

XML Schema Part 1: Structures Second Edition
W3C Recommendation 28 October 2004

This version:
http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/

Latest version:
http://www.w3.org/TR/xmlschema-1/

Previous version:
http://www.w3.org/TR/2004/PER-xmlschema-1-20040318/

Editors:
Henry S. Thompson, University of Edinburgh <ht@cogsci.ed.ac.uk>
David Beech, Oracle Corporation <David.Beech@oracle.com>
Murray Maloney, for Commerce One <murray@muzmo.com>
Noah Mendelsohn, Lotus Development Corporation
<Noah_Mendelsohn@lotus.com>

Please refer to the errata for this document, which may include some normative
corrections.

This document is also available in these non-normative formats: XML, XHTML with
visible change markup, Independent copy of the schema for schema documents,
and Independent copy of the DTD for schema documents. See also translations.

Copyright © 2004 W3C® (MIT, ERCIM, Keio), All Rights Reserved. W3C liability,
trademark and document use rules apply.

Abstract

XML Schema: Structures specifies the XML Schema definition language, which
offers facilities for describing the structure and constraining the contents of XML
1.0 documents, including those which exploit the XML Namespace facility. The
schema language, which is itself represented in XML 1.0 and uses namespaces,
substantially reconstructs and considerably extends the capabilities found in XML
1.0 document type definitions (DTDs). This specification depends on XML Schema
Part 2: Datatypes.

Page 1 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

Status of this Document

This section describes the status of this document at the time of its publication.
Other documents may supersede this document. A list of current W3C publications
and the latest revision of this technical report can be found in the W3C technical
reports index at http://www.w3.org/TR/.

This is a W3C Recommendation, which forms part of the Second Edition of XML
Schema. This document has been reviewed by W3C Members and other
interested parties and has been endorsed by the Director as a W3C
Recommendation. It is a stable document and may be used as reference material
or cited as a normative reference from another document. W3C's role in making
the Recommendation is to draw attention to the specification and to promote its
widespread deployment. This enhances the functionality and interoperability of the
Web.

This document has been produced by the W3C XML Schema Working Group as
part of the W3C XML Activity. The goals of the XML Schema language are
discussed in the XML Schema Requirements document. The authors of this
document are the members of the XML Schema Working Group. Different parts of
this specification have different editors.

This document was produced under the 24 January 2002 Current Patent Practice
(CPP) as amended by the W3C Patent Policy Transition Procedure. The Working
Group maintains a public list of patent disclosures relevant to this document; that
page also includes instructions for disclosing a patent. An individual who has
actual knowledge of a patent which the individual believes contains Essential
Claim(s) with respect to this specification should disclose the information in
accordance with section 6 of the W3C Patent Policy.

The English version of this specification is the only normative version. Information
about translations of this document is available at
http://www.w3.org/2001/05/xmlschema-translations.

This second edition is not a new version, it merely incorporates the changes
dictated by the corrections to errors found in the first edition as agreed by the XML
Schema Working Group, as a convenience to readers. A separate list of all such
corrections is available at http://www.w3.org/2001/05/xmlschema-errata.

The errata list for this second edition is available at
http://www.w3.org/2004/03/xmlschema-errata.

Please report errors in this document to www-xml-schema-comments@w3.org
(archive).

Note: David Beech has retired since the publication of the first edition, and

Page 2 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

can be reached at davidbeech@earthlink.net.

Murray Maloney is no longer affiliated with Commerce One; his contact details
are unchanged.

Noah Mendelsohn's affiliation has changed since the publication of the first
edition. He is now at IBM, and can be contacted at
noah_mendelsohn@us.ibm.com

Table of Contents

1 Introduction
 1.1 Purpose
 1.2 Dependencies on Other Specifications
 1.3 Documentation Conventions and Terminology
2 Conceptual Framework
 2.1 Overview of XML Schema
 2.2 XML Schema Abstract Data Model
 2.3 Constraints and Validation Rules
 2.4 Conformance
 2.5 Names and Symbol Spaces
 2.6 Schema-Related Markup in Documents Being Validated
 2.7 Representation of Schemas on the World Wide Web
3 Schema Component Details
 3.1 Introduction
 3.2 Attribute Declarations
 3.3 Element Declarations
 3.4 Complex Type Definitions
 3.5 AttributeUses
 3.6 Attribute Group Definitions
 3.7 Model Group Definitions
 3.8 Model Groups
 3.9 Particles
 3.10 Wildcards
 3.11 Identity-constraint Definitions
 3.12 Notation Declarations
 3.13 Annotations
 3.14 Simple Type Definitions
 3.15 Schemas as a Whole
4 Schemas and Namespaces: Access and Composition
 4.1 Layer 1: Summary of the Schema-validity Assessment Core
 4.2 Layer 2: Schema Documents, Namespaces and Composition
 4.3 Layer 3: Schema Document Access and Web-interoperability
5 Schemas and Schema-validity Assessment
 5.1 Errors in Schema Construction and Structure
 5.2 Assessing Schema-Validity

Page 3 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

 5.3 Missing Sub-components
 5.4 Responsibilities of Schema-aware Processors

Appendices

A Schema for Schemas (normative)
B References (normative)
C Outcome Tabulations (normative)
 C.1 Validation Rules
 C.2 Contributions to the post-schema-validation infoset
 C.3 Schema Representation Constraints
 C.4 Schema Component Constraints
D Required Information Set Items and Properties (normative)
E Schema Components Diagram (non-normative)
F Glossary (non-normative)
G DTD for Schemas (non-normative)
H Analysis of the Unique Particle Attribution Constraint (non-normative)
I References (non-normative)
J Acknowledgements (non-normative)

1 Introduction

This document sets out the structural part (XML Schema: Structures) of the XML
Schema definition language.

Chapter 2 presents a Conceptual Framework (§2) for XML Schemas, including an
introduction to the nature of XML Schemas and an introduction to the XML
Schema abstract data model, along with other terminology used throughout this
document.

Chapter 3, Schema Component Details (§3), specifies the precise semantics of
each component of the abstract model, the representation of each component in
XML, with reference to a DTD and XML Schema for an XML Schema document
type, along with a detailed mapping between the elements and attribute
vocabulary of this representation and the components and properties of the
abstract model.

Chapter 4 presents Schemas and Namespaces: Access and Composition (§4),
including the connection between documents and schemas, the import, inclusion
and redefinition of declarations and definitions and the foundations of schema-
validity assessment.

Chapter 5 discusses Schemas and Schema-validity Assessment (§5), including
the overall approach to schema-validity assessment of documents, and

Page 4 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

responsibilities of schema-aware processors.

The normative appendices include a Schema for Schemas (normative) (§A) for the
XML representation of schemas and References (normative) (§B).

The non-normative appendices include the DTD for Schemas (non-normative)
(§G) and a Glossary (non-normative) (§F).

This document is primarily intended as a language definition reference. As such,
although it contains a few examples, it is not primarily designed to serve as a
motivating introduction to the design and its features, or as a tutorial for new users.
Rather it presents a careful and fully explicit definition of that design, suitable for
guiding implementations. For those in search of a step-by-step introduction to the
design, the non-normative [XML Schema: Primer] is a much better starting point
than this document.

1.1 Purpose

The purpose of XML Schema: Structures is to define the nature of XML schemas
and their component parts, provide an inventory of XML markup constructs with
which to represent schemas, and define the application of schemas to XML
documents.

The purpose of an XML Schema: Structures schema is to define and describe a
class of XML documents by using schema components to constrain and document
the meaning, usage and relationships of their constituent parts: datatypes,
elements and their content and attributes and their values. Schemas may also
provide for the specification of additional document information, such as
normalization and defaulting of attribute and element values. Schemas have
facilities for self-documentation. Thus, XML Schema: Structures can be used to
define, describe and catalogue XML vocabularies for classes of XML documents.

Any application that consumes well-formed XML can use the XML Schema:
Structures formalism to express syntactic, structural and value constraints
applicable to its document instances. The XML Schema: Structures formalism
allows a useful level of constraint checking to be described and implemented for a
wide spectrum of XML applications. However, the language defined by this
specification does not attempt to provide all the facilities that might be needed by
any application. Some applications may require constraint capabilities not
expressible in this language, and so may need to perform their own additional
validations.

1.2 Dependencies on Other Specifications

The definition of XML Schema: Structures depends on the following specifications:
[XML-Infoset], [XML-Namespaces], [XPath], and [XML Schemas: Datatypes].

Page 5 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

See Required Information Set Items and Properties (normative) (§D) for a
tabulation of the information items and properties specified in [XML-Infoset] which
this specification requires as a precondition to schema-aware processing.

1.3 Documentation Conventions and Terminology

The section introduces the highlighting and typography as used in this document
to present technical material.

Special terms are defined at their point of introduction in the text. For example
[Definition:] a term is something used with a special meaning. The definition is
labeled as such and the term it defines is displayed in boldface. The end of the
definition is not specially marked in the displayed or printed text. Uses of defined
terms are links to their definitions, set off with middle dots, for instance ·term·.

Non-normative examples are set off in boxes and accompanied by a brief
explanation:

Example
<schema targetNamespace="http://www.example.com/XMLSchema/1.0/mySchema">

And an explanation of the example.

The definition of each kind of schema component consists of a list of its properties
and their contents, followed by descriptions of the semantics of the properties:

Schema Component: Example

{example property}
Definition of the property.

References to properties of schema components are links to the relevant definition
as exemplified above, set off with curly braces, for instance {example property}.

The correspondence between an element information item which is part of the
XML representation of a schema and one or more schema components is
presented in a tableau which illustrates the element information item(s) involved.
This is followed by a tabulation of the correspondence between properties of the
component and properties of the information item. Where context may determine
which of several different components may arise, several tabulations, one per
context, are given. The property correspondences are normative, as are the
illustrations of the XML representation element information items.

In the XML representation, bold-face attribute names (e.g. count below) indicate a

Page 6 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

required attribute information item, and the rest are optional. Where an attribute
information item has an enumerated type definition, the values are shown
separated by vertical bars, as for size below; if there is a default value, it is
shown following a colon. Where an attribute information item has a built-in simple
type definition defined in [XML Schemas: Datatypes], a hyperlink to its definition
therein is given.

The allowed content of the information item is shown as a grammar fragment,
using the Kleene operators ?, * and +. Each element name therein is a hyperlink
to its own illustration.

Note: The illustrations are derived automatically from the Schema for
Schemas (normative) (§A). In the case of apparent conflict, the Schema for
Schemas (normative) (§A) takes precedence, as it, together with the ·Schema
Representation Constraints·, provide the normative statement of the form of
XML representations.

XML Representation Summary: example Element Information Item

<example
 count = integer
 size = (large | medium | small) : medium>
 Content: (all | any*)
</example>

Example Schema Component
Property Representation
{example
property}

Description of what the property corresponds to, e.g. the
value of the size [attribute]

References to elements in the text are links to the relevant illustration as
exemplified above, set off with angle brackets, for instance <example>.

References to properties of information items as defined in [XML-Infoset] are
notated as links to the relevant section thereof, set off with square brackets, for
example [children].

Properties which this specification defines for information items are introduced as
follows:

PSVI Contributions for example information items

[new property]
The value the property gets.

Page 7 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

References to properties of information items defined in this specification are
notated as links to their introduction as exemplified above, set off with square
brackets, for example [new property].

The following highlighting is used for non-normative commentary in this document:

Note: General comments directed to all readers.

Following [XML 1.0 (Second Edition)], within normative prose in this specification,
the words may and must are defined as follows:

may
Conforming documents and XML Schema-aware processors are permitted to
but need not behave as described.

must
Conforming documents and XML Schema-aware processors are required to
behave as described; otherwise they are in error.

Note however that this specification provides a definition of error and of
conformant processors' responsibilities with respect to errors (see Schemas and
Schema-validity Assessment (§5)) which is considerably more complex than that
of [XML 1.0 (Second Edition)].

2 Conceptual Framework

This chapter gives an overview of XML Schema: Structures at the level of its
abstract data model. Schema Component Details (§3) provides details on this
model, including a normative representation in XML for the components of the
model. Readers interested primarily in learning to write schema documents may
wish to first read [XML Schema: Primer] for a tutorial introduction, and only then
consult the sub-sections of Schema Component Details (§3) named XML
Representation of ... for the details.

2.1 Overview of XML Schema

An XML Schema consists of components such as type definitions and element
declarations. These can be used to assess the validity of well-formed element and
attribute information items (as defined in [XML-Infoset]), and furthermore may
specify augmentations to those items and their descendants. This augmentation
makes explicit information which may have been implicit in the original document,
such as normalized and/or default values for attributes and elements and the types
of element and attribute information items. [Definition:] We refer to the augmented
infoset which results from conformant processing as defined in this specification as
the post-schema-validation infoset, or PSVI.

Schema-validity assessment has two aspects:

Page 8 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

1 Determining local schema-validity, that is whether an element or attribute
information item satisfies the constraints embodied in the relevant components
of an XML Schema;

2 Synthesizing an overall validation outcome for the item, combining local schema-
validity with the results of schema-validity assessments of its descendants, if
any, and adding appropriate augmentations to the infoset to record this
outcome.

Throughout this specification, [Definition:] the word valid and its derivatives are
used to refer to clause 1 above, the determination of local schema-validity.

Throughout this specification, [Definition:] the word assessment is used to refer
to the overall process of local validation, schema-validity assessment and infoset
augmentation.

2.2 XML Schema Abstract Data Model
 2.2.1 Type Definition Components
 2.2.2 Declaration Components
 2.2.3 Model Group Components
 2.2.4 Identity-constraint Definition Components
 2.2.5 Group Definition Components
 2.2.6 Annotation Components

This specification builds on [XML 1.0 (Second Edition)] and [XML-Namespaces].
The concepts and definitions used herein regarding XML are framed at the
abstract level of information items as defined in [XML-Infoset]. By definition, this
use of the infoset provides a priori guarantees of well-formedness (as defined in
[XML 1.0 (Second Edition)]) and namespace conformance (as defined in [XML-
Namespaces]) for all candidates for ·assessment· and for all ·schema documents·.

Just as [XML 1.0 (Second Edition)] and [XML-Namespaces] can be described in
terms of information items, XML Schemas can be described in terms of an
abstract data model. In defining XML Schemas in terms of an abstract data model,
this specification rigorously specifies the information which must be available to a
conforming XML Schema processor. The abstract model for schemas is
conceptual only, and does not mandate any particular implementation or
representation of this information. To facilitate interoperation and sharing of
schema information, a normative XML interchange format for schemas is provided.

[Definition:] Schema component is the generic term for the building blocks that
comprise the abstract data model of the schema. [Definition:] An XML Schema is
a set of ·schema components·. There are 13 kinds of component in all, falling into
three groups. The primary components, which may (type definitions) or must
(element and attribute declarations) have names are as follows:

Simple type definitions

Page 9 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

Complex type definitions
Attribute declarations
Element declarations

The secondary components, which must have names, are as follows:

Attribute group definitions
Identity-constraint definitions
Model group definitions
Notation declarations

Finally, the "helper" components provide small parts of other components; they are
not independent of their context:

Annotations
Model groups
Particles
Wildcards
Attribute Uses

During ·validation·, [Definition:] declaration components are associated by
(qualified) name to information items being ·validated·.

On the other hand, [Definition:] definition components define internal schema
components that can be used in other schema components.

[Definition:] Declarations and definitions may have and be identified by names,
which are NCNames as defined by [XML-Namespaces].

[Definition:] Several kinds of component have a target namespace, which is
either ·absent· or a namespace name, also as defined by [XML-Namespaces]. The
·target namespace· serves to identify the namespace within which the association
between the component and its name exists. In the case of declarations, this in
turn determines the namespace name of, for example, the element information
items it may ·validate·.

Note: At the abstract level, there is no requirement that the components of a
schema share a ·target namespace·. Any schema for use in ·assessment· of
documents containing names from more than one namespace will of
necessity include components with different ·target namespaces·. This
contrasts with the situation at the level of the XML representation of
components, in which each schema document contributes definitions and
declarations to a single target namespace.

·Validation·, defined in detail in Schema Component Details (§3), is a relation
between information items and schema components. For example, an attribute

Page 10 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

information item may ·validate· with respect to an attribute declaration, a list of
element information items may ·validate· with respect to a content model, and so
on. The following sections briefly introduce the kinds of components in the schema
abstract data model, other major features of the abstract model, and how they
contribute to ·validation·.

2.2.1 Type Definition Components

The abstract model provides two kinds of type definition component: simple and
complex.

[Definition:] This specification uses the phrase type definition in cases where no
distinction need be made between simple and complex types.

Type definitions form a hierarchy with a single root. The subsections below first
describe characteristics of that hierarchy, then provide an introduction to simple
and complex type definitions themselves.

2.2.1.1 Type Definition Hierarchy

[Definition:] Except for a distinguished ·ur-type definition·, every ·type definition· is,
by construction, either a ·restriction· or an ·extension· of some other type definition.
The graph of these relationships forms a tree known as the Type Definition
Hierarchy.

[Definition:] A type definition whose declarations or facets are in a one-to-one
relation with those of another specified type definition, with each in turn restricting
the possibilities of the one it corresponds to, is said to be a restriction. The
specific restrictions might include narrowed ranges or reduced alternatives.
Members of a type, A, whose definition is a ·restriction· of the definition of another
type, B, are always members of type B as well.

[Definition:] A complex type definition which allows element or attribute content in
addition to that allowed by another specified type definition is said to be an
extension.

[Definition:] A distinguished complex type definition, the ur-type definition,
whose name is anyType in the XML Schema namespace, is present in each ·XML
Schema·, serving as the root of the type definition hierarchy for that schema.

[Definition:] A type definition used as the basis for an ·extension· or ·restriction· is
known as the base type definition of that definition.

2.2.1.2 Simple Type Definition

A simple type definition is a set of constraints on strings and information about the

Page 11 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

values they encode, applicable to the ·normalized value· of an attribute information
item or of an element information item with no element children. Informally, it
applies to the values of attributes and the text-only content of elements.

Each simple type definition, whether built-in (that is, defined in [XML Schemas:
Datatypes]) or user-defined, is a ·restriction· of some particular simple ·base type
definition·. For the built-in primitive type definitions, this is [Definition:] the simple
ur-type definition, a special restriction of the ·ur-type definition·, whose name is
anySimpleType in the XML Schema namespace. The ·simple ur-type definition· is
considered to have an unconstrained lexical space, and a value space consisting
of the union of the value spaces of all the built-in primitive datatypes and the set of
all lists of all members of the value spaces of all the built-in primitive datatypes.

The mapping from lexical space to value space is unspecified for items whose
type definition is the ·simple ur-type definition·. Accordingly this specification does
not constrain processors' behaviour in areas where this mapping is implicated, for
example checking such items against enumerations, constructing default attributes
or elements whose declared type definition is the ·simple ur-type definition·,
checking identity constraints involving such items.

Note: The Working Group expects to return to this area in a future version of
this specification.

Simple types may also be defined whose members are lists of items themselves
constrained by some other simple type definition, or whose membership is the
union of the memberships of some other simple type definitions. Such list and
union simple type definitions are also restrictions of the ·simple ur-type definition·.

For detailed information on simple type definitions, see Simple Type Definitions
(§3.14) and [XML Schemas: Datatypes]. The latter also defines an extensive
inventory of pre-defined simple types.

2.2.1.3 Complex Type Definition

A complex type definition is a set of attribute declarations and a content type,
applicable to the [attributes] and [children] of an element information item
respectively. The content type may require the [children] to contain neither
element nor character information items (that is, to be empty), to be a string which
belongs to a particular simple type or to contain a sequence of element information
items which conforms to a particular model group, with or without character
information items as well.

Each complex type definition other than the ·ur-type definition· is either

a restriction of a complex ·base type definition·

Page 12 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

or

an ·extension· of a simple or complex ·base type definition·.

A complex type which extends another does so by having additional content model
particles at the end of the other definition's content model, or by having additional
attribute declarations, or both.

Note: This specification allows only appending, and not other kinds of
extensions. This decision simplifies application processing required to cast
instances from derived to base type. Future versions may allow more kinds of
extension, requiring more complex transformations to effect casting.

For detailed information on complex type definitions, see Complex Type
Definitions (§3.4).

2.2.2 Declaration Components

There are three kinds of declaration component: element, attribute, and notation.
Each is described in a section below. Also included is a discussion of element
substitution groups, which is a feature provided in conjunction with element
declarations.

2.2.2.1 Element Declaration

An element declaration is an association of a name with a type definition, either
simple or complex, an (optional) default value and a (possibly empty) set of
identity-constraint definitions. The association is either global or scoped to a
containing complex type definition. A top-level element declaration with name 'A' is
broadly comparable to a pair of DTD declarations as follows, where the associated
type definition fills in the ellipses:

<!ELEMENT A . . .>
<!ATTLIST A . . .>

Element declarations contribute to ·validation· as part of model group ·validation·,
when their defaults and type components are checked against an element
information item with a matching name and namespace, and by triggering identity-
constraint definition ·validation·.

For detailed information on element declarations, see Element Declarations (§3.3).

2.2.2.2 Element Substitution Group

In XML 1.0, the name and content of an element must correspond exactly to the
element type referenced in the corresponding content model.

Page 13 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

[Definition:] Through the new mechanism of element substitution groups, XML
Schemas provides a more powerful model supporting substitution of one named
element for another. Any top-level element declaration can serve as the defining
member, or head, for an element substitution group. Other top-level element
declarations, regardless of target namespace, can be designated as members of
the substitution group headed by this element. In a suitably enabled content
model, a reference to the head ·validates· not just the head itself, but elements
corresponding to any other member of the substitution group as well.

All such members must have type definitions which are either the same as the
head's type definition or restrictions or extensions of it. Therefore, although the
names of elements can vary widely as new namespaces and members of the
substitution group are defined, the content of member elements is strictly limited
according to the type definition of the substitution group head.

Note that element substitution groups are not represented as separate
components. They are specified in the property values for element declarations
(see Element Declarations (§3.3)).

2.2.2.3 Attribute Declaration

An attribute declaration is an association between a name and a simple type
definition, together with occurrence information and (optionally) a default value.
The association is either global, or local to its containing complex type definition.
Attribute declarations contribute to ·validation· as part of complex type definition
·validation·, when their occurrence, defaults and type components are checked
against an attribute information item with a matching name and namespace.

For detailed information on attribute declarations, see Attribute Declarations
(§3.2).

2.2.2.4 Notation Declaration

A notation declaration is an association between a name and an identifier for a
notation. For an attribute information item to be ·valid· with respect to a NOTATION
simple type definition, its value must have been declared with a notation
declaration.

For detailed information on notation declarations, see Notation Declarations
(§3.12).

2.2.3 Model Group Components

The model group, particle, and wildcard components contribute to the portion of a
complex type definition that controls an element information item's content.

Page 14 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

2.2.3.1 Model Group

A model group is a constraint in the form of a grammar fragment that applies to
lists of element information items. It consists of a list of particles, i.e. element
declarations, wildcards and model groups. There are three varieties of model
group:

Sequence (the element information items match the particles in sequential
order);
Conjunction (the element information items match the particles, in any
order);
Disjunction (the element information items match one of the particles).

For detailed information on model groups, see Model Groups (§3.8).

2.2.3.2 Particle

A particle is a term in the grammar for element content, consisting of either an
element declaration, a wildcard or a model group, together with occurrence
constraints. Particles contribute to ·validation· as part of complex type definition
·validation·, when they allow anywhere from zero to many element information
items or sequences thereof, depending on their contents and occurrence
constraints.

[Definition:] A particle can be used in a complex type definition to constrain the
·validation· of the [children] of an element information item; such a particle is called
a content model.

Note: XML Schema: Structures ·content models· are similar to but more
expressive than [XML 1.0 (Second Edition)] content models; unlike [XML 1.0
(Second Edition)], XML Schema: Structures applies ·content models· to the
·validation· of both mixed and element-only content.

For detailed information on particles, see Particles (§3.9).

2.2.3.3 Attribute Use

An attribute use plays a role similar to that of a particle, but for attribute
declarations: an attribute declaration within a complex type definition is embedded
within an attribute use, which specifies whether the declaration requires or merely
allows its attribute, and whether it has a default or fixed value.

2.2.3.4 Wildcard

A wildcard is a special kind of particle which matches element and attribute
information items dependent on their namespace name, independently of their

Page 15 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

local names.

For detailed information on wildcards, see Wildcards (§3.10).

2.2.4 Identity-constraint Definition Components

An identity-constraint definition is an association between a name and one of
several varieties of identity-constraint related to uniqueness and reference. All the
varieties use [XPath] expressions to pick out sets of information items relative to
particular target element information items which are unique, or a key, or a ·valid·
reference, within a specified scope. An element information item is only ·valid· with
respect to an element declaration with identity-constraint definitions if those
definitions are all satisfied for all the descendants of that element information item
which they pick out.

For detailed information on identity-constraint definitions, see Identity-constraint
Definitions (§3.11).

2.2.5 Group Definition Components

There are two kinds of convenience definitions provided to enable the re-use of
pieces of complex type definitions: model group definitions and attribute group
definitions.

2.2.5.1 Model Group Definition

A model group definition is an association between a name and a model group,
enabling re-use of the same model group in several complex type definitions.

For detailed information on model group definitions, see Model Group Definitions
(§3.7).

2.2.5.2 Attribute Group Definition

An attribute group definition is an association between a name and a set of
attribute declarations, enabling re-use of the same set in several complex type
definitions.

For detailed information on attribute group definitions, see Attribute Group
Definitions (§3.6).

2.2.6 Annotation Components

An annotation is information for human and/or mechanical consumers. The
interpretation of such information is not defined in this specification.

Page 16 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

For detailed information on annotations, see Annotations (§3.13).

2.3 Constraints and Validation Rules

The [XML 1.0 (Second Edition)] specification describes two kinds of constraints on
XML documents: well-formedness and validity constraints. Informally, the well-
formedness constraints are those imposed by the definition of XML itself (such as
the rules for the use of the < and > characters and the rules for proper nesting of
elements), while validity constraints are the further constraints on document
structure provided by a particular DTD.

The preceding section focused on ·validation·, that is the constraints on
information items which schema components supply. In fact however this
specification provides four different kinds of normative statements about schema
components, their representations in XML and their contribution to the ·validation·
of information items:

Schema Component Constraint
[Definition:] Constraints on the schema components themselves, i.e.
conditions components must satisfy to be components at all. Located in the
sixth sub-section of the per-component sections of Schema Component
Details (§3) and tabulated in Schema Component Constraints (§C.4).

