

Web Services Description Language
(WSDL) Version 2.0 Part 2: Adjuncts

W3C Recommendation 26 June 2007

This version:
http://www.w3.org/TR/2007/REC-wsdl20-adjuncts-20070626

Latest version:
http://www.w3.org/TR/wsdl20-adjuncts

Previous version:
http://www.w3.org/TR/2007/PR-wsdl20-adjuncts-20070523

Editors:
Roberto Chinnici, Sun Microsystems
Hugo Haas, W3C
Amelia A. Lewis, TIBCO Software
Jean-Jacques Moreau, Canon
David Orchard, BEA Systems
Sanjiva Weerawarana, WSO2

Please refer to the errata for this document, which may include some normative
corrections.

This document is also available in these non-normative formats: PDF, PostScript,
XML, and plain text.

See also translations.

Copyright © 2007 W3C® (MIT, ERCIM, Keio), All Rights Reserved. W3C liability,
trademark and document use rules apply.

Abstract

WSDL 2.0 is the Web Services Description Language, an XML language for
describing Web services. This document, "Web Services Description Language
(WSDL) Version 2.0 Part 2: Adjuncts", specifies predefined extensions for use in
WSDL 2.0:

 Message exchange patterns

 Operation safety

 Operation styles

 Binding extensions for SOAP and HTTP

Status of this Document

This section describes the status of this document at the time of its publication.
Other documents may supersede this document. A list of current W3C
publications and the latest revision of this technical report can be found in the
W3C technical reports index at http://www.w3.org/TR/.

This is the W3C Recommendation of Web Services Description Language
(WSDL) Version 2.0 Part 2: Adjuncts for review by W3C Members and other
interested parties. It has been produced by the Web Services Description
Working Group, which is part of the W3C Web Services Activity.

Please send comments about this document to the public public-ws-desc-
comments@w3.org mailing list (public archive).

The Working Group released a test suite along with an implementation report. A
diff-marked version against the previous version of this document is available.

This document has been reviewed by W3C Members, by software developers,
and by other W3C groups and interested parties, and is endorsed by the Director
as a W3C Recommendation. It is a stable document and may be used as
reference material or cited from another document. W3C's role in making the
Recommendation is to draw attention to the specification and to promote its
widespread deployment. This enhances the functionality and interoperability of
the Web.

This document is governed by the 24 January 2002 CPP as amended by the
W3C Patent Policy Transition Procedure. W3C maintains a public list of any
patent disclosures made in connection with the deliverables of the group; that
page also includes instructions for disclosing a patent. An individual who has
actual knowledge of a patent which the individual believes contains Essential
Claim(s) must disclose the information in accordance with section 6 of the W3C
Patent Policy.

Table of Contents

1. Introduction
 1.1 Notational Conventions
 1.2 Assertions
2. Predefined Message Exchange Patterns
 2.1 Template for Message Exchange Patterns
 2.1.1 Pattern Name
 2.2 Fault Propagation Rules
 2.2.1 Fault Replaces Message propagation rule
 2.2.2 Message Triggers Fault propagation rule
 2.2.3 No Faults propagation rule
 2.3 Message Exchange Patterns
 2.3.1 In-Only message exchange pattern
 2.3.2 Robust In-Only message exchange pattern

 2.3.3 In-Out message exchange pattern
 2.4 Security Considerations
3. Predefined Extensions
 3.1 Operation safety
 3.1.1 Relationship to WSDL Component Model
 3.1.2 XML Representation
 3.1.3 Mapping from XML Representation to Component Properties
4. Predefined Operation Styles
 4.1 RPC Style
 4.1.1 wrpc:signature Extension
 4.1.2 XML Representation of the wrpc:signature Extension
 4.1.3 wrpc:signature Extension Mapping To Properties of an Interface
Operation component
 4.2 IRI Style
 4.3 Multipart style
5. WSDL SOAP Binding Extension
 5.1 SOAP Syntax Summary (Non-Normative)
 5.2 Identifying the use of the SOAP Binding
 5.3 SOAP Binding Rules
 5.4 Specifying the SOAP Version
 5.4.1 Description
 5.4.2 Relationship to WSDL Component Model
 5.4.3 XML Representation
 5.4.4 Mapping from XML Representation to Component properties
 5.5 Specifying the SOAP Underlying Protocol
 5.5.1 Description
 5.5.2 Relationship to WSDL Component Model
 5.5.3 XML Representation
 5.5.4 Mapping from XML Representation to Component Properties
 5.6 Binding Faults
 5.6.1 Description
 5.6.2 Relationship to WSDL Component Model
 5.6.3 XML Representation
 5.6.4 Mapping XML Representation to Component Properties
 5.7 Binding Operations
 5.7.1 Description
 5.7.2 Relationship to WSDL Component Model
 5.7.3 XML Representation
 5.7.4 Mapping from XML Representation to Component Properties
 5.8 Declaring SOAP Modules
 5.8.1 Description
 5.8.2 Relationship to WSDL Component Model
 5.8.3 SOAP Module component
 5.8.4 XML Representation
 5.8.5 Mapping from XML Representation to Component Properties
 5.8.6 IRI Identification Of A SOAP Module component

 5.9 Declaring SOAP Header Blocks
 5.9.1 Description
 5.9.2 Relationship to WSDL Component Model
 5.9.3 SOAP Header Block component
 5.9.4 XML Representation
 5.9.5 Mapping XML Representation to Component Properties
 5.9.6 IRI Identification Of A SOAP Header Block component
 5.10 WSDL SOAP 1.2 Binding
 5.10.1 Identifying a WSDL SOAP 1.2 Binding
 5.10.2 Description
 5.10.3 SOAP 1.2 Binding Rules
 5.10.4 Binding WSDL 2.0 MEPs to SOAP 1.2 MEPs
 5.10.4.1 WSDL In-Out to SOAP Request-Response
 5.10.4.1.1 The Client
 5.10.4.1.2 The Service
 5.10.4.2 WSDL In-Out to SOAP SOAP-Response
 5.10.4.2.1 The Client
 5.10.4.2.2 The Service
 5.10.4.3 WSDL In-Only to SOAP Request-Response
 5.10.4.3.1 The Client
 5.10.4.3.2 The Service
 5.10.4.4 WSDL Robust-In-Only to SOAP Request-Response
 5.10.4.4.1 The Client
 5.10.4.4.2 The Service
 5.11 Conformance
6. WSDL HTTP Binding Extension
 6.1 Identifying the use of the HTTP Binding
 6.2 HTTP Syntax Summary (Non-Normative)
 6.3 Supported Extensions
 6.4 HTTP Binding Rules
 6.4.1 HTTP Method Selection
 6.4.2 HTTP Content Encoding Selection
 6.4.3 Payload Construction And Serialization Format
 6.4.3.1 Serialization rules for XML messages
 6.4.4 Default input and output serialization format
 6.4.5 HTTP Header Construction
 6.4.6 HTTP Request IRI
 6.5 Binding Operations
 6.5.1 Description
 6.5.2 Relationship to WSDL Component Model
 6.5.3 Specification of serialization rules allowed
 6.5.4 XML Representation
 6.5.5 Mapping from XML Representation to Component Properties
 6.6 Declaring HTTP Headers
 6.6.1 Description
 6.6.2 Relationship to WSDL Component Model

 6.6.3 HTTP Header component
 6.6.4 XML Representation
 6.6.5 Mapping from XML Representation to Component Properties
 6.6.6 IRI Identification Of An HTTP Header component
 6.7 Specifying HTTP Error Code for Faults
 6.7.1 Description
 6.7.2 Relationship to WSDL Component Model
 6.7.3 XML Representation
 6.7.4 Mapping from XML Representation to Component Properties
 6.8 Serialization Format of Instance Data
 6.8.1 Serialization of the instance data in parts of the HTTP request IRI
 6.8.1.1 Construction of the request IRI using the {http location} property
 6.8.2 Serialization as application/x-www-form-urlencoded
 6.8.2.1 Case of elements cited in the {http location} property
 6.8.2.2 Serialization of content of the instance data not cited in the {http
location} property
 6.8.2.2.1 Construction of the query string
 6.8.2.2.2 Controlling the serialization of the query string in the request
IRI
 6.8.2.2.3 Serialization in the request IRI
 6.8.2.2.4 Serialization in the message body
 6.8.3 Serialization as application/xml
 6.8.4 Serialization as multipart/form-data
 6.9 Specifying the Content Encoding
 6.9.1 Description
 6.9.2 Relationship to WSDL Component Model
 6.9.3 XML Representation
 6.9.4 Mapping from XML Representation to Component Properties
 6.10 Specifying the Use of HTTP Cookies
 6.10.1 Description
 6.10.2 Relationship to WSDL Component Model
 6.10.3 XML Representation
 6.10.4 Mapping from XML Representation to Component Properties
 6.11 Specifying HTTP Access Authentication
 6.11.1 Description
 6.11.2 Relationship to WSDL Component Model
 6.11.3 XML Representation
 6.11.4 Mapping from XML Representation to Component Properties
 6.12 Conformance
7. References
 7.1 Normative References
 7.2 Informative References

Appendices

A. Acknowledgements (Non-Normative)
B. Component Summary (Non-Normative)
C. Assertion Summary (Non-Normative)

1. Introduction

The Web Services Description Language Version 2.0 (WSDL 2.0) [WSDL 2.0
Core Language] provides a model and an XML format for describing Web
services. WSDL 2.0 enables one to separate the description of the abstract
functionality offered by a service from concrete details of a service description
such as "how" and "where" that functionality is offered.

This document, "Web Services Description Language (WSDL) Version 2.0 Part
2: Adjuncts", specifies predefined extensions for use in WSDL 2.0:

 Message exchange patterns: 2. Predefined Message Exchange
Patterns

 Operation safety declaration: 3. Predefined Extensions

 Operation styles: 4. Predefined Operation Styles

 Binding extensions:

o A SOAP 1.2 [SOAP 1.2 Part 1: Messaging Framework (Second
Edition)] binding extension: 5. WSDL SOAP Binding Extension

o An HTTP/1.1 [IETF RFC 2616] binding extension: 6. WSDL HTTP
Binding Extension

This document depends on "Web Services Description Language (WSDL)
Version 2.0 Part 1: Core Language" [WSDL 2.0 Core Language]. See also the
"Web Services Description Language (WSDL) Version 2.0 Part 0: Primer" [WSDL
2.0 Primer] for more information and examples.

1.1 Notational Conventions

The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in
this document are to be interpreted as described in RFC2119 [IETF RFC 2119].

This specification uses a number of namespace prefixes throughout; they are
listed in Table 1-1. Note that the choice of any namespace prefix is arbitrary and
not semantically significant (see [XML Information Set]).

Table 1-1. Prefixes and Namespaces used in this specification

Prefix Namespace Notes

wsdl "http://www.w3.org/ns/wsdl"
This namespace is defined in
[WSDL 2.0 Core Language]. A
normative XML Schema [XML

Schema Structures], [XML
Schema Datatypes] document for
the "http://www.w3.org/ns/wsdl"
namespace can be found at
http://www.w3.org/ns/wsdl. This
namespace is used as the default
namespace throughout this
specification.

wsdlx
"http://www.w3.org/ns/wsdl-
extensions"

This specification extends in
section 3. Predefined
Extensions the
"http://www.w3.org/ns/wsdl-
extensions" namespace defined
in [WSDL 2.0 Core Language]. A
normative XML Schema [XML
Schema Structures], [XML
Schema Datatypes] document for
the "http://www.w3.org/ns/wsdl-
extensions" namespace can be
found at
http://www.w3.org/ns/wsdl-
extensions.

wsoap "http://www.w3.org/ns/wsdl/soap"

Defined by this specification. A
normative XML Schema [XML
Schema Structures], [XML
Schema Datatypes] document for
the
"http://www.w3.org/ns/wsdl/soap"
namespace can be found at
http://www.w3.org/ns/wsdl/soap.

whttp "http://www.w3.org/ns/wsdl/http"

Defined by this specification. A
normative XML Schema [XML
Schema Structures], [XML
Schema Datatypes] document for
the
"http://www.w3.org/ns/wsdl/http"
namespace can be found at
http://www.w3.org/ns/wsdl/http.

wrpc "http://www.w3.org/ns/wsdl/rpc"

Defined by this specification. A
normative XML Schema [XML
Schema Structures], [XML
Schema Datatypes] document for
the
"http://www.w3.org/ns/wsdl/rpc"
namespace can be found at

http://www.w3.org/ns/wsdl/rpc.

xs "http://www.w3.org/2001/XMLSchema"

Defined in the W3C XML Schema
specification [XML Schema
Structures], [XML Schema
Datatypes].

Namespace names of the general form "http://example.org/..." and
"http://example.com/..." represent application or context-dependent URIs [IETF
RFC 3986].

All parts of this specification are normative, with the EXCEPTION of pseudo-
schemas, examples, and sections explicitly marked as "Non-Normative".
Pseudo-schemas are provided for each component, before the description of this
component. They provide visual help for the XML [XML 1.0] serialization. The
syntax of BNF pseudo-schemas is the same as the one used in [WSDL 2.0 Core
Language].

1.2 Assertions

Assertions about WSDL 2.0 documents and components that are not enforced by
the normative XML schema for WSDL 2.0 are marked by a dagger symbol (†) at
the end of a sentence. Each assertion has been assigned a unique identifier that
consists of a descriptive textual prefix and a unique numeric suffix. The numeric
suffixes are assigned sequentially and never reused so there may be gaps in the
sequence. The assertion identifiers MAY be used by implementations of this
specification for any purpose, e.g. error reporting.

The assertions and their identifiers are summarized in section C. Assertion
Summary.

2. Predefined Message Exchange Patterns

Web Services Description Language (WSDL) message exchange patterns
(hereafter simply 'patterns') define the sequence and cardinality of abstract
messages listed in an operation. Message exchange patterns also define which
other nodes send messages to, and receive messages from, the service
implementing the operation.

A node is an agent (section 2.3.2.2 Agent of the Web Services Architecture [Web
Services Architecture]) that can transmit and/or receive message(s) described in
WSDL description(s) and process them.

Note:

A node MAY be accessible via more than one physical address or transport.†

WSDL message exchange patterns describe the interaction at the abstract
(interface) level, which may be distinct from the pattern used by the underlying
protocol binding (e.g. SOAP Message Exchange Patterns; section 5.10.3 SOAP

1.2 Binding Rules contains the binding rules for the selection of a SOAP 1.2
message exchange pattern, based on the WSDL message exchange pattern in
use for the SOAP binding extension defined in section 5. WSDL SOAP Binding
Extension).

By design, WSDL message exchange patterns abstract out specific message
types. Patterns identify placeholders for messages, and placeholders are
associated with specific message types by the operation using the pattern.

Unless explicitly stated otherwise, WSDL message exchange patterns also
abstract out binding-specific information such as timing between messages,
whether the pattern is synchronous or asynchronous, and whether the messages
are sent over a single or multiple channels.

Like interfaces and operations, WSDL message exchange patterns do not
exhaustively describe the set of messages exchanged between a service and
other nodes; by some prior agreement, another node and/or the service MAY
send messages (to each other or to other nodes) that are not described by the
pattern.† For instance, even though a pattern can define a single message sent
from a service to one other node, the Web service can in practice multicast that
message to other nodes.

To maximize reuse, WSDL message exchange patterns identify a minimal
contract between other parties and Web services, and contain only information
that is relevant to both the Web service and another party.

This specification defines several message exchange patterns for use with
WSDL Version 2.0 Part 1: Core Language [WSDL 2.0 Core Language].
Additional, non-normative patterns are available in [WSDL 2.0 Additional MEPs].

2.1 Template for Message Exchange Patterns

New message exchange patterns may be defined by any organization able and
willing to do so. It is recommended that the patterns use the general template
provided in 2.1.1 Pattern Name, after examination of existing predefined
patterns.

2.1.1 Pattern Name

This pattern consists of [number] message[s, in order] as follows:

[enumeration, specifying, for each message] A[n optional] message:

1. indicated by an Interface Message Reference component whose
{message label} is "[label]" and {direction} is "[direction]"

2. [received from|sent to] ['some' if first mention] node [node identifier]

This pattern uses the rule [fault ruleset reference].

An Interface Operation using this message exchange pattern has a {message
exchange pattern} property with the value "[pattern IRI]".

Note: In the template, the bracketed items indicate a replacement operation.
Substitute the correct terms for each bracketed item.

Note: the "received from" and "sent to" are always from the point of view of the
service, and participating nodes other than the service are implicitly identified as
the originators of or destinations for messages in the exchange.

2.2 Fault Propagation Rules

WSDL patterns specify their fault propagation model using standard rulesets to
indicate where faults can occur. The most common patterns for fault propagation
are defined in the following subsections, and referenced by the patterns in 2.3
Message Exchange Patterns. "Propagation" is defined as a best-effort attempt
to transmit the fault message to its designated recipient.

WSDL patterns specify propagation of faults, not their generation. Nodes that
generate faults MUST attempt to propagate the faults in accordance with the
governing ruleset, but it is understood that any delivery of a network message is
best effort, not guaranteed.† The rulesets establish the direction of the fault
message and the fault recipient; they do not provide reliability or other delivery
guarantees. When a fault is generated, the generating node MUST attempt to
propagate the fault, and MUST do so in the direction and to the recipient
specified by the ruleset.† However, extensions or binding extensions MAY modify
these rulesets.† For example, WS-Addressing [WSA 1.0 Core] defines a
"FaultTo" address for messages, which is used in lieu of the recipient nominated
by the ruleset.

Generation of a fault, regardless of ruleset, terminates the exchange.†

Binding extensions, features, or extension specifications can override the
semantics of a fault propagation ruleset, but this practice is strongly discouraged.

2.2.1 Fault Replaces Message propagation rule

When the Fault Replaces Message propagation rule is in effect, any message
after the first in the pattern MAY be replaced with a fault message, which MUST
have identical direction. † The fault message MUST be delivered to the same
target node as the message it replaces, unless otherwise specified by an
extension or binding extension. If there is no path to this node, the fault MUST be
discarded.†

The Fault Replaces Message propagation rule is identified by the following URI:
http://www.w3.org/ns/wsdl/fault-replaces-message

2.2.2 Message Triggers Fault propagation rule

When the Message Triggers Fault propagation rule is in effect, any message,
including the first in the pattern, MAY trigger a fault message, which MUST have
opposite direction. † The fault message MUST be delivered to the originator of
the triggering message, unless otherwise specified by an extension or binding

extension. Any node MAY propagate a fault message, and MUST NOT do so
more than once for each triggering message. If there is no path to the originator,
the fault MUST be discarded.†

The Message Triggers Fault propagation rule is identified by the following URI:
http://www.w3.org/ns/wsdl/message-triggers-fault

2.2.3 No Faults propagation rule

When the No Faults propagation rule is in effect, faults MUST NOT be
propagated. †

The No Faults propagation rule is identified by the following URI:
http://www.w3.org/ns/wsdl/no-faults

2.3 Message Exchange Patterns

WSDL patterns are described in terms of the WSDL component model,
specifically the Interface Message Reference and Interface Fault Reference
components.

2.3.1 In-Only message exchange pattern

The in-only message exchange pattern consists of exactly one message as
follows:†

1. A message:

o indicated by a Interface Message Reference component whose
{message label} is "In" and {direction} is "in"

o received from some node N

The in-only message exchange pattern uses the rule 2.2.3 No Faults
propagation rule.†

An operation using this message exchange pattern has a {message exchange
pattern} property with the value "http://www.w3.org/ns/wsdl/in-only".

