

U.S. Department of Transportation
Federal Aviation Administration

Software Specification

ARTIFACTS VERSIONING IN SWIM

Version 1.0.0

September 12, 2024

SWIM-006
Version 1.0.0

2

Table of Contents

1 Scope .. 4

1.1 Scope .. 4

1.2 Overview .. 4
1.2.1 Background .. 4
1.2.2 Basic Concepts ... 4

1.2.2.1 Versioning ... 4
1.2.2.2 Version Identifier .. 5
1.2.2.3 Key Artifacts .. 6

1.3 Intended Audience.. 6

1.4 Notational Conventions .. 7

1.5 Terms and Definitions .. 7

2 Applicable Documents .. 8

2.1 Government Documents .. 8

2.2 Non-Government Publications ... 9

2.3 Order of Precedence ... 8

3 General Requirements .. 10

3.1 General Requirements .. 10

4 Detailed Requirements ... 12

4.1 Detailed Requirements ... 12
4.1.1 Services and Service Interfaces .. 12
4.1.2 RESTful APIs ... 12
4.1.3 Data Exchange Schemas .. 13

4.1.3.1 XML Schema .. 13
4.1.3.2 JSON Schema ... 13

4.1.4 Service Description .. 14
4.1.4.1 Machine-processable service descriptions ... 14
4.1.4.2 Human-Readable Service Descriptions ... 15

4.1.5 Message Headers ... 16
4.1.5.1 Java Message Service (JMS) .. 16
4.1.5.2 Hypertext Transfer Protocol (HTTP) .. 16

4.1.6 Uniform Resource Identifier (URI) ... 17
4.1.7 Other Documentation .. 17

5 Notes .. 18

6 Quality Assurance Provisions .. 18

7 Preparations for Delivery .. 18

SWIM-006
Version 1.0.0

3

Table of Figures
Figure 1 Example of applying described versioning approach ... 11

Figure 2 Example of versioning a service in the NSRR. ... 12

Figure 3 Example of versioning of an XML schema .. 13

Figure 4 Example of versioning a JSON schema .. 14

Figure 5 Example of versioning a WSDL document .. 15

Figure 6 Example of versioning an OpenAPI document ... 15

Figure 7 Example of including version identifier in JMS message header .. 16

SWIM-006
Version 1.0.0

4

1 Scope

1.1 Scope

This specification establishes the requirements and guidelines for versioning practices within the
FAA's System Wide Information Management (SWIM) framework. It addresses the need to manage
changes to SWIM-enabled service components due to evolving business requirements, technological
advancements, modifications to common infrastructure, or system upgrades.

The SWIM artifacts versioning defined in this specification outlines both the syntax (structure) and
semantics (meaning) for a service identifier.

This document supersedes "SWIM-005, Artifacts Versioning for SWIM-enabled Services, Version
1.0.0 (December 18, 2015)"[6] and provides updated standards that reflect current technologies and
methodologies.

This document is prepared in accordance with FAA-STD-067 [1].

1.2 Overview

1.2.1 Background

Initially developed in 2015, the previous specification ("SWIM-005, Artifacts Versioning for SWIM-
enabled Services"[6]) required updating to reflect current industry standards and terminologies,
particularly in the context of RESTful APIs and related technologies, which have become more
prevalent since the previous version.

This specification aims to provide a comprehensive framework for versioning SWIM-enabled
services and their associated artifacts, reflecting current technologies and methodologies. It
facilitates the coexistence of multiple versions, allowing for phased rollouts, backward compatibility,
and seamless transitions between versions.

1.2.2 Basic Concepts

1.2.2.1 Versioning

In the context of Service Oriented Architecture (SOA), versioning refers to managing changes to
services and their associated artifacts over time. It allows different versions of a service to coexist,
ensuring that existing clients are not adversely affected by modifications.

The intrinsically agile nature of SWIM as a multi-organizational service-oriented technological
framework places special emphasis on the need for managing changes to services and service-
related artifacts. These changes usually originate from new business requirements, constantly
evolving technological solutions, or modifications and upgrades to a common infrastructure.

An important but challenging problem in a multi-organizational technological framework of reusable

SWIM-006
Version 1.0.0

5

and shared services such as SWIM is the coexistence of multiple releases of active services.
Addressing these challenges results in the need for a robust service versioning scheme—a set of
rules for assigning version identifiers to services or service-related artifacts to manage their changes
effectively.

Controlled evolution of services is another significant benefit of versioning in the SWIM
environment. As services evolve to incorporate new technologies and features, versioning provides
a structured way to manage these changes, allowing for phased rollouts and minimizing the risk of
errors or incompatibilities.