Schema Representation Constraint
[Definition:] Constraints on the representation of schema components in
XML beyond those which are expressed in Schema for Schemas (normative)
(§A). Located in the third sub-section of the per-component sections of
Schema Component Details (§3) and tabulated in Schema Representation
Constraints (§C.3).

Validation Rules
[Definition:] Contributions to ·validation· associated with schema
components. Located in the fourth sub-section of the per-component
sections of Schema Component Details (§3) and tabulated in Validation
Rules (§C.1).

Schema Information Set Contribution
[Definition:] Augmentations to ·post-schema-validation infoset·s expressed
by schema components, which follow as a consequence of ·validation·
and/or ·assessment·. Located in the fifth sub-section of the per-component
sections of Schema Component Details (§3) and tabulated in Contributions
to the post-schema-validation infoset (§C.2).

The last of these, schema information set contributions, are not as new as they
might at first seem. XML 1.0 validation augments the XML 1.0 information set in
similar ways, for example by providing values for attributes not present in
instances, and by implicitly exploiting type information for normalization or access.
(As an example of the latter case, consider the effect of NMTOKENS on attribute
white space, and the semantics of ID and IDREF.) By including schema

Page 17 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

information set contributions, this specification makes explicit some features that
XML 1.0 left implicit.

2.4 Conformance

This specification describes three levels of conformance for schema aware
processors. The first is required of all processors. Support for the other two will
depend on the application environments for which the processor is intended.

[Definition:] Minimally conforming processors must completely and correctly
implement the ·Schema Component Constraints·, ·Validation Rules·, and ·Schema
Information Set Contributions· contained in this specification.

[Definition:] ·Minimally conforming· processors which accept schemas
represented in the form of XML documents as described in Layer 2: Schema
Documents, Namespaces and Composition (§4.2) are additionally said to provide
conformance to the XML Representation of Schemas. Such processors must,
when processing schema documents, completely and correctly implement all
·Schema Representation Constraints· in this specification, and must adhere
exactly to the specifications in Schema Component Details (§3) for mapping the
contents of such documents to ·schema components· for use in ·validation· and
·assessment·.

Note: By separating the conformance requirements relating to the concrete
syntax of XML schema documents, this specification admits processors which
use schemas stored in optimized binary representations, dynamically created
schemas represented as programming language data structures, or
implementations in which particular schemas are compiled into executable
code such as C or Java. Such processors can be said to be ·minimally
conforming· but not necessarily in ·conformance to the XML Representation of
Schemas·.

[Definition:] Fully conforming processors are network-enabled processors which
are not only both ·minimally conforming· and ·in conformance to the XML
Representation of Schemas·, but which additionally must be capable of accessing
schema documents from the World Wide Web according to Representation of
Schemas on the World Wide Web (§2.7) and How schema definitions are located
on the Web (§4.3.2). .

Note: Although this specification provides just these three standard levels of
conformance, it is anticipated that other conventions can be established in the
future. For example, the World Wide Web Consortium is considering
conventions for packaging on the Web a variety of resources relating to
individual documents and namespaces. Should such developments lead to
new conventions for representing schemas, or for accessing them on the
Web, new levels of conformance can be established and named at that time.

Page 18 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

There is no need to modify or republish this specification to define such
additional levels of conformance.

See Schemas and Namespaces: Access and Composition (§4) for a more detailed
explanation of the mechanisms supporting these levels of conformance.

2.5 Names and Symbol Spaces

As discussed in XML Schema Abstract Data Model (§2.2), most schema
components (may) have ·names·. If all such names were assigned from the same
"pool", then it would be impossible to have, for example, a simple type definition
and an element declaration both with the name "title" in a given ·target
namespace·.

Therefore [Definition:] this specification introduces the term symbol space to
denote a collection of names, each of which is unique with respect to the others. A
symbol space is similar to the non-normative concept of namespace partition
introduced in [XML-Namespaces]. There is a single distinct symbol space within a
given ·target namespace· for each kind of definition and declaration component
identified in XML Schema Abstract Data Model (§2.2), except that within a target
namespace, simple type definitions and complex type definitions share a symbol
space. Within a given symbol space, names are unique, but the same name may
appear in more than one symbol space without conflict. For example, the same
name can appear in both a type definition and an element declaration, without
conflict or necessary relation between the two.

Locally scoped attribute and element declarations are special with regard to
symbol spaces. Every complex type definition defines its own local attribute and
element declaration symbol spaces, where these symbol spaces are distinct from
each other and from any of the other symbol spaces. So, for example, two
complex type definitions having the same target namespace can contain a local
attribute declaration for the unqualified name "priority", or contain a local element
declaration for the name "address", without conflict or necessary relation between
the two.

2.6 Schema-Related Markup in Documents Being Validated
 2.6.1 xsi:type
 2.6.2 xsi:nil
 2.6.3 xsi:schemaLocation, xsi:noNamespaceSchemaLocation

The XML representation of schema components uses a vocabulary identified by
the namespace name http://www.w3.org/2001/XMLSchema. For brevity, the
text and examples in this specification use the prefix xs: to stand for this
namespace; in practice, any prefix can be used.

XML Schema: Structures also defines several attributes for direct use in any XML

Page 19 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

documents. These attributes are in a different namespace, which has the
namespace name http://www.w3.org/2001/XMLSchema-instance. For
brevity, the text and examples in this specification use the prefix xsi: to stand for
this latter namespace; in practice, any prefix can be used. All schema processors
have appropriate attribute declarations for these attributes built in, see Attribute
Declaration for the 'type' attribute (§3.2.7), Attribute Declaration for the 'nil' attribute
(§3.2.7), Attribute Declaration for the 'schemaLocation' attribute (§3.2.7) and
Attribute Declaration for the 'noNamespaceSchemaLocation' attribute (§3.2.7).

2.6.1 xsi:type

The Simple Type Definition (§2.2.1.2) or Complex Type Definition (§2.2.1.3) used
in ·validation· of an element is usually determined by reference to the appropriate
schema components. An element information item in an instance may, however,
explicitly assert its type using the attribute xsi:type. The value of this attribute is
a ·QName·; see QName Interpretation (§3.15.3) for the means by which the
·QName· is associated with a type definition.

2.6.2 xsi:nil

XML Schema: Structures introduces a mechanism for signaling that an element
should be accepted as ·valid· when it has no content despite a content type which
does not require or even necessarily allow empty content. An element may be
·valid· without content if it has the attribute xsi:nil with the value true. An
element so labeled must be empty, but can carry attributes if permitted by the
corresponding complex type.

2.6.3 xsi:schemaLocation, xsi:noNamespaceSchemaLocation

The xsi:schemaLocation and xsi:noNamespaceSchemaLocation
attributes can be used in a document to provide hints as to the physical location of
schema documents which may be used for ·assessment·. See How schema
definitions are located on the Web (§4.3.2) for details on the use of these
attributes.

2.7 Representation of Schemas on the World Wide Web

On the World Wide Web, schemas are conventionally represented as XML
documents (preferably of MIME type application/xml or text/xml, but see
clause 1.1 of Inclusion Constraints and Semantics (§4.2.1)), conforming to the
specifications in Layer 2: Schema Documents, Namespaces and Composition
(§4.2). For more information on the representation and use of schema documents
on the World Wide Web see Standards for representation of schemas and retrieval
of schema documents on the Web (§4.3.1) and How schema definitions are
located on the Web (§4.3.2).

Page 20 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

3 Schema Component Details

3.1 Introduction
 3.1.1 Components and Properties
 3.1.2 XML Representations of Components
 3.1.3 The Mapping between XML Representations and Components
 3.1.4 White Space Normalization during Validation

The following sections provide full details on the composition of all schema
components, together with their XML representations and their contributions to
·assessment·. Each section is devoted to a single component, with separate
subsections for

1. properties: their values and significance
2. XML representation and the mapping to properties
3. constraints on representation
4. validation rules
5. ·post-schema-validation infoset· contributions
6. constraints on the components themselves

The sub-sections immediately below introduce conventions and terminology used
throughout the component sections.

3.1.1 Components and Properties

Components are defined in terms of their properties, and each property in turn is
defined by giving its range, that is the values it may have. This can be understood
as defining a schema as a labeled directed graph, where the root is a schema,
every other vertex is a schema component or a literal (string, boolean, number)
and every labeled edge is a property. The graph is not acyclic: multiple copies of
components with the same name in the same ·symbol space· may not exist, so in
some cases re-entrant chains of properties must exist. Equality of components for
the purposes of this specification is always defined as equality of names (including
target namespaces) within symbol spaces.

Note: A schema and its components as defined in this chapter are an
idealization of the information a schema-aware processor requires:
implementations are not constrained in how they provide it. In particular, no
implications about literal embedding versus indirection follow from the use
below of language such as "properties . . . having . . . components as values".

[Definition:] Throughout this specification, the term absent is used as a
distinguished property value denoting absence.

Any property not identified as optional is required to be present; optional properties
which are not present are taken to have ·absent· as their value. Any property

Page 21 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

identified as a having a set, subset or list value may have an empty value unless
this is explicitly ruled out: this is not the same as ·absent·. Any property value
identified as a superset or subset of some set may be equal to that set, unless a
proper superset or subset is explicitly called for. By 'string' in Part 1 of this
specification is meant a sequence of ISO 10646 characters identified as legal XML
characters in [XML 1.0 (Second Edition)].

3.1.2 XML Representations of Components

The principal purpose of XML Schema: Structures is to define a set of schema
components that constrain the contents of instances and augment the information
sets thereof. Although no external representation of schemas is required for this
purpose, such representations will obviously be widely used. To provide for this in
an appropriate and interoperable way, this specification provides a normative XML
representation for schemas which makes provision for every kind of schema
component. [Definition:] A document in this form (i.e. a <schema> element
information item) is a schema document. For the schema document as a whole,
and its constituents, the sections below define correspondences between element
information items (with declarations in Schema for Schemas (normative) (§A) and
DTD for Schemas (non-normative) (§G)) and schema components. All the element
information items in the XML representation of a schema must be in the XML
Schema namespace, that is their [namespace name] must be
http://www.w3.org/2001/XMLSchema. Although a common way of creating
the XML Infosets which are or contain ·schema documents· will be using an XML
parser, this is not required: any mechanism which constructs conformant infosets
as defined in [XML-Infoset] is a possible starting point.

Two aspects of the XML representations of components presented in the following
sections are constant across them all:

1. All of them allow attributes qualified with namespace names other than the
XML Schema namespace itself: these appear as annotations in the
corresponding schema component;

2. All of them allow an <annotation> as their first child, for human-readable
documentation and/or machine-targeted information.

3.1.3 The Mapping between XML Representations and Components

For each kind of schema component there is a corresponding normative XML
representation. The sections below describe the correspondences between the
properties of each kind of schema component on the one hand and the properties
of information items in that XML representation on the other, together with
constraints on that representation above and beyond those implicit in the Schema
for Schemas (normative) (§A).

The language used is as if the correspondences were mappings from XML

Page 22 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

representation to schema component, but the mapping in the other direction, and
therefore the correspondence in the abstract, can always be constructed
therefrom.

In discussing the mapping from XML representations to schema components
below, the value of a component property is often determined by the value of an
attribute information item, one of the [attributes] of an element information item.
Since schema documents are constrained by the Schema for Schemas
(normative) (§A), there is always a simple type definition associated with any such
attribute information item. [Definition:] The phrase actual value is used to refer to
the member of the value space of the simple type definition associated with an
attribute information item which corresponds to its ·normalized value·. This will
often be a string, but may also be an integer, a boolean, a URI reference, etc. This
term is also occasionally used with respect to element or attribute information
items in a document being ·validated·.

Many properties are identified below as having other schema components or sets
of components as values. For the purposes of exposition, the definitions in this
section assume that (unless the property is explicitly identified as optional) all such
values are in fact present. When schema components are constructed from XML
representations involving reference by name to other components, this assumption
may be violated if one or more references cannot be resolved. This specification
addresses the matter of missing components in a uniform manner, described in
Missing Sub-components (§5.3): no mention of handling missing components will
be found in the individual component descriptions below.

Forward reference to named definitions and declarations is allowed, both within
and between ·schema documents·. By the time the component corresponding to
an XML representation which contains a forward reference is actually needed for
·validation· an appropriately-named component may have become available to
discharge the reference: see Schemas and Namespaces: Access and
Composition (§4) for details.

3.1.4 White Space Normalization during Validation

Throughout this specification, [Definition:] the initial value of some attribute
information item is the value of the [normalized value] property of that item.
Similarly, the initial value of an element information item is the string composed
of, in order, the [character code] of each character information item in the
[children] of that element information item.

The above definition means that comments and processing instructions, even in
the midst of text, are ignored for all ·validation· purposes.

[Definition:] The normalized value of an element or attribute information item is
an ·initial value· whose white space, if any, has been normalized according to the

Page 23 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

value of the whiteSpace facet of the simple type definition used in its ·validation·:

preserve
No normalization is done, the value is the ·normalized value·

replace
All occurrences of #x9 (tab), #xA (line feed) and #xD (carriage return) are
replaced with #x20 (space).

collapse
Subsequent to the replacements specified above under replace, contiguous
sequences of #x20s are collapsed to a single #x20, and initial and/or final
#x20s are deleted.

If the simple type definition used in an item's ·validation· is the ·simple ur-type
definition·, the ·normalized value· must be determined as in the preserve case
above.

There are three alternative validation rules which may supply the necessary
background for the above: Attribute Locally Valid (§3.2.4) (clause 3), Element
Locally Valid (Type) (§3.3.4) (clause 3.1.3) or Element Locally Valid (Complex
Type) (§3.4.4) (clause 2.2).

These three levels of normalization correspond to the processing mandated in
XML 1.0 for element content, CDATA attribute content and tokenized attributed
content, respectively. See Attribute Value Normalization in [XML 1.0 (Second
Edition)] for the precedent for replace and collapse for attributes. Extending this
processing to element content is necessary to ensure a consistent ·validation·
semantics for simple types, regardless of whether they are applied to attributes or
elements. Performing it twice in the case of attributes whose [normalized value]
has already been subject to replacement or collapse on the basis of information in
a DTD is necessary to ensure consistent treatment of attributes regardless of the
extent to which DTD-based information has been made use of during infoset
construction.

Note: Even when DTD-based information has been appealed to, and Attribute
Value Normalization has taken place, the above definition of ·normalized
value· may mean further normalization takes place, as for instance when
character entity references in attribute values result in white space characters
other than spaces in their ·initial value·s.

3.2 Attribute Declarations
 3.2.1 The Attribute Declaration Schema Component
 3.2.2 XML Representation of Attribute Declaration Schema Components
 3.2.3 Constraints on XML Representations of Attribute Declarations
 3.2.4 Attribute Declaration Validation Rules
 3.2.5 Attribute Declaration Information Set Contributions
 3.2.6 Constraints on Attribute Declaration Schema Components

Page 24 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

 3.2.7 Built-in Attribute Declarations

Attribute declarations provide for:

Local ·validation· of attribute information item values using a simple type
definition;
Specifying default or fixed values for attribute information items.

Example
<xs:attribute name="age" type="xs:positiveInteger" use="required"/>

The XML representation of an attribute declaration.

3.2.1 The Attribute Declaration Schema Component

The attribute declaration schema component has the following properties:

Schema Component: Attribute Declaration

{name}
An NCName as defined by [XML-Namespaces].

{target namespace}
Either ·absent· or a namespace name, as defined in [XML-
Namespaces].

{type definition}
A simple type definition.

{scope}
Optional. Either global or a complex type definition.

{value constraint}
Optional. A pair consisting of a value and one of default, fixed.

{annotation}
Optional. An annotation.

The {name} property must match the local part of the names of attributes being
·validated·.

The value of the attribute must conform to the supplied {type definition}.

A non-·absent· value of the {target namespace} property provides for ·validation· of
namespace-qualified attribute information items (which must be explicitly prefixed
in the character-level form of XML documents). ·Absent· values of {target
namespace} ·validate· unqualified (unprefixed) items.

A {scope} of global identifies attribute declarations available for use in complex

Page 25 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

type definitions throughout the schema. Locally scoped declarations are available
for use only within the complex type definition identified by the {scope} property.
This property is ·absent· in the case of declarations within attribute group
definitions: their scope will be determined when they are used in the construction
of complex type definitions.

{value constraint} reproduces the functions of XML 1.0 default and #FIXED
attribute values. default specifies that the attribute is to appear unconditionally in
the ·post-schema-validation infoset·, with the supplied value used whenever the
attribute is not actually present; fixed indicates that the attribute value if present
must equal the supplied constraint value, and if absent receives the supplied value
as for default. Note that it is values that are supplied and/or checked, not strings.

See Annotations (§3.13) for information on the role of the {annotation} property.

Note: A more complete and formal presentation of the semantics of {name},
{target namespace} and {value constraint} is provided in conjunction with
other aspects of complex type ·validation· (see Element Locally Valid
(Complex Type) (§3.4.4).)

[XML-Infoset] distinguishes attributes with names such as xmlns or xmlns:xsl
from ordinary attributes, identifying them as [namespace attributes]. Accordingly, it
is unnecessary and in fact not possible for schemas to contain attribute
declarations corresponding to such namespace declarations, see xmlns Not
Allowed (§3.2.6). No means is provided in this specification to supply a default
value for a namespace declaration.

3.2.2 XML Representation of Attribute Declaration Schema Components

The XML representation for an attribute declaration schema component is an
<attribute> element information item. It specifies a simple type definition for an
attribute either by reference or explicitly, and may provide default information. The
correspondences between the properties of the information item and properties of
the component are as follows:

XML Representation Summary: attribute Element Information Item

<attribute
 default = string
 fixed = string
 form = (qualified | unqualified)
 id = ID
 name = NCName
 ref = QName
 type = QName
 use = (optional | prohibited | required) : optional

Page 26 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

 {any attributes with non-schema namespace . . .}>
 Content: (annotation?, simpleType?)
</attribute>

If the <attribute> element information item has <schema> as its parent, the
corresponding schema component is as follows:

Attribute Declaration Schema Component
Property Representation
{name} The ·actual value· of the name [attribute]

{target
namespace}

The ·actual value· of the targetNamespace [attribute] of
the parent <schema> element information item, or ·absent·
if there is none.

{type
definition}

The simple type definition corresponding to the
<simpleType> element information item in the [children], if
present, otherwise the simple type definition ·resolved· to
by the ·actual value· of the type [attribute], if present,
otherwise the ·simple ur-type definition·.

{scope} global.
{value
constraint}

If there is a default or a fixed [attribute], then a pair
consisting of the ·actual value· (with respect to the {type
definition}) of that [attribute] and either default or fixed, as
appropriate, otherwise ·absent·.

{annotation} The annotation corresponding to the <annotation> element
information item in the [children], if present, otherwise
·absent·.

otherwise if the <attribute> element information item has <complexType> or
<attributeGroup> as an ancestor and the ref [attribute] is absent, it
corresponds to an attribute use with properties as follows (unless
use='prohibited', in which case the item corresponds to nothing at all):

Attribute Use Schema Component

Property Representation
{required} true if the use [attribute] is present with ·actual value·

required, otherwise false.

{attribute
declaration}

See the Attribute Declaration mapping immediately below.

{value
constraint}

If there is a default or a fixed [attribute], then a pair
consisting of the ·actual value· (with respect to the {type
definition} of the {attribute declaration}) of that [attribute]
and either default or fixed, as appropriate, otherwise

Page 27 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

·absent·.

Attribute Declaration Schema Component
Property Representation
{name} The ·actual value· of the name [attribute]

{target
namespace}

If form is present and its ·actual value· is qualified, or if
form is absent and the ·actual value· of
attributeFormDefault on the <schema> ancestor is
qualified, then the ·actual value· of the
targetNamespace [attribute] of the parent <schema>
element information item, or ·absent· if there is none,
otherwise ·absent·.

{type
definition}

The simple type definition corresponding to the
<simpleType> element information item in the [children], if
present, otherwise the simple type definition ·resolved· to
by the ·actual value· of the type [attribute], if present,
otherwise the ·simple ur-type definition·.

{scope} If the <attribute> element information item has
<complexType> as an ancestor, the complex definition
corresponding to that item, otherwise (the <attribute>
element information item is within an <attributeGroup>
definition), ·absent·.

{value
constraint}

·absent·.

{annotation} The annotation corresponding to the <annotation> element
information item in the [children], if present, otherwise
·absent·.

otherwise (the <attribute> element information item has <complexType> or
<attributeGroup> as an ancestor and the ref [attribute] is present), it
corresponds to an attribute use with properties as follows (unless
use='prohibited', in which case the item corresponds to nothing at all):

Attribute Use Schema Component

Property Representation
{required} true if the use [attribute] is present with ·actual value·

required, otherwise false.

{attribute
declaration}

The (top-level) attribute declaration ·resolved· to by the
·actual value· of the ref [attribute]

{value
constraint}

If there is a default or a fixed [attribute], then a pair
consisting of the ·actual value· (with respect to the {type

Page 28 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

definition} of the {attribute declaration}) of that [attribute]
and either default or fixed, as appropriate, otherwise
·absent·.

Attribute declarations can appear at the top level of a schema document, or within
complex type definitions, either as complete (local) declarations, or by reference to
top-level declarations, or within attribute group definitions. For complete
declarations, top-level or local, the type attribute is used when the declaration can
use a built-in or pre-declared simple type definition. Otherwise an anonymous
<simpleType> is provided inline.

The default when no simple type definition is referenced or provided is the ·simple
ur-type definition·, which imposes no constraints at all.

Attribute information items ·validated· by a top-level declaration must be qualified
with the {target namespace} of that declaration (if this is ·absent·, the item must be
unqualified). Control over whether attribute information items ·validated· by a local
declaration must be similarly qualified or not is provided by the form [attribute],
whose default is provided by the attributeFormDefault [attribute] on the
enclosing <schema>, via its determination of {target namespace}.

The names for top-level attribute declarations are in their own ·symbol space·. The
names of locally-scoped attribute declarations reside in symbol spaces local to the
type definition which contains them.

3.2.3 Constraints on XML Representations of Attribute Declarations

Schema Representation Constraint: Attribute Declaration Representation OK
In addition to the conditions imposed on <attribute> element information items by
the schema for schemas, all of the following must be true:
1 default and fixed must not both be present.
2 If default and use are both present, use must have the ·actual value·
optional.

3 If the item's parent is not <schema>, then all of the following must be true:
3.1 One of ref or name must be present, but not both.
3.2 If ref is present, then all of <simpleType>, form and type must be

absent.
4 type and <simpleType> must not both be present.
5 The corresponding attribute declaration must satisfy the conditions set out in

Constraints on Attribute Declaration Schema Components (§3.2.6).

3.2.4 Attribute Declaration Validation Rules

Validation Rule: Attribute Locally Valid

Page 29 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

For an attribute information item to be locally ·valid· with respect to an attribute
declaration all of the following must be true:
1 The declaration must not be ·absent· (see Missing Sub-components (§5.3) for

how this can fail to be the case).
2 Its {type definition} must not be absent.
3 The item's ·normalized value· must be locally ·valid· with respect to that {type

definition} as per String Valid (§3.14.4).
4 The item's ·actual value· must match the value of the {value constraint}, if it is

present and fixed.

Validation Rule: Schema-Validity Assessment (Attribute)
The schema-validity assessment of an attribute information item depends on its
·validation· alone.

[Definition:] During ·validation·, associations between element and attribute
information items among the [children] and [attributes] on the one hand, and
element and attribute declarations on the other, are established as a side-effect.
Such declarations are called the context-determined declarations. See clause
3.1 (in Element Locally Valid (Complex Type) (§3.4.4)) for attribute declarations,
clause 2 (in Element Sequence Locally Valid (Particle) (§3.9.4)) for element
declarations.

For an attribute information item's schema-validity to have been assessed all of
the following must be true:
1 A non-·absent· attribute declaration must be known for it, namely one of the

following:
1.1 A declaration which has been established as its ·context-determined

declaration·;
1.2 A declaration resolved to by its [local name] and [namespace name] as

defined by QName resolution (Instance) (§3.15.4), provided its ·context-
determined declaration· is not skip.

2 Its ·validity· with respect to that declaration must have been evaluated as per
Attribute Locally Valid (§3.2.4).

3 Both clause 1 and clause 2 of Attribute Locally Valid (§3.2.4) must be
satisfied.

[Definition:] For attributes, there is no difference between assessment and strict
assessment, so if the above holds, the attribute information item has been
strictly assessed.

3.2.5 Attribute Declaration Information Set Contributions

Schema Information Set Contribution: Assessment Outcome (Attribute)
If the schema-validity of an attribute information item has been assessed as per
Schema-Validity Assessment (Attribute) (§3.2.4), then in the ·post-schema-
validation infoset· it has properties as follows:

Page 30 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

PSVI Contributions for attribute information items

[validation context]
The nearest ancestor element information item with a [schema
information] property.

[validity]
The appropriate case among the following:
1 If it was ·strictly assessed·, then the appropriate case among the

following:
1.1 If it was ·valid· as defined by Attribute Locally Valid (§3.2.4),

then valid;
1.2 otherwise invalid.

2 otherwise notKnown.
[validation attempted]

The appropriate case among the following:
1 If it was ·strictly assessed·, then full;
2 otherwise none.

[schema specified]
infoset. See Attribute Default Value (§3.4.5) for the other possible
value.

Schema Information Set Contribution: Validation Failure (Attribute)
If the local ·validity·, as defined by Attribute Locally Valid (§3.2.4) above, of an
attribute information item has been assessed, in the ·post-schema-validation
infoset· the item has a property:

PSVI Contributions for attribute information items

[schema error code]
The appropriate case among the following:
1 If the item is not ·valid·, then a list. Applications wishing to provide

information as to the reason(s) for the ·validation· failure are
encouraged to record one or more error codes (see Outcome
Tabulations (normative) (§C)) herein.

2 otherwise ·absent·.

Schema Information Set Contribution: Attribute Declaration
If an attribute information item is ·valid· with respect to an attribute declaration as
per Attribute Locally Valid (§3.2.4) then in the ·post-schema-validation infoset· the
attribute information item may, at processor option, have a property:

PSVI Contributions for attribute information items

[attribute declaration]
An ·item isomorphic· to the declaration component itself.

Page 31 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

Schema Information Set Contribution: Attribute Validated by Type
If clause 3 of Attribute Locally Valid (§3.2.4) applies with respect to an attribute
information item, in the ·post-schema-validation infoset· the attribute information
item has a property:

PSVI Contributions for attribute information items

[schema normalized value]
The ·normalized value· of the item as ·validated·.