2.3.2 Robust In-Only message exchange pattern

The robust-in-only message exchange pattern consists of exactly one
message as follows:†

1. A message:

o indicated by a Interface Message Reference component whose
{message label} is "In" and {direction} is "in"

o received from some node N

The robust in-only message exchange pattern uses the rule 2.2.2 Message
Triggers Fault propagation rule.†

An operation using this message exchange pattern has a {message exchange
pattern} property with the value "http://www.w3.org/ns/wsdl/robust-in-only".

2.3.3 In-Out message exchange pattern

The in-out message exchange pattern consists of exactly two messages, in
order, as follows:†

1. A message:

o indicated by a Interface Message Reference component whose
{message label} is "In" and {direction} is "in"

o received from some node N

2. A message:

o indicated by a Interface Message Reference component whose
{message label} is "Out" and {direction} is "out"

o sent to node N

The in-out message exchange pattern uses the rule 2.2.1 Fault Replaces
Message propagation rule.†

An operation using this message exchange pattern has a {message exchange
pattern} property with the value "http://www.w3.org/ns/wsdl/in-out".

2.4 Security Considerations

Note that many of the message exchange patterns defined above describe
responses to an initial message (either a normal response message or a fault.)

Such responses can be used in attempts to disrupt, attack, or map a network,
host, or services. When such responses are directed to an address other than
that originating the initial message, the source of an attack can be obscured, or
blame laid on a third party, or denial-of-service attacks can be enabled or
exacerbated.

Security mechanisms addressing such attacks can prevent the delivery of
response messages to the receiving node. Conformance to the message
exchange pattern is measured prior to the application of these security
mechanisms.

3. Predefined Extensions

3.1 Operation safety

This section defines an extension to WSDL 2.0 [WSDL 2.0 Core Language] that
allows marking an operation as a safe interaction, as defined in section 3.4. Safe
Interactions of [Web Architecture].

This extension MAY be used for setting defaults in bindings, such as in the HTTP
binding (see 6.5.5 Mapping from XML Representation to Component
Properties).

3.1.1 Relationship to WSDL Component Model

The safety extension adds the following property to the Interface Operation
component model (defined in [WSDL 2.0 Core Language]):

 {safe} REQUIRED. An xs:boolean indicating whether the operation is
asserted to be safe for users to invoke. If this property is "false", then no
assertion has been made about the safety of the operation, thus the
operation MAY or MAY NOT be safe. However, an operation SHOULD be
marked safe if it meets the criteria for a safe interaction defined in Section
3.4 of [Web Architecture].†

3.1.2 XML Representation

<description>
 <interface>
 <operation name="xs:NCName" pattern="xs:anyURI"
 wsdlx:safe="xs:boolean"? >
 </operation>
 </interface>
</description>

The XML representation for the safety extension is an attribute information item
with the following Infoset properties:

 An OPTIONAL safe attribute information item with the following Infoset
properties:†

o A [local name] of safe

o A [namespace name] of "http://www.w3.org/ns/wsdl-extensions"

o A type of xs:boolean

3.1.3 Mapping from XML Representation to Component Properties

See Table 3-1.

Table 3-1. Mapping from XML Representation to Interface Operation component
Extension Properties

Property Value

{safe}
The actual value of the safe attribute information item, if present;
otherwise the value "false".

4. Predefined Operation Styles

This section defines operation styles that can be used to place constraints on
Interface Operation components, in particular with respect to the format of the
messages they refer to. The serialization formats defined in section 6.8
Serialization Format of Instance Data require bound Interface Operation
components to have one or more of the styles defined in this section.

4.1 RPC Style

The RPC style is selected by including the value
"http://www.w3.org/ns/wsdl/style/rpc" in the {style} property of an Interface
Operation component.

An Interface Operation component conforming to the RPC style MUST obey the
constraints listed further below. Also, if the wrpc:signature extension is engaged
simultaneously, the corresponding attribute information item MUST be valid
according to the schema for the extension and additionally MUST obey the
constraints listed in 4.1.1 wrpc:signature Extension and 4.1.2 XML
Representation of the wrpc:signature Extension.

Furthermore, the associated messages MUST conform to the rules below,
described using XML Schema [XML Schema Structures]. Note that operations
containing messages described by other type systems may also indicate use of
the RPC style, as long as they are constructed in such a way as to follow these
rules.

If the RPC style is used by an Interface Operation component then its {message
exchange pattern} property MUST have the value either
"http://www.w3.org/ns/wsdl/in-only" or "http://www.w3.org/ns/wsdl/in-out".†

If the Interface Operation component uses a {message exchange pattern} for
which there is no output element, i.e. "http://www.w3.org/ns/wsdl/in-only", then
the conditions stated below that refer to output elements MUST be considered to
be implicitly satisfied.

 The value of the {message content model} property for the Interface
Message Reference components of the {interface message references}
property MUST be "#element".†

 The content model of input and output {element declaration} elements
MUST be defined using a complex type that contains a sequence from
XML Schema.†

 The input sequence MUST only contain elements and element wildcards.†
It MUST NOT contain other structures such as xs:choice. The input
sequence MUST NOT contain more than one element wildcard.† The
element wildcard, if present, MUST appear after any elements.†

 The output sequence MUST only contain elements.† It MUST NOT contain
other structures such as xs:choice.

 Both the input and output sequences MUST contain only local element
children.† Note that these child elements MAY contain the following
attributes: nillable, minOccurs and maxOccurs.

 The local name of input element's QName MUST be the same as the
Interface Operation component's name.†

 Input and output elements MUST both be in the same namespace.†

 The complex type that defines the body of an input or an output element
MUST NOT contain any local attributes.† Extension attributes are allowed
for purposes of managing the message infrastructure (e.g. adding
identifiers to facilitate digitally signing the contents of the message). They
must not be considered as part of the application data that is conveyed by
the message. Therefore, they are never included in an RPC signature
(see 4.1.1 wrpc:signature Extension).

 If elements with the same qualified name appear as children of both the
input and output elements, then they MUST both be declared using the
same named type.†

 The input or output sequence MUST NOT contain multiple children
elements declared with the same name.†

4.1.1 wrpc:signature Extension

The wrpc:signature extension attribute information item MAY be used in
conjunction with the RPC style to describe the exact signature of the function
represented by an operation that uses the RPC style.

When present, the wrpc:signature extension contributes the following property
to the Interface Operation component it is applied to:

 {rpc signature} OPTIONAL, but MUST be present when the style is RPC†.
A list of pairs (q, t) whose first component is of type xs:QName and whose
second component is of type xs:token. Values for the second component
MUST be chosen among the following four: "#in", "#out", "#inout"
"#return".†

The value of the {rpc signature} property MUST satisfy the following conditions:

 The value of the first component of each pair (q, t) MUST be unique within
the list.†

 For each child element of the input and output messages of the operation,
a pair (q, t), whose first component q is equal to the qualified name of that
element, MUST be present in the list, with the caveat that elements that
appear with cardinality greater than one MUST be treated as a single
element.†

 For each pair (q, #in), there MUST be a child element of the input element
with a name of q. There MUST NOT be a child element of the output
element with the name of q.†

 For each pair (q, #out), there MUST be a child element of the output
element with a name of q. There MUST NOT be a child element of the
input element with the name of q.†

 For each pair (q, #inout), there MUST be a child element of the input
element with a name of q. There MUST also be a child element of the
output element with the name of q.†

 For each pair (q, #return), there MUST be a child element of the output
element with a name of q. There MUST NOT be a child element of the
input element with the name of q.†

The function signature defined by a wrpc:signature extension is determined as
follows:

1. Start with the value of the {rpc signature} property, a (possibly empty) list
of pairs of this form:

 [(q0, t0), (q1, t1), ...]

2. Filter the elements of this list into two lists, the first one (L1) comprising
pairs whose t component is one of {#in, #out, #inout}, the second (L2)
pairs whose t component is #return. During the composition of L1 and L2,
the relative order of members in the original list MUST be preserved.

For ease of visualization, let's denote the two lists as:

 (L1) [(a0, u0), (a1, u1), ...]

and

 (L2) [(r0, #return), (r1, #return), ...]

respectively.

3. Then, if the input sequence ends with an element wildcard, the formal
signature of the function is:

 f([d0] a0, [d1] a1, ..., rest) => (r0, r1, ...)

where rest is a formal parameter representing the elements in the input
message matched by the element wildcard.

Otherwise the formal signature of the function is:

 f([d0] a0, [d1] a1, ...) => (r0, r1, ...)

i.e.:

o the list of formal arguments to the function is [a0, a1, ...];

o the direction d of each formal argument a is one of [in], [out], [inout],
determined according to the value of its corresponding u token;

o the list of formal return parameters of the function is [r0, r1, ...];

o each formal argument and formal return parameter is typed
according to the type of the child element identified by it (unique per
the conditions given above).

Note:

The wrpc:signature extension allows the specification of multiple return values
for an operation. Several popular programming languages support multiple return
values for a function. Moreover, for languages which do not, the burden on
implementers should be small, as typically multiple return values will be mapped

to a single return value of a structure type (or its closest language-specific
equivalent).

4.1.2 XML Representation of the wrpc:signature Extension

The XML representation for the RPC signature extension is an attribute
information item with the following Infoset properties:

 A [local name] of signature

 A [namespace name] of "http://www.w3.org/ns/wsdl/rpc"

The type of the signature attribute information item is a list type whose item type
is the union of the xs:QName type and the subtype of the xs:token type restricted
to the following four values: "#in", "#out", "#inout", "#return". See Example 4-1 for
an excerpt from the normative schema definition of this type.

Additionally, each even-numbered item (0, 2, 4, ...) in the list MUST be of type
xs:QName and each odd-numbered item (1, 3, 5, ...) in the list MUST be of the
subtype of xs:token described in the previous paragraph.†

Example 4-1. Definition of the wrpc:signature extension
<xs:attribute name="signature" type="wrpc:signatureType"/>

<xs:simpleType name="signatureType">
 <xs:list itemType="wrpc:signatureItemType"/>
</xs:simpleType>

<xs:simpleType name="signatureItemType">
 <xs:union memberTypes="xs:QName wrpc:directionToken"/>
</xs:simpleType>

<xs:simpleType name="directionToken">
 <xs:restriction base="xs:token">
 <xs:enumeration value="#in"/>
 <xs:enumeration value="#out"/>
 <xs:enumeration value="#inout"/>
 <xs:enumeration value="#return"/>
 </xs:restriction>
</xs:simpleType>

4.1.3 wrpc:signature Extension Mapping To Properties of an Interface
Operation component

A wrpc:signature extension attribute information item is mapped to the following
property of the Interface Operation component defined by its [owner].

Table 4-1. Mapping of a wrpc:signature Extension to Interface Operation
component Properties

Property Value

{rpc
signature}

A list of (xs:QName, xs:token) pairs formed by grouping the items
present in the actual value of the wrpc:signature attribute
information item in the order in which they appear there.

4.2 IRI Style

The IRI style is selected by including the value
"http://www.w3.org/ns/wsdl/style/iri" in the {style} property of an Interface
Operation component.

When using this style, the value of the {message content model} property of the
Interface Message Reference component corresponding to the initial message of
the message exchange pattern MUST be "#element".†

Use of this value indicates that XML Schema [XML Schema Structures] was
used to define the schema of the {element declaration} property of the Interface
Message Reference component of the Interface Operation component
corresponding to the initial message of the message exchange pattern. This
schema MUST adhere to the rules below:

 The content model of this element is defined using a complex type that
contains a sequence from XML Schema.

 The sequence MUST only contain elements.† It MUST NOT contain other
structures such as xs:choice. There are no occurrence constraints on the
sequence.

 The sequence MUST contain only local element children.† Note these
child elements can contain the nillable attribute.

 The localPart of the element's QName MUST be the same as the Interface
Operation component's {name}.†

 The complex type that defines the body of the element or its children
elements MUST NOT contain any attributes.†

 The children elements of the sequence MUST derive from xs:simpleType,
and MUST NOT be of the type or derive from xs:QName, xs:NOTATION,
xs:hexBinary or xs:base64Binary.†

4.3 Multipart style

The Multipart style is selected by including the value
"http://www.w3.org/ns/wsdl/style/multipart" in the {style} property of an Interface
Operation component.

When using this style, the value of the {message content model} property of the
Interface Message Reference component corresponding to the initial message of
the message exchange pattern MUST be "#element".†

Use of this value indicates that XML Schema [XML Schema Structures] was
used to define the schema of the {element declaration} property of the Interface

Message Reference component of the Interface Operation component
corresponding to the initial message of the message exchange pattern. This
schema MUST adhere to the rules below:

 The content model of this element is defined using a complex type that
contains a sequence from XML Schema.

 The sequence MUST only contain elements.† It MUST NOT contain other
structures such as xs:choice.

 The sequence MUST contain only local element children.† The attributes
minOccurs and maxOccurs for these child elements MUST have a value 1.†
Note these child elements can contain the nillable attribute.

 The localPart of the element's QName MUST be the same as the Interface
Operation component's {name}.†

 The complex type that defines the body of the element or its children
elements MUST NOT contain any attributes.†

 The sequence MUST NOT contain multiple children element declared with
the same local name.†

5. WSDL SOAP Binding Extension

The SOAP binding extension described in this section is an extension for [WSDL
2.0 Core Language] to enable Web services applications to use SOAP. This
binding extension is SOAP version independent ("1.2" as well as other versions)
and extends WSDL 2.0 by adding properties to the Binding component, and its
related components, as defined in [WSDL 2.0 Core Language]. In addition, an
XML Infoset representation for these additional properties is provided, along with
a mapping from that representation to the various component properties.

As allowed in [WSDL 2.0 Core Language], a Binding component can exist
without indicating a specific Interface component that it applies to. In this case,
no Binding Operation or Binding Fault component can be present in the Binding
component.

The SOAP binding extension is designed with the objective of minimizing what
needs to be explicitly declared for common cases. This is achieved by defining a
set of default rules that affect all Interface Operation components of an Interface
component to which the SOAP binding extension is applied, unless specifically
overridden by a Binding Operation component. Thus, if a given Interface
Operation component is not referred to specifically by a Binding Operation
component, then all the default rules apply to that Interface Operation
component. As a result, in accordance with the requirements of [WSDL 2.0 Core
Language], all operations of an Interface component will be bound by this binding
extension.

Note: As in other parts of this specification, one could have done away with
"default" properties at the component model level, and have set the value for the
corresponding non-default properties in the XML mapping section. However,
default properties are required for interface-less binding. Indeed, an interface-

less binding has no means to set the non-default version of the property at the
operation-level, since there is precisely no operation (there is not even an
interface). Hence the mapping needs to be done elsewhere.

A subset of the HTTP properties specified in the HTTP binding extension defined
in section 6. WSDL HTTP Binding Extension are present in a SOAP binding
when the SOAP binding uses HTTP as the underlying protocol, for example,
when the value of the {soap underlying protocol} property of the Binding
component is "http://www.w3.org/2003/05/soap/bindings/HTTP/". These
properties MUST NOT be used unless the underlying protocol is HTTP.† The
allowed properties are the ones that describe the underlying protocol (HTTP):

 {http location} and {http location ignore uncited} on Binding Operation
components, as defined in 6.5 Binding Operations and 6.8.2.2.2
Controlling the serialization of the query string in the request IRI,
respectively.

 {http headers} on Binding Message Reference and Binding Fault
components, as defined in 6.6 Declaring HTTP Headers

 {http query parameter separator default} on Binding components, {http
query parameter separator} on Binding Operation components, as defined
in 6.5.2 Relationship to WSDL Component Model

 {http content encoding default} on Binding and Binding Operation
components, {http content encoding} on Binding Message Reference and
Binding Fault components, as defined in 6.9 Specifying the Content
Encoding

 {http cookies} on Binding components, as defined in 6.10 Specifying the
Use of HTTP Cookies.

 {http authentication scheme} and {http authentication realm} on Endpoint
components, as defined in 6.11 Specifying HTTP Access
Authentication

5.1 SOAP Syntax Summary (Non-Normative)

<description>
 <binding name="xs:NCName" interface="xs:QName"?
 type="http://www.w3.org/ns/wsdl/soap"
 whttp:queryParameterSeparatorDefault="xs:string"??
 whttp:contentEncodingDefault="xs:string"??
 whttp:cookies="xs:boolean"?
 wsoap:version="xs:string"?
 wsoap:protocol="xs:anyURI"
 wsoap:mepDefault="xs:anyURI"? >
 <documentation />*

 <wsoap:module ref="xs:anyURI" required="xs:boolean"? >
 <documentation />*
 </wsoap:module>*

 <fault ref="xs:QName"

 wsoap:code="union of xs:QName, xs:token"?
 wsoap:subcodes="union of (list of xs:QName), xs:token"?
 whttp:contentEncoding="xs:string"?? >

 <documentation />*

 <wsoap:module ... />*
 <wsoap:header element="xs:QName" mustUnderstand="xs:boolean"?
 required="xs:boolean"? >
 <documentation />*
 </wsoap:header>*
 <whttp:header ... />*??

 </fault>*

 <operation ref="xs:QName"
 whttp:location="xs:anyURI"??
 whttp:contentEncodingDefault="xs:string"??
 whttp:queryParameterSeparator="xs:string"??
 whttp:ignoreUncited="xs:boolean"??
 wsoap:mep="xs:anyURI"?
 wsoap:action="xs:anyURI"? >

 <documentation />*

 <wsoap:module ... />*

 <input messageLabel="xs:NCName"?
 whttp:contentEncoding="xs:string"?? >
 <documentation />*
 <wsoap:module ... />*
 <wsoap:header ... />*
 <whttp:header ... />*??
 </input>*

 <output messageLabel="xs:NCName"?
 whttp:contentEncoding="xs:string"?? >
 <documentation />*
 <wsoap:module ... />*
 <wsoap:header ... />*
 <whttp:header ... />*??
 </output>*

 <infault ref="xs:QName"
 messageLabel="xs:NCName"?>
 <documentation />*
 <wsoap:module ... />*
 </infault>*

 <outfault ref="xs:QName"
 messageLabel="xs:NCName"?>
 <documentation />*
 <wsoap:module ... />*
 </outfault>*

 </operation>*

 </binding>

 <service>
 <endpoint name="xs:NCName" binding="xs:QName"
address="xs:anyURI"?
 whttp:authenticationScheme="xs:token"??
 whttp:authenticationRealm="xs:string"?? >
 <documentation />*
 </endpoint>
 </service>
</description>

Note:

The double question marks ("??") after the attributes in the whttp namespace
indicates that those optional attributes only make sense when the SOAP binding
uses HTTP as the underlying protocol, for example, when the value of the
wsoap:protocol attribute is "http://www.w3.org/2003/05/soap/bindings/HTTP/".

5.2 Identifying the use of the SOAP Binding

A Binding component (defined in [WSDL 2.0 Core Language]) is identified as a
SOAP binding by assigning the value "http://www.w3.org/ns/wsdl/soap" to the
{type} property of the Binding component.