By enabling different versions to coexist, SWIM can also mitigate risks associated with implementing
new changes. If issues arise with a new version, services can revert to a previous stable version
without significant operational impact.

In summary, versioning is a fundamental practice in the SWIM environment, essential for
maintaining the seamless and reliable operation of the NAS by supporting interoperability, backward
compatibility, and the controlled evolution of services.

1.2.2.2 Version Identifier

The service identifier is a fundamental concept in versioning, defined as a unique value consisting of
digits, alphabetic characters, or both, associated with a specific version of an artifact.

The FAA uses sequence-based service identifier schemes, such as using letters of the English
alphabet following a document identifier (e.g., Order FAA 1800.66A, FAA-STD-073B) for tracking
new releases of documentation, and a sequential numbering model for software releases. However,
these sequence-based version identifier models have the disadvantage of not providing information
about the level of significance of changes and how those changes may affect a consumer.

In contrast, this specification prescribes the use of semantic versioning (aka SemVer) [9], a version
scheme [7] that encodes a version in a three-part version number (major.minor.patch), with each
number indicating the level of significance of changes in a new version. All changes that can be
made are classified into three major categories: major, minor, and patch.

Where:

 The major version number is incremented for significant changes that break backward
compatibility.

 The minor version number is incremented for backward-compatible feature additions or
enhancements.

 The patch version number is incremented for backward-compatible bug fixes or
typographical errors.

This approach provides clear and structured information about the impact of changes on backward
compatibility and helps consumers make informed decisions about upgrading to a new version.

SWIM-006
Version 1.0.0

6

1.2.2.3 Key Artifacts

Resources that are typically subjected to versioning in the SWIM environment include, but are not
limited to:

 Services and Service Interfaces: Versioning services enables multiple versions of services and
service interfaces to coexist, facilitating backward compatibility and phased rollouts of new
features or bug fixes.

 RESTful APIs: RESTful APIs expose a set of resources and operations through HTTP methods and
URIs. Versioning RESTful APIs involves managing changes to resource representations,
request/response formats, and API behaviors. Versioning RESTful APIs ensures compatibility and
allows for the evolution of the API without disrupting existing clients.

 Data Format Specification: A document that defines the structure and format of data
exchanged between services and other components (e.g., XML/JSON schemas, exchange data
models). Versioning of data format specifications ensures compatibility between service
versions and client implementations.

 Message Headers: A message header contains a structured collection of key-value pairs allowing
services and consumer agents to convey essential information about exchanged messages, such
as content type, routing, and caching instructions, etc. Versioning message headers ensures
proper interpretation and routing of messages across service versions. This versioning applies to
the encompassing artifacts the message header describes, such as services or APIs, depending
on the technological solution.

 Service Descriptions: A service description is an authoritative source of information on how to
use a service. It can be human-readable or machine-processable, generally based on FAA,
industry, and international standards. Versioning service descriptions communicates changes to
services, service interfaces, or other client-facing aspects.

 URIs/URLs: A version identifier embedded in a URI/URL often serves as part of a resource
identifier and an endpoint for accessing a service or API on the web. Versioning URIs/URLs
ensures proper routing and resource identification across service versions.

 Other Documentation: Detailed documentation, such as service requirements, design and
implementation documents, Service Level Agreement (SLA), and etc. are versioned to reflect
changes in service behavior, usage, or requirements.

1.3 Intended Audience

This document is intended for:

 Developers and architects designing and implementing SWIM services and interfaces;
 SWIM implementers developing service documentation;
 SWIM analysts and systems architects overseeing SWIM architectures.

A basic understanding of SOA principles, interactions among SWIM-enabled service components,
REST APIs, and HTTP is assumed.

SWIM-006
Version 1.0.0

7

1.4 Notational Conventions

The keywords "SHALL", "SHALL NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD
NOT", "RECOMMENDED", "MAY", and "OPTIONAL" are to be interpreted with the significance
attributed to them within RFC-2119 [12]. These key words are capitalized when used to
unambiguously specify requirements. When these words are not capitalized, they are meant in their
natural-language sense.

All parts of this document that are labeled as examples should be considered non-normative unless
explicitly stated otherwise. Such non-normative examples are intended to enhance understanding
and facilitate the practical application of the specification's principles but do not constitute
mandatory requirements for compliance.

Throughout this document, instances of text encased in shaded and bordered boxes are
utilized to denote literal values, terms, or code snippets that are directly applicable in
implementations.