Furthermore, the item has one of the following alternative sets of properties:

Either

PSVI Contributions for attribute information items

[type definition]
An ·item isomorphic· to the relevant attribute declaration's {type
definition} component.

[member type definition]
If and only if that type definition has {variety} union, then an ·item
isomorphic· to that member of its {member type definitions} which
actually ·validated· the attribute item's [normalized value].

or

PSVI Contributions for attribute information items

[type definition type]
simple.

[type definition namespace]
The {target namespace} of the ·type definition·.

[type definition anonymous]
true if the {name} of the ·type definition· is ·absent·, otherwise false.

[type definition name]
The {name} of the ·type definition·, if it is not ·absent·. If it is ·absent·,
schema processors may, but need not, provide a value unique to the
definition.

If the ·type definition· has {variety} union, then calling [Definition:] that member
of the {member type definitions} which actually ·validated· the attribute item's
·normalized value· the actual member type definition, there are three additional
properties:

Page 32 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

PSVI Contributions for attribute information items

[member type definition namespace]
The {target namespace} of the ·actual member type definition·.

[member type definition anonymous]
true if the {name} of the ·actual member type definition· is ·absent·,
otherwise false.

[member type definition name]
The {name} of the ·actual member type definition·, if it is not
·absent·. If it is ·absent·, schema processors may, but need not,
provide a value unique to the definition.

The first (·item isomorphic·) alternative above is provided for applications such
as query processors which need access to the full range of details about an
item's ·assessment·, for example the type hierarchy; the second, for lighter-
weight processors for whom representing the significant parts of the type
hierarchy as information items might be a significant burden.

Also, if the declaration has a {value constraint}, the item has a property:

PSVI Contributions for attribute information items

[schema default]
The canonical lexical representation of the declaration's {value
constraint} value.

If the attribute information item was not ·strictly assessed·, then instead of the
values specified above,
1 The item's [schema normalized value] property has the ·initial value· of the

item as its value;
2 The [type definition] and [member type definition] properties, or their

alternatives, are based on the ·simple ur-type definition·.

3.2.6 Constraints on Attribute Declaration Schema Components

All attribute declarations (see Attribute Declarations (§3.2)) must satisfy the
following constraints.

Schema Component Constraint: Attribute Declaration Properties Correct
All of the following must be true:
1 The values of the properties of an attribute declaration must be as described

in the property tableau in The Attribute Declaration Schema Component
(§3.2.1), modulo the impact of Missing Sub-components (§5.3).

2 if there is a {value constraint}, the canonical lexical representation of its value
must be ·valid· with respect to the {type definition} as defined in String Valid

Page 33 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

(§3.14.4).
3 If the {type definition} is or is derived from ID then there must not be a {value

constraint}.

Schema Component Constraint: xmlns Not Allowed
The {name} of an attribute declaration must not match xmlns.

Note: The {name} of an attribute is an ·NCName·, which implicitly prohibits
attribute declarations of the form xmlns:*.

Schema Component Constraint: xsi: Not Allowed
The {target namespace} of an attribute declaration, whether local or top-level,
must not match http://www.w3.org/2001/XMLSchema-instance (unless
it is one of the four built-in declarations given in the next section).

Note: This reinforces the special status of these attributes, so that they not
only need not be declared to be allowed in instances, but must not be
declared. It also removes any temptation to experiment with supplying
global or fixed values for e.g. xsi:type or xsi:nil, which would be
seriously misleading, as they would have no effect.

3.2.7 Built-in Attribute Declarations

There are four attribute declarations present in every schema by definition:

Attribute Declaration for the 'type' attribute

Property Value
{name} type

{target namespace} http://www.w3.org/2001/XMLSchema-instance

{type definition} The built-in QName simple type definition
{scope} global
{value constraint} ·absent·
{annotation} ·absent·

Attribute Declaration for the 'nil' attribute

Property Value
{name} nil

{target namespace} http://www.w3.org/2001/XMLSchema-instance

{type definition} The built-in boolean simple type definition
{scope} global
{value constraint} ·absent·

Page 34 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

3.3 Element Declarations
 3.3.1 The Element Declaration Schema Component
 3.3.2 XML Representation of Element Declaration Schema Components

{annotation} ·absent·

Attribute Declaration for the 'schemaLocation' attribute

Property Value
{name} schemaLocation

{target
namespace}

http://www.w3.org/2001/XMLSchema-instance

{type
definition}

An anonymous simple type definition, as follows:
Property Value
{name} ·absent·
{target
namespace}

http://www.w3.org/2001/XMLSchema-
instance

{base type
definition}

The built in ·simple ur-type definition·

{facets} ·absent·
{variety} list
{item type
definition}

The built-in anyURI simple type definition

{annotation} ·absent·

{scope} global
{value
constraint}

·absent·

{annotation} ·absent·

Attribute Declaration for the 'noNamespaceSchemaLocation' attribute

Property Value
{name} noNamespaceSchemaLocation

{target namespace} http://www.w3.org/2001/XMLSchema-instance

{type definition} The built-in anyURI simple type definition
{scope} global
{value constraint} ·absent·
{annotation} ·absent·

Page 35 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

 3.3.3 Constraints on XML Representations of Element Declarations
 3.3.4 Element Declaration Validation Rules
 3.3.5 Element Declaration Information Set Contributions
 3.3.6 Constraints on Element Declaration Schema Components

Element declarations provide for:

Local ·validation· of element information item values using a type definition;
Specifying default or fixed values for an element information items;
Establishing uniquenesses and reference constraint relationships among the
values of related elements and attributes;
Controlling the substitutability of elements through the mechanism of
·element substitution groups·.

Example
<xs:element name="PurchaseOrder" type="PurchaseOrderType"/>

<xs:element name="gift">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="birthday" type="xs:date"/>
 <xs:element ref="PurchaseOrder"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

XML representations of several different types of element declaration

3.3.1 The Element Declaration Schema Component

The element declaration schema component has the following properties:

Schema Component: Element Declaration

{name}
An NCName as defined by [XML-Namespaces].

{target namespace}
Either ·absent· or a namespace name, as defined in [XML-
Namespaces].

{type definition}
Either a simple type definition or a complex type definition.

{scope}
Optional. Either global or a complex type definition.

{value constraint}
Optional. A pair consisting of a value and one of default, fixed.

{nillable}

Page 36 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

A boolean.
{identity-constraint definitions}

A set of constraint definitions.
{substitution group affiliation}

Optional. A top-level element definition.
{substitution group exclusions}

A subset of {extension, restriction}.
{disallowed substitutions}

A subset of {substitution, extension, restriction}.
{abstract}

A boolean.
{annotation}

Optional. An annotation.

The {name} property must match the local part of the names of element information
items being ·validated·.

A {scope} of global identifies element declarations available for use in content
models throughout the schema. Locally scoped declarations are available for use
only within the complex type identified by the {scope} property. This property is
·absent· in the case of declarations within named model groups: their scope is
determined when they are used in the construction of complex type definitions.

A non-·absent· value of the {target namespace} property provides for ·validation· of
namespace-qualified element information items. ·Absent· values of {target
namespace} ·validate· unqualified items.

An element information item is ·valid· if it satisfies the {type definition}. For such an
item, schema information set contributions appropriate to the {type definition} are
added to the corresponding element information item in the ·post-schema-validation
infoset·.

If {nillable} is true, then an element may also be ·valid· if it carries the namespace
qualified attribute with [local name] nil from namespace
http://www.w3.org/2001/XMLSchema-instance and value true (see xsi:nil
(§2.6.2)) even if it has no text or element content despite a {content type} which
would otherwise require content. Formal details of element ·validation· are
described in Element Locally Valid (Element) (§3.3.4).

{value constraint} establishes a default or fixed value for an element. If default is
specified, and if the element being ·validated· is empty, then the canonical form of
the supplied constraint value becomes the [schema normalized value] of the
·validated· element in the ·post-schema-validation infoset·. If fixed is specified, then
the element's content must either be empty, in which case fixed behaves as default,
or its value must match the supplied constraint value.

Page 37 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

Note: The provision of defaults for elements goes beyond what is possible in
XML 1.0 DTDs, and does not exactly correspond to defaults for attributes. In
particular, an element with a non-empty {value constraint} whose simple type
definition includes the empty string in its lexical space will nonetheless never
receive that value, because the {value constraint} will override it.

{identity-constraint definitions} express constraints establishing uniquenesses and
reference relationships among the values of related elements and attributes. See
Identity-constraint Definitions (§3.11).

Element declarations are potential members of the substitution group, if any,
identified by {substitution group affiliation}. Potential membership is transitive but
not symmetric; an element declaration is a potential member of any group of which
its {substitution group affiliation} is a potential member. Actual membership may be
blocked by the effects of {substitution group exclusions} or {disallowed
substitutions}, see below.

An empty {substitution group exclusions} allows a declaration to be nominated as
the {substitution group affiliation} of other element declarations having the same
{type definition} or types derived therefrom. The explicit values of {substitution
group exclusions} rule out element declarations having types which are extensions
or restrictions respectively of {type definition}. If both values are specified, then the
declaration may not be nominated as the {substitution group affiliation} of any
other declaration.

The supplied values for {disallowed substitutions} determine whether an element
declaration appearing in a ·content model· will be prevented from additionally
·validating· elements (a) with an xsi:type (§2.6.1) that identifies an extension or
restriction of the type of the declared element, and/or (b) from ·validating· elements
which are in the substitution group headed by the declared element. If {disallowed
substitutions} is empty, then all derived types and substitution group members are
allowed.

Element declarations for which {abstract} is true can appear in content models
only when substitution is allowed; such declarations may not themselves ever be
used to ·validate· element content.

See Annotations (§3.13) for information on the role of the {annotation} property.

3.3.2 XML Representation of Element Declaration Schema Components

The XML representation for an element declaration schema component is an
<element> element information item. It specifies a type definition for an element
either by reference or explicitly, and may provide occurrence and default
information. The correspondences between the properties of the information item
and properties of the component(s) it corresponds to are as follows:

Page 38 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

XML Representation Summary: element Element Information Item

<element
 abstract = boolean : false
 block = (#all | List of (extension | restriction |
substitution))
 default = string
 final = (#all | List of (extension | restriction))
 fixed = string
 form = (qualified | unqualified)
 id = ID
 maxOccurs = (nonNegativeInteger | unbounded) : 1
 minOccurs = nonNegativeInteger : 1
 name = NCName
 nillable = boolean : false
 ref = QName
 substitutionGroup = QName
 type = QName
 {any attributes with non-schema namespace . . .}>
 Content: (annotation?, ((simpleType | complexType)?,
(unique | key | keyref)*))
</element>

If the <element> element information item has <schema> as its parent, the
corresponding schema component is as follows:

Element Declaration Schema Component

Property Representation
{name} The ·actual value· of the name [attribute].

{target
namespace}

The ·actual value· of the targetNamespace [attribute]
of the parent <schema> element information item, or
·absent· if there is none.

{scope} global.
{type
definition}

The type definition corresponding to the <simpleType>
or <complexType> element information item in the
[children], if either is present, otherwise the type
definition ·resolved· to by the ·actual value· of the type
[attribute], otherwise the {type definition} of the element
declaration ·resolved· to by the ·actual value· of the
substitutionGroup [attribute], if present, otherwise
the ·ur-type definition·.

{nillable} The ·actual value· of the nillable [attribute], if
present, otherwise false.

Page 39 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

{value
constraint}

If there is a default or a fixed [attribute], then a pair
consisting of the ·actual value· (with respect to the {type
definition}, if it is a simple type definition, or the {type
definition}'s {content type}, if that is a simple type
definition, or else with respect to the built-in string
simple type definition) of that [attribute] and either
default or fixed, as appropriate, otherwise ·absent·.

{identity-
constraint
definitions}

A set consisting of the identity-constraint-definitions
corresponding to all the <key>, <unique> and <keyref>
element information items in the [children], if any,
otherwise the empty set.

{substitution
group
affiliation}

The element declaration ·resolved· to by the ·actual
value· of the substitutionGroup [attribute], if
present, otherwise ·absent·.

{disallowed
substitutions}

A set depending on the ·actual value· of the block
[attribute], if present, otherwise on the ·actual value· of
the blockDefault [attribute] of the ancestor
<schema> element information item, if present,
otherwise on the empty string. Call this the EBV (for
effective block value). Then the value of this property is
the appropriate case among the following:
1 If the EBV is the empty string, then the empty set;
2 If the EBV is #all, then {extension, restriction,

substitution};
3 otherwise a set with members drawn from the set

above, each being present or absent depending on
whether the ·actual value· (which is a list) contains an
equivalently named item.

Note: Although the blockDefault [attribute] of
<schema> may include values other than
extension, restriction or substitution, those values
are ignored in the determination of {disallowed
substitutions} for element declarations (they are
used elsewhere).

{substitution
group
exclusions}

As for {disallowed substitutions} above, but using the
final and finalDefault [attributes] in place of the
block and blockDefault [attributes] and with the
relevant set being {extension, restriction}.

{abstract} The ·actual value· of the abstract [attribute], if
present, otherwise false.

{annotation} The annotation corresponding to the <annotation>
element information item in the [children], if present,

Page 40 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

otherwise ·absent·.

otherwise if the <element> element information item has <complexType> or
<group> as an ancestor and the ref [attribute] is absent, the corresponding
schema components are as follows (unless minOccurs=maxOccurs=0, in
which case the item corresponds to no component at all):

Particle Schema Component
Property Representation
{min
occurs}

The ·actual value· of the minOccurs [attribute], if present,
otherwise 1.

{max
occurs}

unbounded, if the maxOccurs [attribute] equals unbounded,
otherwise the ·actual value· of the maxOccurs [attribute], if
present, otherwise 1.

{term} A (local) element declaration as given below.

An element declaration as in the first case above, with the exception of its
{target namespace} and {scope} properties, which are as below:

Element Declaration Schema Component
Property Representation
{target
namespace}

If form is present and its ·actual value· is qualified, or if
form is absent and the ·actual value· of
elementFormDefault on the <schema> ancestor is
qualified, then the ·actual value· of the
targetNamespace [attribute] of the parent <schema>
element information item, or ·absent· if there is none,
otherwise ·absent·.

{scope} If the <element> element information item has
<complexType> as an ancestor, the complex definition
corresponding to that item, otherwise (the <element>
element information item is within a named <group>
definition), ·absent·.

otherwise (the <element> element information item has <complexType> or
<group> as an ancestor and the ref [attribute] is present), the
corresponding schema component is as follows (unless
minOccurs=maxOccurs=0, in which case the item corresponds to no
component at all):

Particle Schema Component

Property Representation

Page 41 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

{min
occurs}

The ·actual value· of the minOccurs [attribute], if present,
otherwise 1.

{max
occurs}

unbounded, if the maxOccurs [attribute] equals unbounded,
otherwise the ·actual value· of the maxOccurs [attribute], if
present, otherwise 1.

{term} The (top-level) element declaration ·resolved· to by the
·actual value· of the ref [attribute].

<element> corresponds to an element declaration, and allows the type definition of
that declaration to be specified either by reference or by explicit inclusion.

<element>s within <schema> produce global element declarations; <element>s
within <group> or <complexType> produce either particles which contain global
element declarations (if there's a ref attribute) or local declarations (otherwise).
For complete declarations, top-level or local, the type attribute is used when the
declaration can use a built-in or pre-declared type definition. Otherwise an
anonymous <simpleType> or <complexType> is provided inline.

Element information items ·validated· by a top-level declaration must be qualified
with the {target namespace} of that declaration (if this is ·absent·, the item must be
unqualified). Control over whether element information items ·validated· by a local
declaration must be similarly qualified or not is provided by the form [attribute],
whose default is provided by the elementFormDefault [attribute] on the
enclosing <schema>, via its determination of {target namespace}.

As noted above the names for top-level element declarations are in a separate
·symbol space· from the symbol spaces for the names of type definitions, so there
can (but need not be) a simple or complex type definition with the same name as a
top-level element. As with attribute names, the names of locally-scoped element
declarations with no {target namespace} reside in symbol spaces local to the type
definition which contains them.

Note that the above allows for two levels of defaulting for unspecified type
definitions. An <element> with no referenced or included type definition will
correspond to an element declaration which has the same type definition as the
head of its substitution group if it identifies one, otherwise the ·ur-type definition·.
This has the important consequence that the minimum valid element declaration,
that is, one with only a name attribute and no contents, is also (nearly) the most
general, validating any combination of text and element content and allowing any
attributes, and providing for recursive validation where possible.

See below at XML Representation of Identity-constraint Definition Schema
Components (§3.11.2) for <key>, <unique> and <keyref>.

Page 42 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

Example
<xs:element name="unconstrained"/>

<xs:element name="emptyElt">
 <xs:complexType>
 <xs:attribute ...>. . .</xs:attribute>
 </xs:complexType>
</xs:element>

<xs:element name="contextOne">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="myLocalElement" type="myFirstType"/>
 <xs:element ref="globalElement"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

<xs:element name="contextTwo">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="myLocalElement" type="mySecondType"/>
 <xs:element ref="globalElement"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

The first example above declares an element whose type, by default, is the ·ur-
type definition·. The second uses an embedded anonymous complex type
definition.

The last two examples illustrate the use of local element declarations. Instances
of myLocalElement within contextOne will be constrained by
myFirstType, while those within contextTwo will be constrained by
mySecondType.

Note: The possibility that differing attribute declarations and/or content
models would apply to elements with the same name in different contexts is
an extension beyond the expressive power of a DTD in XML 1.0.

Example
 <xs:complexType name="facet">
 <xs:complexContent>
 <xs:extension base="xs:annotated">
 <xs:attribute name="value" use="required"/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

 <xs:element name="facet" type="xs:facet" abstract="true"/>

Page 43 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

 <xs:element name="encoding" substitutionGroup="xs:facet">
 <xs:complexType>
 <xs:complexContent>
 <xs:restriction base="xs:facet">
 <xs:sequence>
 <xs:element ref="annotation" minOccurs="0"/>
 </xs:sequence>
 <xs:attribute name="value" type="xs:encodings"/>
 </xs:restriction>
 </xs:complexContent>
 </xs:complexType>
 </xs:element>

 <xs:element name="period" substitutionGroup="xs:facet">
 <xs:complexType>
 <xs:complexContent>
 <xs:restriction base="xs:facet">
 <xs:sequence>
 <xs:element ref="annotation" minOccurs="0"/>
 </xs:sequence>
 <xs:attribute name="value" type="xs:duration"/>
 </xs:restriction>
 </xs:complexContent>
 </xs:complexType>
 </xs:element>

 <xs:complexType name="datatype">
 <xs:sequence>
 <xs:element ref="facet" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="name" type="xs:NCName" use="optional"/>
 . . .
 </xs:complexType>

An example from a previous version of the schema for datatypes. The facet
type is defined and the facet element is declared to use it. The facet element
is abstract -- it's only defined to stand as the head for a substitution group. Two
further elements are declared, each a member of the facet substitution group.
Finally a type is defined which refers to facet, thereby allowing either period or
encoding (or any other member of the group).

3.3.3 Constraints on XML Representations of Element Declarations

Schema Representation Constraint: Element Declaration Representation OK
In addition to the conditions imposed on <element> element information items by
the schema for schemas: all of the following must be true:
1 default and fixed must not both be present.
2 If the item's parent is not <schema>, then all of the following must be true:

2.1 One of ref or name must be present, but not both.
2.2 If ref is present, then all of <complexType>, <simpleType>, <key>,

<keyref>, <unique>, nillable, default, fixed, form, block and type

Page 44 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

must be absent, i.e. only minOccurs, maxOccurs, id are allowed in addition
to ref, along with <annotation>.

3 type and either <simpleType> or <complexType> are mutually exclusive.
4 The corresponding particle and/or element declarations must satisfy the

conditions set out in Constraints on Element Declaration Schema
Components (§3.3.6) and Constraints on Particle Schema Components
(§3.9.6).

3.3.4 Element Declaration Validation Rules

Validation Rule: Element Locally Valid (Element)
For an element information item to be locally ·valid· with respect to an element
declaration all of the following must be true:
1 The declaration must not be ·absent·.
2 Its {abstract} must be false.
3 The appropriate case among the following must be true:

3.1 If {nillable} is false, then there must be no attribute information item
among the element information item's [attributes] whose [namespace name]
is identical to http://www.w3.org/2001/XMLSchema-instance and
whose [local name] is nil.

3.2 If {nillable} is true and there is such an attribute information item and its
·actual value· is true , then all of the following must be true:
3.2.1 The element information item must have no character or element

information item [children].
3.2.2 There must be no fixed {value constraint}.

4 If there is an attribute information item among the element information item's
[attributes] whose [namespace name] is identical to
http://www.w3.org/2001/XMLSchema-instance and whose [local
name] is type, then all of the following must be true:
4.1 The ·normalized value· of that attribute information item must be ·valid·

with respect to the built-in QName simple type, as defined by String Valid
(§3.14.4);

4.2 The ·local name· and ·namespace name· (as defined in QName
Interpretation (§3.15.3)), of the ·actual value· of that attribute information
item must resolve to a type definition, as defined in QName resolution
(Instance) (§3.15.4) -- [Definition:] call this type definition the local type
definition;

4.3 The ·local type definition· must be validly derived from the {type definition}
given the union of the {disallowed substitutions} and the {type definition}'s
{prohibited substitutions}, as defined in Type Derivation OK (Complex)
(§3.4.6) (if it is a complex type definition), or given {disallowed substitutions}
as defined in Type Derivation OK (Simple) (§3.14.6) (if it is a simple type
definition).

[Definition:] The phrase actual type definition occurs below. If the above three
clauses are satisfied, this should be understood as referring to the ·local type
definition·, otherwise to the {type definition}.

Page 45 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

5 The appropriate case among the following must be true:
5.1 If the declaration has a {value constraint}, the item has neither element

nor character [children] and clause 3.2 has not applied, then all of the
following must be true:
5.1.1 If the ·actual type definition· is a ·local type definition· then the

canonical lexical representation of the {value constraint} value must be a
valid default for the ·actual type definition· as defined in Element Default
Valid (Immediate) (§3.3.6).

5.1.2 The element information item with the canonical lexical representation
of the {value constraint} value used as its ·normalized value· must be
·valid· with respect to the ·actual type definition· as defined by Element
Locally Valid (Type) (§3.3.4).

5.2 If the declaration has no {value constraint} or the item has either element
or character [children] or clause 3.2 has applied, then all of the following
must be true:
5.2.1 The element information item must be ·valid· with respect to the

·actual type definition· as defined by Element Locally Valid (Type)
(§3.3.4).

5.2.2 If there is a fixed {value constraint} and clause 3.2 has not applied, all
of the following must be true:
5.2.2.1 The element information item must have no element information

item [children].
5.2.2.2 The appropriate case among the following must be true:

5.2.2.2.1 If the {content type} of the ·actual type definition· is mixed,
then the ·initial value· of the item must match the canonical lexical
representation of the {value constraint} value.

5.2.2.2.2 If the {content type} of the ·actual type definition· is a simple
type definition, then the ·actual value· of the item must match the
canonical lexical representation of the {value constraint} value.

6 The element information item must be ·valid· with respect to each of the
{identity-constraint definitions} as per Identity-constraint Satisfied (§3.11.4).

7 If the element information item is the ·validation root·, it must be ·valid· per
Validation Root Valid (ID/IDREF) (§3.3.4).

Validation Rule: Element Locally Valid (Type)
For an element information item to be locally ·valid· with respect to a type
definition all of the following must be true:
1 The type definition must not be ·absent·;
2 It must not have {abstract} with value true.
3 The appropriate case among the following must be true:

3.1 If the type definition is a simple type definition, then all of the following
must be true:
3.1.1 The element information item's [attributes] must be empty, excepting

those whose [namespace name] is identical to
http://www.w3.org/2001/XMLSchema-instance and whose [local
name] is one of type, nil, schemaLocation or
noNamespaceSchemaLocation.

Page 46 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

3.1.2 The element information item must have no element information item
[children].

3.1.3 If clause 3.2 of Element Locally Valid (Element) (§3.3.4) did not apply,
then the ·normalized value· must be ·valid· with respect to the type
definition as defined by String Valid (§3.14.4).

3.2 If the type definition is a complex type definition, then the element
information item must be ·valid· with respect to the type definition as per
Element Locally Valid (Complex Type) (§3.4.4);

Validation Rule: Validation Root Valid (ID/IDREF)
For an element information item which is the ·validation root· to be ·valid· all of
the following must be true:
1 There must be no ID/IDREF binding in the item's [ID/IDREF table] whose

[binding] is the empty set.
2 There must be no ID/IDREF binding in the item's [ID/IDREF table] whose

[binding] has more than one member.

See ID/IDREF Table (§3.15.5) for the definition of ID/IDREF binding.
Note: The first clause above applies when there is a reference to an
undefined ID. The second applies when there is a multiply-defined ID. They
are separated out to ensure that distinct error codes (see Outcome
Tabulations (normative) (§C)) are associated with these two cases.
Note: Although this rule applies at the ·validation root·, in practice
processors, particularly streaming processors, may wish to detect and
signal the clause 2 case as it arises.
Note: This reconstruction of [XML 1.0 (Second Edition)]'s ID/IDREF
functionality is imperfect in that if the ·validation root· is not the document
element of an XML document, the results will not necessarily be the same
as those a validating parser would give were the document to have a DTD
with equivalent declarations.

Validation Rule: Schema-Validity Assessment (Element)
The schema-validity assessment of an element information item depends on its
·validation· and the ·assessment· of its element information item children and
associated attribute information items, if any.

So for an element information item's schema-validity to be assessed all of the
following must be true:
1 One of the following must be true:

1.1 All of the following must be true:
1.1.1 A non-·absent· element declaration must be known for it, becauseone

of the following is true
1.1.1.1 A declaration was stipulated by the processor (see Assessing

Schema-Validity (§5.2)).
1.1.1.2 A declaration has been established as its ·context-determined

declaration·.
1.1.1.3 All of the following must be true:

Page 47 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

1.1.1.3.1 Its ·context-determined declaration· is not skip.
1.1.1.3.2 Its [local name] and [namespace name] resolve to an element

declaration as defined by QName resolution (Instance) (§3.15.4).
1.1.2 Its ·validity· with respect to that declaration must have been evaluated

as per Element Locally Valid (Element) (§3.3.4).
1.1.3 If that evaluation involved the evaluation of Element Locally Valid

(Type) (§3.3.4), clause 1 thereof must be satisfied.
1.2 All of the following must be true:

1.2.1 A non-·absent· type definition is known for it because one of the
following is true
1.2.1.1 A type definition was stipulated by the processor (see Assessing

Schema-Validity (§5.2)).
1.2.1.2 All of the following must be true:

1.2.1.2.1 There is an attribute information item among the element
information item's [attributes] whose [namespace name] is identical
to http://www.w3.org/2001/XMLSchema-instance and
whose [local name] is type.