5.3 SOAP Binding Rules

 Payload Construction. When formulating the SOAP envelope to be
transmitted, the contents of the payload (i.e., the contents of the SOAP
Body element information item of the SOAP envelope) MUST be what is
defined by the corresponding Interface Message Reference component.†
This is further subject to optimization by a feature in use which affects
serialization, such as MTOM [SOAP Message Transmission Optimization
Mechanism]. The following binding rules MUST be adhered to:

o If the value of the {message content model} property of the
Interface Message Reference component is "#any", then the
payload MAY be any one XML element.

o If the value is "#none", then the payload MUST be empty.†

o If the value is "#element", then the payload MUST be the element
information item identified by the {element declaration} property of
the Interface Message Reference component.†

o If the Interface Message Reference component is declared using a
non-XML type system (as considered in the Types section of
[WSDL 2.0 Core Language]), then additional binding rules MUST
be defined to indicate how to map those components into the
SOAP envelope.†

Note:

This SOAP binding extension only allows one single element in the SOAP
body.

 SOAP Header Construction. If the {soap headers} property as defined in
section 5.9 Declaring SOAP Header Blocks exists and is not empty in a
Binding Message Reference or Binding Fault component, then an element
information item conforming to the element declaration of a SOAP Header
Block component's {element declaration} property, in the {soap headers}
property, MAY be turned into a SOAP header block for the corresponding
message.

If the value of the SOAP Header Block component's {required} property is
"true", the inclusion of this SOAP header block is REQUIRED, otherwise it
is OPTIONAL.

And, if the SOAP Header Block component's {mustUnderstand} property is
present and its value is "true", that particular SOAP header block MUST
be marked with a mustUnderstand attribute information item with a value of
"true" or "1" as per the SOAP specification.

SOAP header blocks other than the ones declared in the {soap headers}
property may be present at run-time, such as the SOAP header blocks
resulting from SOAP modules declared as explained in section 5.8
Declaring SOAP Modules.

5.4 Specifying the SOAP Version

5.4.1 Description

Every SOAP binding MUST indicate what version of SOAP is in use for the
operations of the interface that this binding applies to.†

By default, SOAP 1.2 [SOAP 1.2 Part 1: Messaging Framework (Second
Edition)] is used.

5.4.2 Relationship to WSDL Component Model

The SOAP protocol specification adds the following property to the WSDL
component model (as defined in [WSDL 2.0 Core Language]):

 {soap version} REQUIRED. A xs:string, to the Binding component.

5.4.3 XML Representation

<description>
 <binding name="xs:NCName" interface="xs:QName"? type="xs:anyURI"
 wsoap:version="xs:string"? >
 ...
 </binding>
</description>

The XML representation for specifying the SOAP version is an optional attribute
information item with the following Infoset properties:

 A [local name] of version

 A [namespace name] of "http://www.w3.org/ns/wsdl/soap"

 A type of xs:string

5.4.4 Mapping from XML Representation to Component properties

See Table 5-1.

Table 5-1. Mapping from XML Representation to Binding component Extension
Properties

Property Value

{soap
version}

The actual value of the wsoap:version attribute information item, if
present; otherwise "1.2".

5.5 Specifying the SOAP Underlying Protocol

5.5.1 Description

Every SOAP binding MUST indicate what underlying protocol is in use.†

5.5.2 Relationship to WSDL Component Model

The SOAP protocol specification adds the following property to the WSDL
component model (as defined in [WSDL 2.0 Core Language]):

 {soap underlying protocol} REQUIRED. A xs:anyURI, which is an absolute
IRI as defined by [IETF RFC 3987], to the Binding component. This IRI
refers to an appropriate SOAP underlying protocol binding (see SOAP
Protocol Binding Framework in [SOAP 1.2 Part 1: Messaging Framework
(Second Edition)]), which is to be used for any of the SOAP interactions
described by this binding.

5.5.3 XML Representation

<description>
 <binding name="xs:NCName" interface="xs:QName"? type="xs:anyURI"
 wsoap:protocol="xs:anyURI" >
 ...
 </binding>
</description>

The XML representation for specifying the SOAP protocol is a REQUIRED
attribute information item with the following Infoset properties:

 A [local name] of protocol

 A [namespace name] of "http://www.w3.org/ns/wsdl/soap"

 A type of xs:anyURI

5.5.4 Mapping from XML Representation to Component Properties

See Table 5-2.

Table 5-2. Mapping from XML Representation to Binding component Extension
Properties

Property Value

{soap underlying
protocol}

The actual value of the wsoap:protocol attribute
information item.

5.6 Binding Faults

5.6.1 Description

For every Interface Fault component contained in an Interface component, a
mapping to a SOAP Fault MUST be described.† This binding extension
specification allows the user to indicate the SOAP fault code and subcodes that
are transmitted for a given Interface Fault component.

5.6.2 Relationship to WSDL Component Model

The SOAP Fault binding extension adds the following properties to the WSDL
component model (as defined in [WSDL 2.0 Core Language]):

 {soap fault code} REQUIRED. A union of xs:QName and xs:token, to the
Binding Fault component, where:

o when the value of the {soap version} is "1.2", the allowed QNames
MUST be the ones defined by [SOAP 1.2 Part 1: Messaging
Framework (Second Edition)], section 5.4.6†;

o the allowed token value is "#any".

The value of this property identifies a possible SOAP fault for the
operations in scope. If the value of this property is "#any", no assertion is
made about the possible value of the SOAP fault code.

 {soap fault subcodes} REQUIRED. A union of list of xs:QName, and
xs:token where the allowed token value is "#any", to the Binding Fault
component. The value of this property identifies one or more subcodes for
this SOAP fault. The list of subcodes is the nested sequence of subcodes.
An empty list represents a fault code without subcodes.

5.6.3 XML Representation

<description>
 <binding >
 <fault ref="xs:QName"
 wsoap:code="union of xs:QName, xs:token"?
 wsoap:subcodes="union of (list of xs:QName), xs:token"? >
 <documentation />*
 </fault>*
 </binding>
</description>

The XML representation for binding a SOAP Fault are two attribute information
items with the following Infoset properties:

 wsoap:code OPTIONAL attribute information item

o A [local name] of code

o A [namespace name] of "http://www.w3.org/ns/wsdl/soap"

o A type of union of xs:QName and xs:token where the allowed token
value is "#any"

 wsoap:subcodes OPTIONAL attribute information item

o A [local name] of subcodes

o A [namespace name] of "http://www.w3.org/ns/wsdl/soap"

o A type of union of list of xs:QName, and xs:token where the allowed
token value is "#any"

5.6.4 Mapping XML Representation to Component Properties

See Table 5-3.

Table 5-3. Mapping from XML Representation to SOAP Fault component
Properties

Property Value

{soap fault code}
The actual value of the code attribute information item, if
present; otherwise "#any".

{soap fault
subcodes}

The actual value of the subcodes attribute information item, if
present; otherwise "#any".

5.7 Binding Operations

5.7.1 Description

For every Interface Operation component contained in an Interface component,
in addition to the binding rules (for SOAP 1.2, see 5.10.3 SOAP 1.2 Binding
Rules), there may be additional binding information to be specified. This binding
extension specification allows the user to indicate the SOAP Message Exchange

Pattern (MEP) and a value for the SOAP Action Feature on a per-operation
basis.

5.7.2 Relationship to WSDL Component Model

The SOAP Operation binding extension specification adds the following property
to the WSDL component model (as defined in [WSDL 2.0 Core Language]):

 {soap mep default} OPTIONAL. A xs:anyURI, which is an absolute IRI as
defined by [IETF RFC 3987], to the Binding component.† The value of this
property identifies the default SOAP Message Exchange Pattern (MEP)
for all the Interface Operation components of any Interface component to
which this Binding is applied.

 {soap mep} OPTIONAL. A xs:anyURI, which is an absolute IRI as defined
by [IETF RFC 3987], to the Binding Operation component.† The value of
this property identifies the SOAP Message Exchange Pattern (MEP) for
this specific operation (see 5.10.3 SOAP 1.2 Binding Rules, paragraph
"SOAP MEP Selection", for constraints on bindings).

 {soap action} OPTIONAL. A xs:anyURI, which is an absolute IRI as
defined by [IETF RFC 3987], to the Binding Operation component.† The
value of this property identifies the value of the SOAP Action Feature for
the initial message of the message exchange pattern of the Interface
Operation bound, as specified in the binding rules of bindings to specific
versions of SOAP (see 5.10.3 SOAP 1.2 Binding Rules for the SOAP 1.2
binding when the value of the {soap version} property of the Binding
component is "1.2").

5.7.3 XML Representation

<description>
 <binding wsoap:mepDefault="xs:anyURI"? >
 <operation ref="xs:QName"
 wsoap:mep="xs:anyURI"?
 wsoap:action="xs:anyURI"? >
 </operation>
 </binding>
</description>

The XML representation for binding a Binding Operation are two attribute
information items with the following Infoset properties:

 wsoap:mep OPTIONAL attribute information item

o A [local name] of mep

o A [namespace name] of "http://www.w3.org/ns/wsdl/soap"

o A type of xs:anyURI

 wsoap:action OPTIONAL attribute information item

o A [local name] of action

o A [namespace name] of "http://www.w3.org/ns/wsdl/soap"

o A type of xs:anyURI

The following attribute information item for the binding element information item
is defined:

 wsoap:mepDefault OPTIONAL attribute information item

o A [local name] of mepDefault

o A [namespace name] of " http://www.w3.org/ns/wsdl/soap "

o A type of xs:anyURI

5.7.4 Mapping from XML Representation to Component Properties

See Table 5-4.

Table 5-4. Mapping from XML Representation to SOAP Operation Component
Properties

Property Value

{soap mep
default}

The actual value of the wsoap:mepDefault attribute information
item, if present.

{soap mep}
The actual value of the wsoap:mep attribute information item, if
present.

{soap action}
The actual value of the wsoap:action attribute information item,
if any.

5.8 Declaring SOAP Modules

5.8.1 Description

The SOAP messaging framework allows a Web service to engage one or more
additional features (typically implemented as one or more SOAP header blocks),
as defined by SOAP Modules (see [SOAP 1.2 Part 1: Messaging Framework
(Second Edition)]). This binding extension specification allows description of
which SOAP Modules are in use across an entire binding, on a per operation
basis or on a per-message basis.

5.8.2 Relationship to WSDL Component Model

The SOAP Module component adds the following property to the WSDL
component model (as defined in [WSDL 2.0 Core Language]):

 {soap modules} OPTIONAL. A set of SOAP Module components as
defined in 5.8.3 SOAP Module component to the Binding component

 Similarly, {soap modules} OPTIONAL, to the Binding Operation
component

 Similarly, {soap modules} OPTIONAL, to the Binding Message Reference
component

 Similarly, {soap modules} OPTIONAL, to the Binding Fault component

 Similarly, {soap modules} OPTIONAL, to the Binding Fault Reference
component

The SOAP modules applicable for a particular operation of any service, consists
of all the modules specified in the input or output Binding Message Reference
components, the infault or outfault Binding Fault Reference components, those
specified within the Binding Fault components, those specified within the Binding
Operation components and those specified within the Binding component. If any
module is declared in multiple components, then the requiredness of that module
is defined by the closest declaration, where closeness is defined by whether it is
specified directly at the Binding Message Reference component or Binding Fault
Reference component level, the Binding Fault level or the Binding Operation
component level or the Binding component level, respectively.

5.8.3 SOAP Module component

The SOAP Module component identifies a SOAP module that is in use.

The properties of the SOAP Module component are as follows:

 {ref} REQUIRED. A xs:anyURI, which is an absolute IRI as defined by
[IETF RFC 3987].† The value of this property uniquely identifies the SOAP
module that is in use (as per the SOAP 1.2 [SOAP 1.2 Part 1: Messaging
Framework (Second Edition)] processing model).

 {required} REQUIRED. A xs:boolean indicating if the SOAP module is
required.

 {parent} REQUIRED. The Binding, Binding Operation, Binding Message
Reference, Binding Fault or Binding Fault Reference components that
contains this component in its {soap modules} property.

5.8.4 XML Representation

<description>
 <binding >
 <wsoap:module ref="xs:anyURI"
 required="xs:boolean"? >
 <documentation ... />*
 </wsoap:module>
 <fault>
 <wsoap:module ... />*
 </fault>
 <operation>
 <wsoap:module ... />*
 <input>
 <wsoap:module ... />*
 </input>
 <output>

 <wsoap:module ... />*
 </output>
 <infault>
 <wsoap:module ... />*
 </infault>
 <outfault>
 <wsoap:module ... />*
 </outfault>
 </operation>
 </binding>
</description>

The XML representation for a SOAP Module component is an element
information item with the following Infoset properties:

 A [local name] of module

 A [namespace name] of "http://www.w3.org/ns/wsdl/soap"

 One or more attribute information items amongst its [attributes] as follows:

o A REQUIRED ref attribute information item with the following
Infoset properties:

 A [local name] of ref

 A [namespace name] which has no value

 A type of xs:anyURI

o An OPTIONAL required attribute information item with the
following Infoset properties:

 A [local name] of required

 A [namespace name] which has no value

 A type of xs:boolean

o Zero or more namespace qualified attribute information items. The
[namespace name] of such attribute information items MUST NOT
be "http://www.w3.org/ns/wsdl" and MUST NOT be
"http://www.w3.org/ns/wsdl/soap".

 Zero or more element information item amongst its [children], in order, as
follows:

1. Zero or more documentation element information items as defined in
[WSDL 2.0 Core Language].

2. Zero or more namespace-qualified element information items amongst its
[children]. The [namespace name] of such element information items MUST NOT
be "http://www.w3.org/ns/wsdl" and MUST NOT be
"http://www.w3.org/ns/wsdl/soap".

5.8.5 Mapping from XML Representation to Component Properties

See Table 5-5.

Table 5-5. Mapping from XML Representation to SOAP Module component-

related Properties

Property Value

{soap
modules}

The set of SOAP Module components corresponding to all the
module element information item in the [children] of the binding,
operation, fault, input, output, infault, outfault element
information items, if any.

{ref} The actual value of the ref attribute information item.

{required}
The actual value of the required attribute information item, if
present; otherwise "false".

{parent}

The Binding, Binding Operation, Binding Message Reference,
Binding Fault or Binding Fault Reference component corresponding
to the binding, operation, fault, input, output, infault or outfault
element information item in [parent].

5.8.6 IRI Identification Of A SOAP Module component

WSDL Version 2.0 Part 1: Core Language [WSDL 2.0 Core Language] defines a
fragment identifier syntax for identifying components of a WSDL 2.0 document.

A SOAP Module component can be identified using the wsdl.extension XPointer
Framework scheme:
wsdl.extension(http://www.w3.org/ns/wsdl/soap,
wsoap.module(parent/ref))

1. parent is the pointer part of the {parent} component, as specified in
appendix A.2, Fragment Identifiers in [WSDL 2.0 Core Language]. parts.

2. ref is the value of the {ref} property of the component.

5.9 Declaring SOAP Header Blocks

5.9.1 Description

SOAP allows the use of header blocks in the header part of the message. This
binding extension allows users to declare the SOAP header blocks in use on a
per-message and on a per-fault basis.

5.9.2 Relationship to WSDL Component Model

The SOAP Header Blocks binding extension specification adds the following
property to the WSDL component model (as defined in [WSDL 2.0 Core
Language]):

 {soap headers} OPTIONAL. A set of SOAP Header Block components as
defined in 5.9.3 SOAP Header Block component, to the Binding
Message Reference component.

 Similarly, {soap headers} OPTIONAL, to the Binding Fault component.

5.9.3 SOAP Header Block component

A SOAP Header Block component describes an abstract piece of header data
(SOAP header block) that is associated with the exchange of messages between
the communicating parties. The presence of a SOAP Header Block component in
a WSDL description indicates that the service supports headers, and MAY
require a client interacting with the service to use the described header block.
Zero or one such header block may be used.

The properties of the SOAP Header Block component are as follows:

 {element declaration} REQUIRED. An XML element declaration in the
{element declarations} property of the Description component. This XML
element declaration uniquely represents a specific SOAP header block.

 {mustUnderstand} REQUIRED. A xs:boolean. When its value is "true", the
SOAP header block MUST be decorated with a SOAP mustUnderstand
attribute information item with a value of "true"; if so, the XML element
declaration referenced by the {element declaration} property MUST allow
this SOAP mustUnderstand attribute information item.† Otherwise, no
additional constraint is placed on the presence and value of a SOAP
mustUnderstand attribute information item.

 {required} REQUIRED. A xs:boolean indicating if the SOAP header block
is required. If the value is "true", then the SOAP header block MUST be
included in the message.† If it is "false", then the SOAP header block MAY
be included.

 {parent} REQUIRED. The Binding Fault or Binding Message Reference
component that contains this component in its {soap headers} property.

5.9.4 XML Representation

<description>
 <binding name="xs:NCName" type="http://www.w3.org/ns/wsdl/soap" >
 <fault ref="xs:QName" >
 <wsoap:header element="xs:QName" mustUnderstand="xs:boolean"?
 required="xs:boolean"? >
 <documentation />*
 </wsoap:header>*
 ...
 </fault>*
 <operation ref="xs:QName" >
 <input messageLabel="xs:NCName"?>
 <wsoap:header ... />*
 ...
 </input>*

 <output messageLabel="xs:NCName"?>
 <wsoap:header ... />*
 ...
 </output>*
 </operation>*
 </binding>
</description>

The XML representation for a SOAP Header Block component is an element
information item with the following Infoset properties:

 A [local name] of header

 A [namespace name] of "http://www.w3.org/ns/wsdl/soap"

 One or more attribute information items amongst its [attributes] as follows:

o A REQUIRED element attribute information item with the following
Infoset properties:

 A [local name] of element

 A [namespace name] which has no value

 A type of xs:QName

o An OPTIONAL mustUnderstand attribute information item with the
following Infoset properties:

 A [local name] of mustUnderstand

 A [namespace name] which has no value

 A type of xs:boolean

o An OPTIONAL required attribute information item with the
following Infoset properties:

 A [local name] of required

 A [namespace name] which has no value

 A type of xs:boolean

o Zero or more namespace qualified attribute information items. The
[namespace name] of such attribute information items MUST NOT
be "http://www.w3.org/ns/wsdl" and MUST NOT be
"http://www.w3.org/ns/wsdl/soap".

 Zero or more element information item amongst its [children], in order, as
follows:

1. Zero or more documentation element information items as defined in
[WSDL 2.0 Core Language].

2. Zero or more namespace-qualified element information items amongst its
[children]. The [namespace name] of such element information items MUST NOT
be "http://www.w3.org/ns/wsdl" and MUST NOT be
"http://www.w3.org/ns/wsdl/soap".

5.9.5 Mapping XML Representation to Component Properties

See Table 5-6.

Table 5-6. Mapping from XML Representation to SOAP Header Block
component-related Properties

Property Value

{soap headers}
The set of SOAP Header Block components corresponding to
all the header element information item in the [children] of the
fault, input or output element information item, if any.

{element
declaration}

The element declaration from the {element declarations}
resolved to by the value of the element attribute information
item. The value of the element attribute information item
MUST resolve to a global element declaration from the
{element declarations} property of the Description
component.†

{mustUnderstand}
The actual value of the mustUnderstand attribute information
item, if present; otherwise "false".

{required}
The actual value of the required attribute information item, if
present; otherwise "false".

{parent}
The Binding Fault or Binding Message Reference component
corresponding to the fault, input or output element
information item in [parent].