1.5 Terms and Definitions

For the purpose of this specification, the following terms and definitions apply:

application programming interface (API): A set of rules that define how applications or
devices can connect to and communicate with each other.

artifact: Any resource or asset that is subject to versioning in the SWIM environment, such
as services, interfaces, data contracts, message headers, service descriptions, URIs/URLs,
and documentation.

backward compatibility: The ability of a system or component to interoperate with older
versions of itself or other systems or components.

dereferenceable URI: A URI is called dereferenceable when it can be used to obtain a
representation of the resource (e.g., a system or a document) it identifies using the Internet
protocol designated by the URI scheme.

Java Message Service (JMS): A Java-based application programming interface (API) that
provides a common way for Java programs to create, send, receive, and read an enterprise
messaging system’s message [8].

NAS Enterprise Messaging Service (NEMS): A NAS-based implementation of message-
oriented middleware (MOM) that is used by FAA to distribute messages among information
consumers and providers, as well as providing administrative functionality that includes (but
is not limited to) fault tolerance, load balancing, mediation and orchestration support [8].

NAS Service Registry/Repository (NSRR): An FAA SWIM-supported capability for making
services visible, accessible, and understandable across the NAS. NSRR supports a flexible

SWIM-006
Version 1.0.0

8

mechanism for service discovery, an automated policies-based way to manage services
throughout the services lifecycle, and a catalog for relevant artifacts [8].

RESTful API: An API that adheres to the principles of REST (Representational State Transfer)
and allows interaction with RESTful web services.

SWIM-enabled service: A service that is integrated into SWIM framework. It is designed to
facilitate the exchange of information within the NAS by adhering to SWIM standards,
protocols, and infrastructure.

Uniform Resource Identifier (URI): A sequence of characters designed for the unambiguous
identification of resources via the URI syntax rules and naming schemes prescribed by RFC
3986. [13]

versioning: The practice of managing changes to services and their associated artifacts over
time, allowing different versions of a service to coexist [14].

version identifier: A unique name or number that denotes a particular version of a service
or service-related artifact.[6]

1.6 Order of Precedence

In the event of a conflict between the text of this document and the references cited herein, the text
of this document takes precedence. Nothing in this document, however, supersedes applicable laws
and regulations unless a specific exemption has been obtained.

2 Applicable Documents

2.1 Government Documents

[1] FAA Standard Practice, Preparation of Specifications, FAA-STD-067, December 4, 2009,
https://www.tc.faa.gov/its/worldpac/standards/faa-std-067.pdf

 [2] System-Wide Information Management (SWIM) Governance Policies, Version 2.0, March
2014,
http://www.faa.gov/nextgen/programs/swim/governance/standards/media/Governance-
Policies-v20.html

[3] FAA-STD-065 Rev. B, Preparation of Web Service Description Documents, FAA; July 15, 2019
https://www.faa.gov/sites/faa.gov/files/air_traffic/technology/swim/governance/FAA-STD-
065B%207_15_2019.pdf

https://www.tc.faa.gov/its/worldpac/standards/faa-std-067.pdf
http://www.faa.gov/nextgen/programs/swim/governance/standards/media/Governance-Policies-v20.html
http://www.faa.gov/nextgen/programs/swim/governance/standards/media/Governance-Policies-v20.html
https://www.faa.gov/sites/faa.gov/files/air_traffic/technology/swim/governance/FAA-STD-065B%207_15_2019.pdf
https://www.faa.gov/sites/faa.gov/files/air_traffic/technology/swim/governance/FAA-STD-065B%207_15_2019.pdf

SWIM-006
Version 1.0.0

9

[4] FAA-STD-073A, Preparation of Java Messaging Service Description Documents (JMSDD);
FAA; December 9, 2019
https://www.faa.gov/sites/faa.gov/files/air_traffic/technology/swim/governance/FAA-STD-
073A%20FINAL%2012_9_19.pdf

[5] FAA-STD-075, Creating Service Identifiers; FAA; June 29, 2021
https://www.faa.gov/sites/faa.gov/files/air_traffic/technology/swim/governance/FAA-STD-
075%20FINAL%206-29-2021.pdf

[6] SWIM-005, Artifacts Versioning for SWIM-enabled Services, Software Specification, Version
1.0.0; FAA SWIM; December 18, 2015
https://www.faa.gov/sites/faa.gov/files/air_traffic/technology/swim/governance/SWIM%20
Service%20Versioning%20Spec.pdf

2.2 Non-Government Publications

[7] Best Practices for Artifact Versioning in Service-Oriented Systems; TECHNICAL NOTE;
Software Engineering Institute Marc Novakouski, Grace Lewis, William Anderson, Jeff
Davenport; January 2012;
http://www.sei.cmu.edu