1.2.1.2.2 The ·normalized value· of that attribute information item is
·valid· with respect to the built-in QName simple type, as defined by
String Valid (§3.14.4).

1.2.1.2.3 The ·local name· and ·namespace name· (as defined in
QName Interpretation (§3.15.3)), of the ·actual value· of that attribute
information item resolve to a type definition, as defined in QName
resolution (Instance) (§3.15.4) -- [Definition:] call this type definition
the local type definition.

1.2.1.2.4 If there is also a processor-stipulated type definition, the ·local
type definition· must be validly derived from that type definition given
its {prohibited substitutions}, as defined in Type Derivation OK
(Complex) (§3.4.6) (if it is a complex type definition), or given the
empty set, as defined in Type Derivation OK (Simple) (§3.14.6) (if it
is a simple type definition).

1.2.2 The element information item's ·validity· with respect to the ·local type
definition· (if present and validly derived) or the processor-stipulated type
definition (if no ·local type definition· is present) has been evaluated as
per Element Locally Valid (Type) (§3.3.4).

2 The schema-validity of all the element information items among its [children]
has been assessed as per Schema-Validity Assessment (Element) (§3.3.4),
and the schema-validity of all the attribute information items among its
[attributes] has been assessed as per Schema-Validity Assessment (Attribute)
(§3.2.4).

[Definition:] If either case of clause 1 above holds, the element information item
has been strictly assessed.

If the item cannot be ·strictly assessed·, because neither clause 1.1 nor clause
1.2 above are satisfied, [Definition:] an element information item's schema
validity may be laxly assessed if its ·context-determined declaration· is not skip

Page 48 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

by ·validating· with respect to the ·ur-type definition· as per Element Locally
Valid (Type) (§3.3.4).

Note: In general if clause 1.1 above holds clause 1.2 does not, and vice
versa. When an xsi:type [attribute] is involved, however, clause 1.2 takes
precedence, as is made clear in Element Locally Valid (Element) (§3.3.4).

Note: The {name} and {target namespace} properties are not mentioned
above because they are checked during particle ·validation·, as per Element
Sequence Locally Valid (Particle) (§3.9.4).

3.3.5 Element Declaration Information Set Contributions

Schema Information Set Contribution: Assessment Outcome (Element)
If the schema-validity of an element information item has been assessed as per
Schema-Validity Assessment (Element) (§3.3.4), then in the ·post-schema-
validation infoset· it has properties as follows:

PSVI Contributions for element information items

[validation context]
The nearest ancestor element information item with a [schema
information] property (or this element item itself if it has such a
property).

[validity]
The appropriate case among the following:
1 If it was ·strictly assessed·, then the appropriate case among the

following:
1.1 If all of the following are true

1.1.1
1.1.1.1 clause 1.1 of Schema-Validity Assessment (Element)

(§3.3.4) applied and the item was ·valid· as defined by
Element Locally Valid (Element) (§3.3.4);

1.1.1.2 clause 1.2 of Schema-Validity Assessment (Element)
(§3.3.4) applied and the item was ·valid· as defined by
Element Locally Valid (Type) (§3.3.4).

1.1.2 Neither its [children] nor its [attributes] contains an
information item (element or attribute respectively) whose
[validity] is invalid.

1.1.3 Neither its [children] nor its [attributes] contains an
information item (element or attribute respectively) with a
·context-determined declaration· of mustFind whose [validity]
is notKnown.

, then valid;
1.2 otherwise invalid..

2 otherwise notKnown.
[validation attempted]

The appropriate case among the following:

Page 49 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

1 If it was ·strictly assessed· and neither its [children] nor its
[attributes] contains an information item (element or attribute
respectively) whose [validation attempted] is not full, then full;

2 If it was not ·strictly assessed· and neither its [children] nor its
[attributes] contains an information item (element or attribute
respectively) whose [validation attempted] is not none, then none;

3 otherwise partial.

Schema Information Set Contribution: Validation Failure (Element)
If the local ·validity·, as defined by Element Locally Valid (Element) (§3.3.4)
above and/or Element Locally Valid (Type) (§3.3.4) below, of an element
information item has been assessed, in the ·post-schema-validation infoset· the
item has a property:

PSVI Contributions for element information items

[schema error code]
The appropriate case among the following:
1 If the item is not ·valid·, then a list. Applications wishing to provide

information as to the reason(s) for the ·validation· failure are
encouraged to record one or more error codes (see Outcome
Tabulations (normative) (§C)) herein.

2 otherwise ·absent·.

Schema Information Set Contribution: Element Declaration
If an element information item is ·valid· with respect to an element declaration as
per Element Locally Valid (Element) (§3.3.4) then in the ·post-schema-validation
infoset· the element information item must, at processor option, have either:

PSVI Contributions for element information items

[element declaration]
an ·item isomorphic· to the declaration component itself

or

PSVI Contributions for element information items

[nil]
true if clause 3.2 of Element Locally Valid (Element) (§3.3.4) above
is satisfied, otherwise false

Schema Information Set Contribution: Element Validated by Type

Page 50 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

If an element information item is ·valid· with respect to a ·type definition· as per
Element Locally Valid (Type) (§3.3.4), in the ·post-schema-validation infoset· the
item has a property:

PSVI Contributions for element information items

[schema normalized value]
The appropriate case among the following:
1 If clause 3.2 of Element Locally Valid (Element) (§3.3.4) and

Element Default Value (§3.3.5) above have not applied and either
the ·type definition· is a simple type definition or its {content type}
is a simple type definition, then the ·normalized value· of the item
as ·validated·.

2 otherwise ·absent·.

Furthermore, the item has one of the following alternative sets of properties:

Either

PSVI Contributions for element information items

[type definition]
An ·item isomorphic· to the ·type definition· component itself.

[member type definition]
If and only if that type definition is a simple type definition with
{variety} union, or a complex type definition whose {content type} is
a simple type definition with {variety} union, then an ·item
isomorphic· to that member of the union's {member type definitions}
which actually ·validated· the element item's ·normalized value·.

or

PSVI Contributions for element information items

[type definition type]
simple or complex, depending on the ·type definition·.

[type definition namespace]
The {target namespace} of the ·type definition·.

[type definition anonymous]
true if the {name} of the ·type definition· is ·absent·, otherwise false.

[type definition name]
The {name} of the ·type definition·, if it is not ·absent·. If it is
·absent·, schema processors may, but need not, provide a value
unique to the definition.

Page 51 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

If the ·type definition· is a simple type definition or its {content type} is a simple
type definition, and that type definition has {variety} union, then calling
[Definition:] that member of the {member type definitions} which actually
·validated· the element item's ·normalized value· the actual member type
definition, there are three additional properties:

PSVI Contributions for element information items

[member type definition namespace]
The {target namespace} of the ·actual member type definition·.

[member type definition anonymous]
true if the {name} of the ·actual member type definition· is ·absent·,
otherwise false.

[member type definition name]
The {name} of the ·actual member type definition·, if it is not
·absent·. If it is ·absent·, schema processors may, but need not,
provide a value unique to the definition.

The first (·item isomorphic·) alternative above is provided for applications such
as query processors which need access to the full range of details about an
item's ·assessment·, for example the type hierarchy; the second, for lighter-
weight processors for whom representing the significant parts of the type
hierarchy as information items might be a significant burden.

Also, if the declaration has a {value constraint}, the item has a property:

PSVI Contributions for element information items

[schema default]
The canonical lexical representation of the declaration's {value
constraint} value.

Note that if an element is ·laxly assessed·, then the [type definition] and
[member type definition] properties, or their alternatives, are based on the ·ur-
type definition·.

Schema Information Set Contribution: Element Default Value
If the local ·validity·, as defined by Element Locally Valid (Element) (§3.3.4)
above, of an element information item has been assessed, in the ·post-schema-
validation infoset· the item has a property:

PSVI Contributions for element information items

[schema specified]
The appropriate case among the following:

Page 52 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

1 If the item is ·valid· with respect to an element declaration as per
Element Locally Valid (Element) (§3.3.4) and the {value constraint}
is present, but clause 3.2 of Element Locally Valid (Element)
(§3.3.4) above is not satisfied and the item has no element or
character information item [children], then schema. Furthermore,
the ·post-schema-validation infoset· has the canonical lexical
representation of the {value constraint} value as the item's
[schema normalized value] property.

2 otherwise infoset.

3.3.6 Constraints on Element Declaration Schema Components

All element declarations (see Element Declarations (§3.3)) must satisfy the
following constraint.

Schema Component Constraint: Element Declaration Properties Correct
All of the following must be true:
1 The values of the properties of an element declaration must be as described in

the property tableau in The Element Declaration Schema Component (§3.3.1),
modulo the impact of Missing Sub-components (§5.3).

2 If there is a {value constraint}, the canonical lexical representation of its value
must be ·valid· with respect to the {type definition} as defined in Element
Default Valid (Immediate) (§3.3.6).

3 If there is a non-·absent· {substitution group affiliation}, then {scope} must be
global.

4 If there is a {substitution group affiliation}, the {type definition} of the element
declaration must be validly derived from the {type definition} of the {substitution
group affiliation}, given the value of the {substitution group exclusions} of the
{substitution group affiliation}, as defined in Type Derivation OK (Complex)
(§3.4.6) (if the {type definition} is complex) or as defined in Type Derivation OK
(Simple) (§3.14.6) (if the {type definition} is simple).

5 If the {type definition} or {type definition}'s {content type} is or is derived from ID
then there must not be a {value constraint}.

Note: The use of ID as a type definition for elements goes beyond XML 1.0,
and should be avoided if backwards compatibility is desired.

6 Circular substitution groups are disallowed. That is, it must not be possible to
return to an element declaration by repeatedly following the {substitution group
affiliation} property.

The following constraints define relations appealed to elsewhere in this
specification.

Schema Component Constraint: Element Default Valid (Immediate)
For a string to be a valid default with respect to a type definition the appropriate
case among the following must be true:
1 If the type definition is a simple type definition, then the string must be ·valid·

Page 53 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

with respect to that definition as defined by String Valid (§3.14.4).
2 If the type definition is a complex type definition, then all of the following must

be true:
2.1 its {content type} must be a simple type definition or mixed.
2.2 The appropriate case among the following must be true:

2.2.1 If the {content type} is a simple type definition, then the string must be
·valid· with respect to that simple type definition as defined by String Valid
(§3.14.4).

2.2.2 If the {content type} is mixed, then the {content type}'s particle must
be ·emptiable· as defined by Particle Emptiable (§3.9.6).

Schema Component Constraint: Substitution Group OK (Transitive)
For an element declaration (call it D) to be validly substitutable for another
element declaration (call it C) subject to a blocking constraint (a subset of
{substitution, extension, restriction}, the value of a {disallowed substitutions})
one of the following must be true:
1 D and C are the same element declaration.
2 All of the following must be true:

2.1 The blocking constraint does not contain substitution.
2.2 There is a chain of {substitution group affiliation}s from D to C, that is,

either D's {substitution group affiliation} is C, or D's {substitution group
affiliation}'s {substitution group affiliation} is C, or . . .

2.3 The set of all {derivation method}s involved in the derivation of D's {type
definition} from C's {type definition} does not intersect with the union of the
blocking constraint, C's {prohibited substitutions} (if C is complex, otherwise
the empty set) and the {prohibited substitutions} (respectively the empty
set) of any intermediate {type definition}s in the derivation of D's {type
definition} from C's {type definition}.

Schema Component Constraint: Substitution Group
[Definition:] Every element declaration (call this HEAD) in the {element
declarations} of a schema defines a substitution group, a subset of those
{element declarations}, as follows:

Define P, the potential substitution group for HEAD, as follows:
1 The element declaration itself is in P;
2 P is closed with respect to {substitution group affiliation}, that is, if any element

declaration in the {element declarations} has a {substitution group affiliation}
in P, then that element is also in P itself.

HEAD's actual ·substitution group· is then the set consisting of each member of
P such that all of the following must be true:
1 Its {abstract} is false.
2 It is validly substitutable for HEAD subject to HEAD's {disallowed

substitutions} as the blocking constraint, as defined in Substitution Group OK
(Transitive) (§3.3.6).

3.4 Complex Type Definitions

Page 54 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

 3.4.1 The Complex Type Definition Schema Component
 3.4.2 XML Representation of Complex Type Definitions
 3.4.3 Constraints on XML Representations of Complex Type Definitions
 3.4.4 Complex Type Definition Validation Rules
 3.4.5 Complex Type Definition Information Set Contributions
 3.4.6 Constraints on Complex Type Definition Schema Components
 3.4.7 Built-in Complex Type Definition

Complex Type Definitions provide for:

Constraining element information items by providing Attribute Declaration
(§2.2.2.3)s governing the appearance and content of [attributes]
Constraining element information item [children] to be empty, or to conform
to a specified element-only or mixed content model, or else constraining the
character information item [children] to conform to a specified simple type
definition.
Using the mechanisms of Type Definition Hierarchy (§2.2.1.1) to derive a
complex type from another simple or complex type.
Specifying ·post-schema-validation infoset contributions· for elements.
Limiting the ability to derive additional types from a given complex type.
Controlling the permission to substitute, in an instance, elements of a derived
type for elements declared in a content model to be of a given complex type.

Example
<xs:complexType name="PurchaseOrderType">
 <xs:sequence>
 <xs:element name="shipTo" type="USAddress"/>
 <xs:element name="billTo" type="USAddress"/>
 <xs:element ref="comment" minOccurs="0"/>
 <xs:element name="items" type="Items"/>
 </xs:sequence>
 <xs:attribute name="orderDate" type="xs:date"/>
 </xs:complexType>

The XML representation of a complex type definition.

3.4.1 The Complex Type Definition Schema Component

A complex type definition schema component has the following properties:

Schema Component: Complex Type Definition

{name}
Optional. An NCName as defined by [XML-Namespaces].

{target namespace}
Either ·absent· or a namespace name, as defined in [XML-

Page 55 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

Namespaces].
{base type definition}

Either a simple type definition or a complex type definition.
{derivation method}

Either extension or restriction.
{final}

A subset of {extension, restriction}.
{abstract}

A boolean
{attribute uses}

A set of attribute uses.
{attribute wildcard}

Optional. A wildcard.
{content type}

One of empty, a simple type definition or a pair consisting of a ·content
model· (I.e. a Particle (§2.2.3.2)) and one of mixed, element-only.

{prohibited substitutions}
A subset of {extension, restriction}.

{annotations}
A set of annotations.

Complex types definitions are identified by their {name} and {target namespace}.
Except for anonymous complex type definitions (those with no {name}), since type
definitions (i.e. both simple and complex type definitions taken together) must be
uniquely identified within an ·XML Schema·, no complex type definition can have
the same name as another simple or complex type definition. Complex type {name}
s and {target namespace}s are provided for reference from instances (see xsi:type
(§2.6.1)), and for use in the XML representation of schema components
(specifically in <element>). See References to schema components across
namespaces (§4.2.3) for the use of component identifiers when importing one
schema into another.

Note: The {name} of a complex type is not ipso facto the [(local) name] of the
element information items ·validated· by that definition. The connection
between a name and a type definition is described in Element Declarations
(§3.3).

As described in Type Definition Hierarchy (§2.2.1.1), each complex type is derived
from a {base type definition} which is itself either a Simple Type Definition (§2.2.1.2)
or a Complex Type Definition (§2.2.1.3). {derivation method} specifies the means of
derivation as either extension or restriction (see Type Definition Hierarchy
(§2.2.1.1)).

A complex type with an empty specification for {final} can be used as a {base type
definition} for other types derived by either of extension or restriction; the explicit

Page 56 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

values extension, and restriction prevent further derivations by extension and
restriction respectively. If all values are specified, then [Definition:] the complex
type is said to be final, because no further derivations are possible. Finality is not
inherited, that is, a type definition derived by restriction from a type definition which
is final for extension is not itself, in the absence of any explicit final attribute of
its own, final for anything.

Complex types for which {abstract} is true must not be used as the {type definition}
for the ·validation· of element information items. It follows that they must not be
referenced from an xsi:type (§2.6.1) attribute in an instance document. Abstract
complex types can be used as {base type definition}s, or even as the {type
definition}s of element declarations, provided in every case a concrete derived
type definition is used for ·validation·, either via xsi:type (§2.6.1) or the operation of
a substitution group.

{attribute uses} are a set of attribute uses. See Element Locally Valid (Complex
Type) (§3.4.4) and Attribute Locally Valid (§3.2.4) for details of attribute
·validation·.

{attribute wildcard}s provide a more flexible specification for ·validation· of
attributes not explicitly included in {attribute uses}. Informally, the specific values of
{attribute wildcard} are interpreted as follows:

any: [attributes] can include attributes with any qualified or unqualified name.
a set whose members are either namespace names or ·absent·: [attributes]
can include any attribute(s) from the specified namespace(s). If ·absent· is
included in the set, then any unqualified attributes are (also) allowed.
'not' and a namespace name: [attributes] cannot include attributes from the
specified namespace.
'not' and ·absent·: [attributes] cannot include unqualified attributes.

See Element Locally Valid (Complex Type) (§3.4.4) and Wildcard allows
Namespace Name (§3.10.4) for formal details of attribute wildcard ·validation·.

{content type} determines the ·validation· of [children] of element information
items. Informally:

A {content type} with the distinguished value empty ·validates· elements with
no character or element information item [children].
A {content type} which is a Simple Type Definition (§2.2.1.2) ·validates·
elements with character-only [children].
An element-only {content type} ·validates· elements with [children] that
conform to the supplied ·content model·.
A mixed {content type} ·validates· elements whose element [children] (i.e.
specifically ignoring other [children] such as character information items)
conform to the supplied ·content model·.

Page 57 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

{prohibited substitutions} determine whether an element declaration appearing in a
· content model· is prevented from additionally ·validating· element items with an
xsi:type (§2.6.1) attribute that identifies a complex type definition derived by
extension or restriction from this definition, or element items in a substitution group
whose type definition is similarly derived: If {prohibited substitutions} is empty, then
all such substitutions are allowed, otherwise, the derivation method(s) it names are
disallowed.

See Annotations (§3.13) for information on the role of the {annotations} property.

3.4.2 XML Representation of Complex Type Definitions

The XML representation for a complex type definition schema component is a
<complexType> element information item.

The XML representation for complex type definitions with a simple type definition
{content type} is significantly different from that of those with other {content type}s,
and this is reflected in the presentation below, which displays first the elements
involved in the first case, then those for the second. The property mapping is
shown once for each case.

XML Representation Summary: complexType Element Information
Item

<complexType
 abstract = boolean : false
 block = (#all | List of (extension | restriction))
 final = (#all | List of (extension | restriction))
 id = ID
 mixed = boolean : false
 name = NCName
 {any attributes with non-schema namespace . . .}>
 Content: (annotation?, (simpleContent | complexContent |
((group | all | choice | sequence)?, ((attribute | attributeGroup)
*, anyAttribute?))))
</complexType>

Whichever alternative for the content of <complexType> is chosen, the
following property mappings apply:

Complex Type Definition Schema Component

Property Representation
{name} The ·actual value· of the name [attribute] if present,

otherwise ·absent·.
{target The ·actual value· of the targetNamespace [attribute]

Page 58 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

namespace} of the <schema> ancestor element information item if
present, otherwise ·absent·.

{abstract} The ·actual value· of the abstract [attribute], if present,
otherwise false.

{prohibited
substitutions}

A set corresponding to the ·actual value· of the block
[attribute], if present, otherwise on the ·actual value· of
the blockDefault [attribute] of the ancestor <schema>
element information item, if present, otherwise on the
empty string. Call this the EBV (for effective block
value). Then the value of this property is the appropriate
case among the following:
1 If the EBV is the empty string, then the empty set;
2 If the EBV is #all, then {extension, restriction};
3 otherwise a set with members drawn from the set

above, each being present or absent depending on
whether the ·actual value· (which is a list) contains an
equivalently named item.

Note: Although the blockDefault [attribute] of
<schema> may include values other than
restriction orextension, those values are ignored
in the determination of {prohibited substitutions}
for complex type definitions (they are used
elsewhere).

{final} As for {prohibited substitutions} above, but using the
final and finalDefault [attributes] in place of the
block and blockDefault [attributes].

{annotations} The annotations corresponding to the <annotation>
element information item in the [children], if present, in
the <simpleContent> and <complexContent> [children],
if present, and in their <restriction> and <extension>
[children], if present, otherwise ·absent·.

When the <simpleContent> alternative is chosen, the following elements
are relevant, and the remaining property mappings are as below. Note that
either <restriction> or <extension> must be chosen as the content of
<simpleContent>.
<simpleContent
 id = ID
 {any attributes with non-schema namespace . . .}>
 Content: (annotation?, (restriction | extension))
</simpleContent>

<restriction
 base = QName

Page 59 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

 id = ID
 {any attributes with non-schema namespace . . .}>
 Content: (annotation?, (simpleType?, (minExclusive |
minInclusive | maxExclusive | maxInclusive | totalDigits |
fractionDigits | length | minLength | maxLength | enumeration |
whiteSpace | pattern)*)?, ((attribute | attributeGroup)*,
anyAttribute?))
</restriction>

<extension
 base = QName
 id = ID
 {any attributes with non-schema namespace . . .}>
 Content: (annotation?, ((attribute | attributeGroup)*,
anyAttribute?))
</extension>

<attributeGroup
 id = ID
 ref = QName
 {any attributes with non-schema namespace . . .}>
 Content: (annotation?)
</attributeGroup>

<anyAttribute
 id = ID
 namespace = ((##any | ##other) | List of (anyURI |
(##targetNamespace | ##local))) : ##any
 processContents = (lax | skip | strict) : strict
 {any attributes with non-schema namespace . . .}>
 Content: (annotation?)
</anyAttribute>

Complex Type Definition with simple content Schema Component

Property Representation
{base type
definition}

The type definition ·resolved· to by the ·actual value· of the
base [attribute]

{derivation
method}

If the <restriction> alternative is chosen, then restriction,
otherwise (the <extension> alternative is chosen) extension.

{attribute
uses}

A union of sets of attribute uses as follows
1 The set of attribute uses corresponding to the <attribute>

[children], if any.
2 The {attribute uses} of the attribute groups ·resolved· to by

the ·actual value·s of the ref [attribute] of the
<attributeGroup> [children], if any.

3 if the type definition ·resolved· to by the ·actual value· of the

Page 60 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

base [attribute] is a complex type definition, the {attribute
uses} of that type definition, unless the <restriction>
alternative is chosen, in which case some members of that
type definition's {attribute uses} may not be included,
namely those whose {attribute declaration}'s {name} and
{target namespace} are the same as one of the following:
3.1 the {name} and {target namespace} of the {attribute

declaration} of an attribute use in the set per clause 1 or
clause 2 above;

3.2 what would have been the {name} and {target
namespace} of the {attribute declaration} of an attribute
use in the set per clause 1 above but for the ·actual
value· of the use [attribute] of the relevant <attribute>
among the [children] of <restriction> being prohibited.

{attribute
wildcard}

1 [Definition:] Let the local wildcard be defined as the
appropriate case among the following:
1.1 If there is an <anyAttribute> present, then a wildcard

based on the ·actual value·s of the namespace and
processContents [attributes] and the <annotation>
[children], exactly as for the wildcard corresponding to
an <any> element as set out in XML Representation of
Wildcard Schema Components (§3.10.2);

1.2 otherwise ·absent·.
2 [Definition:] Let the complete wildcard be defined as the

appropriate case among the following:
2.1 If there are no <attributeGroup> [children]

corresponding to attribute groups with non-·absent·
{attribute wildcard}s, then the ·local wildcard·.

2.2 If there are one or more <attributeGroup> [children]
corresponding to attribute groups with non-·absent·
{attribute wildcard}s, then the appropriate case among
the following:
2.2.1 If there is an <anyAttribute> present, then a

wildcard whose {process contents} and {annotation}
are those of the ·local wildcard·, and whose
{namespace constraint} is the intensional intersection
of the {namespace constraint} of the ·local wildcard·
and of the {namespace constraint}s of all the non-
·absent· {attribute wildcard}s of the attribute groups
corresponding to the <attributeGroup> [children], as
defined in Attribute Wildcard Intersection (§3.10.6).

2.2.2 If there is no <anyAttribute> present, then a
wildcard whose properties are as follows:

{process contents}

Page 61 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

The {process contents} of the first non-·absent·
{attribute wildcard} of an attribute group among
the attribute groups corresponding to the
<attributeGroup> [children].

{namespace constraint}
The intensional intersection of the {namespace

constraint}s of all the non-·absent· {attribute
wildcard}s of the attribute groups corresponding
to the <attributeGroup> [children], as defined in
Attribute Wildcard Intersection (§3.10.6).

{annotation}
·absent·.

3 The value is then determined by the appropriate case
among the following:
3.1 If the <restriction> alternative is chosen, then the

·complete wildcard·;
3.2 If the <extension> alternative is chosen, then

3.2.1 [Definition:] let the base wildcard be defined as
the appropriate case among the following:
3.2.1.1 If the type definition ·resolved· to by the ·actual

value· of the base [attribute] is a complex type
definition with an {attribute wildcard}, then that
{attribute wildcard}.

3.2.1.2 otherwise ·absent·.
3.2.2 The value is then determined by the appropriate

case among the following:
3.2.2.1 If the ·base wildcard· is non-·absent·, then the

appropriate case among the following:
3.2.2.1.1 If the ·complete wildcard· is ·absent·, then

the ·base wildcard·.
3.2.2.1.2 otherwise a wildcard whose {process

contents} and {annotation} are those of the
·complete wildcard·, and whose {namespace
constraint} is the intensional union of the
{namespace constraint} of the ·complete wildcard·
and of the ·base wildcard·, as defined in Attribute
Wildcard Union (§3.10.6).

