues to complement CLEEN's industry focus in our portfolio
- FAST-Tech presents an exciting opportunity to further expand our portfolio into complementary areas
 - Currently reviewing submissions and developing recommended award package
 - Targeting Summer 2024 awards

Backup Slides

Rationale for Investing in Aircraft Technology

- Historically, advances in aircraft technology have been the main factor in reducing aviation's environmental impact
- Continued improvements come with large technological risk
- Small profit margins, competitive/cost pressures, and supply chain disruptions have considerably reduced industry's ability to undertake research to advance new technologies to reduce noise and emissions
 - However, industry has also set ambitious net zero targets
- SAF scale-up has challenges and cannot be the only solution
 - Technology improvements can make SAF go farther
- Government resources help mitigate technological risk and incentivize aviation manufacturers to invest in and develop cleaner, quieter technology

Domestic and International Aviation CO₂ Emissions

NOTE: Analysis conducted by BlueSky leveraging FAA Aerospace Forecast and R&D efforts from the FAA Office of Environment & Energy (AEE) regarding CO2 emissions contributions from aircraft technology, operational improvements, and SAF

CLEEN Noise Goal in Context

Back to CLEEN Overview Slide