[8] SWIM Controlled Vocabulary (CV), V 1.0.0; SWIM FAA; 2019-03-25
https://semantics.aero/pages/swim-vocabulary.html#toc

[9] Semantic Versioning 2.0.0; Tom Preston-Werner; Creative Commons; 2013;
http://semver.org/spec/v2.0.0.html

[10] Web Services Description Language (WSDL) Version 2.0 Part 0: Primer; W3C
Recommendation 26 June 2007
https://www.w3.org/TR/2007/REC-wsdl20-primer-20070626

[11] OpenAPI Specification v3.1.0, Version 3.1.0; 15 February 2021
https://spec.openapis.org/oas/v3.1.0

[12] RFC 2119, Key words for Use in RFCs to Indicate Requirement Levels, Network Working
Group, March 1997. http://www.rfc-editor.org/rfc/rfc2119.txt

[13] RFC 3986, Uniform Resource Identifier (URI): Generic Syntax, Network Working Group,
January 2005 http://www.rfc-editor.org/rfc/rfc3986.txt

[14] IEEE 610.12-1990, IEEE Standard Glossary of Software Engineering Terminology; IEEE
Computer Society; 1990-12-31
https://standards.ieee.org/ieee/610.12/855/

https://www.faa.gov/sites/faa.gov/files/air_traffic/technology/swim/governance/FAA-STD-073A%20FINAL%2012_9_19.pdf
https://www.faa.gov/sites/faa.gov/files/air_traffic/technology/swim/governance/FAA-STD-073A%20FINAL%2012_9_19.pdf
https://www.faa.gov/sites/faa.gov/files/air_traffic/technology/swim/governance/FAA-STD-075%20FINAL%206-29-2021.pdf
https://www.faa.gov/sites/faa.gov/files/air_traffic/technology/swim/governance/FAA-STD-075%20FINAL%206-29-2021.pdf
https://www.faa.gov/sites/faa.gov/files/air_traffic/technology/swim/governance/SWIM%20Service%20Versioning%20Spec.pdf
https://www.faa.gov/sites/faa.gov/files/air_traffic/technology/swim/governance/SWIM%20Service%20Versioning%20Spec.pdf
http://www.sei.cmu.edu/
https://semantics.aero/pages/swim-vocabulary.html#toc
http://semver.org/spec/v2.0.0.html
https://www.w3.org/TR/2007/REC-wsdl20-primer-20070626
https://spec.openapis.org/oas/v3.1.0
http://www.rfc-editor.org/rfc/rfc2119.txt
http://www.rfc-editor.org/rfc/rfc3986.txt
https://standards.ieee.org/ieee/610.12/855/

SWIM-006
Version 1.0.0

10

3 General Requirements

3.1 General Requirements

This section specifies the requirements that are common to all SWIM-enabled services,
interfaces/APIs and their associated artifacts.

3.1.1 Every release of a SWIM service interface or service-related artifact SHALL be versioned
according to this specification.

3.1.2 A version identifier SHALL be formatted as three dot-separated positive integers without
leading zeroes (e.g., “2.2.1”):

 The first digit represents a major change.
 The second digit represents a minor change.
 The third digit may represent a patch.

Note: This structure ensures clear communication of changes. For example, a service initially
released as version 1.0.0 might undergo minor updates (1.1.0, 1.2.0) that do not disrupt
existing clients. Major changes would necessitate an update to version 2.0.0, requiring clients
to adapt.

Figure 1 presents a scenario wherein a service consumer agent was designed to use version 1.0.0 of
some service. After minor changes, which were communicated through the incremented second
and third digits in the version identifier (1.1.0 and 1.1.1 respectively), the consumer agent could
continue to use each subsequent version of this service. However, after major changes were made
(and communicated via the incremented first digit), the consumer agent required modification in
order to use version 2.0.0 of the artifact.

SWIM-006
Version 1.0.0

11

Figure 1 Example of applying described versioning approach

3.1.3 The version identifier SHALL always include a major version number as a positive
integer without leading zeroes (e.g., “1”).

Note: The major version number signals significant changes that break backward
compatibility, aiding in effective version management and update decisions.

3.1.4 The version identifier SHOULD include a minor version number as a dot-separated
positive integer without leading zeroes following the major version number (e.g.,
“1.1”). However, it may be omitted if only major changes are communicated.

Note: The minor version number indicates backward-compatible feature additions or
enhancements. While recommended for clarity, its inclusion is not mandatory when focusing
solely on major updates.