3.2.2.2 otherwise (the ·base wildcard· is ·absent·) the
·complete wildcard·

{content
type}

the appropriate case among the following:
1 If the type definition ·resolved· to by the ·actual value· of

the base [attribute] is a complex type definition whose own
{content type} is a simple type definition and the
<restriction> alternative is chosen, then starting from either

Page 62 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

1.1 the simple type definition corresponding to the
<simpleType> among the [children] of <restriction> if
there is one;

1.2 otherwise (<restriction> has no <simpleType> among
its [children]), the simple type definition which is the
{content type} of the type definition ·resolved· to by the
·actual value· of the base [attribute]

a simple type definition which restricts the simple type
definition identified in clause 1.1 or clause 1.2 with a set of
facet components corresponding to the appropriate
element information items among the <restriction>'s
[children] (i.e. those which specify facets, if any), as
defined in Simple Type Restriction (Facets) (§3.14.6);

2 If the type definition ·resolved· to by the ·actual value· of
the base [attribute] is a complex type definition whose own
{content type} is mixed and a particle which is ·emptiable·,
as defined in Particle Emptiable (§3.9.6) and the
<restriction> alternative is chosen, then starting from the
simple type definition corresponding to the <simpleType>
among the [children] of <restriction> (which must be
present) a simple type definition which restricts that simple
type definition with a set of facet components
corresponding to the appropriate element information items
among the <restriction>'s [children] (i.e. those which
specify facets, if any), as defined in Simple Type
Restriction (Facets) (§3.14.6);

3 If the type definition ·resolved· to by the ·actual value· of
the base [attribute] is a complex type definition (whose
own {content type} must be a simple type definition, see
below) and the <extension> alternative is chosen, then the
{content type} of that complex type definition;

4 otherwise (the type definition ·resolved· to by the ·actual
value· of the base [attribute] is a simple type definition and
the <extension> alternative is chosen), then that simple
type definition.

When the <complexContent> alternative is chosen, the following elements
are relevant (as are the <attributeGroup> and <anyAttribute> elements, not
repeated here), and the additional property mappings are as below. Note
that either <restriction> or <extension> must be chosen as the content of
<complexContent>, but their content models are different in this case from
the case above when they occur as children of <simpleContent>.

The property mappings below are also used in the case where the third
alternative (neither <simpleContent> nor <complexContent>) is chosen.
This case is understood as shorthand for complex content restricting the

Page 63 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

·ur-type definition·, and the details of the mappings should be modified as
necessary.
<complexContent
 id = ID
 mixed = boolean
 {any attributes with non-schema namespace . . .}>
 Content: (annotation?, (restriction | extension))
</complexContent>

<restriction
 base = QName
 id = ID
 {any attributes with non-schema namespace . . .}>
 Content: (annotation?, (group | all | choice | sequence)?,
((attribute | attributeGroup)*, anyAttribute?))
</restriction>

<extension
 base = QName
 id = ID
 {any attributes with non-schema namespace . . .}>
 Content: (annotation?, ((group | all | choice | sequence)?,
((attribute | attributeGroup)*, anyAttribute?)))
</extension>

Complex Type Definition with complex content Schema Component

Property Representation
{base type
definition}

The type definition ·resolved· to by the ·actual value· of the
base [attribute]

{derivation
method}

If the <restriction> alternative is chosen, then restriction,
otherwise (the <extension> alternative is chosen) extension.

{attribute
uses}

A union of sets of attribute uses as follows:
1 The set of attribute uses corresponding to the <attribute>

[children], if any.
2 The {attribute uses} of the attribute groups ·resolved· to by

the ·actual value·s of the ref [attribute] of the
<attributeGroup> [children], if any.

3 The {attribute uses} of the type definition ·resolved· to by
the ·actual value· of the base [attribute], unless the
<restriction> alternative is chosen, in which case some
members of that type definition's {attribute uses} may not
be included, namely those whose {attribute declaration}'s
{name} and {target namespace} are the same as one of
the following:
3.1 The {name} and {target namespace} of the {attribute

Page 64 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

declaration} of an attribute use in the set per clause 1 or
clause 2 above;

3.2 what would have been the {name} and {target
namespace} of the {attribute declaration} of an attribute
use in the set per clause 1 above but for the ·actual
value· of the use [attribute] of the relevant <attribute>
among the [children] of <restriction> being prohibited.

{attribute
wildcard}

As above for the <simpleContent> alternative.

{content
type}

1 [Definition:] Let the effective mixed be the appropriate
case among the following:
1.1 If the mixed [attribute] is present on

<complexContent>, then its ·actual value·;
1.2 If the mixed [attribute] is present on <complexType>,

then its ·actual value·;
1.3 otherwise false.

2 [Definition:] Let the effective content be the appropriate
case among the following:
2.1 If one of the following is true

2.1.1 There is no <group>, <all>, <choice> or
<sequence> among the [children];

2.1.2 There is an <all> or <sequence> among the
[children] with no [children] of its own excluding
<annotation>;

2.1.3 There is a <choice> among the [children] with no
[children] of its own excluding <annotation> whose
minOccurs [attribute] has the ·actual value· 0;

, then the appropriate case among the following:
2.1.4 If the ·effective mixed· is true, then A particle

whose properties are as follows:

{min occurs}
1

{max occurs}
1

{term}
A model group whose {compositor} is sequence

and whose {particles} is empty.

.
2.1.5 otherwise empty

2.2 otherwise the particle corresponding to the <all>,
<choice>, <group> or <sequence> among the [children].

3 Then the value of the property is the appropriate case

Page 65 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

among the following:
3.1 If the <restriction> alternative is chosen, then the

appropriate case among the following:
3.1.1 If the ·effective content· is empty , then empty;
3.1.2 otherwise a pair consisting of

3.1.2.1 mixed if the ·effective mixed· is true,
otherwise elementOnly

3.1.2.2 The ·effective content·.
3.2 If the <extension> alternative is chosen, then the

appropriate case among the following:
3.2.1 If the ·effective content· is empty, then the

{content type} of the type definition ·resolved· to by
the ·actual value· of the base [attribute]

3.2.2 If the type definition ·resolved· to by the ·actual
value· of the base [attribute] has a {content type} of
empty, then a pair as per clause 3.1.2 above;

3.2.3 otherwise a pair of mixed or elementOnly
(determined as per clause 3.1.2.1 above) and a
particle whose properties are as follows:

{min occurs}
1

{max occurs}
1

{term}
A model group whose {compositor} is sequence

and whose {particles} are the particle of the
{content type} of the type definition ·resolved· to
by the ·actual value· of the base [attribute]
followed by the ·effective content·.

Note: Aside from the simple coherence requirements enforced above,
constraining type definitions identified as restrictions to actually be restrictions,
that is, to ·validate· a subset of the items which are ·validated· by their base
type definition, is enforced in Constraints on Complex Type Definition Schema
Components (§3.4.6).
Note: The only substantive function of the value prohibited for the use attribute
of an <attribute> is in establishing the correspondence between a complex type
defined by restriction and its XML representation. It serves to prevent
inheritance of an identically named attribute use from the {base type definition}.
Such an <attribute> does not correspond to any component, and hence there
is no interaction with either explicit or inherited wildcards in the operation of
Complex Type Definition Validation Rules (§3.4.4) or Constraints on Complex
Type Definition Schema Components (§3.4.6).

Careful consideration of the above concrete syntax reveals that a type definition

Page 66 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

need consist of no more than a name, i.e. that <complexType
name="anyThing"/> is allowed.

Example
<xs:complexType name="length1">
 <xs:simpleContent>
 <xs:extension base="xs:nonNegativeInteger">
 <xs:attribute name="unit" type="xs:NMTOKEN"/>
 </xs:extension>
 </xs:simpleContent>
</xs:complexType>

<xs:element name="width" type="length1"/>

 <width unit="cm">25</width>

<xs:complexType name="length2">
 <xs:complexContent>
 <xs:restriction base="xs:anyType">
 <xs:sequence>
 <xs:element name="size" type="xs:nonNegativeInteger"/>
 <xs:element name="unit" type="xs:NMTOKEN"/>
 </xs:sequence>
 </xs:restriction>
 </xs:complexContent>
</xs:complexType>

<xs:element name="depth" type="length2"/>

 <depth>
 <size>25</size><unit>cm</unit>
 </depth>

<xs:complexType name="length3">
 <xs:sequence>
 <xs:element name="size" type="xs:nonNegativeInteger"/>
 <xs:element name="unit" type="xs:NMTOKEN"/>
 </xs:sequence>
</xs:complexType>

Three approaches to defining a type for length: one with character data content
constrained by reference to a built-in datatype, and one attribute, the other two
using two elements. length3 is the abbreviated alternative to length2: they
correspond to identical type definition components.

Example
<xs:complexType name="personName">
 <xs:sequence>
 <xs:element name="title" minOccurs="0"/>
 <xs:element name="forename" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element name="surname"/>

Page 67 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

 </xs:sequence>
</xs:complexType>

<xs:complexType name="extendedName">
 <xs:complexContent>
 <xs:extension base="personName">
 <xs:sequence>
 <xs:element name="generation" minOccurs="0"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
</xs:complexType>

<xs:element name="addressee" type="extendedName"/>

 <addressee>
 <forename>Albert</forename>
 <forename>Arnold</forename>
 <surname>Gore</surname>
 <generation>Jr</generation>
 </addressee>

A type definition for personal names, and a definition derived by extension which
adds a single element; an element declaration referencing the derived definition,
and a ·valid· instance thereof.

Example
<xs:complexType name="simpleName">
 <xs:complexContent>
 <xs:restriction base="personName">
 <xs:sequence>
 <xs:element name="forename" minOccurs="1" maxOccurs="1"/>
 <xs:element name="surname"/>
 </xs:sequence>
 </xs:restriction>
 </xs:complexContent>
</xs:complexType>

<xs:element name="who" type="simpleName"/>

 <who>
 <forename>Bill</forename>
 <surname>Clinton</surname>
 </who>

A simplified type definition derived from the base type from the previous example
by restriction, eliminating one optional daughter and fixing another to occur
exactly once; an element declared by reference to it, and a ·valid· instance
thereof.

Example
<xs:complexType name="paraType" mixed="true">
 <xs:choice minOccurs="0" maxOccurs="unbounded">

Page 68 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

 <xs:element ref="emph"/>
 <xs:element ref="strong"/>
 </xs:choice>
 <xs:attribute name="version" type="xs:number"/>
</xs:complexType>

A further illustration of the abbreviated form, with the mixed attribute appearing
on complexType itself.

3.4.3 Constraints on XML Representations of Complex Type Definitions

Schema Representation Constraint: Complex Type Definition Representation
OK

In addition to the conditions imposed on <complexType> element information
items by the schema for schemas, all of the following must be true:
1 If the <complexContent> alternative is chosen, the type definition ·resolved· to

by the ·actual value· of the base [attribute] must be a complex type definition;
2 If the <simpleContent> alternative is chosen, all of the following must be true:

2.1 The type definition ·resolved· to by the ·actual value· of the base [attribute]
must be one of the following:
2.1.1 a complex type definition whose {content type} is a simple type

definition;
2.1.2 only if the <restriction> alternative is also chosen, a complex type

definition whose {content type} is mixed and a particle which is ·emptiable·,
as defined in Particle Emptiable (§3.9.6);

2.1.3 only if the <extension> alternative is also chosen, a simple type
definition.

2.2 If clause 2.1.2 above is satisfied, then there must be a <simpleType>
among the [children] of <restriction>.
Note: Although not explicitly ruled out either here or in Schema for Schemas

(normative) (§A), specifying <xs:complexType . . .mixed='true'
when the <simpleContent> alternative is chosen has no effect on the
corresponding component, and should be avoided. This may be ruled out
in a subsequent version of this specification.

3 The corresponding complex type definition component must satisfy the
conditions set out in Constraints on Complex Type Definition Schema
Components (§3.4.6);

4 If clause 2.2.1 or clause 2.2.2 in the correspondence specification above for
{attribute wildcard} is satisfied, the intensional intersection must be expressible,
as defined in Attribute Wildcard Intersection (§3.10.6).

3.4.4 Complex Type Definition Validation Rules

Validation Rule: Element Locally Valid (Complex Type)
For an element information item to be locally ·valid· with respect to a complex
type definition all of the following must be true:
1 {abstract} is false.

Page 69 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

2 If clause 3.2 of Element Locally Valid (Element) (§3.3.4) did not apply, then
the appropriate case among the following must be true:
2.1 If the {content type} is empty, then the element information item has no

character or element information item [children].
2.2 If the {content type} is a simple type definition, then the element

information item has no element information item [children], and the
·normalized value· of the element information item is ·valid· with respect to
that simple type definition as defined by String Valid (§3.14.4).

2.3 If the {content type} is element-only, then the element information item
has no character information item [children] other than those whose
[character code] is defined as a white space in [XML 1.0 (Second Edition)].

2.4 If the {content type} is element-only or mixed, then the sequence of the
element information item's element information item [children], if any, taken
in order, is ·valid· with respect to the {content type}'s particle, as defined in
Element Sequence Locally Valid (Particle) (§3.9.4).

3 For each attribute information item in the element information item's
[attributes] excepting those whose [namespace name] is identical to
http://www.w3.org/2001/XMLSchema-instance and whose [local
name] is one of type, nil, schemaLocation or
noNamespaceSchemaLocation, the appropriate case among the following
must be true:
3.1 If there is among the {attribute uses} an attribute use with an {attribute

declaration} whose {name} matches the attribute information item's [local
name] and whose {target namespace} is identical to the attribute
information item's [namespace name] (where an ·absent· {target
namespace} is taken to be identical to a [namespace name] with no value),
then the attribute information must be ·valid· with respect to that attribute
use as per Attribute Locally Valid (Use) (§3.5.4). In this case the {attribute
declaration} of that attribute use is the ·context-determined declaration· for
the attribute information item with respect to Schema-Validity Assessment
(Attribute) (§3.2.4) and Assessment Outcome (Attribute) (§3.2.5).

3.2 otherwise all of the following must be true:
3.2.1 There must be an {attribute wildcard}.
3.2.2 The attribute information item must be ·valid· with respect to it as

defined in Item Valid (Wildcard) (§3.10.4).
4 The {attribute declaration} of each attribute use in the {attribute uses} whose

{required} is true matches one of the attribute information items in the element
information item's [attributes] as per clause 3.1 above.

5 Let [Definition:] the wild IDs be the set of all attribute information item to
which clause 3.2 applied and whose ·validation· resulted in a ·context-
determined declaration· of mustFind or no ·context-determined declaration· at
all, and whose [local name] and [namespace name] resolve (as defined by
QName resolution (Instance) (§3.15.4)) to an attribute declaration whose
{type definition} is or is derived from ID. Then all of the following must be true:
5.1 There must be no more than one item in ·wild IDs·.
5.2 If ·wild IDs· is non-empty, there must not be any attribute uses among the

{attribute uses} whose {attribute declaration}'s {type definition} is or is

Page 70 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

derived from ID.
Note: This clause serves to ensure that even via attribute wildcards no

element has more than one attribute of type ID, and that even when an
element legitimately lacks a declared attribute of type ID, a wildcard-
validated attribute must not supply it. That is, if an element has a type
whose attribute declarations include one of type ID, it either has that
attribute or no attribute of type ID.

Note: When an {attribute wildcard} is present, this does not introduce any
ambiguity with respect to how attribute information items for which an
attribute use is present amongst the {attribute uses} whose name and target
namespace match are ·assessed·. In such cases the attribute use always
takes precedence, and the ·assessment· of such items stands or falls
entirely on the basis of the attribute use and its {attribute declaration}. This
follows from the details of clause 3.

3.4.5 Complex Type Definition Information Set Contributions

Schema Information Set Contribution: Attribute Default Value
For each attribute use in the {attribute uses} whose {required} is false and
whose {value constraint} is not ·absent· but whose {attribute declaration} does
not match one of the attribute information items in the element information item's
[attributes] as per clause 3.1 of Element Locally Valid (Complex Type) (§3.4.4)
above, the ·post-schema-validation infoset· has an attribute information item
whose properties are as below added to the [attributes] of the element
information item.

[local name]
The {attribute declaration}'s {name}.

[namespace name]
The {attribute declaration}'s {target namespace}.

[schema normalized value]
The canonical lexical representation of the ·effective value constraint·
value.

[schema default]
The canonical lexical representation of the ·effective value constraint·
value.

[validation context]
The nearest ancestor element information item with a [schema
information] property.

[validity]
valid.

[validation attempted]
full.

[schema specified]
schema.

The added items should also either have [type definition] (and [member type

Page 71 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

definition] if appropriate) properties, or their lighter-weight alternatives, as
specified in Attribute Validated by Type (§3.2.5).

3.4.6 Constraints on Complex Type Definition Schema Components

All complex type definitions (see Complex Type Definitions (§3.4)) must satisfy the
following constraints.

Schema Component Constraint: Complex Type Definition Properties Correct
All of the following must be true:
1 The values of the properties of a complex type definition must be as described

in the property tableau in The Complex Type Definition Schema Component
(§3.4.1), modulo the impact of Missing Sub-components (§5.3).

2 If the {base type definition} is a simple type definition, the {derivation method}
must be extension.

3 Circular definitions are disallowed, except for the ·ur-type definition·. That is, it
must be possible to reach the ·ur-type definition· by repeatedly following the
{base type definition}.

4 Two distinct attribute declarations in the {attribute uses} must not have
identical {name}s and {target namespace}s.

5 Two distinct attribute declarations in the {attribute uses} must not have {type
definition}s which are or are derived from ID.

Schema Component Constraint: Derivation Valid (Extension)
If the {derivation method} is extension, the appropriate case among the
following must be true:
1 If the {base type definition} is a complex type definition, then all of the

following must be true:
1.1 The {final} of the {base type definition} must not contain extension.
1.2 Its {attribute uses} must be a subset of the {attribute uses} of the complex

type definition itself, that is, for every attribute use in the {attribute uses} of
the {base type definition}, there must be an attribute use in the {attribute
uses} of the complex type definition itself whose {attribute declaration} has
the same {name}, {target namespace} and {type definition} as its attribute
declaration.

1.3 If it has an {attribute wildcard}, the complex type definition must also have
one, and the base type definition's {attribute wildcard}'s {namespace
constraint} must be a subset of the complex type definition's {attribute
wildcard}'s {namespace constraint}, as defined by Wildcard Subset
(§3.10.6).

1.4 One of the following must be true:
1.4.1 The {content type} of the {base type definition} and the {content type}

of the complex type definition itself must be the same simple type
definition.

1.4.2 The {content type} of both the {base type definition} and the complex
type definition itself must be empty.

1.4.3 All of the following must be true:

Page 72 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

1.4.3.1 The {content type} of the complex type definition itself must
specify a particle.

1.4.3.2 One of the following must be true:
1.4.3.2.1 The {content type} of the {base type definition} must be

empty.
1.4.3.2.2 All of the following must be true:

1.4.3.2.2.1 Both {content type}s must be mixed or both must be
element-only.

1.4.3.2.2.2 The particle of the complex type definition must be a
·valid extension· of the {base type definition}'s particle, as defined
in Particle Valid (Extension) (§3.9.6).

1.5 It must in principle be possible to derive the complex type definition in two
steps, the first an extension and the second a restriction (possibly vacuous),
from that type definition among its ancestors whose {base type definition} is
the ·ur-type definition·.

Note: This requirement ensures that nothing removed by a restriction is
subsequently added back by an extension. It is trivial to check if the
extension in question is the only extension in its derivation, or if there
are no restrictions bar the first from the ·ur-type definition·.

Constructing the intermediate type definition to check this constraint is
straightforward: simply re-order the derivation to put all the extension
steps first, then collapse them into a single extension. If the resulting
definition can be the basis for a valid restriction to the desired
definition, the constraint is satisfied.

2 If the {base type definition} is a simple type definition, then all of the following
must be true:
2.1 The {content type} must be the same simple type definition.
2.2 The {final} of the {base type definition} must not contain extension.

[Definition:] If this constraint Derivation Valid (Extension) (§3.4.6) holds of a
complex type definition, it is a valid extension of its {base type definition}.

Schema Component Constraint: Derivation Valid (Restriction, Complex)
If the {derivation method} is restriction all of the following must be true:
1 The {base type definition} must be a complex type definition whose {final}

does not contain restriction.
2 For each attribute use (call this R) in the {attribute uses} the appropriate case

among the following must be true:
2.1 If there is an attribute use in the {attribute uses} of the {base type

definition} (call this B) whose {attribute declaration} has the same {name}
and {target namespace}, then all of the following must be true:
2.1.1 one of the following must be true:

2.1.1.1 B's {required} is false.
2.1.1.2 R's {required} is true.

2.1.2 R's {attribute declaration}'s {type definition} must be validly derived
from B's {type definition} given the empty set as defined in Type

Page 73 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

Derivation OK (Simple) (§3.14.6).
2.1.3 [Definition:] Let the effective value constraint of an attribute use be

its {value constraint}, if present, otherwise its {attribute declaration}'s
{value constraint} . Then one of the following must be true:
2.1.3.1 B's ·effective value constraint· is ·absent· or default.
2.1.3.2 R's ·effective value constraint· is fixed with the same string as B's.

2.2 otherwise the {base type definition} must have an {attribute wildcard} and
the {target namespace} of the R's {attribute declaration} must be ·valid· with
respect to that wildcard, as defined in Wildcard allows Namespace Name
(§3.10.4).

3 For each attribute use in the {attribute uses} of the {base type definition}
whose {required} is true, there must be an attribute use with an {attribute
declaration} with the same {name} and {target namespace} as its {attribute
declaration} in the {attribute uses} of the complex type definition itself whose
{required} is true.

4 If there is an {attribute wildcard}, all of the following must be true:
4.1 The {base type definition} must also have one.
4.2 The complex type definition's {attribute wildcard}'s {namespace constraint}

must be a subset of the {base type definition}'s {attribute wildcard}'s
{namespace constraint}, as defined by Wildcard Subset (§3.10.6).

4.3 Unless the {base type definition} is the ·ur-type definition·, the complex
type definition's {attribute wildcard}'s {process contents} must be identical to
or stronger than the {base type definition}'s {attribute wildcard}'s {process
contents}, where strict is stronger than lax is stronger than skip.

5 One of the following must be true:
5.1 The {base type definition} must be the ·ur-type definition·.
5.2 All of the following must be true:

5.2.1 The {content type} of the complex type definition must be a simple
type definition

5.2.2 One of the following must be true:
5.2.2.1 The {content type} of the {base type definition} must be a simple

type definition from which the {content type} is validly derived given the
empty set as defined in Type Derivation OK (Simple) (§3.14.6).

5.2.2.2 The {base type definition} must be mixed and have a particle
which is ·emptiable· as defined in Particle Emptiable (§3.9.6).

5.3 All of the following must be true:
5.3.1 The {content type} of the complex type itself must be empty
5.3.2 One of the following must be true:

5.3.2.1 The {content type} of the {base type definition} must also be
empty.

5.3.2.2 The {content type} of the {base type definition} must be
elementOnly or mixed and have a particle which is ·emptiable· as
defined in Particle Emptiable (§3.9.6).

5.4 All of the following must be true:
5.4.1 One of the following must be true:

5.4.1.1 The {content type} of the complex type definition itself must be
element-only

Page 74 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

5.4.1.2 The {content type} of the complex type definition itself and of the
{base type definition} must be mixed

5.4.2 The particle of the complex type definition itself must be a ·valid
restriction· of the particle of the {content type} of the {base type definition}
as defined in Particle Valid (Restriction) (§3.9.6).

Note: Attempts to derive complex type definitions whose {content type} is
element-only by restricting a {base type definition} whose {content type}
is empty are not ruled out by this clause. However if the complex type
definition itself has a non-pointless particle it will fail to satisfy Particle
Valid (Restriction) (§3.9.6). On the other hand some type definitions with
pointless element-only content, for example an empty <sequence>, will
satisfy Particle Valid (Restriction) (§3.9.6) with respect to an empty {base
type definition}, and so be valid restrictions.

[Definition:] If this constraint Derivation Valid (Restriction, Complex) (§3.4.6)
holds of a complex type definition, it is a valid restriction of its {base type
definition}.

Note: To restrict a complex type definition with a simple base type definition
to empty, use a simple type definition with a fixed value of the empty string:
this preserves the type information.

The following constraint defines a relation appealed to elsewhere in this
specification.

Schema Component Constraint: Type Derivation OK (Complex)
For a complex type definition (call it D, for derived) to be validly derived from a
type definition (call this B, for base) given a subset of {extension, restriction} all
of the following must be true:
1 If B and D are not the same type definition, then the {derivation method} of D

must not be in the subset.
2 One of the following must be true:

2.1 B and D must be the same type definition.
2.2 B must be D's {base type definition}.
2.3 All of the following must be true:

2.3.1 D's {base type definition} must not be the ·ur-type definition·.
2.3.2 The appropriate case among the following must be true:

2.3.2.1 If D's {base type definition} is complex, then it must be validly
derived from B given the subset as defined by this constraint.

2.3.2.2 If D's {base type definition} is simple, then it must be validly
derived from B given the subset as defined in Type Derivation OK
(Simple) (§3.14.6).

Note: This constraint is used to check that when someone uses a type in a
context where another type was expected (either via xsi:type or
substitution groups), that the type used is actually derived from the expected
type, and that that derivation does not involve a form of derivation which was
ruled out by the expected type.

Note:

Page 75 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

The wording of clause 2.1 above appeals to a notion of component identity
which is only incompletely defined by this version of this specification. In some
cases, the wording of this specification does make clear the rules for
component identity. These cases include:

When they are both top-level components with the same component
type, namespace name, and local name;
When they are necessarily the same type definition (for example, when
the two types definitions in question are the type definitions associated
with two attribute or element declarations, which are discovered to be
the same declaration);
When they are the same by construction (for example, when an
element's type definition defaults to being the same type definition as
that of its substitution-group head or when a complex type definition
inherits an attribute declaration from its base type definition).

In other cases two conforming implementations may disagree as to whether
components are identical.

3.4.7 Built-in Complex Type Definition

There is a complex type definition nearly equivalent to the ·ur-type definition·
present in every schema by definition. It has the following properties:

Complex Type Definition of the Ur-Type

Property Value
{name} anyType
{target
namespace}

http://www.w3.org/2001/XMLSchema

{base type
definition}

Itself

{derivation
method}

restriction

{content type} A pair consisting of mixed and a particle with the following
properties:
Property Value
{min
occurs}

1

{max
occurs}

1

{term} a model group with the following properties:

Page 76 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

The mixed content specification together with the lax wildcard and attribute
specification produce the defining property for the ·ur-type definition·, namely that
every type definition is (eventually) a restriction of the ·ur-type definition·: its
permissions and requirements are (nearly) the least restrictive possible.