5.9.6 IRI Identification Of A SOAP Header Block component

WSDL Version 2.0 Part 1: Core Language [WSDL 2.0 Core Language] defines a
fragment identifier syntax for identifying components of a WSDL 2.0 document.

A SOAP Header Block component can be identified using the wsdl.extension
XPointer Framework scheme:
wsdl.extension(http://www.w3.org/ns/wsdl/soap,
wsoap.header(parent/element declaration))

1. parent is the "wsdl.*" pointer part of the {parent} component, as specified
in appendix A.2, Fragment Identifiers in [WSDL 2.0 Core Language], i.e.
without the xmlns() pointer parts.

2. element declaration is the value of the {name} of the Element
Declaration component that is referred to by the {element declaration}
property of the SOAP Header Block component.

5.10 WSDL SOAP 1.2 Binding

This section describes the SOAP 1.2 binding for WSDL 2.0. This binding does
NOT natively support the full range of capabilities from SOAP 1.2. Certain
capabilities not widely used, or viewed as problematic in practice, are not

available -in many cases because supporting them was considered as adding
considerable complexity to the language. Here are examples of such
unsupported capabilities:

 multiple children of the SOAP Body;

 multiple SOAP Fault Detail entries;

 non-qualified elements as children of a SOAP Fault Detail.

5.10.1 Identifying a WSDL SOAP 1.2 Binding

A WSDL SOAP Binding is identified as a SOAP 1.2 binding by assigning the
value "1.2" to the {soap version} property of the Binding component.

5.10.2 Description

The WSDL SOAP 1.2 binding extension defined in this section is an extension of
the SOAP binding defined in section 5. WSDL SOAP Binding Extension to
enable Web service applications to use SOAP 1.2 [SOAP 1.2 Part 1: Messaging
Framework (Second Edition)].

The WSDL SOAP 1.2 binding extension supports the SOAP 1.2 HTTP binding
defined by the [SOAP 1.2 Part 2: Adjuncts (Second Edition)] specification. This is
indicated by assigning the URI "http://www.w3.org/2003/05/soap/bindings/HTTP/"
(as defined by [SOAP 1.2 Part 2: Adjuncts (Second Edition)]) to the {soap
underlying protocol} property. Other values MAY be used for this property in
conjunction with the SOAP 1.2 binding extension defined by this specification
provided that the semantics of such protocols are consistent with this binding
extension.

Default rules in section 5.10.3 SOAP 1.2 Binding Rules define the relationship
between SOAP message exchange patterns defined in [SOAP 1.2 Part 2:
Adjuncts (Second Edition)] and WSDL message exchange patterns defined in
section 2. Predefined Message Exchange Patterns.

5.10.3 SOAP 1.2 Binding Rules

These binding rules are applicable to SOAP 1.2 bindings.

 SOAP Action Feature. The value of the SOAP Action Feature for the initial
message of the message exchange pattern of the Interface Operation
bound is specified by the {soap action} property of this Binding Operation
component. If the Binding Operation component does NOT have a {soap
action} property defined, then the SOAP Action Feature (see [SOAP 1.2
Part 2: Adjuncts (Second Edition)]) has NO value. Otherwise, its value is
the value of the SOAP Action Feature for the initial message of the
message exchange pattern. The {soap action} property has NO effect
when binding to the SOAP-Response MEP.

 SOAP MEP Selection. For a given Interface Operation component, if there
is a Binding Operation component whose {interface operation} property

matches the component in question and its {soap mep} property has a
value, then the SOAP MEP is the value of the {soap mep} property.
Otherwise, the SOAP MEP is the value of the Binding component's {soap
mep default}, if any. Otherwise, the Interface Operation component's
{message exchange pattern} property MUST have the value
"http://www.w3.org/ns/wsdl/in-out", and the SOAP MEP is the URI
"http://www.w3.org/2003/05/soap/mep/request-response/" identifying the
SOAP Request-Response Message Exchange Pattern as defined in
[SOAP 1.2 Part 2: Adjuncts (Second Edition)].†

 SOAP Detail Element. If any, the value of the SOAP "Detail" element
MUST be the element information item identified by the {element
declaration} property of the Interface Fault component.†

 HTTP Method Selection. This default binding rule is applicable when the
value of the {soap underlying protocol} property of the Binding component
is "http://www.w3.org/2003/05/soap/bindings/HTTP/". If the SOAP MEP
selected as specified above has the value
"http://www.w3.org/2003/05/soap/mep/request-response/" then the HTTP
method used is "POST". If the SOAP MEP selected has the value
"http://www.w3.org/2003/05/soap/mep/soap-response/" then the HTTP
method used is "GET".†

5.10.4 Binding WSDL 2.0 MEPs to SOAP 1.2 MEPs

This section describes the relationship between WSDL components and SOAP
1.2 MEP properties as described in [SOAP 1.2 Part 2: Adjuncts (Second
Edition)].

5.10.4.1 WSDL In-Out to SOAP Request-Response

This section describes the mapping from the WSDL
"http://www.w3.org/ns/wsdl/in-out" Message Exchange Pattern (MEP) to the
SOAP "http://www.w3.org/2003/05/soap/mep/request-response/" MEP (as would
be the case for a usual SOAP-over-HTTP In-Out operation). Extensions (such as
[WSA 1.0 Core]) MAY alter these mappings.

5.10.4.1.1 THE CLIENT

As the client, the property
"http://www.w3.org/2003/05/soap/bindingFramework/ExchangeContext/Role"
takes the value "RequestingSOAPNode".

The SOAP "http://www.w3.org/2003/05/soap/mep/ImmediateDestination"
property takes the value of the HTTP Request IRI, as defined in 6.4.6 HTTP
Request IRI, and modified as described in section 6.8.1 Serialization of the
instance data in parts of the HTTP request IRI.

The WSDL "In" message is mapped to the SOAP
"http://www.w3.org/2003/05/soap/mep/OutboundMessage" property.

The WSDL "Out" message maps to the SOAP
"http://www.w3.org/2003/05/soap/mep/InboundMessage" property.

5.10.4.1.2 THE SERVICE

As the service, the property
"http://www.w3.org/2003/05/soap/bindingFramework/ExchangeContext/Role"
takes the value "RespondingSOAPNode".

The WSDL "In" message is mapped to the SOAP
"http://www.w3.org/2003/05/soap/mep/InboundMessage" property.

The WSDL "Out" message maps to the SOAP
"http://www.w3.org/2003/05/soap/mep/OutboundMessage" property.

5.10.4.2 WSDL In-Out to SOAP SOAP-Response

This section describes the mapping from the WSDL
"http://www.w3.org/ns/wsdl/in-out" MEP to the
"http://www.w3.org/2003/05/soap/mep/soap-response/" SOAP MEP. Extensions
(such as [WSA 1.0 Core]) MAY alter these mappings.

5.10.4.2.1 THE CLIENT

As the client, the property
"http://www.w3.org/2003/05/soap/bindingFramework/ExchangeContext/Role"
takes the value "RequestingSOAPNode".

The SOAP "http://www.w3.org/2003/05/soap/mep/ImmediateDestination"
property takes the value of the HTTP Request IRI, as defined in 6.4.6 HTTP
Request IRI, and modified as described in section 6.8.1 Serialization of the
instance data in parts of the HTTP request IRI.

The value of the {message content model} property for the Interface Message
Reference components of the {interface message references} property MUST be
either "#element" or "#none". When the value is:

 "#element", the WSDL "In" message is mapped to the destination URI, as
per the rules in section 6.8.2 Serialization as application/x-www-form-
urlencoded .

 "#none", the WSDL "In" message is empty.

The SOAP "http://www.w3.org/2003/05/soap/mep/OutboundMessage" property
has no value.

The WSDL "Out" message maps to the SOAP
"http://www.w3.org/2003/05/soap/mep/InboundMessage" property.

5.10.4.2.2 THE SERVICE

As the service, the property
"http://www.w3.org/2003/05/soap/bindingFramework/ExchangeContext/Role"
takes the value "RespondingSOAPNode".

The WSDL "In" message is constructed from the destination URI as per the rules
in section 6.8.2 Serialization as application/x-www-form-urlencoded , WHEN
the value of the {message content model} property for the Interface Message
Reference components of the {interface message references} property is
"#element".

The WSDL "Out" message maps to the SOAP
"http://www.w3.org/2003/05/soap/mep/OutboundMessage" property.

5.10.4.3 WSDL In-Only to SOAP Request-Response

This section describes the mapping from the WSDL
"http://www.w3.org/ns/wsdl/in-only" MEP to the SOAP
"http://www.w3.org/2003/05/soap/mep/request-response/" MEP. Extensions
(such as [WSA 1.0 Core]) MAY alter these mappings.

5.10.4.3.1 THE CLIENT

As the client, the property
"http://www.w3.org/2003/05/soap/bindingFramework/ExchangeContext/Role"
takes the value "RequestingSOAPNode".

The SOAP "http://www.w3.org/2003/05/soap/mep/ImmediateDestination"
property takes the value of the HTTP Request IRI, as defined in 6.4.6 HTTP
Request IRI, and modified as described in section 6.8.1 Serialization of the
instance data in parts of the HTTP request IRI.

The WSDL "In" message is mapped to the SOAP
"http://www.w3.org/2003/05/soap/mep/OutboundMessage" property.

The SOAP "http://www.w3.org/2003/05/soap/mep/InboundMessage" property
has no value.

5.10.4.3.2 THE SERVICE

As the service, the property
"http://www.w3.org/2003/05/soap/bindingFramework/ExchangeContext/Role"
takes the value "RespondingSOAPNode".

The WSDL "In" message is mapped to the SOAP
"http://www.w3.org/2003/05/soap/mep/InboundMessage" property.

The SOAP "http://www.w3.org/2003/05/soap/mep/OutboundMessage" property
has no value.

5.10.4.4 WSDL Robust-In-Only to SOAP Request-Response

This section describes the mapping from the WSDL
"http://www.w3.org/ns/wsdl/robust-in-only" MEP to the SOAP
"http://www.w3.org/2003/05/soap/mep/request-response/" MEP. Extensions
(such as [WSA 1.0 Core]) MAY alter these mappings.

5.10.4.4.1 THE CLIENT

As the client, the property
"http://www.w3.org/2003/05/soap/bindingFramework/ExchangeContext/Role"
takes the value "RequestingSOAPNode".

The SOAP "http://www.w3.org/2003/05/soap/mep/ImmediateDestination"
property takes the value of the HTTP Request IRI, as defined in 6.4.6 HTTP
Request IRI, and modified as described in section 6.8.1 Serialization of the
instance data in parts of the HTTP request IRI.

The WSDL "In" message is mapped to the SOAP
"http://www.w3.org/2003/05/soap/mep/OutboundMessage" property.

The SOAP "http://www.w3.org/2003/05/soap/mep/InboundMessage" can contain
a SOAP fault.

5.10.4.4.2 THE SERVICE

As the service, the property
"http://www.w3.org/2003/05/soap/bindingFramework/ExchangeContext/Role"
takes the value "RespondingSOAPNode".

The WSDL "In" message is mapped to the SOAP
"http://www.w3.org/2003/05/soap/mep/InboundMessage" property.

The SOAP "http://www.w3.org/2003/05/soap/mep/OutboundMessage" can
contain a SOAP fault.

5.11 Conformance

An element information item whose namespace name is
"http://www.w3.org/ns/wsdl" and whose local part is description conforms to this
binding extension specification if the element information items and attribute
information items whose namespace is http://www.w3.org/ns/wsdl/soap conform
to the XML Schema for that element or attribute as defined by this specification
and additionally adheres to all the constraints contained in this specification.

6. WSDL HTTP Binding Extension

The HTTP binding extension described in this section is an extension for [WSDL
2.0 Core Language] to enable Web services applications to use HTTP 1.1 [IETF
RFC 2616] (as well as other versions of HTTP) and HTTPS [IETF RFC 2818].
This binding extension extends WSDL 2.0 by adding properties to the component

model defined in [WSDL 2.0 Core Language]. In addition an XML Infoset
representation for these additional properties is provided, along with a mapping
from that representation to the various component properties.

As allowed in [WSDL 2.0 Core Language], a Binding component can exist
without indicating a specific Interface component that it applies to and, in this
case, no Binding Operation or Binding Fault components can be present in the
Binding component.

The HTTP binding extension is designed with the objective of minimizing what
needs to be explicitly declared for common cases. This is achieved by defining a
set of default rules that affect all Interface Operation components of an Interface
component to which the HTTP binding extension is applied, unless specifically
overridden by a Binding Operation component. Thus, if a given Interface
Operation component is not referred to specifically by a Binding Operation
component, then all the default rules apply to that Interface Operation
component. As a result, in accordance with the requirements of [WSDL 2.0 Core
Language], all operations of an Interface component will be bound by this binding
extension.

Note: As in other parts of this specification, one could have done away with
"default" properties at the component model level, and have set the value for the
corresponding non-default properties in the XML mapping section. However,
default properties are required for interface-less binding. Indeed, an interface-
less binding has no means to set the non-default version of the property at the
operation-level, since there is precisely no operation (there is not even an
interface). Hence the mapping needs to be done elsewhere.

[Definition: The internal tree representation of an input, output or fault message is
called an instance data, and is constrained by the schema definition associated
with the message: the XML element referenced in the {element declaration}
property of the Interface Message Reference component for input and output
messages (unless the {message content model} is "#any"), and in the {element
declaration} property of an Interface Fault component for faults.]

6.1 Identifying the use of the HTTP Binding

A Binding component (defined in [WSDL 2.0 Core Language]) is identified as an
HTTP binding by assigning the value "http://www.w3.org/ns/wsdl/http" to the
{type} property of the Binding component.

6.2 HTTP Syntax Summary (Non-Normative)

<description>
 <binding name="xs:NCName" interface="xs:QName"?
 type="http://www.w3.org/ns/wsdl/http"
 whttp:methodDefault="xs:string"?
 whttp:queryParameterSeparatorDefault="xs:string"?
 whttp:cookies="xs:boolean"?
 whttp:contentEncodingDefault="xs:string"? >

 <documentation />?

 <fault ref="xs:QName"
 whttp:code="union of xs:int, xs:token"?
 whttp:contentEncoding="xs:string"? >
 <documentation />*
 <whttp:header name="xs:string" type="xs:QName"
 required="xs:boolean"? >
 <documentation />*
 </whttp:header>*
 </fault>*

 <operation ref="xs:QName"
 whttp:location="xs:anyURI"?
 whttp:method="xs:string"?
 whttp:inputSerialization="xs:string"?
 whttp:outputSerialization="xs:string"?
 whttp:faultSerialization="xs:string"?
 whttp:queryParameterSeparator="xs:string"?
 whttp:contentEncodingDefault="xs:string"?
 whttp:ignoreUncited="xs:boolean"? >
 <documentation />*

 <input messageLabel="xs:NCName"?
 whttp:contentEncoding="xs:string"? >
 <documentation />*
 <whttp:header ... />*
 </input>*

 <output messageLabel="xs:NCName"?
 whttp:contentEncoding="xs:string"? >
 <documentation />*
 <whttp:header ... />*
 </output>*

 <infault ref="xs:QName"
 messageLabel="xs:NCName"? >
 <documentation />*
 </infault>*

 <outfault ref="xs:QName"
 messageLabel="xs:NCName"? >
 <documentation />*
 </outfault>*

 </operation>*

 </binding>

 <service>
 <endpoint name="xs:NCName" binding="xs:QName"
address="xs:anyURI"?
 whttp:authenticationScheme="xs:token"?
 whttp:authenticationRealm="xs:string"? >
 <documentation />*
 </endpoint>
 </service>

</description>

6.3 Supported Extensions

An implementation of the HTTP binding extension MUST support the following
extensions:

 "http://www.w3.org/ns/wsdl-extensions/safe" (see 3.1 Operation safety)

6.4 HTTP Binding Rules

6.4.1 HTTP Method Selection

When formulating the HTTP message to be transmitted, the HTTP request
method used MUST be selected using one of the following:†

 For a given Interface Operation component, if there is a Binding Operation
component whose {interface operation} property matches the component
in question and its {http method} property has a value, then the value of
the {http method} property.

 Otherwise, the value of the Binding component's {http method default}, if
any.

 Otherwise, if a {safe} property as defined in 3.1 Operation safety is
present on the bound Interface Operation component and has a value of
"true", the value "GET".

 Otherwise, the value "POST".

6.4.2 HTTP Content Encoding Selection

When formulating the HTTP message to be transmitted, content encoding for a
given Binding Message Reference component is determined as follows:†

 If the {http content encoding} property has a non-empty value, a Content-
Encoding header-field MUST be inserted with the value of this property.

 Otherwise, if the value of the parent Binding Operation component's {http
content encoding default} property has a non-empty value, a Content-
Encoding header-field MUST be inserted with the value of this property.

 Otherwise, if the value of the grandparent Binding component's {http
content encoding default} property has a non-empty value, a Content-
Encoding header-field MUST be inserted with the value of this property.

When formulating the HTTP fault message to be transmitted, content encoding
for a given Binding Fault component is determined as follows:†

 If the {http content encoding} property has a non-empty value, then a
Content-Encoding header-field MUST be inserted with the value of this
property.

 If the {http content encoding default} property has a non-empty value, then
a Content-Encoding header-field MUST be inserted with the value of this
property.

The body of the response message is encoded using the specified content
encoding.

6.4.3 Payload Construction And Serialization Format

When formulating the HTTP message to be transmitted, the contents of the
payload (i.e. the contents of the HTTP message body) MUST be what is defined
by the corresponding Interface Message Reference or Interface Fault
components, serialized as specified by the serialization format used.†

[Definition: The serialization format is a media type token ("type/subtype"). It
identifies rules to serialize the payload in an HTTP message. Its value is defined
by the following rules. The HTTP request serialization format MUST be in the
media type range specified by the {http input serialization} property. The HTTP
response serialization format MUST be in the media type range specified by the
{http output serialization} property. The HTTP serialization format of a fault MUST
be in the media type range specified by the {http fault serialization} property. The
concept of media type range is defined in Section 14.1 of [IETF RFC 2616]. The
serialization format MAY have associated media type parameters (specified
with the parameter production of media-range in Section 14.1 of [IETF RFC
2616].]

Section 6.8 Serialization Format of Instance Data defines serialization formats
supported by this binding extension along with their constraints.

 Interface Message Reference component:

o If the value of the {message content model} property of the
Interface Message Reference bound is "#any" or "#element", the
serialization of the instance data is specified as defined in section
6.4.3.1 Serialization rules for XML messages.

o If the value is "#none", then the payload MUST be empty and the
value of the corresponding serialization property ({http input
serialization} or {http output serialization}) is ignored.†

o If the value is "#other", then the serialization format and its
associated media type parameters, if any, specifies the value of the
HTTP Content-Type entity-header field as defined in section 14.17
of [IETF RFC 2616]. The serialization of the payload is undefined.

 Interface Fault component: the serialization of the instance data is
specified as defined in section 6.4.3.1 Serialization rules for XML
messages.

If the Interface Message Reference component or the Interface Fault component
is declared using a non-XML type system (as considered in the Types section of
[WSDL 2.0 Core Language]), then additional binding rules MUST be defined in

an extension specification to indicate how to map those components into the
HTTP envelope.†

6.4.3.1 Serialization rules for XML messages

The serialization rules for messages whose {message content model} is either
"#element" or "#any", AND the serialization rules for fault messages, are as
follows:†

 If the serialization format is "application/x-www-form-urlencoded", then the
serialization of the instance data is defined by section 6.8.2 Serialization
as application/x-www-form-urlencoded .