3.1.5 The version identifier MAY include a patch version number as a dot-separated
positive integer without leading zeroes following the minor version number (e.g.,
“1.1.1”).

Note: The patch version number identifies backward-compatible bug fixes or fixing
typographical typos in case of a document. Including this number is optional and should be
decided based on the context of the updates.

3.1.6 A version identifier SHALL be presented as part of the versioned artifact, independent
of any additional tooling.

Note: Versioning data should be autonomous, ensuring consistent identification without

SWIM-006
Version 1.0.0

12

reliance on external tools or repositories.

4 Detailed Requirements

4.1 Detailed Requirements

4.1.1 Services and Service Interfaces

4.1.1.1 All SWIM-enabled services SHALL be versioned; that is, a service identifier SHALL be assigned
as prescribed in section 3.1 of this specification.

4.1.1.2 The service version identifier SHALL be included in service metadata stored and presented by
the NSRR.
Note: SWIM Governance Policies [2] mandate registering all SWIM services in the NSRR.

Figure 2 Example of versioning a service in the NSRR.

4.1.1.2.1 In the event of a conflict between the service version presented in the NSRR and other
service-related artifacts, the version shown in the NSRR SHALL take precedence.

4.1.2 RESTful APIs

4.1.2.1 Each REST API SHALL include the version identifier in the URI path (e.g.,
http://swim.faa.org/services/fps/2.3).

4.1.2.2 REST APIs SHOULD support versioning through a custom header.

4.1.2.3 REST APIs SHOULD use the "API-Version" HTTP header to identify the version of the API being
requested (e.g., API-Version: 2.3).

SWIM-006
Version 1.0.0

13

4.1.2.4 REST APIs MAY include a version identifier as a query parameter (e.g.,
http://example.org/api/flights?version=2.3)

4.1.3 Data Exchange Schemas

This section specifies requirements that should be applied during the development of SWIM XML
and JSON schemas. These requirements are not applicable to the schema models developed by
external (non-FAA) organizations, which, from the perspective of this specification, are immutable.

4.1.3.1 XML Schema

4.1.3.1.1.1.1 XML schemas SHALL define a unique namespace URI that includes the version identifier.

4.1.3.1.1.1.2 Each XML schema SHOULD include a version attribute in the root element to specify the
version.

4.1.3.1.1.1.3 XML schemas MAY include documentation within the schema file that specifies the
version including brief description of the version.

 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

 targetNamespace="http://faa.gov/fps/1.0"

 version="1.0">

 <xs:annotation>

 <xs:documentation>

 Version 1.0 - Initial version.

 </xs:documentation>

 </xs:annotation>

 ...

</xs:schema>

Figure 3 Example of versioning of an XML schema

4.1.3.2 JSON Schema

4.1.3.2.1.1.1 Each JSON schema SHALL include a $id attribute formatted as a URI of the schema that
includes a version identifier.

4.1.3.2.1.1.2 The $id attribute in a JSON schema MAY be presented as a URL dereferenceable to the
schema location.

4.1.3.2.1.1.3 Each JSON schema SHALL include a version property within the schema to specify the
version.

SWIM-006
Version 1.0.0

14

{

 "$schema": "http://json-schema.org/draft-07/schema#",

 "$id": "http://faa.gov/fps/1.0.0/flight-plan.json",

 "version": "1.0.0",

}

Figure 4 Example of versioning a JSON schema

4.1.4 Service Description

Service descriptions are essential components of the SWIM framework, providing crucial
information about services. These descriptions can be categorized into two types: machine-
processable and human-readable. Machine-processable descriptions, such as Web Services
Description Language (WSDL) document and OpenAPI Specification (OAS), are designed for
automated processing and integration. Human-readable descriptions are intended for manual
review and understanding, typically documented in formats like PDFs or Word documents.

4.1.4.1 Machine-processable service descriptions

4.1.4.1.1 WSDL

This section specifies requirements that should be applied during the development of Web Service
Description Language (WSDL) [10] documents for SWIM Web services. WSDL documents are used to
describe the functionality offered by a web service, providing a machine-processable format that
allows for automated integration and interaction. These documents are based on the WSDL
specification, which defines how to describe web services in a standardized way, ensuring
interoperability between different systems.

4.1.4.1.1.1.1 Each WSDL file SHALL include a version attribute in the definitions element to specify the
version.

4.1.4.1.1.1.2 WSDL files SHALL define a unique namespace URI that includes the version identifier.

4.1.4.1.1.1.3 WSDL files SHALL include documentation within the file that specifies the version and
provides a summary of changes.