Note: This specification does not provide an inventory of built-in complex type
definitions for use in user schemas. A preliminary library of complex type
definitions is available which includes both mathematical (e.g. rational) and
utility (e.g. array) type definitions. In particular, there is a text type

Property Value
{compositor} sequence
{particles} a list containing one particle with the

following properties:
Property Value
{min
occurs}

0

{max
occurs}

unbounded

{term} a wildcard with the
following properties:
Property Value
{namespace
constraint}

any

{process
contents}

lax

{attribute
uses}

The empty set

{attribute
wildcard}

a wildcard with the following properties::
Property Value
{namespace constraint} any
{process contents} lax

{final} The empty set
{prohibited
substitutions}

The empty set

{abstract} false

Page 77 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

definition which is recommended for use as the type definition in element
declarations intended for general text content, as it makes sensible provision
for various aspects of internationalization. For more details, see the schema
document for the type library at its namespace name:
http://www.w3.org/2001/03/XMLSchema/TypeLibrary.xsd.

3.5 AttributeUses
 3.5.1 The Attribute Use Schema Component
 3.5.2 XML Representation of Attribute Use Components
 3.5.3 Constraints on XML Representations of Attribute Uses
 3.5.4 Attribute Use Validation Rules
 3.5.5 Attribute Use Information Set Contributions
 3.5.6 Constraints on Attribute Use Schema Components

An attribute use is a utility component which controls the occurrence and
defaulting behavior of attribute declarations. It plays the same role for attribute
declarations in complex types that particles play for element declarations.

Example
<xs:complexType>
 . . .
 <xs:attribute ref="xml:lang" use="required"/>
 <xs:attribute ref="xml:space" default="preserve"/>
 <xs:attribute name="version" type="xs:number" fixed="1.0"/>
</xs:complexType>

XML representations which all involve attribute uses, illustrating some of the
possibilities for controlling occurrence.

3.5.1 The Attribute Use Schema Component

The attribute use schema component has the following properties:

Schema Component: Attribute Use

{required}
A boolean.

{attribute declaration}
An attribute declaration.

{value constraint}
Optional. A pair consisting of a value and one of default, fixed.

{required} determines whether this use of an attribute declaration requires an
appropriate attribute information item to be present, or merely allows it.

Page 78 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

{attribute declaration} provides the attribute declaration itself, which will in turn
determine the simple type definition used.

{value constraint} allows for local specification of a default or fixed value. This
must be consistent with that of the {attribute declaration}, in that if the {attribute
declaration} specifies a fixed value, the only allowed {value constraint} is the same
fixed value.

3.5.2 XML Representation of Attribute Use Components

Attribute uses correspond to all uses of <attribute> which allow a use attribute.
These in turn correspond to two components in each case, an attribute use and its
{attribute declaration} (although note the latter is not new when the attribute use is
a reference to a top-level attribute declaration). The appropriate mapping is
described in XML Representation of Attribute Declaration Schema Components
(§3.2.2).

3.5.3 Constraints on XML Representations of Attribute Uses

None as such.

3.5.4 Attribute Use Validation Rules

Validation Rule: Attribute Locally Valid (Use)
For an attribute information item to be·valid· with respect to an attribute use its
·normalized value· must match the canonical lexical representation of the
attribute use's {value constraint} value, if it is present and fixed.

3.5.5 Attribute Use Information Set Contributions

None as such.

3.5.6 Constraints on Attribute Use Schema Components

All attribute uses (see AttributeUses (§3.5)) must satisfy the following constraints.

Schema Component Constraint: Attribute Use Correct
All of the following must be true:
1 The values of the properties of an attribute use must be as described in the

property tableau in The Attribute Use Schema Component (§3.5.1), modulo
the impact of Missing Sub-components (§5.3).

2 If the {attribute declaration} has a fixed {value constraint}, then if the attribute
use itself has a {value constraint}, it must also be fixed and its value must
match that of the {attribute declaration}'s {value constraint}.

3.6 Attribute Group Definitions

Page 79 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

 3.6.1 The Attribute Group Definition Schema Component
 3.6.2 XML Representation of Attribute Group Definition Schema Components
 3.6.3 Constraints on XML Representations of Attribute Group Definitions
 3.6.4 Attribute Group Definition Validation Rules
 3.6.5 Attribute Group Definition Information Set Contributions
 3.6.6 Constraints on Attribute Group Definition Schema Components

A schema can name a group of attribute declarations so that they may be
incorporated as a group into complex type definitions.

Attribute group definitions do not participate in ·validation· as such, but the
{attribute uses} and {attribute wildcard} of one or more complex type definitions
may be constructed in whole or part by reference to an attribute group. Thus,
attribute group definitions provide a replacement for some uses of XML's
parameter entity facility. Attribute group definitions are provided primarily for
reference from the XML representation of schema components (see
<complexType> and <attributeGroup>).

Example
<xs:attributeGroup name="myAttrGroup">
 <xs:attribute . . ./>
 . . .
</xs:attributeGroup>

<xs:complexType name="myelement">
 . . .
 <xs:attributeGroup ref="myAttrGroup"/>
</xs:complexType>

XML representations for attribute group definitions. The effect is as if the
attribute declarations in the group were present in the type definition.

3.6.1 The Attribute Group Definition Schema Component

The attribute group definition schema component has the following properties:

Schema Component: Attribute Group Definition

{name}
An NCName as defined by [XML-Namespaces].

{target namespace}
Either ·absent· or a namespace name, as defined in [XML-
Namespaces].

{attribute uses}
A set of attribute uses.

{attribute wildcard}

Page 80 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

Optional. A wildcard.
{annotation}

Optional. An annotation.

Attribute groups are identified by their {name} and {target namespace}; attribute
group identities must be unique within an ·XML Schema·. See References to
schema components across namespaces (§4.2.3) for the use of component
identifiers when importing one schema into another.

{attribute uses} is a set attribute uses, allowing for local specification of occurrence
and default or fixed values.

{attribute wildcard} provides for an attribute wildcard to be included in an attribute
group. See above under Complex Type Definitions (§3.4) for the interpretation of
attribute wildcards during ·validation·.

See Annotations (§3.13) for information on the role of the {annotation} property.

3.6.2 XML Representation of Attribute Group Definition Schema Components

The XML representation for an attribute group definition schema component is an
<attributeGroup> element information item. It provides for naming a group of
attribute declarations and an attribute wildcard for use by reference in the XML
representation of complex type definitions and other attribute group definitions. The
correspondences between the properties of the information item and properties of
the component it corresponds to are as follows:

XML Representation Summary: attributeGroup Element Information
Item

<attributeGroup
 id = ID
 name = NCName
 ref = QName
 {any attributes with non-schema namespace . . .}>
 Content: (annotation?, ((attribute | attributeGroup)*,
anyAttribute?))
</attributeGroup>

When an <attributeGroup> appears as a daughter of <schema> or
<redefine>, it corresponds to an attribute group definition as below. When it
appears as a daughter of <complexType> or <attributeGroup>, it does not
correspond to any component as such.

Attribute Group Definition Schema Component

Page 81 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

Property Representation
{name} The ·actual value· of the name [attribute]

{target
namespace}

The ·actual value· of the targetNamespace [attribute] of
the parent schema element information item.

{attribute
uses}

The union of the set of attribute uses corresponding to the
<attribute> [children], if any, with the {attribute uses} of the
attribute groups ·resolved· to by the ·actual value·s of the
ref [attribute] of the <attributeGroup> [children], if any.

{attribute
wildcard}

As for the ·complete wildcard· as described in XML
Representation of Complex Type Definitions (§3.4.2).

{annotation} The annotation corresponding to the <annotation> element
information item in the [children], if present, otherwise
·absent·.

The example above illustrates a pattern which recurs in the XML representation of
schemas: The same element, in this case attributeGroup, serves both to define
and to incorporate by reference. In the first case the name attribute is required, in
the second the ref attribute is required, and the element must be empty. These
two are mutually exclusive, and also conditioned by context: the defining form, with
a name, must occur at the top level of a schema, whereas the referring form, with a
ref, must occur within a complex type definition or an attribute group definition.

3.6.3 Constraints on XML Representations of Attribute Group Definitions

Schema Representation Constraint: Attribute Group Definition
Representation OK

In addition to the conditions imposed on <attributeGroup> element information
items by the schema for schemas, all of the following must be true:
1 The corresponding attribute group definition, if any, must satisfy the conditions

set out in Constraints on Attribute Group Definition Schema Components
(§3.6.6).

2 If clause 2.2.1 or clause 2.2.2 in the correspondence specification in XML
Representation of Complex Type Definitions (§3.4.2) for {attribute wildcard}, as
referenced above, is satisfied, the intensional intersection must be expressible,
as defined in Attribute Wildcard Intersection (§3.10.6).

3 Circular group reference is disallowed outside <redefine>. That is, unless this
element information item's parent is <redefine>, then among the [children], if
any, there must not be an <attributeGroup> with ref [attribute] which resolves
to the component corresponding to this <attributeGroup>. Indirect circularity is
also ruled out. That is, when QName resolution (Schema Document) (§3.15.3)
is applied to a ·QName· arising from any <attributeGroup>s with a ref
[attribute] among the [children], it must not be the case that a ·QName· is

Page 82 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

encountered at any depth which resolves to the component corresponding to
this <attributeGroup>.

3.6.4 Attribute Group Definition Validation Rules

None as such.

3.6.5 Attribute Group Definition Information Set Contributions

None as such.

3.6.6 Constraints on Attribute Group Definition Schema Components

All attribute group definitions (see Attribute Group Definitions (§3.6)) must satisfy
the following constraint.

Schema Component Constraint: Attribute Group Definition Properties
Correct

All of the following must be true:
1 The values of the properties of an attribute group definition must be as

described in the property tableau in The Attribute Group Definition Schema
Component (§3.6.1), modulo the impact of Missing Sub-components (§5.3);

2 Two distinct members of the {attribute uses} must not have {attribute
declaration}s both of whose {name}s match and whose {target namespace}s
are identical.

3 Two distinct members of the {attribute uses} must not have {attribute
declaration}s both of whose {type definition}s are or are derived from ID.

3.7 Model Group Definitions
 3.7.1 The Model Group Definition Schema Component
 3.7.2 XML Representation of Model Group Definition Schema Components
 3.7.3 Constraints on XML Representations of Model Group Definitions
 3.7.4 Model Group Definition Validation Rules
 3.7.5 Model Group Definition Information Set Contributions
 3.7.6 Constraints on Model Group Definition Schema Components

A model group definition associates a name and optional annotations with a Model
Group (§2.2.3.1). By reference to the name, the entire model group can be
incorporated by reference into a {term}.

Model group definitions are provided primarily for reference from the XML
Representation of Complex Type Definitions (§3.4.2) (see <complexType> and
<group>). Thus, model group definitions provide a replacement for some uses of
XML's parameter entity facility.

Example

Page 83 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

<xs:group name="myModelGroup">
 <xs:sequence>
 <xs:element ref="someThing"/>
 . . .
 </xs:sequence>
</xs:group>

<xs:complexType name="trivial">
 <xs:group ref="myModelGroup"/>
 <xs:attribute .../>
</xs:complexType>

<xs:complexType name="moreSo">
 <xs:choice>
 <xs:element ref="anotherThing"/>
 <xs:group ref="myModelGroup"/>
 </xs:choice>
 <xs:attribute .../>
</xs:complexType>

A minimal model group is defined and used by reference, first as the whole
content model, then as one alternative in a choice.

3.7.1 The Model Group Definition Schema Component

The model group definition schema component has the following properties:

Schema Component: Model Group Definition

{name}
An NCName as defined by [XML-Namespaces].

{target namespace}
Either ·absent· or a namespace name, as defined in [XML-
Namespaces].

{model group}
A model group.

{annotation}
Optional. An annotation.

Model group definitions are identified by their {name} and {target namespace};
model group identities must be unique within an ·XML Schema·. See References to
schema components across namespaces (§4.2.3) for the use of component
identifiers when importing one schema into another.

Model group definitions per se do not participate in ·validation·, but the {term} of a
particle may correspond in whole or in part to a model group from a model group
definition.

Page 84 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

{model group} is the Model Group (§2.2.3.1) for which the model group definition
provides a name.

See Annotations (§3.13) for information on the role of the {annotation} property.

3.7.2 XML Representation of Model Group Definition Schema Components

The XML representation for a model group definition schema component is a
<group> element information item. It provides for naming a model group for use by
reference in the XML representation of complex type definitions and model groups.
The correspondences between the properties of the information item and
properties of the component it corresponds to are as follows:

XML Representation Summary: group Element Information Item

<group
 id = ID
 maxOccurs = (nonNegativeInteger | unbounded) : 1
 minOccurs = nonNegativeInteger : 1
 name = NCName
 ref = QName
 {any attributes with non-schema namespace . . .}>
 Content: (annotation?, (all | choice | sequence)?)
</group>

If there is a name [attribute] (in which case the item will have <schema> or
<redefine> as parent), then the item corresponds to a model group
definition component with properties as follows:

Model Group Definition Schema Component
Property Representation
{name} The ·actual value· of the name [attribute]

{target
namespace}

The ·actual value· of the targetNamespace [attribute]
of the parent schema element information item.

{model group} A model group which is the {term} of a particle
corresponding to the <all>, <choice> or <sequence>
among the [children] (there must be one).

{annotation} The annotation corresponding to the <annotation>
element information item in the [children], if present,
otherwise ·absent·.

Otherwise, the item will have a ref [attribute], in which case it
corresponds to a particle component with properties as follows (unless
minOccurs=maxOccurs=0, in which case the item corresponds to no

Page 85 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

component at all):

Particle Schema Component
Property Representation
{min
occurs}

The ·actual value· of the minOccurs [attribute], if present,
otherwise 1.

{max
occurs}

unbounded, if the maxOccurs [attribute] equals unbounded,
otherwise the ·actual value· of the maxOccurs [attribute], if
present, otherwise 1.

{term} The {model group} of the model group definition ·resolved· to
by the ·actual value· of the ref [attribute]

The name of this section is slightly misleading, in that the second, un-named, case
above (with a ref and no name) is not really a named model group at all, but a
reference to one. Also note that in the first (named) case above no reference is
made to minOccurs or maxOccurs: this is because the schema for schemas does
not allow them on the child of <group> when it is named. This in turn is because the
{min occurs} and {max occurs} of the particles which refer to the definition are what
count.

Given the constraints on its appearance in content models, an <all> should only
occur as the only item in the [children] of a named model group definition or a
content model: see Constraints on Model Group Schema Components (§3.8.6).

3.7.3 Constraints on XML Representations of Model Group Definitions

Schema Representation Constraint: Model Group Definition Representation
OK

In addition to the conditions imposed on <group> element information items by
the schema for schemas, the corresponding model group definition, if any, must
satisfy the conditions set out in Constraints on Model Group Schema
Components (§3.8.6).

3.7.4 Model Group Definition Validation Rules

None as such.

3.7.5 Model Group Definition Information Set Contributions

None as such.

3.7.6 Constraints on Model Group Definition Schema Components

Page 86 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

All model group definitions (see Model Group Definitions (§3.7)) must satisfy the
following constraint.

Schema Component Constraint: Model Group Definition Properties Correct
The values of the properties of a model group definition must be as described in
the property tableau in The Model Group Definition Schema Component
(§3.7.1), modulo the impact of Missing Sub-components (§5.3).

3.8 Model Groups
 3.8.1 The Model Group Schema Component
 3.8.2 XML Representation of Model Group Schema Components
 3.8.3 Constraints on XML Representations of Model Groups
 3.8.4 Model Group Validation Rules
 3.8.5 Model Group Information Set Contributions
 3.8.6 Constraints on Model Group Schema Components

When the [children] of element information items are not constrained to be empty
or by reference to a simple type definition (Simple Type Definitions (§3.14)), the
sequence of element information item [children] content may be specified in more
detail with a model group. Because the {term} property of a particle can be a
model group, and model groups contain particles, model groups can indirectly
contain other model groups; the grammar for content models is therefore
recursive.

Example
<xs:all>
 <xs:element ref="cats"/>
 <xs:element ref="dogs"/>
</xs:all>

<xs:sequence>
 <xs:choice>
 <xs:element ref="left"/>
 <xs:element ref="right"/>
 </xs:choice>
 <xs:element ref="landmark"/>
</xs:sequence>

XML representations for the three kinds of model group, the third nested inside
the second.

3.8.1 The Model Group Schema Component

The model group schema component has the following properties:

Schema Component: Model Group

Page 87 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

{compositor}
One of all, choice or sequence.

{particles}
A list of particles

{annotation}
Optional. An annotation.

specifies a sequential (sequence), disjunctive (choice) or conjunctive (all)
interpretation of the {particles}. This in turn determines whether the element
information item [children] ·validated· by the model group must:

(sequence) correspond, in order, to the specified {particles};
(choice) corresponded to exactly one of the specified {particles};
(all) contain all and only exactly zero or one of each element specified in
{particles}. The elements can occur in any order. In this case, to reduce
implementation complexity, {particles} is restricted to contain local and top-
level element declarations only, with {min occurs}=0 or 1, {max occurs}=1.

When two or more particles contained directly or indirectly in the {particles} of a
model group have identically named element declarations as their {term}, the type
definitions of those declarations must be the same. By 'indirectly' is meant particles
within the {particles} of a group which is itself the {term} of a directly contained
particle, and so on recursively.

See Annotations (§3.13) for information on the role of the {annotation} property.

3.8.2 XML Representation of Model Group Schema Components

The XML representation for a model group schema component is either an <all>, a
<choice> or a <sequence> element information item. The correspondences
between the properties of those information items and properties of the component
they correspond to are as follows:

XML Representation Summary: all Element Information Item

<all
 id = ID
 maxOccurs = 1 : 1
 minOccurs = (0 | 1) : 1
 {any attributes with non-schema namespace . . .}>
 Content: (annotation?, element*)
</all>

<choice
 id = ID

Page 88 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

 maxOccurs = (nonNegativeInteger | unbounded) : 1
 minOccurs = nonNegativeInteger : 1
 {any attributes with non-schema namespace . . .}>
 Content: (annotation?, (element | group | choice | sequence
| any)*)
</choice>

<sequence
 id = ID
 maxOccurs = (nonNegativeInteger | unbounded) : 1
 minOccurs = nonNegativeInteger : 1
 {any attributes with non-schema namespace . . .}>
 Content: (annotation?, (element | group | choice | sequence
| any)*)
</sequence>

Each of the above items corresponds to a particle containing a model
group, with properties as follows (unless minOccurs=maxOccurs=0, in
which case the item corresponds to no component at all):

Particle Schema Component
Property Representation
{min
occurs}

The ·actual value· of the minOccurs [attribute], if present,
otherwise 1.

{max
occurs}

unbounded, if the maxOccurs [attribute] equals unbounded,
otherwise the ·actual value· of the maxOccurs [attribute], if
present, otherwise 1.

{term} A model group as given below:

Model Group Schema Component
Property Representation
{compositor} One of all, choice, sequence depending on the element

information item.
{particles} A sequence of particles corresponding to all the <all>,

<choice>, <sequence>, <any>, <group> or <element>
items among the [children], in order.

{annotation} The annotation corresponding to the <annotation> element
information item in the [children], if present, otherwise
·absent·.

3.8.3 Constraints on XML Representations of Model Groups

Schema Representation Constraint: Model Group Representation OK

Page 89 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

In addition to the conditions imposed on <all>, <choice> and <sequence>
element information items by the schema for schemas, the corresponding
particle and model group must satisfy the conditions set out in Constraints on
Model Group Schema Components (§3.8.6) and Constraints on Particle
Schema Components (§3.9.6).

3.8.4 Model Group Validation Rules

Validation Rule: Element Sequence Valid
[Definition:] Define a partition of a sequence as a sequence of sub-sequences,
some or all of which may be empty, such that concatenating all the sub-
sequences yields the original sequence.

For a sequence (possibly empty) of element information items to be locally
·valid· with respect to a model group the appropriate case among the following
must be true:
1 If the {compositor} is sequence, then there must be a ·partition· of the

sequence into n sub-sequences where n is the length of {particles} such that
each of the sub-sequences in order is ·valid· with respect to the corresponding
particle in the {particles} as defined in Element Sequence Locally Valid
(Particle) (§3.9.4).

2 If the {compositor} is choice, then there must be a particle among the
{particles} such that the sequence is ·valid· with respect to that particle as
defined in Element Sequence Locally Valid (Particle) (§3.9.4).

3 If the {compositor} is all, then there must be a ·partition· of the sequence into
n sub-sequences where n is the length of {particles} such that there is a one-
to-one mapping between the sub-sequences and the {particles} where each
sub-sequence is ·valid· with respect to the corresponding particle as defined
in Element Sequence Locally Valid (Particle) (§3.9.4).

Nothing in the above should be understood as ruling out groups whose
{particles} is empty: although no sequence can be ·valid· with respect to such a
group whose {compositor} is choice, the empty sequence is ·valid· with respect
to empty groups whose {compositor} is sequence or all.

Note: The above definition is implicitly non-deterministic, and should not be
taken as a recipé for implementations. Note in particular that when
{compositor} is all, particles is restricted to a list of local and top-level element
declarations (see Constraints on Model Group Schema Components
(§3.8.6)). A much simpler implementation is possible than would arise from a
literal interpretation of the definition above; informally, the content is ·valid·
when each declared element occurs exactly once (or at most once, if {min
occurs} is 0), and each is ·valid· with respect to its corresponding declaration.
The elements can occur in arbitrary order.

3.8.5 Model Group Information Set Contributions

Page 90 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

None as such.

3.8.6 Constraints on Model Group Schema Components

All model groups (see Model Groups (§3.8)) must satisfy the following constraints.

Schema Component Constraint: Model Group Correct
All of the following must be true:
1 The values of the properties of a model group must be as described in the

property tableau in The Model Group Schema Component (§3.8.1), modulo
the impact of Missing Sub-components (§5.3).

2 Circular groups are disallowed. That is, within the {particles} of a group there
must not be at any depth a particle whose {term} is the group itself.

Schema Component Constraint: All Group Limited
When a model group has {compositor} all, then all of the following must be true:
1 It appears only as the value of one or both of the following properties:

1.1 the {model group} property of a model group definition.
1.2 the {term} property of a particle with {max occurs}=1which is part of a pair

which constitutes the {content type} of a complex type definition.
2 The {max occurs} of all the particles in the {particles} of the group must be 0 or
1.

Schema Component Constraint: Element Declarations Consistent
If the {particles} contains, either directly, indirectly (that is, within the {particles}
of a contained model group, recursively) or ·implicitly· two or more element
declaration particles with the same {name} and {target namespace}, then all
their type definitions must be the same top-level definition, that is, all of the
following must be true:
1 all their {type definition}s must have a non-·absent· {name}.
2 all their {type definition}s must have the same {name}.
3 all their {type definition}s must have the same {target namespace}.

[Definition:] A list of particles implicitly contains an element declaration if a
member of the list contains that element declaration in its ·substitution group·.

Schema Component Constraint: Unique Particle Attribution
A content model must be formed such that during ·validation· of an element
information item sequence, the particle component contained directly, indirectly
or ·implicitly· therein with which to attempt to ·validate· each item in the
sequence in turn can be uniquely determined without examining the content or
attributes of that item, and without any information about the items in the
remainder of the sequence.

Note: This constraint reconstructs for XML Schema the equivalent
constraints of [XML 1.0 (Second Edition)] and SGML. Given the presence of
element substitution groups and wildcards, the concise expression of this
constraint is difficult, see Analysis of the Unique Particle Attribution

Page 91 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

Constraint (non-normative) (§H) for further discussion.

Since this constraint is expressed at the component level, it applies to
content models whose origins (e.g. via type derivation and references to
named model groups) are no longer evident. So particles at different points
in the content model are always distinct from one another, even if they
originated from the same named model group.

Note: Because locally-scoped element declarations may or may not have a
{target namespace}, the scope of declarations is not relevant to enforcing
either of the two preceding constraints.

The following constraints define relations appealed to elsewhere in this
specification.

Schema Component Constraint: Effective Total Range (all and sequence)
The effective total range of a particle whose {term} is a group whose
{compositor} is all or sequence is a pair of minimum and maximum, as follows:

minimum
The product of the particle's {min occurs} and the sum of the {min occurs}
of every wildcard or element declaration particle in the group's {particles}
and the minimum part of the effective total range of each of the group
particles in the group's {particles} (or 0 if there are no {particles}).

maximum
unbounded if the {max occurs} of any wildcard or element declaration
particle in the group's {particles} or the maximum part of the effective total
range of any of the group particles in the group's {particles} is unbounded,
or if any of those is non-zero and the {max occurs} of the particle itself is
unbounded, otherwise the product of the particle's {max occurs} and the
sum of the {max occurs} of every wildcard or element declaration particle
in the group's {particles} and the maximum part of the effective total range
of each of the group particles in the group's {particles} (or 0 if there are no
{particles}).

Schema Component Constraint: Effective Total Range (choice)
The effective total range of a particle whose {term} is a group whose
{compositor} is choice is a pair of minimum and maximum, as follows:

minimum
The product of the particle's {min occurs} and the minimum of the {min
occurs} of every wildcard or element declaration particle in the group's
{particles} and the minimum part of the effective total range of each of the
group particles in the group's {particles} (or 0 if there are no {particles}).

maximum
unbounded if the {max occurs} of any wildcard or element declaration

Page 92 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

particle in the group's {particles} or the maximum part of the effective total
range of any of the group particles in the group's {particles} is unbounded,
or if any of those is non-zero and the {max occurs} of the particle itself is
unbounded, otherwise the product of the particle's {max occurs} and the
maximum of the {max occurs} of every wildcard or element declaration
particle in the group's {particles} and the maximum part of the effective
total range of each of the group particles in the group's {particles} (or 0 if
there are no {particles}).

3.9 Particles
 3.9.1 The Particle Schema Component
 3.9.2 XML Representation of Particle Components
 3.9.3 Constraints on XML Representations of Particles
 3.9.4 Particle Validation Rules
 3.9.5 Particle Information Set Contributions
 3.9.6 Constraints on Particle Schema Components

As described in Model Groups (§3.8), particles contribute to the definition of
content models.

Example
<xs:element ref="egg" minOccurs="12" maxOccurs="12"/>

<xs:group ref="omelette" minOccurs="0"/>

<xs:any maxOccurs="unbounded"/>

XML representations which all involve particles, illustrating some of the
possibilities for controlling occurrence.

3.9.1 The Particle Schema Component

The particle schema component has the following properties:

Schema Component: Particle

{min occurs}
A non-negative integer.

{max occurs}
Either a non-negative integer or unbounded.

{term}
One of a model group, a wildcard, or an element declaration.

In general, multiple element information item [children], possibly with intervening

Page 93 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

character [children] if the content type is mixed, can be ·validated· with respect to a
single particle. When the {term} is an element declaration or wildcard, {min occurs}
determines the minimum number of such element [children] that can occur. The
number of such children must be greater than or equal to {min occurs}. If {min
occurs} is 0, then occurrence of such children is optional.