 If the serialization format is "multipart/form-data", then the serialization of
the instance data is defined by section 6.8.4 Serialization as
multipart/form-data .

 If the serialization format is "application/xml", then the serialization of the
instance data is defined by section 6.8.3 Serialization as application/xml
.

 Otherwise, then the serialization of the instance data is defined by section
6.8.3 Serialization as application/xml with the following additional rule:
the value of the HTTP Content-Type entity-header field is the value of the
serialization format and its associated media type parameters, if any.

6.4.4 Default input and output serialization format

Section Table 6-1 defines the default values for the GET, POST, PUT and
DELETE values of the HTTP method as selected in section 6.4.1 HTTP Method
Selection.

Table 6-1. Default values for GET, POST, PUT and DELETE

HTTP Method Default Input Serialization
Default Output
Serialization

Selected in 6.4.1 HTTP
Method Selection

{http input serialization}
{http output
serialization}

GET
application/x-www-form-
urlencoded application/xml

POST application/xml application/xml

PUT application/xml application/xml

DELETE
application/x-www-form-
urlencoded application/xml

Note:

The application/x-www-form-urlencoded serialization format places constraints
on the XML Schema definition of the {element declaration} property of the

Interface Message Reference components of the Interface Operation component
bound (see 6.8.2 Serialization as application/x-www-form-urlencoded).

The default value for the {http input serialization} and {http output serialization}
properties for any other HTTP method selected is application/xml.

Mechanisms other than setting the serialization properties MAY modify the
serialization format of the instance data corresponding to the message. An
example of such modification is the WSDL SOAP Binding HTTP IRI Serialization
rules specified in 5.3 SOAP Binding Rules. This binding extension specifies that
the SOAP-Response Message Exchange Pattern ([SOAP 1.2 Part 2: Adjuncts
(Second Edition)], Section 6.3) supports input message serialization only as
application/x-www-form-urlencoded. Other examples are other message
exchange patterns or binding extensions.

6.4.5 HTTP Header Construction

If the {http headers} property as defined in section 6.6 Declaring HTTP Headers
exists and is not empty in a Binding Message Reference or Binding Fault
component, HTTP headers conforming to each HTTP Header component
contained in this {http headers} property MAY be serialized as follows:†

 The HTTP header field name used is the value of the {name} property of
the HTTP Header component. The HTTP binding MUST NOT set an
HTTP header field corresponding to the value of the {name} property
already set by another mechanism, such as the HTTP stack or another
feature.†

 The HTTP header field value, whose XML Schema type is declared by the
{type definition} property of the HTTP Header component, is serialized
following the rules of the field-value production of section 4.2 of [IETF
RFC 2616].

If the value of an HTTP Header component's {required} property is "true", the
inclusion of this HTTP header field is REQUIRED†, otherwise it is OPTIONAL.

6.4.6 HTTP Request IRI

When formulating the HTTP Request, the HTTP Request IRI is an absolute IRI
reference and is the value of the {http location} property of the Binding Operation
component, resolved using the value of the {address} property of the Endpoint
component (see section 5 of [IETF RFC 3986]).† If the {http location} property is
not set, the HTTP Request IRI is the value of the {address} property of the
Endpoint component. Input serializations may define additional processing rules
to be applied to the value of {http location} before applying the process of
reference resolution, i.e. before combining it with the {address} property of the
endpoint element to form the HTTP Request IRI. For example, the three
serialization formats defined in section 6.8 Serialization Format of Instance
Data define a syntax to use the {http location} as a template using elements of
the instance data.

If the resulting IRI uses the https scheme, then HTTP over TLS [IETF RFC
2818] is used to send the HTTP request.

The HTTP Request IRI identifies the resource upon which to apply the request
and is transmitted using the Request-URI, and optionally the Host header field,
as defined in [IETF RFC 2616].

6.5 Binding Operations

6.5.1 Description

This binding extension specification provides a binding to HTTP of Interface
Operation components whose {message exchange pattern} property has a value
amongst:

 "http://www.w3.org/ns/wsdl/in-only"

 "http://www.w3.org/ns/wsdl/robust-in-only"

 "http://www.w3.org/ns/wsdl/in-out"

This HTTP binding extension MAY be used with other message exchange
patterns, such as outbound message exchange patterns, provided that additional
semantics are defined, for example through an extension.

Each of the three supported message exchange patterns above involves one or
two messages or faults being exchanged. The first one is transmitted using an
HTTP request, and the second one is transmitted using the corresponding HTTP
response.† In cases where only one single message is being sent, the message
body of the HTTP response MUST be empty.†

For successful responses, the HTTP response code MUST be:

 202 when the MEP is "http://www.w3.org/ns/wsdl/in-only"†

 204 when the MEP is "http://www.w3.org/ns/wsdl/robust-in-only"†

For every Binding Operation component corresponding to such Interface
Operation components, this binding extension specification allows the user to
indicate the HTTP method to use, the input, output and fault serialization, and the
location of the bound operation.

6.5.2 Relationship to WSDL Component Model

The HTTP binding extension adds the following properties to the WSDL
component model (as defined in [WSDL 2.0 Core Language]):

 {http location} OPTIONAL. An xs:anyURI, to the Binding Operation
component. It MUST contain an IRI reference and MUST NOT include a
fragment identifier component.†

 {http method default} OPTIONAL. A xs:string, to the Binding component,
indicating the default value for the HTTP Request Method for all the
Interface Operation components of any Interface component to which this
Binding is applied.

 {http method} OPTIONAL. A xs:string, to the Binding Operation
component, indicating the value for the HTTP Request Method for this
specific Binding Operation.

 {http input serialization} REQUIRED. A xs:string, to the Binding Operation
component, indicating allowed serialization rules of the HTTP Request
message for this specific operation, as described in section 6.5.3
Specification of serialization rules allowed.

 {http output serialization} REQUIRED. A xs:string, to the Binding
Operation component, indicating allowed serialization rules of the HTTP
Response message for this specific operation, as described in section
6.5.3 Specification of serialization rules allowed.

 {http fault serialization} REQUIRED. A xs:string, to the Binding Operation
component, indicating allowed serialization rules of the HTTP Response
message for this specific operation in case a fault is returned, as
described in section 6.5.3 Specification of serialization rules allowed.

 {http query parameter separator default} REQUIRED. A xs:string, to the
Binding component, indicating the default query parameter separator
character for all the Interface Operation components of any Interface
component to which this Binding is applied to.

 {http query parameter separator} OPTIONAL. A xs:string, to the Binding
Operation component, indicating the query parameter separator character
for this Binding Operation.

6.5.3 Specification of serialization rules allowed

The value of the {http input serialization}, {http output serialization} and {http fault
serialization} properties is similar to the value allowed for the Accept HTTP
header defined by the HTTP 1.1 specification, Section 14.1 (see [IETF RFC
2616]) and MUST follow the production rules defined in that section except for
the following:†

1. The prefix "Accept:" MUST NOT be used.

2. The rule qdtext is changed from:
qdtext = <any TEXT except<">>

to:
qdtext = <any CHAR except<">>

This change is made to disallow non-US-ASCII OCTETs.

These properties indicate the range of media types and associated parameters
with which an instance MAY be serialized. The value of the serialization format
used for a message is a media type which MUST be covered by this range.†
Wild cards (for example, "application/*") SHOULD NOT be used in this attribute
information item since they may lead to interoperability problems.†

The use of {http input serialization}, {http output serialization} and {http fault
serialization} is specified in section 6.4.3 Payload Construction And
Serialization Format.

6.5.4 XML Representation

<description>
 <binding whttp:methodDefault="xs:string"?
 whttp:queryParameterSeparatorDefault="xs:string"? >
 <operation ref="xs:QName"
 whttp:location="xs:anyURI"?
 whttp:method="xs:string"?
 whttp:inputSerialization="xs:string"?
 whttp:outputSerialization="xs:string"?
 whttp:faultSerialization="xs:string"?
 whttp:queryParameterSeparator="xs:string"? >
 </operation>
 </binding>
</description>

The XML representation for binding an Operation are six attribute information
items with the following Infoset properties:

 An OPTIONAL location attribute information item with the following
Infoset properties:

o A [local name] of location

o A [namespace name] of "http://www.w3.org/ns/wsdl/http"

o A type of xs:anyURI

 An OPTIONAL method attribute information item with the following Infoset
properties:

o A [local name] of method

o A [namespace name] of "http://www.w3.org/ns/wsdl/http"

o A type of xs:string

 An OPTIONAL inputSerialization attribute information item with the
following Infoset properties:

o A [local name] of inputSerialization

o A [namespace name] of "http://www.w3.org/ns/wsdl/http"

o A type of xs:string

 An OPTIONAL outputSerialization attribute information item with the
following Infoset properties:

o A [local name] of outputSerialization

o A [namespace name] of "http://www.w3.org/ns/wsdl/http"

o A type of xs:string

 An OPTIONAL faultSerialization attribute information item with the
following Infoset properties:

o A [local name] of faultSerialization

o A [namespace name] of "http://www.w3.org/ns/wsdl/http"

o A type of xs:string

 An OPTIONAL queryParameterSeparator attribute information item with
the following Infoset properties:

o A [local name] of queryParameterSeparator

o A [namespace name] of "http://www.w3.org/ns/wsdl/http"

o A type of xs:string whose pattern facet is "[&;a-zA-Z0-9\-
\._~!$'\(\):@/\?*\+,]{1,1}", "&" and ";" being the most frequently
used characters in practice.

The following attribute information items for the binding element information item
are defined:

 An OPTIONAL methodDefault attribute information item with the following
Infoset properties:

o A [local name] of methodDefault

o A [namespace name] of "http://www.w3.org/ns/wsdl/http"

o A type of xs:string

 An OPTIONAL queryParameterSeparatorDefault attribute information
item with the following Infoset properties:

o A [local name] of queryParameterSeparatorDefault

o A [namespace name] of "http://www.w3.org/ns/wsdl/http"

o A type of xs:string whose length facet value is "1". The allowed
characters are the same as for the {http query parameter separator}
property above.

6.5.5 Mapping from XML Representation to Component Properties

See Table 6-2.

Table 6-2. Mapping from XML Representation to Binding Operation component
Extension Properties

Property Value

{http location}
The actual value of the whttp:location attribute information
item, if present.

{http method
default}

The actual value of the whttp:methodDefault attribute
information item, if present.

{http method}
The actual value of the whttp:method attribute information
item, if present.

{http input
serialization}

The actual value of the whttp:inputSerialization attribute
information item, if present; otherwise, the default value as

defined in 6.4 HTTP Binding Rules.

{http output
serialization}

The actual value of the whttp:outputSerialization attribute
information item, if present; otherwise, the default value as
defined in 6.4 HTTP Binding Rules.

{http fault
serialization}

The actual value of the whttp:faultSerialization attribute
information item, if present; otherwise "application/xml".

{http query
parameter
separator default}

The actual value of the
whttp:queryParameterSeparatorDefault attribute information
item, if present; otherwise, "&".

{http query
parameter
separator}

The actual value of the whttp:queryParameterSeparator
attribute information item, if present.

6.6 Declaring HTTP Headers

6.6.1 Description

HTTP allows the use of headers in messages. This binding extension allows
users to declare the HTTP headers in use on a per message and on a per-fault
basis.

6.6.2 Relationship to WSDL Component Model

The HTTP Header binding extension specification adds the following property to
the WSDL component model (as defined in [WSDL 2.0 Core Language]):

 {http headers} OPTIONAL. A set of HTTP Header components as defined
in 6.6.3 HTTP Header component, to the Binding Message Reference
component.

 Similarly, {http headers} OPTIONAL, to the Binding Fault component.

A Binding Message Reference or a Binding Fault component's {http headers}
property MUST NOT contain multiple HTTP Header components with the same
{name} property.†

6.6.3 HTTP Header component

An HTTP Header component describes an abstract piece of header data (HTTP
header field) that is associated with the exchange of messages between the
communicating parties. The presence of a HTTP Header component in a WSDL
description indicates that the service support headers, and MAY require a client
interacting with the service to use the described header field. Zero or one such
header field may be used.

The properties of the HTTP Header component are as follows:

 {name} REQUIRED. An xs:string whose pattern facet is "[!#-'*+\-.0-9A-Z^-
z|~]+", the name of the HTTP header field. The value of this property
follows the field-name production rules as specified in section 4.2 of [IETF
RFC 2616].

 {type definition} REQUIRED. A Type Definition component, in the {type
definitions} property of the Description component, constraining the value
of the HTTP header field. This type MUST be a simple type.†

 {required} REQUIRED. An xs:boolean indicating if the HTTP header field
is required. If the value is "true", then the HTTP header field MUST be
included in the message.† If it is "false", then the HTTP header field MAY
be included.

 {parent} REQUIRED. The Binding Fault or Binding Message Reference
component that contains this component in its {http headers} property.

6.6.4 XML Representation

<description>
 <binding name="xs:NCName" type="http://www.w3.org/ns/wsdl/http" >
 <fault ref="xs:QName">
 <whttp:header name="xs:string" type="xs:QName"
 required="xs:boolean"? >
 <documentation />*
 </whttp:header>*
 ...
 </fault>*
 <operation ref="xs:QName" >
 <input messageLabel="xs:NCName"?>
 <whttp:header ... />*
 ...
 </input>*
 <output messageLabel="xs:NCName"?>
 <whttp:header ... />*
 ...
 </output>*
 </operation>*
 </binding>
</description>

The XML representation for a HTTP Header component is an element
information item with the following Infoset properties:

 A [local name] of header

 A [namespace name] of "http://www.w3.org/ns/wsdl/http"

 One or more attribute information items amongst its [attributes] as follows:

o A REQUIRED name attribute information item with the following
Infoset properties:

 A [local name] of name

 A [namespace name] which has no value

 A type of xs:string whose pattern facet is "[!#-'*+\-.0-9A-Z^-
z|~]+".

o A REQUIRED type attribute information item with the following
Infoset properties:

 A [local name] of type

 A [namespace name] which has no value

 A type of xs:QName

o An OPTIONAL required attribute information item with the
following Infoset properties:

 A [local name] of required

 A [namespace name] which has no value

 A type of xs:boolean

o Zero or more namespace qualified attribute information items. The
[namespace name] of such attribute information items MUST NOT
be "http://www.w3.org/ns/wsdl" and MUST NOT be
"http://www.w3.org/ns/wsdl/http".

 Zero or more element information item amongst its [children], in order, as
follows:

1. Zero or more documentation element information items as defined in
[WSDL 2.0 Core Language].

2. Zero or more namespace-qualified element information items amongst its
[children]. The [namespace name] of such element information items MUST NOT
be "http://www.w3.org/ns/wsdl" and MUST NOT be
"http://www.w3.org/ns/wsdl/http".

6.6.5 Mapping from XML Representation to Component Properties

See Table 6-3.

Table 6-3. Mapping from XML Representation to HTTP Header component-
related Properties

Property Value

{http
headers}

The set of HTTP Header components corresponding to all the
header element information item in the [children] of the fault, input
or output element information item, if any.

{name} The value of the name attribute information item.

{type
definition}

The Type Definition component from the {type definitions} property
of the Description component resolved to by the value of the type
attribute information item.

{required}
The actual value of the required attribute information item, if
present; otherwise "false".

{parent}
The Binding Fault or Binding Message Reference component
corresponding to the fault, input or output element information
item in [parent].

6.6.6 IRI Identification Of An HTTP Header component

WSDL Version 2.0 Part 1: Core Language [WSDL 2.0 Core Language] defines a
fragment identifier syntax for identifying components of a WSDL 2.0 document.

An HTTP Header component can be identified using the wsdl.extension XPointer
Framework scheme:
wsdl.extension(http://www.w3.org/ns/wsdl/http,
whttp.header(parent/name))

1. parent is the pointer part of the {parent} component, as specified in WSDL
Version 2.0 Part 1: Core Language.

2. name is the {name} property value.

6.7 Specifying HTTP Error Code for Faults

6.7.1 Description

For every Interface Fault component contained in an Interface component, an
HTTP error code MAY be defined. It represents the error code that will be used
by the service in case the fault needs to be returned.

The fault definition SHOULD agree with the definition of the HTTP error codes,
as specified in section 8 of [IETF RFC 3205].†

6.7.2 Relationship to WSDL Component Model

The HTTP Fault binding extension adds the following property to the WSDL
component model (as defined in [WSDL 2.0 Core Language]):

 {http error status code} REQUIRED. A union of xs:int and xs:token where
the allowed token value is "#any", to the Binding Fault component. An
integer value of this property identifies the error Status-Code as defined by
[IETF RFC 2616] that the service will use in case the fault is returned.† If
the value of this property is "#any", no claim is made by the service.

6.7.3 XML Representation

<description>
 <binding >
 <fault ref="xs:QName"
 whttp:code="union of xs:int, xs:token"? >
 </fault>*
 </binding>
</description>

The XML representation for binding an HTTP Fault is an attribute information
item with the following Infoset properties:

 a code OPTIONAL attribute information item

o A [local name] of code

o A [namespace name] of "http://www.w3.org/ns/wsdl/http"

o A type of union of xs:int and xs:token where the allowed token
value is "#any"

6.7.4 Mapping from XML Representation to Component Properties

See Table 6-4.

Table 6-4. Mapping from XML Representation to Binding Fault component
Extension Properties

Property Value

{http error status
code}

The actual value of the whttp:code attribute information item,
if present; otherwise "#any".

6.8 Serialization Format of Instance Data

This section specifies three serialization formats defining rules to encode the
instance data of an input or output message as an HTTP message. Table 6-5
and Table 6-6 give an overview of those serialization formats and their
constraints. All of them allow serialization of parts of the instance data in the
HTTP Request IRI, as defined in section 6.8.1 Serialization of the instance
data in parts of the HTTP request IRI.

Other serialization formats may be defined. Those MAY place restrictions on the
style of the Interface Operation bound.

Table 6-5. Applicability of the serialization formats defined in this section for this
HTTP binding

Serialization of the instance data in parts of an HTTP
message

In the message body - In the
request

URI

application/x-
www-form-
urlencoded

multipart/form-
data

application/xml

HTTP
request
(input

message)
Without
message

body:
GET,

DELETE,

All,
some or

none

- - -

…

With
message

body:
POST,
PUT, …

All,
some or

none
Remainder All All

HTTP response
(output message)

- - - All

Table 6-6. Operation styles required for using serialization formats defined below
as input serialization

Request

Input serialization
HTTP

Method

Request URI:
query

parameters or
path

components

application/x-
www-form-
urlencoded

multipart/form-
data

application/xml

Without
message

body:
GET,

DELETE,
…

IRI style IRI style - -

With
message

body:
POST,

PUT, …

IRI style, if any
data is serialized

as path
components or

query
parameters

IRI style Multipart style None required

6.8.1 Serialization of the instance data in parts of the HTTP request IRI

This section defines templating rules for the {http location} property of the Binding
Operation component. Templating is used by the serialization formats defined in
section 6.8 Serialization Format of Instance Data, and MAY be reused by other
serialization formats.

With this HTTP binding, part of the instance data for HTTP requests MAY be
serialized in the HTTP request IRI, and another part MAY be serialized in the
HTTP message body.