<wsdl:definitions xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

 xmlns:xs="http://www.w3.org/2001/XMLSchema"

 targetNamespace="http://faa.gov/swim/fps/wsdl/1.0"

 version="1.0">

 <wsdl:documentation>

 Version 1.0 - Initial version.

 </wsdl:documentation>

 …

SWIM-006
Version 1.0.0

15

Figure 5 Example of versioning a WSDL document

4.1.4.1.2 OpenAPI

This section specifies requirements that should be applied during the development of service
descriptions for SWIM RESTful APIs. The OpenAPI Specification (OAS) version 3.1.0 [11], formerly
known as the Swagger Specification, is used for presenting these requirements. OAS is generally
considered the most widely adopted and supported standard for defining RESTful APIs.
Note, this specification does not prescribe the usage of OAS as a SWIM standard.

4.1.4.1.2.1.1 Each OpenAPI document SHALL include an id attribute that is formed as URI which
includes the version identifier.

4.1.4.1.2.1.2 Each OpenAPI document SHALL include a version attribute in the info object to specify
the version.

{

 "openapi": "3.1.0",

 "info": {

 "title": "Flight Plan Service API",

 "version": "1.0.0"

 },

 ...

}

Figure 6 Example of versioning an OpenAPI document

4.1.4.2 Human-Readable Service Descriptions

According to the SWIM Governance Policies document, all SWIM services are required to provide
one of two service description documents. Those documents SHALL comply with either FAA
standard FAA-STD-065 Rev. B, "FAA-STD-065 Rev. B, Preparation of Web Service Description
Documents (WSDD)" [3] or FAA standard FAA-STD-073A, "Preparation of Java Messaging Service
Description Documents (JMSDD)"[4] depending on the service's technological solution.

4.1.4.2.1.1.1 All service descriptions SHALL be versioned; that is, a service identifier SHALL be assigned
as prescribed in section 3.1 of this specification.

4.1.4.2.1.1.2 The service identifier SHALL be displayed on the title page of a service description
document.

4.1.4.2.1.1.3 The service identifier SHOULD be included in the headers of the service description
document.

SWIM-006
Version 1.0.0

16

4.1.5 Message Headers

A message is a basic unit of communication from one software agent to another, sent in a single
logical transmission. Each message includes a message header, which precedes the message body
and contains a structured collection of key-value pairs that convey essential information about the
message, such as content type, content length, and other metadata.

Currently, the NAS Enterprise Messaging Service (NEMS), a NAS-based implementation of message-
oriented middleware, is the most prevalent method for distributing messages among information
consumers and providers within the SWIM ecosystem.

Additionally, SWIM is exploring the potential use of RESTful Web Services or APIs as an alternative
solution for delivering SWIM data to consumers. Note, the requirements outlined in this section are
forward-compatible, developed in anticipation of the future deployment of RESTful APIs within the
SWIM ecosystem.

4.1.5.1 Java Message Service (JMS)

This section outlines the requirements that should be applied during the development and
deployment of a JMS message header. JMS is a Java-based API employed by NEMS to create, send,
receive, and read messages within the context of the SWIM ecosystem.

4.1.5.1.1 Each JMS message header SHALL include a version identifier to specify the version of the
SWIM service that originates the message.

Note: the following example is non-normative.

// The service version as a JMS message property may be included in the message header like
this:

message.setStringProperty("serviceVersion", "2.1.1");

// Assuming 'message' is the received JMS message

String serviceVersion = message.getStringProperty("serviceVersion");

System.out.println("Service Version: " + serviceVersion);

When the above code is executed, it would print the value of the serviceVersion property to
the console or log, for example:

Service Version: 2.1.1

Figure 7 Example of including version identifier in JMS message header

4.1.5.2 Hypertext Transfer Protocol (HTTP)

This section outlines the requirements that should be applied during the development and
deployment of a HTTP message headers. RESTful APIs are built on top of HTTP, meaning that every
RESTful API utilizes HTTP for communication. These APIs leverage HTTP messages, headers, and
methods to perform operations on resources. Consequently, the constructs of all RESTful API

SWIM-006
Version 1.0.0

17

messages—and their respective headers—are inherently defined by Hypertext Transfer Protocol,
version 1.1.

4.1.5.2.1 The HTTP message header SHALL include a version identifier to specify the version of the
API being used (e.g., API-Version: 1.0.0)

Note: Also, refer to section 4.1.6.1, which requires the inclusion of the version number in the URI
path.