Again, when the {term} is an element declaration or wildcard, the number of such
element [children] must be less than or equal to any numeric specification of {max
occurs}; if {max occurs} is unbounded, then there is no upper bound on the
number of such children.

When the {term} is a model group, the permitted occurrence range is determined
by a combination of {min occurs} and {max occurs} and the occurrence ranges of
the {term}'s {particles}.

3.9.2 XML Representation of Particle Components

Particles correspond to all three elements (<element> not immediately within
<schema>, <group> not immediately within <schema> and <any>) which allow
minOccurs and maxOccurs attributes. These in turn correspond to two
components in each case, a particle and its {term}. The appropriate mapping is
described in XML Representation of Element Declaration Schema Components
(§3.3.2), XML Representation of Model Group Schema Components (§3.8.2) and
XML Representation of Wildcard Schema Components (§3.10.2) respectively.

3.9.3 Constraints on XML Representations of Particles

None as such.

3.9.4 Particle Validation Rules

Validation Rule: Element Sequence Locally Valid (Particle)
For a sequence (possibly empty) of element information items to be locally
·valid· with respect to a particle the appropriate case among the following must
be true:
1 If the {term} is a wildcard, then all of the following must be true:

1.1 The length of the sequence must be greater than or equal to the {min
occurs}.

1.2 If {max occurs} is a number, the length of the sequence must be less than
or equal to the {max occurs}.

1.3 Each element information item in the sequence must be ·valid· with
respect to the wildcard as defined by Item Valid (Wildcard) (§3.10.4).

2 If the {term} is an element declaration, then all of the following must be true:
2.1 The length of the sequence must be greater than or equal to the {min

occurs}.
2.2 If {max occurs} is a number, the length of the sequence must be less than

Page 94 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

or equal to the {max occurs}.
2.3 For each element information item in the sequence one of the following

must be true:
2.3.1 The element declaration is local (i.e. its {scope} must not be global),

its {abstract} is false, the element information item's [namespace name] is
identical to the element declaration's {target namespace} (where an
·absent· {target namespace} is taken to be identical to a [namespace
name] with no value) and the element information item's [local name]
matches the element declaration's {name}.

In this case the element declaration is the ·context-determined declaration·
for the element information item with respect to Schema-Validity
Assessment (Element) (§3.3.4) and Assessment Outcome (Element)
(§3.3.5).

2.3.2 The element declaration is top-level (i.e. its {scope} is global),
{abstract} is false, the element information item's [namespace name] is
identical to the element declaration's {target namespace} (where an
·absent· {target namespace} is taken to be identical to a [namespace
name] with no value) and the element information item's [local name]
matches the element declaration's {name}.

In this case the element declaration is the ·context-determined declaration·
for the element information item with respect to Schema-Validity
Assessment (Element) (§3.3.4) and Assessment Outcome (Element)
(§3.3.5).

2.3.3 The element declaration is top-level (i.e. its {scope} is global), its
{disallowed substitutions} does not contain substitution, the [local] and
[namespace name] of the element information item resolve to an element
declaration, as defined in QName resolution (Instance) (§3.15.4) --
[Definition:] call this declaration the substituting declaration and the
·substituting declaration· together with the particle's element declaration's
{disallowed substitutions} is validly substitutable for the particle's element
declaration as defined in Substitution Group OK (Transitive) (§3.3.6).

In this case the ·substituting declaration· is the ·context-determined
declaration· for the element information item with respect to Schema-
Validity Assessment (Element) (§3.3.4) and Assessment Outcome
(Element) (§3.3.5).

3 If the {term} is a model group, then all of the following must be true:
3.1 There is a ·partition· of the sequence into n sub-sequences such that n is

greater than or equal to {min occurs}.
3.2 If {max occurs} is a number, n must be less than or equal to {max occurs}.
3.3 Each sub-sequence in the ·partition· is ·valid· with respect to that model

Page 95 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

group as defined in Element Sequence Valid (§3.8.4).
Note: Clauses clause 1 and clause 2.3.3 do not interact: an element
information item validatable by a declaration with a substitution group head
in a different namespace is not validatable by a wildcard which accepts the
head's namespace but not its own.

3.9.5 Particle Information Set Contributions

None as such.

3.9.6 Constraints on Particle Schema Components

All particles (see Particles (§3.9)) must satisfy the following constraints.

Schema Component Constraint: Particle Correct
All of the following must be true:
1 The values of the properties of a particle must be as described in the property

tableau in The Particle Schema Component (§3.9.1), modulo the impact of
Missing Sub-components (§5.3).

2 If {max occurs} is not unbounded, that is, it has a numeric value, then all of the
following must be true:
2.1 {min occurs} must not be greater than {max occurs}.
2.2 {max occurs} must be greater than or equal to 1.

The following constraints define relations appealed to elsewhere in this
specification.

Schema Component Constraint: Particle Valid (Extension)
[Definition:] For a particle (call it E, for extension) to be a valid extension of
another particle (call it B, for base) one of the following must be true:
1 They are the same particle.
2 E's {min occurs}={max occurs}=1 and its {term} is a sequence group whose

{particles}' first member is a particle all of whose properties, recursively, are
identical to those of B, with the exception of {annotation} properties.

The approach to defining a type by restricting another type definition set out here
is designed to ensure that types defined in this way are guaranteed to be a subset
of the type they restrict. This is accomplished by requiring a clear mapping
between the components of the base type definition and the restricting type
definition. Permissible mappings are set out below via a set of recursive
definitions, bottoming out in the obvious cases, e.g. where an (restricted) element
declaration corresponds to another (base) element declaration with the same
name and type but the same or wider range of occurrence.

Note: The structural correspondence approach to guaranteeing the subset
relation set out here is necessarily verbose, but has the advantage of being

Page 96 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

checkable in a straightforward way. The working group solicits feedback on
how difficult this is in practice, and on whether other approaches are found to
be viable.

Schema Component Constraint: Particle Valid (Restriction)
[Definition:] For a particle (call it R, for restriction) to be a valid restriction of
another particle (call it B, for base) one of the following must be true:
1 They are the same particle.
2 depending on the kind of particle, per the table below, with the qualifications

that all of the following must be true:
2.1 Any top-level element declaration particle (in R or B) which is the

{substitution group affiliation} of one or more other element declarations and
whose ·substitution group· contains at least one element declaration other
than itself is treated as if it were a choice group whose {min occurs} and
{max occurs} are those of the particle, and whose {particles} consists of one
particle with {min occurs} and {max occurs} of 1 for each of the declarations
in its ·substitution group·.

2.2 Any pointless occurrences of <sequence>, <choice> or <all> are ignored,
where pointlessness is understood as follows:

<sequence>
One of the following must be true:

2.2.1 {particles} is empty.
2.2.2 All of the following must be true:

2.2.2.1 The particle within which this <sequence> appears has
{max occurs} and {min occurs} of 1.

2.2.2.2 One of the following must be true:
2.2.2.2.1 The <sequence>'s {particles} has only one member.
2.2.2.2.2 The particle within which this <sequence> appears is

itself among the {particles} of a <sequence>.
<all>

One of the following must be true:
2.2.1 {particles} is empty.
2.2.2 {particles} has only one member.

<choice>
One of the following must be true:

2.2.1 {particles} is empty and the particle within which this <choice>
appears has {min occurs} of 0.

2.2.2 All of the following must be true:
2.2.2.1 The particle within which this <choice> appears has {max

occurs} and {min occurs} of 1.
2.2.2.2 One of the following must be true:

2.2.2.2.1 The <choice>'s {particles} has only one member.
2.2.2.2.2 The particle within which this <choice> appears is itself

among the {particles} of a <choice>.

Page 97 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

Schema Component Constraint: Occurrence Range OK
For a particle's occurrence range to be a valid restriction of another's occurrence
range all of the following must be true:
1 Its {min occurs} is greater than or equal to the other's {min occurs}.
2 one of the following must be true:

2.1 The other's {max occurs} is unbounded.
2.2 Both {max occurs} are numbers, and the particle's is less than or equal to

the other's.

Schema Component Constraint: Particle Restriction OK (Elt:Elt --
NameAndTypeOK)

For an element declaration particle to be a ·valid restriction· of another element
declaration particle all of the following must be true:
1 The declarations' {name}s and {target namespace}s are the same.
2 R's occurrence range is a valid restriction of B's occurrence range as defined

by Occurrence Range OK (§3.9.6).
3 One of the following must be true:

3.1 Both B's declaration's {scope} and R's declaration's {scope} are global.
3.2 All of the following must be true:

3.2.1 Either B's {nillable} is true or R's {nillable} is false.
3.2.2 either B's declaration's {value constraint} is absent, or is not fixed, or

R's declaration's {value constraint} is fixed with the same value.
3.2.3 R's declaration's {identity-constraint definitions} is a subset of B's

declaration's {identity-constraint definitions}, if any.
3.2.4 R's declaration's {disallowed substitutions} is a superset of B's

declaration's {disallowed substitutions}.
3.2.5 R's {type definition} is validly derived given {extension, list, union} from

B's {type definition} as defined by Type Derivation OK (Complex) (§3.4.6)
or Type Derivation OK (Simple) (§3.14.6), as appropriate.

Note: The above constraint on {type definition} means that in deriving a
type by restriction, any contained type definitions must themselves be

Base Particle

elt any all choice sequen

Derived
Particle

elt NameAnd-
TypeOK NSCompat Recurse-

AsIfGroup
Recurse-
AsIfGroup

Recurse
IfGroup

any Forbidden NSSubset Forbidden Forbidden Forbidde

all Forbidden NSRecurse-
CheckCardinality Recurse Forbidden Forbidde

choice Forbidden NSRecurse-
CheckCardinality Forbidden RecurseLax Forbidde

seq-
uence Forbidden NSRecurse-

CheckCardinality
Recurse-
Unordered MapAndSum Recurse

Page 98 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

explicitly derived by restriction from the corresponding type definitions in the
base definition, or be one of the member types of a corresponding union..

Schema Component Constraint: Particle Derivation OK (Elt:Any --
NSCompat)

For an element declaration particle to be a ·valid restriction· of a wildcard
particle all of the following must be true:
1 The element declaration's {target namespace} is ·valid· with respect to the

wildcard's {namespace constraint} as defined by Wildcard allows Namespace
Name (§3.10.4).

2 R's occurrence range is a valid restriction of B's occurrence range as defined
by Occurrence Range OK (§3.9.6).

Schema Component Constraint: Particle Derivation OK
(Elt:All/Choice/Sequence -- RecurseAsIfGroup)

For an element declaration particle to be a ·valid restriction· of a group particle
(all, choice or sequence) a group particle of the variety corresponding to B's,
with {min occurs} and {max occurs} of 1 and with {particles} consisting of a
single particle the same as the element declaration must be a ·valid restriction·
of the group as defined by Particle Derivation OK (All:All,Sequence:Sequence --
Recurse) (§3.9.6), Particle Derivation OK (Choice:Choice -- RecurseLax)
(§3.9.6) or Particle Derivation OK (All:All,Sequence:Sequence -- Recurse)
(§3.9.6), depending on whether the group is all, choice or sequence.

Schema Component Constraint: Particle Derivation OK (Any:Any --
NSSubset)

For a wildcard particle to be a ·valid restriction· of another wildcard particle all of
the following must be true:
1 R's occurrence range must be a valid restriction of B's occurrence range as

defined by Occurrence Range OK (§3.9.6).
2 R's {namespace constraint} must be an intensional subset of B's {namespace

constraint} as defined by Wildcard Subset (§3.10.6).
3 Unless B is the content model wildcard of the ·ur-type definition·, R's {process

contents} must be identical to or stronger than B's {process contents}, where
strict is stronger than lax is stronger than skip.

Note:

The exception to the third clause above for derivations from the ·ur-type
definition· is necessary as its wildcards have a {process contents} of lax, so
without this exception, no use of wildcards with {process contents} of skip
would be possible.

Schema Component Constraint: Particle Derivation OK
(All/Choice/Sequence:Any -- NSRecurseCheckCardinality)

For a group particle to be a ·valid restriction· of a wildcard particle all of the
following must be true:

Page 99 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

1 Every member of the {particles} of the group is a ·valid restriction· of the
wildcard as defined by Particle Valid (Restriction) (§3.9.6).

2 The effective total range of the group, as defined by Effective Total Range (all
and sequence) (§3.8.6) (if the group is all or sequence) or Effective Total
Range (choice) (§3.8.6) (if it is choice) is a valid restriction of B's occurrence
range as defined by Occurrence Range OK (§3.9.6).

Schema Component Constraint: Particle Derivation OK
(All:All,Sequence:Sequence -- Recurse)

For an all or sequence group particle to be a ·valid restriction· of another group
particle with the same {compositor} all of the following must be true:
1 R's occurrence range is a valid restriction of B's occurrence range as defined

by Occurrence Range OK (§3.9.6).
2 There is a complete ·order-preserving· functional mapping from the particles in

the {particles} of R to the particles in the {particles} of B such that all of the
following must be true:
2.1 Each particle in the {particles} of R is a ·valid restriction· of the particle in

the {particles} of B it maps to as defined by Particle Valid (Restriction)
(§3.9.6).

2.2 All particles in the {particles} of B which are not mapped to by any particle
in the {particles} of R are ·emptiable· as defined by Particle Emptiable
(§3.9.6).
Note: Although the ·validation· semantics of an all group does not depend
on the order of its particles, derived all groups are required to match the
order of their base in order to simplify checking that the derivation is OK.

[Definition:] A complete functional mapping is order-preserving if each particle
r in the domain R maps to a particle b in the range B which follows (not
necessarily immediately) the particle in the range B mapped to by the
predecessor of r, if any, where "predecessor" and "follows" are defined with
respect to the order of the lists which constitute R and B.

Schema Component Constraint: Particle Derivation OK (Choice:Choice --
RecurseLax)

For a choice group particle to be a ·valid restriction· of another choice group
particle all of the following must be true:
1 R's occurrence range is a valid restriction of B's occurrence range as defined

by Occurrence Range OK (§3.9.6);
2 There is a complete ·order-preserving· functional mapping from the particles in

the {particles} of R to the particles in the {particles} of B such that each
particle in the {particles} of R is a ·valid restriction· of the particle in the
{particles} of B it maps to as defined by Particle Valid (Restriction) (§3.9.6).

Note: Although the ·validation· semantics of a choice group does not
depend on the order of its particles, derived choice groups are required to
match the order of their base in order to simplify checking that the
derivation is OK.

Schema Component Constraint: Particle Derivation OK (Sequence:All --

Page 100 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

RecurseUnordered)
For a sequence group particle to be a ·valid restriction· of an all group particle
all of the following must be true:
1 R's occurrence range is a valid restriction of B's occurrence range as defined

by Occurrence Range OK (§3.9.6).
2 There is a complete functional mapping from the particles in the {particles} of

R to the particles in the {particles} of B such that all of the following must be
true:
2.1 No particle in the {particles} of B is mapped to by more than one of the

particles in the {particles} of R;
2.2 Each particle in the {particles} of R is a ·valid restriction· of the particle in

the {particles} of B it maps to as defined by Particle Valid (Restriction)
(§3.9.6);

2.3 All particles in the {particles} of B which are not mapped to by any particle
in the {particles} of R are ·emptiable· as defined by Particle Emptiable
(§3.9.6).
Note: Although this clause allows reordering, because of the limits on the
contents of all groups the checking process can still be deterministic.

Schema Component Constraint: Particle Derivation OK (Sequence:Choice --
MapAndSum)

For a sequence group particle to be a ·valid restriction· of a choice group particle
all of the following must be true:
1 There is a complete functional mapping from the particles in the {particles} of

R to the particles in the {particles} of B such that each particle in the
{particles} of R is a ·valid restriction· of the particle in the {particles} of B it
maps to as defined by Particle Valid (Restriction) (§3.9.6).

2 The pair consisting of the product of the {min occurs} of R and the length of its
{particles} and unbounded if {max occurs} is unbounded otherwise the product
of the {max occurs} of R and the length of its {particles} is a valid restriction of
B's occurrence range as defined by Occurrence Range OK (§3.9.6).

Note: This clause is in principle more restrictive than absolutely necessary,
but in practice will cover all the likely cases, and is much easier to specify
than the fully general version.

Note: This case allows the "unfolding" of iterated disjunctions into
sequences. It may be particularly useful when the disjunction is an implicit
one arising from the use of substitution groups.

Schema Component Constraint: Particle Emptiable
[Definition:] For a particle to be emptiable one of the following must be true:
1 Its {min occurs} is 0.
2 Its {term} is a group and the minimum part of the effective total range of that

group, as defined by Effective Total Range (all and sequence) (§3.8.6) (if the
group is all or sequence) or Effective Total Range (choice) (§3.8.6) (if it is
choice), is 0.

3.10 Wildcards

Page 101 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

 3.10.1 The Wildcard Schema Component
 3.10.2 XML Representation of Wildcard Schema Components
 3.10.3 Constraints on XML Representations of Wildcards
 3.10.4 Wildcard Validation Rules
 3.10.5 Wildcard Information Set Contributions
 3.10.6 Constraints on Wildcard Schema Components

In order to exploit the full potential for extensibility offered by XML plus
namespaces, more provision is needed than DTDs allow for targeted flexibility in
content models and attribute declarations. A wildcard provides for ·validation· of
attribute and element information items dependent on their namespace name, but
independently of their local name.

Example
<xs:any processContents="skip"/>

<xs:any namespace="##other" processContents="lax"/>

<xs:any namespace="http://www.w3.org/1999/XSL/Transform"/>

<xs:any namespace="##targetNamespace"/>

<xs:anyAttribute namespace="http://www.w3.org/XML/1998/namespace"/>

XML representations of the four basic types of wildcard, plus one attribute
wildcard.

3.10.1 The Wildcard Schema Component

The wildcard schema component has the following properties:

Schema Component: Wildcard

{namespace constraint}
One of any; a pair of not and a namespace name or ·absent·; or a set
whose members are either namespace names or ·absent·.

{process contents}
One of skip, lax or strict.

{annotation}
Optional. An annotation.

{namespace constraint} provides for ·validation· of attribute and element items
that:

1. (any) have any namespace or are not namespace-qualified;

Page 102 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

2. (not and a namespace name) are namespace-qualified with a namespace
other than the specified namespace name;

3. (not and ·absent·) are namespace-qualified;
4. (a set whose members are either namespace names or ·absent·) have any

of the specified namespaces and/or, if ·absent· is included in the set, are
unqualified.

{process contents} controls the impact on ·assessment· of the information items
allowed by wildcards, as follows:

strict
There must be a top-level declaration for the item available, or the item must
have an xsi:type, and the item must be ·valid· as appropriate.

skip
No constraints at all: the item must simply be well-formed XML.

lax
If the item has a uniquely determined declaration available, it must be ·valid·
with respect to that definition, that is, ·validate· if you can, don't worry if you
can't.

See Annotations (§3.13) for information on the role of the {annotation} property.

3.10.2 XML Representation of Wildcard Schema Components

The XML representation for a wildcard schema component is an <any> or
<anyAttribute> element information item. The correspondences between the
properties of an <any> information item and properties of the components it
corresponds to are as follows (see <complexType> and <attributeGroup> for the
correspondences for <anyAttribute>):

XML Representation Summary: any Element Information Item

<any
 id = ID
 maxOccurs = (nonNegativeInteger | unbounded) : 1
 minOccurs = nonNegativeInteger : 1
 namespace = ((##any | ##other) | List of (anyURI |
(##targetNamespace | ##local))) : ##any
 processContents = (lax | skip | strict) : strict
 {any attributes with non-schema namespace . . .}>
 Content: (annotation?)
</any>

A particle containing a wildcard, with properties as follows (unless
minOccurs=maxOccurs=0, in which case the item corresponds to no
component at all):

Page 103 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

Particle Schema Component
Property Representation
{min
occurs}

The ·actual value· of the minOccurs [attribute], if present,
otherwise 1.

{max
occurs}

unbounded, if the maxOccurs [attribute] equals unbounded,
otherwise the ·actual value· of the maxOccurs [attribute], if
present, otherwise 1.

{term} A wildcard as given below:

Wildcard Schema Component
Property Representation
{namespace
constraint}

Dependent on the ·actual value· of the namespace
[attribute]: if absent, then any, otherwise as follows:

##any
any

##other
a pair of not and the ·actual value· of the
targetNamespace [attribute] of the <schema>
ancestor element information item if present,
otherwise ·absent·.

otherwise
a set whose members are namespace names
corresponding to the space-delimited substrings of
the string, except
1 if one such substring is ##targetNamespace,

the corresponding member is the ·actual value· of
the targetNamespace [attribute] of the
<schema> ancestor element information item if
present, otherwise ·absent·.

2 if one such substring is ##local, the
corresponding member is ·absent·.

{process
contents}

The ·actual value· of the processContents [attribute], if
present, otherwise strict.

{annotation} The annotation corresponding to the <annotation>
element information item in the [children], if present,
otherwise ·absent·.

Wildcards are subject to the same ambiguity constraints (Unique Particle Attribution
(§3.8.6)) as other content model particles: If an instance element could match either
an explicit particle and a wildcard, or one of two wildcards, within the content model

Page 104 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

of a type, that model is in error.

3.10.3 Constraints on XML Representations of Wildcards

Schema Representation Constraint: Wildcard Representation OK
In addition to the conditions imposed on <any> element information items by the
schema for schemas, the corresponding particle and model group must satisfy
the conditions set out in Constraints on Model Group Schema Components
(§3.8.6) and Constraints on Particle Schema Components (§3.9.6).

3.10.4 Wildcard Validation Rules

Validation Rule: Item Valid (Wildcard)
For an element or attribute information item to be locally ·valid· with respect to a
wildcard constraint its [namespace name] must be ·valid· with respect to the
wildcard constraint, as defined in Wildcard allows Namespace Name (§3.10.4).

When this constraint applies the appropriate case among the following must be
true:
1 If {process contents} is lax, then the item has no ·context-determined

declaration· with respect to Assessment Outcome (Element) (§3.3.5),
Schema-Validity Assessment (Element) (§3.3.4) and Schema-Validity
Assessment (Attribute) (§3.2.4).

2 If {process contents} is strict, then the item's ·context-determined declaration·
is mustFind.

3 If {process contents} is skip, then the item's ·context-determined declaration·
is skip.

Validation Rule: Wildcard allows Namespace Name
For a value which is either a namespace name or ·absent· to be ·valid· with
respect to a wildcard constraint (the value of a {namespace constraint}) one of
the following must be true:
1 The constraint must be any.
2 All of the following must be true:

2.1 The constraint is a pair of not and a namespace name or ·absent·
([Definition:] call this the namespace test).

2.2 The value must not be identical to the ·namespace test·.
2.3 The value must not be ·absent·.

3 The constraint is a set, and the value is identical to one of the members of the
set.

3.10.5 Wildcard Information Set Contributions

None as such.

3.10.6 Constraints on Wildcard Schema Components

Page 105 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

All wildcards (see Wildcards (§3.10)) must satisfy the following constraint.

Schema Component Constraint: Wildcard Properties Correct
The values of the properties of a wildcard must be as described in the property
tableau in The Wildcard Schema Component (§3.10.1), modulo the impact of
Missing Sub-components (§5.3).

The following constraints define a relation appealed to elsewhere in this
specification.

Schema Component Constraint: Wildcard Subset
For a namespace constraint (call it sub) to be an intensional subset of another
namespace constraint (call it super) one of the following must be true:
1 super must be any.
2 All of the following must be true:

2.1 sub must be a pair of not and a value (a namespace name or ·absent·).
2.2 super must be a pair of not and the same value.

3 All of the following must be true:
3.1 sub must be a set whose members are either namespace names or

·absent·.
3.2 One of the following must be true:

3.2.1 super must be the same set or a superset thereof.
3.2.2 super must be a pair of not and a value (a namespace name or

·absent·) and neither that value nor ·absent· must be in sub's set.

Schema Component Constraint: Attribute Wildcard Union
For a wildcard's {namespace constraint} value to be the intensional union of two
other such values (call them O1 and O2): the appropriate case among the
following must be true:
1 If O1 and O2 are the same value, then that value must be the value.
2 If either O1 or O2 is any, then any must be the value.
3 If both O1 and O2 are sets of (namespace names or ·absent·), then the union

of those sets must be the value.
4 If the two are negations of different values (namespace names or ·absent·),

then a pair of not and ·absent· must be the value.
5 If either O1 or O2 is a pair of not and a namespace name and the other is a

set of (namespace names or ·absent·) (call this set S), then The appropriate
case among the following must be true:
5.1 If the set S includes both the negated namespace name and ·absent·,

then any must be the value.
5.2 If the set S includes the negated namespace name but not ·absent·, then

a pair of not and ·absent· must be the value.
5.3 If the set S includes ·absent· but not the negated namespace name, then

the union is not expressible.
5.4 If the set S does not include either the negated namespace name or

·absent·, then whichever of O1 or O2 is a pair of not and a namespace
name must be the value.

Page 106 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

6 If either O1 or O2 is a pair of not and ·absent· and the other is a set of
(namespace names or ·absent·) (again, call this set S), then The appropriate
case among the following must be true:
6.1 If the set S includes ·absent·, then any must be the value.
6.2 If the set S does not include ·absent·, then a pair of not and ·absent· must

be the value.
In the case where there are more than two values, the intensional union is
determined by identifying the intensional union of two of the values as above,
then the intensional union of that value with the third (providing the first union
was expressible), and so on as required.

Schema Component Constraint: Attribute Wildcard Intersection
For a wildcard's {namespace constraint} value to be the intensional intersection
of two other such values (call them O1 and O2): the appropriate case among
the following must be true:
1 If O1 and O2 are the same value, then that value must be the value.
2 If either O1 or O2 is any, then the other must be the value.
3 If either O1 or O2 is a pair of not and a value (a namespace name or ·absent·)

and the other is a set of (namespace names or ·absent·), then that set, minus
the negated value if it was in the set, minus ·absent· if it was in the set, must
be the value.

4 If both O1 and O2 are sets of (namespace names or ·absent·), then the
intersection of those sets must be the value.

5 If the two are negations of different namespace names, then the intersection
is not expressible.

6 If the one is a negation of a namespace name and the other is a negation of
·absent·, then the one which is the negation of a namespace name must be
the value.

In the case where there are more than two values, the intensional intersection is
determined by identifying the intensional intersection of two of the values as
above, then the intensional intersection of that value with the third (providing the
first intersection was expressible), and so on as required.