If the {style} property of the Interface Operation bound has a value of
"http://www.w3.org/ns/wsdl/style/iri" as defined in 4.2 IRI Style, and if the {http

location} property of the Binding Operation component is present, the value of
the {http location} property component is used as a template† which is combined
with the {address} property of the endpoint element to form the full IRI to be used
in an HTTP request, as specified in section 6.5.2 Relationship to WSDL
Component Model.

The resulting IRI MUST be mapped to an URI for use in the HTTP Request as
per section 3.1 "Mapping of IRIs to URIs" of the IRI specification [IETF RFC
3987].† Additional rules for the serialization of the HTTP request IRI MAY be
defined by a serialization format.

6.8.1.1 Construction of the request IRI using the {http location} property

The {http location} property MAY cite local names of elements from the instance
data of the message to be serialized in request IRI. Citing is performed:

 either by enclosing the element name within curly braces. For example,
"temperature/{town}". See Example 6-1 for additional details;

 or by enclosing the element name within exclamated-curly braces, to
include the element without percent-encoding. For example,
"temperature/{!town}". Detailed rules follow.

The {http location} property MUST conform to the following EBNF [ISO/IEC
14977:1996] grammar, which represents the patterns for constructing the request
IRI:†
httpLocation ::= charData? ((openBrace | closeBrace | template)
charData?)*
charData ::= [^{}]*
openBrace ::= '{{'
closeBrace ::= '}}'
template ::= rawTemplate | encodedTemplate
rawTemplate ::= '{!' NCName '}'
encodedTemplate ::= '{' NCName '}'

The request IRI is constructed as follows (ALPHA and DIGIT below are defined as
per [IETF RFC 4234]):

 The local name in a template SHOULD match at least one element from
the instance data of the input message.† When there is no match, the
template is replaced by an empty string. Otherwise, the template
consumes the first non-consumed matching element from the instance
data. The next occurrence of the template consumes the next non-
consumed matching element, and so on until all templates are processed.
Matching elements are consumed in the order in which they appear in the
instance data. Cited elements (i.e. elements referenced in templates)
MUST NOT carry an xs:nil attribute whose value is "true"†.

 Each raw template (rawTemplate production in the grammar above) is
replaced by the possibly empty single value of the corresponding element
from the instance data. No percent-encoding is performed.

 Each encoded template (encodedTemplate production in the grammar
above) NOT preceded in the {http location} property by a "?" character is
replaced by the possibly empty single value of the corresponding element
from the instance data. Encoding is performed as follows:

o The characters in the range: "&" | ";" | "!" | "$" | "'" | "("
| ")" | "*" | "+" | "," | "=" | ":" | "@" SHOULD be
percent-encoded.

o The other characters, EXCEPT the ones in the range: ALPHA |
DIGIT | "-" | "." | "_" | "~", MUST be percent-encoded.

 Each encoded template (encodedTemplate production in the grammar
above) preceded in the {http location} property by a "?" character is
replaced by the possibly empty single value of the corresponding element
from the instance data. Encoding is performed as follows:

o The value of the {http query parameter separator} property, if
present; otherwise the value of the {http query parameter separator
default} property, MUST be percent-encoded.

o The characters in the range: "&" | ";" | "!" | "$" | "'" | "("
| ")" | "*" | "+" | "," | "=" | ":" | "@" | "?" | "/"
SHOULD be percent-encoded.

o The other characters, EXCEPT the ones in the range: ALPHA |
DIGIT | "-" | "." | "_" | "~", MUST be percent-encoded.

 Each uncited element (i.e. each element not referenced in a template) to
be serialized, if any, is encoded as for an encoded template.

 Percent-encoding MUST be performed using the UTF-8 representation of
the character as prescribed by section 6.4 of [IETF RFC 3987].

 Each double curly brace (openBrace or closeBrace production in the
grammar above) is replaced by a single literal curly brace ("{" or "}"
respectively). This provides a simple escaping mechanism.

Note that the mechanism described in this section could be used to indicate the
entire absolute IRI, including the scheme, host, or port, for example:
{scheme}://{host}:{port}/temperature/{town}

or even:
{!myIRI}

6.8.2 Serialization as "application/x-www-form-urlencoded"

This serialization format is designed to allow a client or Web service to produce
an IRI based on the instance data of a message and serialize a query string in
the HTTP message body as application/x-www-form-urlencoded.

If this format is used then the {style} property of Interface Operation component
being bound MUST contain a value of "http://www.w3.org/ns/wsdl/style/iri" as
defined in 4.2 IRI Style, i.e. this serialization format may only be used to serialize
the HTTP request corresponding to the initial message of an interface operation.†

For the HTTP binding defined in this section (6. WSDL HTTP Binding
Extension), "application/x-www-form-urlencoded" MAY be used as a
serialization format for an input message (HTTP Request), but MUST NOT be
used as a serialization format for an output or fault message (HTTP Response).†

6.8.2.1 Case of elements cited in the {http location} property

In this serialization, the rules for constructing the HTTP request IRI using
elements cited in the {http location} property defined in 6.8.1 Serialization of the
instance data in parts of the HTTP request IRI apply. Additional rules for
constructing the HTTP request IRI follow.

6.8.2.2 Serialization of content of the instance data not cited in the {http
location} property

If not all elements from the instance data are cited in the {http location} property,
or if the property is not present on the Binding Operation component, then
additional serialization rules apply.†

The remainder of the instance data is formatted as a query string as defined in
6.8.2.2.1 Construction of the query string.

If the HTTP method used for the request does not allow a message body, then
this query string is serialized as parameters in the request IRI (see 6.8.2.2.3
Serialization in the request IRI), otherwise it is serialized in the message body
(see 6.8.2.2.4 Serialization in the message body).

6.8.2.2.1 CONSTRUCTION OF THE QUERY STRING

For elements of the instance data not cited in the {http location} property, a query
string is constructed as follows.†

Non-nil elements with a possibly empty single value of the instance data not cited
are serialized as query parameters in the order they appear in the instance data.

The instance data MUST NOT contain elements with an xs:nil attribute whose
value is "true".†

Each parameter pair is separated by the value of the {http query parameter
separator} property, if present, or the value of the {http query parameter
separator default} property.

 Uncited elements with single values (non-list) are serialized as a single
name-value parameter pair. The name of the parameter is the local name
of the uncited element, and the value of the parameter is the value of the
uncited element.

 Uncited elements with list values are serialized as one name-value
parameter pair per-list value. The name of each parameter is the local
name of the uncited element, and the value of each parameter is the
corresponding value in the list. The order of the list values is preserved.

 Replacement values falling outside the range (ALPHA and DIGIT below are
defined as per [IETF RFC 4234]): ALPHA | DIGIT | "-" | "." | "_" |
"~" | "!" | "$" | "&" | "'" | "(" | ")" | "*" | "+" | "," | ";" |

"=" | ":" | "@", MUST be percent-encoded. Percent-encoding MUST be
performed using the UTF-8 representation of the character as prescribed
by section 6.4 of [IETF RFC 3987].

Example 6-1. Query string generation

The following instance data of an input message:
<data>
 <town>Fréjus</town>
 <date>2007-06-26</date>
 <unit>C</unit>
</data>

with the following value of the {http location} property:
'temperature/{town}'

and the following value of the {http query parameter separator default} property:
'&'

will produce the following query string:
date=2007-06-26&unit=C

6.8.2.2.2 CONTROLLING THE SERIALIZATION OF THE QUERY STRING IN THE REQUEST IRI

This serialization format adds the following property to the Binding Operation
component:

 {http location ignore uncited} REQUIRED. A xs:boolean. This boolean
indicates whether elements not cited in the {http location} property MUST
be appended to the request IRI or ignored. If the value of this property is
"false", the rules defined in section 6.8.2.2.3 Serialization in the request
IRI dictate how to serialize elements not cited in {http location} in the
request IRI. Otherwise, those are NOT serialized in the request IRI.

When serializing an HTTP request that does not allow an HTTP message body,
and when {http location ignore uncited} is "true", any element NOT cited in the
{http location} property MUST be defined in the schema as nillable, or have a
default value, or appear no less frequently than specified by the minOccurs
value. The element declaration SHOULD NOT combine a default value with
nillable.†

The XML representation for this property is an attribute information item with the
following Infoset properties:

 An OPTIONAL ignoreUncited attribute information item with the following
Infoset properties:

o A [local name] of ignoreUncited

o A [namespace name] of "http://www.w3.org/ns/wsdl/http"

o A type of xs:boolean

The mapping from the XML representation to component properties is as follows:

Table 6-7. Mapping from XML Representation to Binding Operation component
Extension Properties

Property Value

{http location
ignore uncited}

The actual value of the whttp:ignoreUncited attribute
information item, if present; otherwise, "false".

6.8.2.2.3 SERIALIZATION IN THE REQUEST IRI

If the HTTP request method used does not allow HTTP message body (e.g.
"GET" and "DELETE"), and if the value of the {http location ignore uncited}
property is "false", then the following rules apply.†

If the {http location} property is not present, or if it is present and its value does
not contain a "?" (question mark) character, a "?" is appended to the request IRI.
If it does already contain a question mark character, then the value of the {http
query parameter separator} property, if present, or the value of the {http query
parameter separator default} property otherwise, is appended.

Finally, the query string computed in 6.8.2.2.1 Construction of the query string
is appended.

Example 6-2. Instance data serialized in an IRI

The instance data defined in Example 6-1 with the following operation
declaration:
<operation ref='t:data'
 whttp:location='temperature/{town}'
 whttp:method='GET' />

and the following endpoint declaration:
<endpoint name='e' binding='t:b'
 address='http://ws.example.com/service1/' />

will serialize the message in the HTTP request as follows:
GET http://ws.example.com/service1/temperature/Fr%C3%A9jus?date=2007-
06-26&unit=C HTTP/1.1
Host: ws.example.com

6.8.2.2.4 SERIALIZATION IN THE MESSAGE BODY

If the HTTP request method used does allow an HTTP message body (e.g.
"POST" and "PUT"), then the following rules apply.†

Finally, the query string computed in 6.8.2.2.1 Construction of the query string
is used as the value of the HTTP message body.

The Content-Type HTTP header field must have the value application/x-www-
form-urlencoded.†

Example 6-3. Instance data serialized in the HTTP Request IRI and message
body

The instance data defined in Example 6-1 with the following operation
declaration:
<operation ref='t:data'
 whttp:inputSerialization='application/x-www-form-urlencoded'
 whttp:location='temperature/{town}'
 whttp:method='POST' />

and the following endpoint declaration:
<endpoint name='e' binding='t:b'
 address='http://ws.example.com/service1/' />

will serialize the message in the HTTP request as follow:
POST http://ws.example.com/service1/temperature/Fr%C3%A9jus HTTP/1.1
Host: ws.example.com
Content-Type: application/x-www-form-urlencoded
Content-Length: …

date=2007-06-26&unit=C

6.8.3 Serialization as "application/xml"

In this serialization, for HTTP requests, the rules for constructing the HTTP
request IRI defined in 6.8.1 Serialization of the instance data in parts of the
HTTP request IRI apply if the {style} property of the Interface Operation bound
has a value of "http://www.w3.org/ns/wsdl/style/iri" as defined in 4.2 IRI Style.

The instance data of the input, output or fault message is serialized as an XML
document in the message body of the HTTP message, following the serialization
defined in [Canonical XML]. Therefore, it is only suitable for HTTP requests using
methods allowing message bodies (i.e., for the HTTP binding defined in this
specification, input messages where the HTTP method selected has a body), and
for HTTP responses (i.e. output and fault messages for the HTTP binding defined
in this specification).

The Content-Type HTTP header MUST have the value application/xml [IETF
RFC 3023], or a media type compatible with application/xml as specified in
section 6.4.3.1 Serialization rules for XML messages.† Other HTTP headers
MAY be used.

6.8.4 Serialization as "multipart/form-data"

In this serialization, for HTTP requests, the rules for constructing the HTTP
request IRI defined in 6.8.1 Serialization of the instance data in parts of the
HTTP request IRI apply if the {style} property of the Interface Operation bound
has a value of "http://www.w3.org/ns/wsdl/style/iri" as defined in 4.2 IRI Style.

This format is for legacy compatibility to permit the use of XForms clients with
[IETF RFC 2388] servers. This serialization format may only be used when
binding Interface Operation components whose {style} property has a value of

"http://www.w3.org/ns/wsdl/style/multipart" as defined in 4.3 Multipart style, i.e.
this serialization format may only be used to serialize the HTTP request
corresponding to the initial message of an interface operation.†

Specifically, for the HTTP binding defined in this section (6. WSDL HTTP
Binding Extension), "multipart/form-data" MAY be used as a serialization format
for an input message (HTTP Request), but MUST NOT be used as a serialization
format for an output or fault message (HTTP Response).† This format serializes
the instance data in the HTTP message body, making it only suitable for HTTP
requests using methods allowing message bodies.

Each element in the sequence is serialized into a part as follow:

1. The Content-Disposition header MUST have the value form-data, and
its name parameter is the local name of the element.†

2. The Content-Type header MUST have the value:†

o application/xml (or a media type compatible with
application/xml) if the element has a complex type;

o application/octet-stream if the element is of type
xs:base64Binary, xs:hexBinary, or a derived type;

o text/plain if the element has a simple type; The charset MUST be
set appropriately. UTF-8 or UTF-16 MUST be at least supported.

3. If the type is xs:base64Binary, xs:hexBinary, xs:anySimpleType or a
derived type, the content of the part is the content of the element. If the
type is a complex type, the element is serialized following the rules
defined in the 6.8.3 Serialization as application/xml .

The instance data MUST NOT contain elements with an xs:nil attribute whose
value is "true".†

Example 6-4. Example of multipart/form-data

The following instance data of an input message:
<data>
 <town>
 <name>Fréjus</name>
 <country>France</country>
 </town>
 <date>2007-06-26</date>
</data>

with the following operation element:
<operation ref='t:data'
 whttp:location='temperature'
 whttp:method='POST'
 whttp:inputSerialization='multipart/form-data'/>

will serialize the message as follow:
Content-Type: multipart/form-data; boundary=AaB03x
Content-Length: xxx

--AaB03x
Content-Disposition: form-data; name="town"

Content-Type: application/xml

<town>
 <name>Fréjus</name>
 <country>France</country>
</town>
--AaB03x
Content-Disposition: form-data; name="date"
Content-Type: text/plain; charset=utf-8

2007-06-26
--AaB03x--

6.9 Specifying the Content Encoding

6.9.1 Description

Every Binding Message Reference and Binding Fault component MAY indicate
which content encodings, as defined in section 3.5 of [IETF RFC 2616], are
available for this particular message.

The HTTP binding extension provides a mechanism for indicating a default value
at the Binding component and Binding Operation levels.

If no value is specified, no claim is being made.

6.9.2 Relationship to WSDL Component Model

The HTTP binding extension specification adds the following properties to the
WSDL component model (as defined in [WSDL 2.0 Core Language]):

 {http content encoding default} OPTIONAL. A xs:string to the Binding
component. This property indicates the default content encodings
available for all Binding Message Reference and Binding Fault
components of this Binding.

 {http content encoding default} OPTIONAL. A xs:string to the Binding
Operation component. This property indicates the default content
encodings available for all Binding Message Reference of this Binding
Operation.

 {http content encoding} OPTIONAL. A xs:string to the Binding Message
Reference component. This property indicates the content encodings
available for this Binding Message Reference component. If this property
does not have a value, the value of the {http content encoding default}
property of the parent Binding Operation component is used instead. If
that itself has no value, the value from the Binding Operation component's
parent Binding component is used instead.

 Similarly, {http content encoding} OPTIONAL, to the Binding Fault
component

These properties are not relevant when HTTP 1.0 is used.

6.9.3 XML Representation

<description>
 <binding name="xs:NCName" interface="xs:QName"? type="xs:anyURI"
 whttp:contentEncodingDefault="xs:string"? >

 <fault ref="xs:QName"
 whttp:contentEncoding="xs:string"? >
 </fault>*

 <operation location="xs:anyURI"?
 whttp:contentEncodingDefault="xs:string"? >
 <input messageLabel="xs:NCName"?
 whttp:contentEncoding="xs:string"? />

 <output messageLabel="xs:NCName"?
 whttp:contentEncoding="xs:string"? />

 </operation>
 </binding>
</description>

The XML representation for specifying the content encoding is an OPTIONAL
attribute information item for the input, output, and fault element information
items with the following Infoset properties:

 A [local name] of contentEncoding

 A [namespace name] of "http://www.w3.org/ns/wsdl/http"

 A type of xs:string

The XML representation for specifying the default content encoding is an
OPTIONAL attribute information item for the binding element information item or
binding's child operation element information items with the following Infoset
properties:

 A [local name] of contentEncodingDefault

 A [namespace name] of "http://www.w3.org/ns/wsdl/http"

 A type of xs:string

6.9.4 Mapping from XML Representation to Component Properties

See Table 6-8.

Table 6-8. Mapping from XML Representation to Interface Message Reference
component Extension Properties

Property Value

{http content encoding
default} of the Binding
component

The actual value of the whttp:contentEncodingDefault
attribute information item of the binding element
information item, if present.

{http content encoding The actual value of the whttp:contentEncodingDefault

default} of the Binding
Operation component

attribute information item of the operation element
information item, if present.

{http content encoding}
of the Binding Message
Reference component

The actual value of the whttp:contentEncoding
attribute information item of the input or output
element information item, if present.

{http content encoding}
of the Binding Fault
component

The actual value of the whttp:contentEncoding
attribute information item of the fault element
information item, if present.

6.10 Specifying the Use of HTTP Cookies

6.10.1 Description

The {http cookies} property allows Binding components to indicate that HTTP
cookies (as defined by [IETF RFC 2965]) are used by specific operations of the
interface that this binding applies to.

6.10.2 Relationship to WSDL Component Model

The HTTP binding extension specification adds the following property to the
WSDL component model (as defined in [WSDL 2.0 Core Language]):

 {http cookies} REQUIRED. A xs:boolean to the Binding component.

6.10.3 XML Representation

<description>
 <binding name="xs:NCName" interface="xs:QName"? type="xs:anyURI"
 whttp:cookies="xs:boolean"? >
 </binding>
</description>

The XML representation for specifying the use of HTTP cookies is an OPTIONAL
attribute information item with the following Infoset properties:

 A [local name] of cookies

 A [namespace name] of "http://www.w3.org/ns/wsdl/http"

 A type of xs:boolean

6.10.4 Mapping from XML Representation to Component Properties

See Table 6-9.

Table 6-9. Mapping from XML Representation to Binding component Extension
Properties

Property Value

{http
cookies}

The actual value of the whttp:cookies attribute information item;
otherwise, "false". A value of "true" means that the service relies on
cookies and that the client MUST understand them.†

6.11 Specifying HTTP Access Authentication

6.11.1 Description

Every Endpoint component MAY indicate the use of an HTTP access
authentication mechanism (as defined by [IETF RFC 2616]) for the endpoint
described.

This binding extension specification allows the authentication scheme and realm
to be specified.