4.1.6 Uniform Resource Identifier (URI)

A Uniform Resource Identifier (URI) is a string of characters used to identify a resource on the
internet [13]. In the SWIM framework, URIs support versioning for most artifacts described in this
specification. A new version of an artifact generally requires the creation of a new URI or the
modification of an existing one, such as an API endpoint, the namespace in an XML schema, or a
service identifier in the NSRR.

According to FAA standard FAA-STD-75 [5], a URI shall be declared as an HTTP-based URI. This
means it mandates rendering a URI used for identifying services and/or service-related artifacts with
the default value for the scheme element “http.” This approach allows the URI to serve as a globally
unique identifier and to obtain the location of a resource (system or document).

4.1.6.1 Each URI SHALL include the version number in the path to distinguish different versions of the
artifact (e.g., http://faa.gov/swim/api/fps/1.0/flights).

4.1.6.2 The value of the URI that identifies artifacts described in this specification SHOULD be
dereferenceable.

4.1.7 Other Documentation

This section outlines the versioning procedure for all documents or artifacts not mentioned in
sections 4.1.2 through 4.1.6. Documents that fall into the category of "Other Documentation" may
include, but are not limited to, requirements, design documents, Service Level Agreements (SLAs),
policies, and other related artifacts.

4.1.7.1 Each document SHALL include a version identifier formatted as prescribed in section 3.1.

4.1.7.2 This identifier SHOULD be displayed on the title page of the document.

4.1.7.3 The version identifier SHOULD be included in the header of each page of the document to
ensure that the version is clear and easily identifiable throughout the document.

4.1.7.4 The use of the versioning scheme as described in this specification does not preclude the use
of additional versioning or naming schemes for internal development or tracking purposes.
However, the version identifier format prescribed in this document SHALL be used for all
externally facing documents.

SWIM-006
Version 1.0.0

18

5 Notes
This specification makes no assertions about a correlation between versioning of a service or an
interface and versioning of the documents that are used to describe or represent the service.

No retroactive application of these guidelines is envisioned for currently published services'
versions. Existing version identifiers will be exempted.

The versioning scheme described in this specification is intended to be applied consistently across all
SWIM-enabled services and artifacts. However, it is recognized that there may be cases where
deviations from this scheme are necessary due to specific requirements or constraints. In such
cases, the rationale for the deviation should be clearly documented and communicated to all
relevant stakeholders.

6 Quality Assurance Provisions
All artifacts described in this specification are registered or intended to be registered or uploaded in
the NSRR.

The artifacts presented for uploading to the NSRR will be subject to verification that they conform to
the requirements prescribed by this specification.

 Verification will be performed by inspection by the members of the SWIM Governance team
using the following criteria.
Conformance to versioning guidelines.

 Consistency of version identifiers with documented changes.
 Completeness and accuracy of the provided artifacts.

Regular reviews and updates of the versioning process will be conducted based on feedback and
evolving requirements.

7 Preparations for Delivery
Delivery of versioned artifacts within the SWIM ecosystem will be systematic, secure, and
transparent, ensuring that all stakeholders have access to the latest versions and related
information.

Artifacts will be stored in a secure digital repository, such as the NAS Service Registry/Repository
(NSRR), ensuring they are accessible to authorized users.

Versioned artifacts will be uploaded to the NSRR for official registration and archival as prescribed
by SWIM Governance Policies [2].

Re-versioned artifacts will be presented to relevant stakeholders through appropriate change
boards or forums.

	1 Scope
	1.1 Scope
	1.2 Overview
	1.2.1 Background
	1.2.2 Basic Concepts
	1.2.2.1 Versioning
	1.2.2.2 Version Identifier
	1.2.2.3 Key Artifacts

	1.3 Intended Audience
	1.4 Notational Conventions
	1.5 Terms and Definitions
	1.6 Order of Precedence

	2 Applicable Documents
	2.1 Government Documents
	2.2 Non-Government Publications

	3 General Requirements
	3.1 General Requirements
	3.1.1 Every release of a SWIM service interface or service-related artifact SHALL be versioned according to this specification.
	3.1.2 A version identifier SHALL be formatted as three dot-separated positive integers without leading zeroes (e.g., “2.2.1”):
	3.1.3 The version identifier SHALL always include a major version number as a positive integer without leading zeroes (e.g., “1”).
	3.1.4 The version identifier SHOULD include a minor version number as a dot-separated positive integer without leading zeroes following the major version number (e.g., “1.1”). However, it may be omitted if only major changes are communicated.
	3.1.5 The version identifier MAY include a patch version number as a dot-separated positive integer without leading zeroes following the minor version number (e.g., “1.1.1”).
	3.1.6 A version identifier SHALL be presented as part of the versioned artifact, independent of any additional tooling.