6.11.2 Relationship to WSDL Component Model

The HTTP binding extension specification adds the following property to the
WSDL component model (as defined in [WSDL 2.0 Core Language]):

 {http authentication scheme} OPTIONAL. A xs:token with one of the
values "basic" or "digest", to the Endpoint component, corresponding to
the HTTP authentication scheme used. When present, this property
indicates the authentication scheme in use: "basic" indicates the Basic
Access Authentication scheme defined in [IETF RFC 2617], and "digest"
indicates the Digest Access Authentication scheme as defined in [IETF
RFC 2617].

 {http authentication realm} OPTIONAL. A xs:string to the Endpoint
component. It corresponds to the realm authentication parameter defined
in [IETF RFC 2617]. If the {http authentication scheme} property is
present, then this property MUST be present.†

6.11.3 XML Representation

<description>
 <service>
 <endpoint name="xs:NCName" binding="xs:QName"
address="xs:anyURI"? >
 whttp:authenticationScheme="xs:token"?
 whttp:authenticationRealm="xs:string"? />
 </endpoint>
 </service>
</description>

The XML representation for specifying the use of HTTP access authentication is
two OPTIONAL attribute information items with the following Infoset properties:

 An OPTIONAL authenticationScheme attribute information item with the
following Infoset properties:

o A [local name] of authenticationScheme

o A [namespace name] of "http://www.w3.org/ns/wsdl/http"

o A type of xs:token where the allowed token values are "basic" and
"digest".

 An OPTIONAL authenticationRealm attribute information item with the
following Infoset properties:

o A [local name] of authenticationRealm

o A [namespace name] of "http://www.w3.org/ns/wsdl/http"

o A type of xs:string

6.11.4 Mapping from XML Representation to Component Properties

See Table 6-10.

Table 6-10. Mapping from XML Representation to Endpoint component
Extension Properties

Property Value

{http
authentication
scheme}

The actual value of the whttp:authenticationScheme attribute
information item, if present.

{http
authentication
realm}

The actual value of the whttp:authenticationRealm attribute
information item, if present; otherwise, if the
whttp:authenticationScheme attribute information item is
present, "" (the empty value).

6.12 Conformance

An element information item, whose namespace name is
"http://www.w3.org/ns/wsdl" and whose local part is description, conforms to
this binding extension specification if: the element information items and attribute
information items, whose namespace is http://www.w3.org/ns/wsdl/http, conform
to the XML Schema for that element or attribute, as defined by this specification
and, additionally, adheres to all the constraints contained in this specification.

7. References

7.1 Normative References

[ISO/IEC 14977:1996]
Extended BNF, IS0 (the International Organization for Standardization)
and IEC (the International Electrotechnical Commission), Dec 1996.
Available at

http://isotc.iso.org/livelink/livelink/fetch/2000/2489/Ittf_Home/PubliclyAvaila
bleStandards.htm.

[IETF RFC 2119]
Key words for use in RFCs to Indicate Requirement Levels, S. Bradner,
Author. Internet Engineering Task Force, March 1997. Available at
http://www.ietf.org/rfc/rfc2119.txt.

[IETF RFC 2388]
Returning Values from Forms: multipart/form-data, L. Masinter, Author.
Internet Engineering Task Force, August 1998. Available at
http://www.ietf.org/rfc/rfc2388.txt.

[IETF RFC 2616]
Hypertext Transfer Protocol -- HTTP/1.1, R. Fielding, J. Gettys, J. Mogul,
H. Frystyk, L. Masinter, P. Leach, T. Berners-Lee, Authors. Internet
Engineering Task Force, June 1999. Available at
http://www.ietf.org/rfc/rfc2616.txt.

[IETF RFC 2617]
HTTP Authentication: Basic and Digest Access Authentication, J. Franks,
P. Hallam-Baker, J. Hostetler, S. Lawrence, P. Leach, A. Luotonen, L.
Stewart, June 1999. Available at http://www.ietf.org/rfc/rfc2616.txt.

[IETF RFC 2818]
HTTP Over TLS, E. Rescorla, Author. Internet Engineering Task Force,
May 2000. Available at http://www.ietf.org/rfc/rfc2818.txt.

[IETF RFC 2965]
HTTP State Management Mechanism, D. Kristol, L. Montulli Authors.
Internet Engineering Task Force, October 2000. Available at
http://www.ietf.org/rfc/rfc2965.txt.

[IETF RFC 3023]
XML Media Types, M. Murata, S. St. Laurent, D. Kohn, Authors. Internet
Engineering Task Force, January 2001. Available at
http://www.ietf.org/rfc/rfc3023.txt.

[IETF RFC 3205]
On the use of HTTP as a Substrate, K. Moore, Authors. Internet
Engineering Task Force, February 2002. Available at
http://www.ietf.org/rfc/rfc3205.txt.

[IETF RFC 3986]
Uniform Resource Identifiers (URI): Generic Syntax, T. Berners-Lee, R.
Fielding, L. Masinter, Authors. Internet Engineering Task Force, January
2005. Available at http://www.ietf.org/rfc/rfc3986.txt.

[IETF RFC 3987]
Internationalized Resource Identifiers (IRIs), M. Duerst, M. Suignard,
Authors. Internet Engineering Task Force, January 2005. Available at
http://www.ietf.org/rfc/rfc3987.txt.

[IETF RFC 4234]
Augmented BNF for Syntax Specifications: ABNF, D. Crocker, P. Overell,
Authors. Internet Engineering Task Force, October 2005. Available at
http://www.ietf.org/rfc/rfc4234.txt.

[Web Architecture]
Architecture of the World Wide Web, Volume One, I. Jacobs, and N.
Walsh, Editors. World Wide Web Consortium, 15 December 2004. This
version of the "Architecture of the World Wide Web, Volume One"
Recommendation is http://www.w3.org/TR/2004/REC-webarch-
20041215/. The latest version of "Architecture of the World Wide Web,
Volume One" is available at http://www.w3.org/TR/webarch/.

[Web Services Architecture]
Web Services Architecture, David Booth, Hugo Haas, Francis McCabe,
Eric Newcomer, Michael Champion, Chris Ferris, David Orchard, Editors.
World Wide Web Consortium, 11 February 2004. This version of the "Web
Services Architecture" Working Group Note is
http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/. The latest version
of "Web Services Architecture" is available at http://www.w3.org/TR/ws-
arch/.

[WSDL 2.0 Core Language]
Web Services Description Language (WSDL) Version 2.0 Part 1: Core
Language, R. Chinnici, J-J. Moreau, A. Ryman, S. Weerawarana, Editors.
World Wide Web Consortium, 26 June 2007. This version of the "Web
Services Description Language (WSDL) Version 2.0 Part 1: Core
Language" Recommendation is available is available at
http://www.w3.org/TR/2007/REC-wsdl20-20070626. The latest version of
"Web Services Description Language (WSDL) Version 2.0 Part 1: Core
Language" is available at http://www.w3.org/TR/wsdl20.

[SOAP 1.2 Part 1: Messaging Framework (Second Edition)]
SOAP Version 1.2 Part 1: Messaging Framework (Second Edition), M.
Gudgin, et al., Editors. World Wide Web Consortium, 24 June 2003,
revised 27 April 2007. This version of the "SOAP Version 1.2 Part 1:
Messaging Framework (Second Edition)" Recommendation is
http://www.w3.org/TR/2007/REC-soap12-part1-20070427/. The latest
version of "SOAP Version 1.2 Part 1: Messaging Framework" is available
at http://www.w3.org/TR/soap12-part1/.

[SOAP 1.2 Part 2: Adjuncts (Second Edition)]
SOAP Version 1.2 Part 2: Adjuncts (Second Edition), M. Gudgin, et al.,
Editors. World Wide Web Consortium, 24 June 2006, revised 27 April
2007. This version of the "SOAP Version 1.2 Part 2: Adjuncts (Second
Edition)" Recommendation is http://www.w3.org/TR/2007/REC-soap12-
part2-20070427/. The latest version of "SOAP Version 1.2 Part 2:
Adjuncts" is available at http://www.w3.org/TR/soap12-part2/.

[XML 1.0]
Extensible Markup Language (XML) 1.0 (Fourth Edition), T. Bray, J. Paoli,
C. M. Sperberg-McQueen, E. Maler, and F. Yergeau, Editors. World Wide
Web Consortium, 10 February 1998, revised 16 August 2006. This version
of the XML 1.0 Recommendation is http://www.w3.org/TR/2006/REC-xml-
20060816/. The latest version of "Extensible Markup Language (XML) 1.0"
is available at http://www.w3.org/TR/REC-xml.

[Canonical XML]
Canonical XML, J. Boyer, Author. World Wide Web Consortium, 15 March
2001. This version of the Canonical XML Recommendation is
http://www.w3.org/TR/2001/REC-xml-c14n-20010315. The latest version
of Canonical XML is available at http://www.w3.org/TR/xml-c14n.

[XML Information Set]
XML Information Set (Second Edition), J. Cowan and R. Tobin, Editors.
World Wide Web Consortium, 24 October 2001, revised 4 February 2004.
This version of the XML Information Set Recommendation is
http://www.w3.org/TR/2004/REC-xml-infoset-20040204. The latest version
of XML Information Set is available at http://www.w3.org/TR/xml-infoset.

[XML Schema Structures]
XML Schema Part 1: Structures Second Edition, H. Thompson, D. Beech,
M. Maloney, and N. Mendelsohn, Editors. World Wide Web Consortium, 2
May 2001, revised 28 October 2004. This version of the XML Schema
Part 1 Recommendation is http://www.w3.org/TR/2004/REC-xmlschema-
1-20041028. The latest version of XML Schema Part 1 is available at
http://www.w3.org/TR/xmlschema-1.

[XML Schema Datatypes]
XML Schema Part 2: Datatypes Second Edition, P. Byron and A.
Malhotra, Editors. World Wide Web Consortium, 2 May 2001, revised 28
October 2004. This version of the XML Schema Part 2 Recommendation
is http://www.w3.org/TR/2004/REC-xmlschema-2-20041028. The latest
version of XML Schema Part 2 is available at
http://www.w3.org/TR/xmlschema-2.

[XForms 1.0]
XForms 1.0 (Second Edition), J. Boyer, et al., Editors. World Wide Web
Consortium, 14 October 2003, revised 14 March 2006. This version of the
XForms 1.0 Recommendation is http://www.w3.org/TR/2006/REC-xforms-
20060314/. The latest version of XForms 1.0 is available at
http://www.w3.org/TR/xforms/.

7.2 Informative References

[WSA 1.0 Core]
Web Services Addressing 1.0 - Core, M. Gudgin, M. Hadley, T. Rogers,
Editors. World Wide Web Consortium, 9 May 2006. This version of Web
Services Addressing 1.0 - Core Recommendation is
http://www.w3.org/TR/2006/REC-ws-addr-core-20060509/. The latest
version of the "Web Services Addressing 1.0 - Core" document is
available from http://www.w3.org/TR/ws-addr-core.

[WSDL 2.0 Primer]
Web Services Description Language (WSDL) Version 2.0 Part 0: Primer ,
D.Booth, C.K. Liu , Editors. World Wide Web Consortium, 26 June 2007.
This version of the "Web Services Description Language (WSDL) Version
2.0 Part 0: Primer" Recommendation is available at

http://www.w3.org/TR/2007/REC-wsdl20-primer-20070626. The latest
version of "Web Services Description Language (WSDL) Version 2.0 Part
0: Primer" is available at http://www.w3.org/TR/wsdl20-primer.

[WSDL 2.0 Additional MEPs]
Web Services Description Language (WSDL) Version 2.0: Additional
MEPs, A. Lewis, Editors. World Wide Web Consortium, 26 June 2007.
This version of the "Web Services Description Language (WSDL) Version
2.0: Additional MEPs" Working Group Note is available is available at
http://www.w3.org/TR/2007/NOTE-wsdl20-additional-meps-20070626.
The latest version of "Web Services Description Language (WSDL)
Version 2.0: Additional MEPs" is available at
http://www.w3.org/TR/wsdl20-additional-meps.

[SOAP Message Transmission Optimization Mechanism]
SOAP Message Transmission Optimization Mechanism, N. Mendelsohn,
M. Nottingham, and H. Ruellan, Editors. World Wide Web Consortium,
W3C Recommendation, 25 January 2005. This version of SOAP Message
Transmission Optimization Mechanism is
http://www.w3.org/TR/2005/REC-soap12-mtom-20050125/. The latest
version of the "SOAP Message Transmission Optimization Mechanism"
document is available from http://www.w3.org/TR/soap12-mtom/.

[XPointer]
XPointer Framework,Paul Grosso, Eve Maler, Jonathan Marsh, Norman
Walsh, Editors. World Wide Web Consortium, 25 March 2003. This
version of the XPointer Framework Proposed Recommendation is
http://www.w3.org/TR/2003/REC-xptr-framework-20030325/ The latest
version of XPointer Framework is available at http://www.w3.org/TR/xptr-
framework/.

A. Acknowledgements (Non-Normative)

This document is the work of the W3C Web Service Description Working Group.

Members of the Working Group are (at the time of writing, and by alphabetical
order): Charlton Barreto (Adobe Systems, Inc), Allen Brookes (Rogue Wave
Softwave), Dave Chappell (Sonic Software), Helen Chen (Agfa-Gevaert N. V.),
Roberto Chinnici (Sun Microsystems), Kendall Clark (University of Maryland),
Glen Daniels (Sonic Software), Paul Downey (British Telecommunications),
Youenn Fablet (Canon), Ram Jeyaraman (Microsoft), Tom Jordahl (Adobe
Systems), Anish Karmarkar (Oracle Corporation), Jacek Kopecky (DERI
Innsbruck at the Leopold-Franzens-Universität Innsbruck, Austria), Amelia Lewis
(TIBCO Software, Inc.), Philippe Le Hegaret (W3C), Michael Liddy (Education.au
Ltd.), Kevin Canyang Liu (SAP AG), Jonathan Marsh (WSO2), Monica Martin
(Sun Microsystems), Josephine Micallef (SAIC - Telcordia Technologies), Jeff
Mischkinsky (Oracle Corporation), Dale Moberg (Cyclone Commerce), Jean-
Jacques Moreau (Canon), David Orchard (BEA Systems, Inc.), Gilbert Pilz (BEA
Systems, Inc.), Tony Rogers (Computer Associates), Arthur Ryman (IBM), Adi
Sakala (IONA Technologies), Michael Shepherd (Xerox), Asir Vedamuthu

(Microsoft Corporation), Sanjiva Weerawarana (WSO2), Ümit Yalçınalp (SAP
AG), Peter Zehler (Xerox).

Previous members were: Eran Chinthaka (WSO2), Mark Nottingham (BEA
Systems, Inc.), Hugo Haas (W3C), Vivek Pandey (Sun Microsystems), Bijan
Parsia (University of Maryland), Lily Liu (webMethods, Inc.), Don Wright
(Lexmark), Joyce Yang (Oracle Corporation), Daniel Schutzer (Citigroup), Dave
Solo (Citigroup), Stefano Pogliani (Sun Microsystems), William Stumbo (Xerox),
Stephen White (SeeBeyond), Barbara Zengler (DaimlerChrysler Research and
Technology), Tim Finin (University of Maryland), Laurent De Teneuille
(L'Echangeur), Johan Pauhlsson (L'Echangeur), Mark Jones (AT&T), Steve Lind
(AT&T), Sandra Swearingen (U.S. Department of Defense, U.S. Air Force),
Philippe Le Hégaret (W3C), Jim Hendler (University of Maryland), Dietmar
Gaertner (Software AG), Michael Champion (Software AG), Don Mullen (TIBCO
Software, Inc.), Steve Graham (Global Grid Forum), Steve Tuecke (Global Grid
Forum), Michael Mahan (Nokia), Bryan Thompson (Hicks & Associates), Ingo
Melzer (DaimlerChrysler Research and Technology), Sandeep Kumar (Cisco
Systems), Alan Davies (SeeBeyond), Jacek Kopecky (Systinet), Mike Ballantyne
(Electronic Data Systems), Mike Davoren (W. W. Grainger), Dan Kulp (IONA
Technologies), Mike McHugh (W. W. Grainger), Michael Mealling (Verisign),
Waqar Sadiq (Electronic Data Systems), Yaron Goland (BEA Systems, Inc.),
Ümit Yalçınalp (Oracle Corporation), Peter Madziak (Agfa-Gevaert N. V.), Jeffrey
Schlimmer (Microsoft Corporation), Hao He (The Thomson Corporation), Erik
Ackerman (Lexmark), Jerry Thrasher (Lexmark), Prasad Yendluri (webMethods,
Inc.), William Vambenepe (Hewlett-Packard Company), David Booth (W3C),
Sanjiva Weerawarana (IBM), Asir Vedamuthu (webMethods, Inc.), Igor Sedukhin
(Computer Associates), Martin Gudgin (Microsoft Corporation), Rebecca
Bergersen (IONA Technologies), Ugo Corda (SeeBeyond).

The people who have contributed to discussions on www-ws-desc@w3.org are
also gratefully acknowledged.

B. Component Summary (Non-Normative)

Table B-1 lists all the components in the WSDL 2.0 Adjuncts abstract Component
Model, and all their properties.

Table B-1. Summary of WSDL 2.0 Adjuncts Components and their Properties

Component Defined Properties

Binding

{http content encoding default}, {http cookies}, {http method
default}, {http query parameter separator default}, {soap
mep default}, {soap modules}, {soap underlying protocol},
{soap version}

Binding Fault
{http content encoding}, {http error status code}, {http
headers}, {soap fault code}, {soap fault subcodes}, {soap
headers}, {soap modules}

Binding Fault
Reference

{soap modules}

Binding Message
Reference

{http content encoding}, {http headers}, {soap headers},
{soap modules}

Binding Operation

{http content encoding default}, {http fault serialization},
{http input serialization}, {http location}, {http location ignore
uncited}, {http method}, {http output serialization}, {http
query parameter separator}, {soap action}, {soap mep},
{soap modules}

Endpoint {http authentication realm}, {http authentication scheme}

HTTP Header {name}, {parent}, {required}, {type definition}

Interface Operation {rpc signature}, {safe}

SOAP Header
Block

{element declaration}, {mustUnderstand}, {parent},
{required}

SOAP Module {parent}, {ref}, {required}

Property Where Defined

element declaration SOAP Header Block.{element declaration}

http authentication
realm

Endpoint.{http authentication realm}

http authentication
scheme

Endpoint.{http authentication scheme}

http content
encoding

Binding Fault.{http content encoding}, Binding Message
Reference.{http content encoding}

http content
encoding default

Binding.{http content encoding default}, Binding
Operation.{http content encoding default}

http cookies Binding.{http cookies}

http error status
code

Binding Fault.{http error status code}

http fault
serialization

Binding Operation.{http fault serialization}

http headers
Binding Fault.{http headers}, Binding Message
Reference.{http headers}

http input
serialization

Binding Operation.{http input serialization}

http location Binding Operation.{http location}

http location ignore
uncited

Binding Operation.{http location ignore uncited}

http method Binding Operation.{http method}

http method default Binding.{http method default}

http output
serialization

Binding Operation.{http output serialization}

http query
parameter
separator

Binding Operation.{http query parameter separator}

http query
parameter
separator default

Binding.{http query parameter separator default}

mustUnderstand SOAP Header Block.{mustUnderstand}

name HTTP Header.{name}

parent
HTTP Header.{parent}, SOAP Header Block.{parent},
SOAP Module.{parent}

ref SOAP Module.{ref}

required
HTTP Header.{required}, SOAP Header Block.{required},
SOAP Module.{required}

rpc signature Interface Operation.{rpc signature}

safe Interface Operation.{safe}

soap action Binding Operation.{soap action}

soap fault code Binding Fault.{soap fault code}

soap fault subcodes Binding Fault.{soap fault subcodes}

soap headers
Binding Fault.{soap headers}, Binding Message
Reference.{soap headers}

soap mep Binding Operation.{soap mep}

soap mep default Binding.{soap mep default}

soap modules

Binding.{soap modules}, Binding Fault.{soap modules},
Binding Fault Reference.{soap modules}, Binding Message
Reference.{soap modules}, Binding Operation.{soap
modules}

soap underlying
protocol

Binding.{soap underlying protocol}

soap version Binding.{soap version}

type definition HTTP Header.{type definition}

C. Assertion Summary (Non-Normative)

This appendix summarizes assertions about WSDL 2.0 documents and
components that are not enforced by the WSDL 2.0 schema. Each assertion is

assigned a unique identifier which WSDL 2.0 processors may use to report
errors.

Table C-1. Summary of Assertions about WSDL 2.0 Documents

Id Assertion

OperationSafety-
2028

An OPTIONAL safe attribute information item with the
following Infoset properties:

WRPC-2050

Additionally, each even-numbered item (0, 2, 4, ...) in the list
MUST be of type xs:QName and each odd-numbered item (1,
3, 5, ...) in the list MUST be of the subtype of xs:token
described in the previous paragraph.

Table C-2. Summary of Assertions about WSDL 2.0 Components

Id Assertion

FaultPropagationModification-
2005

However, extensions or binding extensions MAY
modify these rulesets.

HTTPAccessAuthentication-
2127

If the {http authentication scheme} property is
present, then this property MUST be present.

HTTPBinding-2083
When formulating the HTTP message to be
transmitted, the HTTP request method used
MUST be selected using one of the following:

HTTPBinding-2084

When formulating the HTTP message to be
transmitted, content encoding for a given Binding
Message Reference component is determined as
follows:

HTTPBinding-2085
When formulating the HTTP fault message to be
transmitted, content encoding for a given Binding
Fault component is determined as follows:

HTTPBinding-2086

When formulating the HTTP message to be
transmitted, the contents of the payload (i.e. the
contents of the HTTP message body) MUST be
what is defined by the corresponding Interface
Message Reference or Interface Fault
components, serialized as specified by the
serialization format used.

HTTPBinding-2087

If the value is "#none", then the payload MUST be
empty and the value of the corresponding
serialization property ({http input serialization} or
{http output serialization}) is ignored.

HTTPBinding-2088
If the Interface Message Reference component or
the Interface Fault component is declared using a

non-XML type system (as considered in the Types
section of [WSDL 2.0 Core Language]), then
additional binding rules MUST be defined in an
extension specification to indicate how to map
those components into the HTTP envelope.

HTTPBinding-2089

The serialization rules for messages whose
{message content model} is either "#element" or
"#any", AND the serialization rules for fault
messages, are as follows:

HTTPBindingFault-2105
The fault definition SHOULD agree with the
definition of the HTTP error codes, as specified in
section 8 of [IETF RFC 3205].

HTTPBindingFault-2106
An integer value of this property identifies the error
Status-Code as defined by [IETF RFC 2616] that
the service will use in case the fault is returned.

HTTPBindingOperation-2093

When formulating the HTTP Request, the HTTP
Request IRI is an absolute IRI reference and is the
value of the {http location} property of the Binding
Operation component, resolved using the value of
the {address} property of the Endpoint component
(see section 5 of [IETF RFC 3986]).

HTTPBindingOperation-2094
The first one is transmitted using an HTTP
request, and the second one is transmitted using
the corresponding HTTP response.

HTTPBindingOperation-2095
In cases where only one single message is being
sent, the message body of the HTTP response
MUST be empty.

HTTPBindingOperation-2098
It MUST contain an IRI reference and MUST NOT
include a fragment identifier component.

HTTPBindingOperation-2100
The value of the serialization format used for a
message is a media type which MUST be covered
by this range.

HTTPBindingOperation-2101
Wild cards (for example, "application/*") SHOULD
NOT be used in this attribute information item
since they may lead to interoperability problems.

HTTPCookies-2126
A value of "true" means that the service relies on
cookies and that the client MUST understand
them.

HTTPHeader-2090

If the {http headers} property as defined in section
6.6 Declaring HTTP Headers exists and is not
empty in a Binding Message Reference or Binding
Fault component, HTTP headers conforming to

each HTTP Header component contained in this
{http headers} property MAY be serialized as
follows:

HTTPHeader-2091

The HTTP binding MUST NOT set an HTTP
header field corresponding to the value of the
{name} property already set by another
mechanism, such as the HTTP stack or another
feature.

HTTPHeader-2092
If the value of an HTTP Header component's
{required} property is "true", the inclusion of this
HTTP header field is REQUIRED

HTTPHeader-2102

A Binding Message Reference or a Binding Fault
component's {http headers} property MUST NOT
contain multiple HTTP Header components with
the same {name} property.

HTTPHeader-2103 This type MUST be a simple type.

HTTPHeader-2104
If the value is "true", then the HTTP header field
MUST be included in the message.

HTTPQueryString-2115
The instance data MUST NOT contain elements
with an xs:nil attribute whose value is "true".

HTTPQueryString-2116

When serializing an HTTP request that does not
allow an HTTP message body, and when {http
location ignore uncited} is "true", any element NOT
cited in the {http location} property MUST be
defined in the schema as nillable, or have a
default value, or appear no less frequently than
specified by the minOccurs value. The element
declaration SHOULD NOT combine a default
value with nillable.

HTTPSerialization-2099

The value of the {http input serialization}, {http
output serialization} and {http fault serialization}
properties is similar to the value allowed for the
Accept HTTP header defined by the HTTP 1.1
specification, Section 14.1 (see [IETF RFC 2616])
and MUST follow the production rules defined in
that section except for the following:

HTTPSerialization-2106

The {http location} property MUST conform to the
following EBNF [ISO/IEC 14977:1996] grammar,
which represents the patterns for constructing the
request IRI:

HTTPSerialization-2107
If the {style} property of the Interface Operation
bound has a value of
"http://www.w3.org/ns/wsdl/style/iri" as defined in

4.2 IRI Style, and if the {http location} property of
the Binding Operation component is present, the
value of the {http location} property component is
used as a template

HTTPSerialization-2108

The resulting IRI MUST be mapped to an URI for
use in the HTTP Request as per section 3.1
"Mapping of IRIs to URIs" of the IRI specification
[IETF RFC 3987].

HTTPSerialization-2109
The local name in a template SHOULD match at
least one element from the instance data of the
input message.

HTTPSerialization-2111

If this format is used then the {style} property of
Interface Operation component being bound
MUST contain a value of
"http://www.w3.org/ns/wsdl/style/iri" as defined in
4.2 IRI Style, i.e. this serialization format may only
be used to serialize the HTTP request
corresponding to the initial message of an
interface operation.

HTTPSerialization-2112

For the HTTP binding defined in this section (6.
WSDL HTTP Binding Extension), "application/x-
www-form-urlencoded" MAY be used as a
serialization format for an input message (HTTP
Request), but MUST NOT be used as a
serialization format for an output or fault message
(HTTP Response).

HTTPSerialization-2113

If not all elements from the instance data are cited
in the {http location} property, or if the property is
not present on the Binding Operation component,
then additional serialization rules apply.

HTTPSerialization-2114
For elements of the instance data not cited in the
{http location} property, a query string is
constructed as follows.

HTTPSerialization-2117

If the HTTP request method used does not allow
HTTP message body (e.g. "GET" and "DELETE"),
and if the value of the {http location ignore
uncited} property is "false", then the following rules
apply.

HTTPSerialization-2118
If the HTTP request method used does allow an
HTTP message body (e.g. "POST" and "PUT"),
then the following rules apply.

HTTPSerialization-2119
The Content-Type HTTP header field must have
the value application/x-www-form-urlencoded.

HTTPSerialization-2120

The Content-Type HTTP header MUST have the
value application/xml [IETF RFC 3023], or a
media type compatible with application/xml as
specified in section 6.4.3.1 Serialization rules for
XML messages.

HTTPSerialization-2121
this serialization format may only be used to
serialize the HTTP request corresponding to the
initial message of an interface operation.

HTTPSerialization-2122

Specifically, for the HTTP binding defined in this
section (6. WSDL HTTP Binding Extension),
"multipart/form-data" MAY be used as a
serialization format for an input message (HTTP
Request), but MUST NOT be used as a
serialization format for an output or fault message
(HTTP Response).

HTTPSerialization-2123
The Content-Disposition header MUST have the
value form-data, and its name parameter is the
local name of the element.

HTTPSerialization-2124 The Content-Type header MUST have the value:

HTTPSerialization-2125
The instance data MUST NOT contain elements
with an xs:nil attribute whose value is "true".

IRIStyle-2051

When using this style, the value of the {message
content model} property of the Interface Message
Reference component corresponding to the initial
message of the message exchange pattern MUST
be "#element".

IRIStyle-2052 The sequence MUST only contain elements.

IRIStyle-2053
The sequence MUST contain only local element
children.

IRIStyle-2054
The localPart of the element's QName MUST be
the same as the Interface Operation component's
{name}.

IRIStyle-2055
The complex type that defines the body of the
element or its children elements MUST NOT
contain any attributes.

IRIStyle-2056

The children elements of the sequence MUST
derive from xs:simpleType, and MUST NOT be of
the type or derive from xs:QName, xs:NOTATION,
xs:hexBinary or xs:base64Binary.

InOnlyComposition-2012
The in-only message exchange pattern consists
of exactly one message as follows:

InOutComposition-2015
The in-out message exchange pattern consists of
exactly two messages, in order, as follows:

InterfaceOperation-2096
202 when the MEP is
"http://www.w3.org/ns/wsdl/in-only"

InterfaceOperation-2097
204 when the MEP is
"http://www.w3.org/ns/wsdl/robust-in-only"

MultipartStyle-2057

When using this style, the value of the {message
content model} property of the Interface Message
Reference component corresponding to the initial
message of the message exchange pattern MUST
be "#element".

MultipartStyle-2058 The sequence MUST only contain elements.

MultipartStyle-2059
The sequence MUST contain only local element
children.

MultipartStyle-2060
The attributes minOccurs and maxOccurs for these
child elements MUST have a value 1.

MultipartStyle-2061
The localPart of the element's QName MUST be
the same as the Interface Operation component's
{name}.

MultipartStyle-2062
The complex type that defines the body of the
element or its children elements MUST NOT
contain any attributes.

MultipartStyle-2063
The sequence MUST NOT contain multiple
children element declared with the same local
name.

OperationSafety-2027
However, an operation SHOULD be marked safe
if it meets the criteria for a safe interaction defined
in Section 3.4 of [Web Architecture].

RPCStyle-2029

If the RPC style is used by an Interface Operation
component then its {message exchange pattern}
property MUST have the value either
"http://www.w3.org/ns/wsdl/in-only" or
"http://www.w3.org/ns/wsdl/in-out".

RPCStyle-2030

The value of the {message content model}
property for the Interface Message Reference
components of the {interface message references}
property MUST be "#element".

RPCStyle-2031

The content model of input and output {element
declaration} elements MUST be defined using a
complex type that contains a sequence from XML
Schema.

RPCStyle-2032
The input sequence MUST only contain elements
and element wildcards.

RPCStyle-2033
The input sequence MUST NOT contain more
than one element wildcard.

RPCStyle-2034
The element wildcard, if present, MUST appear
after any elements.

RPCStyle-2035
The output sequence MUST only contain
elements.

RPCStyle-2036
Both the input and output sequences MUST
contain only local element children.

RPCStyle-2037
The local name of input element's QName MUST
be the same as the Interface Operation
component's name.

RPCStyle-2038
Input and output elements MUST both be in the
same namespace.

RPCStyle-2039
The complex type that defines the body of an input
or an output element MUST NOT contain any local
attributes.

RPCStyle-2040

If elements with the same qualified name appear
as children of both the input and output elements,
then they MUST both be declared using the same
named type.

RPCStyle-2041
The input or output sequence MUST NOT contain
multiple children elements declared with the same
name.

RobustInOnlyComposition-
2013

The robust-in-only message exchange pattern
consists of exactly one message as follows:

SOAPAction-2075
A xs:anyURI, which is an absolute IRI as defined
by [IETF RFC 3987], to the Binding Operation
component.

SOAPBinding-2065

When formulating the SOAP envelope to be
transmitted, the contents of the payload (i.e., the
contents of the SOAP Body element information
item of the SOAP envelope) MUST be what is
defined by the corresponding Interface Message
Reference component.

SOAPBinding-2068

If the Interface Message Reference component is
declared using a non-XML type system (as
considered in the Types section of [WSDL 2.0
Core Language]), then additional binding rules
MUST be defined to indicate how to map those
components into the SOAP envelope.

SOAPBinding-2069
Every SOAP binding MUST indicate what version
of SOAP is in use for the operations of the
interface that this binding applies to.

SOAPBinding-2070
Every SOAP binding MUST indicate what
underlying protocol is in use.

SOAPBindingFault-2071
For every Interface Fault component contained in
an Interface component, a mapping to a SOAP
Fault MUST be described.

SOAPBindingFault-2072

when the value of the {soap version} is "1.2", the
allowed QNames MUST be the ones defined by
[SOAP 1.2 Part 1: Messaging Framework (Second
Edition)], section 5.4.6

SOAPHTTPProperties-2064
These properties MUST NOT be used unless the
underlying protocol is HTTP.

SOAPHTTPSelection-2082

This default binding rule is applicable when the
value of the {soap underlying protocol} property of
the Binding component is
"http://www.w3.org/2003/05/soap/bindings/HTTP/".
If the SOAP MEP selected as specified above has
the value
"http://www.w3.org/2003/05/soap/mep/request-
response/" then the HTTP method used is
"POST". If the SOAP MEP selected has the value
"http://www.w3.org/2003/05/soap/mep/soap-
response/" then the HTTP method used is "GET".

SOAPHeaderBlock-2077

When its value is "true", the SOAP header block
MUST be decorated with a SOAP mustUnderstand
attribute information item with a value of "true"; if
so, the XML element declaration referenced by the
{element declaration} property MUST allow this
SOAP mustUnderstand attribute information item.

SOAPHeaderBlock-2078
If the value is "true", then the SOAP header block
MUST be included in the message.

SOAPHeaderBlock-2079

The value of the element attribute information item
MUST resolve to a global element declaration
from the {element declarations} property of the
Description component.

SOAPMEP-2074
A xs:anyURI, which is an absolute IRI as defined
by [IETF RFC 3987], to the Binding Operation
component.

SOAPMEPDefault-2073
A xs:anyURI, which is an absolute IRI as defined
by [IETF RFC 3987], to the Binding component.

SOAPMEPSelection-2080

For a given Interface Operation component, if
there is a Binding Operation component whose
{interface operation} property matches the
component in question and its {soap mep}
property has a value, then the SOAP MEP is the
value of the {soap mep} property. Otherwise, the
SOAP MEP is the value of the Binding
component's {soap mep default}, if any.
Otherwise, the Interface Operation component's
{message exchange pattern} property MUST have
the value "http://www.w3.org/ns/wsdl/in-out", and
the SOAP MEP is the URI
"http://www.w3.org/2003/05/soap/mep/request-
response/" identifying the SOAP Request-
Response Message Exchange Pattern as defined
in [SOAP 1.2 Part 2: Adjuncts (Second Edition)].

SOAPModule-2076
A xs:anyURI, which is an absolute IRI as defined
by [IETF RFC 3987].

WRPC-2042
OPTIONAL, but MUST be present when the style
is RPC

WRPC-2043
Values for the second component MUST be
chosen among the following four: "#in", "#out",
"#inout" "#return".

WRPC-2044
The value of the first component of each pair (q, t)
MUST be unique within the list.

WRPC-2045

For each child element of the input and output
messages of the operation, a pair (q, t), whose
first component q is equal to the qualified name of
that element, MUST be present in the list, with the
caveat that elements that appear with cardinality
greater than one MUST be treated as a single
element.

WRPC-2046

For each pair (q, #in), there MUST be a child
element of the input element with a name of q.
There MUST NOT be a child element of the output
element with the name of q.

WRPC-2047

For each pair (q, #out), there MUST be a child
element of the output element with a name of q.
There MUST NOT be a child element of the input
element with the name of q.

WRPC-2048
For each pair (q, #inout), there MUST be a child
element of the input element with a name of q.
There MUST also be a child element of the output

element with the name of q.

WRPC-2049

For each pair (q, #return), there MUST be a child
element of the output element with a name of q.
There MUST NOT be a child element of the input
element with the name of q.

Table C-3. Summary of Assertions about Messages

Id Assertion

HTTPSerialization-
2110

Cited elements (i.e. elements referenced in templates)
MUST NOT carry an xs:nil attribute whose value is
"true"

SOAP12Binding-
SOAPDetail-2081

If any, the value of the SOAP "Detail" element MUST be
the element information item identified by the {element
declaration} property of the Interface Fault component.

SOAPBinding-2066
If the value is "#none", then the payload MUST be
empty.

SOAPBinding-2067

If the value is "#element", then the payload MUST be the
element information item identified by the {element
declaration} property of the Interface Message
Reference component.

Table C-4. Summary of Assertions about Message Exchanges

Id Assertion

FaultDelivery-2008

The fault message MUST be delivered to the same
target node as the message it replaces, unless
otherwise specified by an extension or binding
extension. If there is no path to this node, the fault
MUST be discarded.

FaultDelivery-2010

The fault message MUST be delivered to the originator
of the triggering message, unless otherwise specified
by an extension or binding extension. Any node MAY
propagate a fault message, and MUST NOT do so
more than once for each triggering message. If there is
no path to the originator, the fault MUST be discarded.

FaultPropagation-2003

Nodes that generate faults MUST attempt to propagate
the faults in accordance with the governing ruleset, but
it is understood that any delivery of a network
message is best effort, not guaranteed.

FaultPropagation-2004 When a fault is generated, the generating node MUST

attempt to propagate the fault, and MUST do so in the
direction and to the recipient specified by the ruleset.

FaultReplacesMessage-
2007

When the Fault Replaces Message propagation rule is
in effect, any message after the first in the pattern
MAY be replaced with a fault message, which MUST
have identical direction.

InOnlyFaults-2013
The in-only message exchange pattern uses the rule
2.2.3 No Faults propagation rule.

InOutFaults-2016
The in-out message exchange pattern uses the rule
2.2.1 Fault Replaces Message propagation rule.

MEPDescriptiveness-
2002

by some prior agreement, another node and/or the
service MAY send messages (to each other or to other
nodes) that are not described by the pattern.

MEPTermination-2006
Generation of a fault, regardless of ruleset, terminates
the exchange.

MessageTriggersFault-
2009

When the Message Triggers Fault propagation rule is
in effect, any message, including the first in the
pattern, MAY trigger a fault message, which MUST
have opposite direction.

NoFaults-2011
When the No Faults propagation rule is in effect, faults
MUST NOT be propagated.

NodeIdentity-2001
A node MAY be accessible via more than one physical
address or transport.

RobustInOnlyFaults-
2014

The robust in-only message exchange pattern uses
the rule 2.2.2 Message Triggers Fault propagation
rule.