	4 Detailed Requirements
	4.1 Detailed Requirements
	4.1.1 Services and Service Interfaces
	4.1.1.1 All SWIM-enabled services SHALL be versioned; that is, a service identifier SHALL be assigned as prescribed in section 3.1 of this specification.
	4.1.1.2 The service version identifier SHALL be included in service metadata stored and presented by the NSRR.
	Note: SWIM Governance Policies [2] mandate registering all SWIM services in the NSRR.
	4.1.1.2.1 In the event of a conflict between the service version presented in the NSRR and other service-related artifacts, the version shown in the NSRR SHALL take precedence.

	4.1.2 RESTful APIs
	4.1.2.1 Each REST API SHALL include the version identifier in the URI path (e.g., http://swim.faa.org/services/fps/2.3).
	4.1.2.2 REST APIs SHOULD support versioning through a custom header.
	4.1.2.3 REST APIs SHOULD use the "API-Version" HTTP header to identify the version of the API being requested (e.g., API-Version: 2.3).
	4.1.2.4 REST APIs MAY include a version identifier as a query parameter (e.g., http://example.org/api/flights?version=2.3)

	4.1.3 Data Exchange Schemas
	4.1.3.1 XML Schema
	4.1.3.1.1.1.1 XML schemas SHALL define a unique namespace URI that includes the version identifier.
	4.1.3.1.1.1.2 Each XML schema SHOULD include a version attribute in the root element to specify the version.
	4.1.3.1.1.1.3 XML schemas MAY include documentation within the schema file that specifies the version including brief description of the version.

	4.1.3.2 JSON Schema
	4.1.3.2.1.1.1 Each JSON schema SHALL include a $id attribute formatted as a URI of the schema that includes a version identifier.
	4.1.3.2.1.1.2 The $id attribute in a JSON schema MAY be presented as a URL dereferenceable to the schema location.
	4.1.3.2.1.1.3 Each JSON schema SHALL include a version property within the schema to specify the version.

	4.1.4 Service Description
	4.1.4.1 Machine-processable service descriptions
	4.1.4.1.1 WSDL
	4.1.4.1.1.1.1 Each WSDL file SHALL include a version attribute in the definitions element to specify the version.
	4.1.4.1.1.1.2 WSDL files SHALL define a unique namespace URI that includes the version identifier.
	4.1.4.1.1.1.3 WSDL files SHALL include documentation within the file that specifies the version and provides a summary of changes.

	4.1.4.1.2 OpenAPI
	4.1.4.1.2.1.1 Each OpenAPI document SHALL include an id attribute that is formed as URI which includes the version identifier.
	4.1.4.1.2.1.2 Each OpenAPI document SHALL include a version attribute in the info object to specify the version.

	4.1.4.2 Human-Readable Service Descriptions
	4.1.4.2.1.1.1 All service descriptions SHALL be versioned; that is, a service identifier SHALL be assigned as prescribed in section 3.1 of this specification.
	4.1.4.2.1.1.2 The service identifier SHALL be displayed on the title page of a service description document.
	4.1.4.2.1.1.3 The service identifier SHOULD be included in the headers of the service description document.

	4.1.5 Message Headers
	4.1.5.1 Java Message Service (JMS)
	4.1.5.1.1 Each JMS message header SHALL include a version identifier to specify the version of the SWIM service that originates the message.

	4.1.5.2 Hypertext Transfer Protocol (HTTP)
	4.1.5.2.1 The HTTP message header SHALL include a version identifier to specify the version of the API being used (e.g., API-Version: 1.0.0)

	4.1.6 Uniform Resource Identifier (URI)
	4.1.6.1 Each URI SHALL include the version number in the path to distinguish different versions of the artifact (e.g., http://faa.gov/swim/api/fps/1.0/flights).
	4.1.6.2 The value of the URI that identifies artifacts described in this specification SHOULD be dereferenceable.

	4.1.7 Other Documentation
	4.1.7.1 Each document SHALL include a version identifier formatted as prescribed in section 3.1.
	4.1.7.2 This identifier SHOULD be displayed on the title page of the document.
	4.1.7.3 The version identifier SHOULD be included in the header of each page of the document to ensure that the version is clear and easily identifiable throughout the document.
	4.1.7.4 The use of the versioning scheme as described in this specification does not preclude the use of additional versioning or naming schemes for internal development or tracking purposes. However, the version identifier format prescribed in this d...

	5 Notes
	6 Quality Assurance Provisions
	7 Preparations for Delivery