3.11 Identity-constraint Definitions
 3.11.1 The Identity-constraint Definition Schema Component
 3.11.2 XML Representation of Identity-constraint Definition Schema
Components
 3.11.3 Constraints on XML Representations of Identity-constraint Definitions
 3.11.4 Identity-constraint Definition Validation Rules
 3.11.5 Identity-constraint Definition Information Set Contributions
 3.11.6 Constraints on Identity-constraint Definition Schema Components

Identity-constraint definition components provide for uniqueness and reference
constraints with respect to the contents of multiple elements and attributes.

Example

Page 107 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

<xs:key name="fullName">
 <xs:selector xpath=".//person"/>
 <xs:field xpath="forename"/>
 <xs:field xpath="surname"/>
</xs:key>

<xs:keyref name="personRef" refer="fullName">
 <xs:selector xpath=".//personPointer"/>
 <xs:field xpath="@first"/>
 <xs:field xpath="@last"/>
</xs:keyref>

<xs:unique name="nearlyID">
 <xs:selector xpath=".//*"/>
 <xs:field xpath="@id"/>
</xs:unique>

XML representations for the three kinds of identity-constraint definitions.

3.11.1 The Identity-constraint Definition Schema Component

The identity-constraint definition schema component has the following properties:

Schema Component: Identity-constraint Definition

{name}
An NCName as defined by [XML-Namespaces].

{target namespace}
Either ·absent· or a namespace name, as defined in [XML-
Namespaces].

{identity-constraint category}
One of key, keyref or unique.

{selector}
A restricted XPath ([XPath]) expression.

{fields}
A non-empty list of restricted XPath ([XPath]) expressions.

{referenced key}
Required if {identity-constraint category} is keyref, forbidden otherwise.
An identity-constraint definition with {identity-constraint category} equal
to key or unique.

{annotation}
Optional. A set of annotations.

Identity-constraint definitions are identified by their {name} and {target namespace};
Identity-constraint definition identities must be unique within an ·XML Schema·. See
References to schema components across namespaces (§4.2.3) for the use of
component identifiers when importing one schema into another.

Page 108 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

Informally, {identity-constraint category} identifies the Identity-constraint definition
as playing one of three roles:

(unique) the Identity-constraint definition asserts uniqueness, with respect to
the content identified by {selector}, of the tuples resulting from evaluation of
the {fields} XPath expression(s).
(key) the Identity-constraint definition asserts uniqueness as for unique. key
further asserts that all selected content actually has such tuples.
(keyref) the Identity-constraint definition asserts a correspondence, with
respect to the content identified by {selector}, of the tuples resulting from
evaluation of the {fields} XPath expression(s), with those of the {referenced
key}.

These constraints are specified along side the specification of types for the
attributes and elements involved, i.e. something declared as of type integer may
also serve as a key. Each constraint declaration has a name, which exists in a
single symbol space for constraints. The equality and inequality conditions
appealed to in checking these constraints apply to the value of the fields selected,
so that for example 3.0 and 3 would be conflicting keys if they were both number,
but non-conflicting if they were both strings, or one was a string and one a
number. Values of differing type can only be equal if one type is derived from the
other, and the value is in the value space of both.

Overall the augmentations to XML's ID/IDREF mechanism are:

Functioning as a part of an identity-constraint is in addition to, not instead of,
having a type;
Not just attribute values, but also element content and combinations of
values and content can be declared to be unique;
Identity-constraints are specified to hold within the scope of particular
elements;
(Combinations of) attribute values and/or element content can be declared to
be keys, that is, not only unique, but always present and non-nillable;
The comparison between keyref {fields} and key or unique {fields} is by value
equality, not by string equality.

{selector} specifies a restricted XPath ([XPath]) expression relative to instances of
the element being declared. This must identify a node set of subordinate elements
(i.e. contained within the declared element) to which the constraint applies.

{fields} specifies XPath expressions relative to each element selected by a
{selector}. This must identify a single node (element or attribute) whose content or
value, which must be of a simple type, is used in the constraint. It is possible to
specify an ordered list of {fields}s, to cater to multi-field keys, keyrefs, and
uniqueness constraints.

Page 109 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

In order to reduce the burden on implementers, in particular implementers of
streaming processors, only restricted subsets of XPath expressions are allowed in
{selector} and {fields}. The details are given in Constraints on Identity-constraint
Definition Schema Components (§3.11.6).

Note: Provision for multi-field keys etc. goes beyond what is supported by
xsl:key.

See Annotations (§3.13) for information on the role of the {annotation} property.

3.11.2 XML Representation of Identity-constraint Definition Schema
Components

The XML representation for an identity-constraint definition schema component is
either a <key>, a <keyref> or a <unique> element information item. The
correspondences between the properties of those information items and properties
of the component they correspond to are as follows:

XML Representation Summary: unique Element Information Item

<unique
 id = ID
 name = NCName
 {any attributes with non-schema namespace . . .}>
 Content: (annotation?, (selector, field+))
</unique>

<key
 id = ID
 name = NCName
 {any attributes with non-schema namespace . . .}>
 Content: (annotation?, (selector, field+))
</key>

<keyref
 id = ID
 name = NCName
 refer = QName
 {any attributes with non-schema namespace . . .}>
 Content: (annotation?, (selector, field+))
</keyref>

<selector
 id = ID
 xpath = a subset of XPath expression, see below
 {any attributes with non-schema namespace . . .}>
 Content: (annotation?)

Page 110 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

</selector>

<field
 id = ID
 xpath = a subset of XPath expression, see below
 {any attributes with non-schema namespace . . .}>
 Content: (annotation?)
</field>

Identity-constraint Definition Schema Component
Property Representation
{name} The ·actual value· of the name [attribute]

{target
namespace}

The ·actual value· of the targetNamespace [attribute]
of the parent schema element information item.

{identity-
constraint
category}

One of key, keyref or unique, depending on the item.

{selector} A restricted XPath expression corresponding to the
·actual value· of the xpath [attribute] of the <selector>
element information item among the [children]

{fields} A sequence of XPath expressions, corresponding to the
·actual value·s of the xpath [attribute]s of the <field>
element information item [children], in order.

{referenced
key}

If the item is a <keyref>, the identity-constraint definition
·resolved· to by the ·actual value· of the refer
[attribute], otherwise ·absent·.

{annotation} The annotations corresponding to the <annotation>
element information item in the [children], if present, and
in the <selector> and <field> [children], if present,
otherwise ·absent·.

Example
<xs:element name="vehicle">
 <xs:complexType>
 . . .
 <xs:attribute name="plateNumber" type="xs:integer"/>
 <xs:attribute name="state" type="twoLetterCode"/>
 </xs:complexType>
</xs:element>

<xs:element name="state">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="code" type="twoLetterCode"/>
 <xs:element ref="vehicle" maxOccurs="unbounded"/>

Page 111 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

 <xs:element ref="person" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>

 <xs:key name="reg"> <!-- vehicles are keyed by their plate within states
 <xs:selector xpath=".//vehicle"/>
 <xs:field xpath="@plateNumber"/>
 </xs:key>
</xs:element>

<xs:element name="root">
 <xs:complexType>
 <xs:sequence>
 . . .
 <xs:element ref="state" maxOccurs="unbounded"/>
 . . .
 </xs:sequence>
 </xs:complexType>

 <xs:key name="state"> <!-- states are keyed by their code -->
 <xs:selector xpath=".//state"/>
 <xs:field xpath="code"/>
 </xs:key>

 <xs:keyref name="vehicleState" refer="state">
 <!-- every vehicle refers to its state -->
 <xs:selector xpath=".//vehicle"/>
 <xs:field xpath="@state"/>
 </xs:keyref>

 <xs:key name="regKey"> <!-- vehicles are keyed by a pair of state and pl
 <xs:selector xpath=".//vehicle"/>
 <xs:field xpath="@state"/>
 <xs:field xpath="@plateNumber"/>
 </xs:key>

 <xs:keyref name="carRef" refer="regKey"> <!-- people's cars are a referen
 <xs:selector xpath=".//car"/>
 <xs:field xpath="@regState"/>
 <xs:field xpath="@regPlate"/>
 </xs:keyref>

</xs:element>

<xs:element name="person">
 <xs:complexType>
 <xs:sequence>
 . . .
 <xs:element name="car">
 <xs:complexType>
 <xs:attribute name="regState" type="twoLetterCode"/>
 <xs:attribute name="regPlate" type="xs:integer"/>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>

Page 112 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

</xs:element>

A state element is defined, which contains a code child and some vehicle
and person children. A vehicle in turn has a plateNumber attribute, which is
an integer, and a state attribute. State's codes are a key for them within the
document. Vehicle's plateNumbers are a key for them within states, and state
and plateNumber is asserted to be a key for vehicle within the document as a
whole. Furthermore, a person element has an empty car child, with regState
and regPlate attributes, which are then asserted together to refer to vehicles
via the carRef constraint. The requirement that a vehicle's state match its
containing state's code is not expressed here.

3.11.3 Constraints on XML Representations of Identity-constraint Definitions

Schema Representation Constraint: Identity-constraint Definition
Representation OK

In addition to the conditions imposed on <key>, <keyref> and <unique> element
information items by the schema for schemas, the corresponding identity-
constraint definition must satisfy the conditions set out in Constraints on Identity-
constraint Definition Schema Components (§3.11.6).

3.11.4 Identity-constraint Definition Validation Rules

Validation Rule: Identity-constraint Satisfied
For an element information item to be locally ·valid· with respect to an identity-
constraint all of the following must be true:
1 The {selector}, with the element information item as the context node, evaluates

to a node-set (as defined in [XPath]). [Definition:] Call this the target node set.
2 Each node in the ·target node set· is either the context node oran element node

among its descendants.
3 For each node in the ·target node set· all of the {fields}, with that node as the

context node, evaluate to either an empty node-set or a node-set with exactly
one member, which must have a simple type. [Definition:] Call the sequence of
the type-determined values (as defined in [XML Schemas: Datatypes]) of the
[schema normalized value] of the element and/or attribute information items in
those node-sets in order the key-sequence of the node.

4 [Definition:] Call the subset of the ·target node set· for which all the {fields}
evaluate to a node-set with exactly one member which is an element or
attribute node with a simple type the qualified node set. The appropriate case
among the following must be true:
4.1 If the {identity-constraint category} is unique, then no two members of the

·qualified node set· have ·key-sequences· whose members are pairwise
equal, as defined by Equal in [XML Schemas: Datatypes].

4.2 If the {identity-constraint category} is key, then all of the following must be
true:
4.2.1 The ·target node set· and the ·qualified node set· are equal, that is,

Page 113 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

every member of the ·target node set· is also a member of the ·qualified
node set· and vice versa.

4.2.2 No two members of the ·qualified node set· have ·key-sequences·
whose members are pairwise equal, as defined by Equal in [XML
Schemas: Datatypes].

4.2.3 No element member of the ·key-sequence· of any member of the
·qualified node set· was assessed as ·valid· by reference to an element
declaration whose {nillable} is true.

4.3 If the {identity-constraint category} is keyref, then for each member of the
·qualified node set· (call this the keyref member), there must be a ·node
table· associated with the {referenced key} in the [identity-constraint table]
of the element information item (see Identity-constraint Table (§3.11.5),
which must be understood as logically prior to this clause of this constraint,
below) and there must be an entry in that table whose ·key-sequence· is
equal to the keyref member's ·key-sequence· member for member, as
defined by Equal in [XML Schemas: Datatypes].
Note: The use of [schema normalized value] in the definition of ·key
sequence· above means that default or fixed value constraints may play a
part in ·key sequence·s.

Note: Because the validation of keyref (see clause 4.3) depends on finding
appropriate entries in a element information item's ·node table·, and ·node
tables· are assembled strictly recursively from the node tables of
descendants, only element information items within the sub-tree rooted at the
element information item being ·validated· can be referenced successfully.
Note: Although this specification defines a ·post-schema-validation infoset·
contribution which would enable schema-aware processors to implement
clause 4.2.3 above (Element Declaration (§3.3.5)), processors are not
required to provide it. This clause can be read as if in the absence of this
infoset contribution, the value of the relevant {nillable} property must be
available.

3.11.5 Identity-constraint Definition Information Set Contributions

Schema Information Set Contribution: Identity-constraint Table
[Definition:] An eligible identity-constraint of an element information item is
one such that clause 4.1 or clause 4.2 of Identity-constraint Satisfied (§3.11.4) is
satisfied with respect to that item and that constraint, or such that any of the
element information item [children] of that item have an [identity-constraint table]
property whose value has an entry for that constraint.

[Definition:] A node table is a set of pairs each consisting of a ·key-sequence·
and an element node.

Whenever an element information item has one or more ·eligible identity-
constraints·, in the ·post-schema-validation infoset· that element information
item has a property as follows:

Page 114 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

PSVI Contributions for element information items

[identity-constraint table]
one Identity-constraint Binding information item for each ·eligible
identity-constraint·, with properties as follows:

PSVI Contributions for Identity-constraint
Binding information items

[definition]
The ·eligible identity-constraint·.

[node table]
A ·node table· with one entry for every ·key-sequence·
(call it k) and node (call it n) such that one of the
following must be true:
1 There is an entry in one of the ·node tables·

associated with the [definition] in an Identity-
constraint Binding information item in at least one of
the [identity-constraint table]s of the element
information item [children] of the element information
item whose ·key-sequence· is k and whose node is n;

2 n appears with ·key-sequence· k in the ·qualified node
set· for the [definition].

provided no two entries have the same ·key-sequence·
but distinct nodes. Potential conflicts are resolved by not
including any conflicting entries which would have owed
their inclusion to clause 1 above. Note that if all the
conflicting entries arose under clause 1 above, this
means no entry at all will appear for the offending ·key-
sequence·.

Note: The complexity of the above arises from the fact that keyref identity-
constraints may be defined on domains distinct from the embedded domain
of the identity-constraint they reference, or the domains may be the same but
self-embedding at some depth. In either case the ·node table· for the
referenced identity-constraint needs to propagate upwards, with conflict
resolution.

The Identity-constraint Binding information item, unlike others in this
specification, is essentially an internal bookkeeping mechanism. It is
introduced to support the definition of Identity-constraint Satisfied (§3.11.4)
above. Accordingly, conformant processors may, but are not required to,
expose them via [identity-constraint table] properties in the ·post-schema-
validation infoset·. In other words, the above constraints may be read as
saying ·validation· of identity-constraints proceeds as if such infoset items

Page 115 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

existed.

3.11.6 Constraints on Identity-constraint Definition Schema Components

All identity-constraint definitions (see Identity-constraint Definitions (§3.11)) must
satisfy the following constraint.

Schema Component Constraint: Identity-constraint Definition Properties
Correct

All of the following must be true:
1 The values of the properties of an identity-constraint definition must be as

described in the property tableau in The Identity-constraint Definition Schema
Component (§3.11.1), modulo the impact of Missing Sub-components (§5.3).

2 If the {identity-constraint category} is keyref, the cardinality of the {fields} must
equal that of the {fields} of the {referenced key}.

Schema Component Constraint: Selector Value OK
All of the following must be true:
1 The {selector} must be a valid XPath expression, as defined in [XPath].
2 One of the following must be true:

2.1 It must conform to the following extended BNF:

2.2 It must be an XPath expression involving the child axis whose
abbreviated form is as given above.

For readability, whitespace may be used in selector XPath expressions even
though not explicitly allowed by the grammar: whitespace may be freely added
within patterns before or after any token.

When tokenizing, the longest possible token is always returned.

Schema Component Constraint: Fields Value OK
All of the following must be true:
1 Each member of the {fields} must be a valid XPath expression, as defined in

[XPath].

Selector XPath expressions

[1] Selector ::= Path ('|' Path)*
[2] Path ::= ('.//')? Step ('/' Step)*
[3] Step ::= '.' | NameTest
[4] NameTest ::= QName | '*' | NCName ':' '*'

Lexical productions

[5] token ::= '.' | '/' | '//' | '|' | '@' | NameTest
[6] whitespace ::= S

Page 116 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

2 One of the following must be true:
2.1 It must conform to the extended BNF given above for Selector, with the

following modification:

This production differs from the one above in allowing the final step to match
an attribute node.

2.2 It must be an XPath expression involving the child and/or attribute
axes whose abbreviated form is as given above.

For readability, whitespace may be used in field XPath expressions even though
not explicitly allowed by the grammar: whitespace may be freely added within
patterns before or after any token.

When tokenizing, the longest possible token is always returned.

3.12 Notation Declarations
 3.12.1 The Notation Declaration Schema Component
 3.12.2 XML Representation of Notation Declaration Schema Components
 3.12.3 Constraints on XML Representations of Notation Declarations
 3.12.4 Notation Declaration Validation Rules
 3.12.5 Notation Declaration Information Set Contributions
 3.12.6 Constraints on Notation Declaration Schema Components

Notation declarations reconstruct XML 1.0 NOTATION declarations.

Example
<xs:notation name="jpeg" public="image/jpeg" system="viewer.exe">

The XML representation of a notation declaration.

3.12.1 The Notation Declaration Schema Component

The notation declaration schema component has the following properties:

Schema Component: Notation Declaration

{name}
An NCName as defined by [XML-Namespaces].

{target namespace}
Either ·absent· or a namespace name, as defined in [XML-
Namespaces].

{system identifier}

Path in Field XPath expressions

[7] Path ::= ('.//')? (Step '/')* (Step | '@'
NameTest)

Page 117 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

Optional if {public identifier} is present. A URI reference.
{public identifier}

Optional if {system identifier} is present. A public identifier, as defined
in [XML 1.0 (Second Edition)].

{annotation}
Optional. An annotation.

Notation declarations do not participate in ·validation· as such. They are referenced
in the course of ·validating· strings as members of the NOTATION simple type.

See Annotations (§3.13) for information on the role of the {annotation} property.

3.12.2 XML Representation of Notation Declaration Schema Components

The XML representation for a notation declaration schema component is a
<notation> element information item. The correspondences between the properties
of that information item and properties of the component it corresponds to are as
follows:

XML Representation Summary: notation Element Information Item

<notation
 id = ID
 name = NCName
 public = token
 system = anyURI
 {any attributes with non-schema namespace . . .}>
 Content: (annotation?)
</notation>

Page 118 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

Notation Declaration Schema Component
Property Representation
{name} The ·actual value· of the name [attribute]

{target
namespace}

The ·actual value· of the targetNamespace [attribute]
of the parent schema element information item.

{system
identifier}

The ·actual value· of the system [attribute], if present,
otherwise ·absent·.

{public
identifier}

The ·actual value· of the public [attribute]

{annotation} The annotation corresponding to the <annotation>
element information item in the [children], if present,
otherwise ·absent·.

Example
<xs:notation name="jpeg"
 public="image/jpeg" system="viewer.exe" />

<xs:element name="picture">
 <xs:complexType>
 <xs:simpleContent>
 <xs:extension base="xs:hexBinary">
 <xs:attribute name="pictype">
 <xs:simpleType>
 <xs:restriction base="xs:NOTATION">
 <xs:enumeration value="jpeg"/>
 <xs:enumeration value="png"/>
 . . .
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
</xs:element>

<picture pictype="jpeg">...</picture>

3.12.3 Constraints on XML Representations of Notation Declarations

Schema Representation Constraint: Notation Definition Representation OK
In addition to the conditions imposed on <notation> element information items by
the schema for schemas, the corresponding notation definition must satisfy the
conditions set out in Constraints on Notation Declaration Schema Components
(§3.12.6).

Page 119 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

3.12.4 Notation Declaration Validation Rules

None as such.

3.12.5 Notation Declaration Information Set Contributions

Schema Information Set Contribution: Validated with Notation
Whenever an attribute information item is ·valid· with respect to a NOTATION, in
the ·post-schema-validation infoset· its parent element information item either
has a property as follows:

PSVI Contributions for element information items

[notation]
An ·item isomorphic· to the notation declaration whose {name} and
{target namespace} match the ·local name· and ·namespace name·
(as defined in QName Interpretation (§3.15.3)) of the attribute item's
·actual value·

or has a pair of properties as follows:

PSVI Contributions for element information items

[notation system]
The value of the {system identifier} of that notation declaration.

[notation public]
The value of the {public identifier} of that notation declaration.

Note: For compatibility, only one such attribute should appear on any given
element. If more than one such attribute does appear, which one supplies
the infoset property or properties above is not defined.

3.12.6 Constraints on Notation Declaration Schema Components

All notation declarations (see Notation Declarations (§3.12)) must satisfy the
following constraint.

Schema Component Constraint: Notation Declaration Correct
The values of the properties of a notation declaration must be as described in
the property tableau in The Notation Declaration Schema Component (§3.12.1),
modulo the impact of Missing Sub-components (§5.3).

3.13 Annotations
 3.13.1 The Annotation Schema Component

Page 120 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

 3.13.2 XML Representation of Annotation Schema Components
 3.13.3 Constraints on XML Representations of Annotations
 3.13.4 Annotation Validation Rules
 3.13.5 Annotation Information Set Contributions
 3.13.6 Constraints on Annotation Schema Components

Annotations provide for human- and machine-targeted annotations of schema
components.

Example
<xs:simpleType fn:note="special">
 <xs:annotation>
 <xs:documentation>A type for experts only</xs:documentation>
 <xs:appinfo>
 <fn:specialHandling>checkForPrimes</fn:specialHandling>
 </xs:appinfo>
 </xs:annotation>

XML representations of three kinds of annotation.

3.13.1 The Annotation Schema Component

The annotation schema component has the following properties:

Schema Component: Annotation

{application information}
A sequence of element information items.

{user information}
A sequence of element information items.

{attributes}
A sequence of attribute information items.

{user information} is intended for human consumption, {application information} for
automatic processing. In both cases, provision is made for an optional URI
reference to supplement the local information, as the value of the source attribute
of the respective element information items. ·Validation· does not involve
dereferencing these URIs, when present. In the case of {user information},
indication should be given as to the identity of the (human) language used in the
contents, using the xml:lang attribute.

{attributes} ensures that when schema authors take advantage of the provision for
adding attributes from namespaces other than the XML Schema namespace to
schema documents, they are available within the components corresponding to

Page 121 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

the element items where such attributes appear.

Annotations do not participate in ·validation· as such. Provided an annotation itself
satisfies all relevant ·Schema Component Constraints· it cannot affect the
·validation· of element information items.

3.13.2 XML Representation of Annotation Schema Components

Annotation of schemas and schema components, with material for human or
computer consumption, is provided for by allowing application information and
human information at the beginning of most major schema elements, and
anywhere at the top level of schemas. The XML representation for an annotation
schema component is an <annotation> element information item. The
correspondences between the properties of that information item and properties of
the component it corresponds to are as follows:

XML Representation Summary: annotation Element Information Item

<annotation
 id = ID
 {any attributes with non-schema namespace . . .}>
 Content: (appinfo | documentation)*
</annotation>

<appinfo
 source = anyURI
 {any attributes with non-schema namespace . . .}>
 Content: ({any})*
</appinfo>

<documentation
 source = anyURI
 xml:lang = language
 {any attributes with non-schema namespace . . .}>
 Content: ({any})*
</documentation>

Annotation Schema Component

Property Representation
{application
information}

A sequence of the <appinfo> element information items
from among the [children], in order, if any, otherwise the
empty sequence.

{user
information}

A sequence of the <documentation> element information
items from among the [children], in order, if any,
otherwise the empty sequence.

Page 122 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

{attributes} A sequence of attribute information items, namely those
allowed by the attribute wildcard in the type definition for
the <annotation> item itself or for the enclosing items
which correspond to the component within which the
annotation component is located.

The annotation component corresponding to the <annotation> element in the
example above will have one element item in each of its {user information} and
{application information} and one attribute item in its {attributes}.

3.13.3 Constraints on XML Representations of Annotations

Schema Representation Constraint: Annotation Definition Representation OK
In addition to the conditions imposed on <annotation> element information items
by the schema for schemas, the corresponding annotation must satisfy the
conditions set out in Constraints on Annotation Schema Components (§3.13.6).

3.13.4 Annotation Validation Rules

None as such.

3.13.5 Annotation Information Set Contributions

None as such: the addition of annotations to the ·post-schema-validation infoset· is
covered by the ·post-schema-validation infoset· contributions of the enclosing
components.

3.13.6 Constraints on Annotation Schema Components

All annotations (see Annotations (§3.13)) must satisfy the following constraint.

Schema Component Constraint: Annotation Correct
The values of the properties of an annotation must be as described in the
property tableau in The Annotation Schema Component (§3.13.1), modulo the
impact of Missing Sub-components (§5.3).

3.14 Simple Type Definitions
 3.14.1 (non-normative) The Simple Type Definition Schema Component
 3.14.2 (non-normative) XML Representation of Simple Type Definition Schema
Components
 3.14.3 (non-normative) Constraints on XML Representations of Simple Type
Definitions
 3.14.4 Simple Type Definition Validation Rules
 3.14.5 Simple Type Definition Information Set Contributions

Page 123 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

 3.14.6 Constraints on Simple Type Definition Schema Components
 3.14.7 Built-in Simple Type Definition

Note: This section consists of a combination of non-normative versions of
normative material from [XML Schemas: Datatypes], for local cross-reference
purposes, and normative material relating to the interface between schema
components defined in this specification and the simple type definition
component.

Simple type definitions provide for constraining character information item
[children] of element and attribute information items.

Example
<xs:simpleType name="fahrenheitWaterTemp">
 <xs:restriction base="xs:number">
 <xs:fractionDigits value="2"/>
 <xs:minExclusive value="0.00"/>
 <xs:maxExclusive value="100.00"/>
 </xs:restriction>
</xs:simpleType>

The XML representation of a simple type definition.

3.14.1 (non-normative) The Simple Type Definition Schema Component

The simple type definition schema component has the following properties:

Schema Component: Simple Type Definition

{name}
Optional. An NCName as defined by [XML-Namespaces].

{target namespace}
Either ·absent· or a namespace name, as defined in [XML-
Namespaces].

{base type definition}
A simple type definition, which may be the ·simple ur-type definition·.

{facets}
A set of constraining facets.

{fundamental facets}
A set of fundamental facets.

{final}
A subset of {extension, list, restriction, union}.

{variety}
One of {atomic, list, union}. Depending on the value of {variety},
further properties are defined as follows:
atomic

{primitive type definition}

Page 124 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

A built-in primitive simple type definition.
list

{item type definition}
A simple type definition.

union
{member type definitions}

A non-empty sequence of simple type definitions.
{annotation}

Optional. An annotation.

Simple types are identified by their {name} and {target namespace}. Except for
anonymous simple types (those with no {name}), since type definitions (i.e. both
simple and complex type definitions taken together) must be uniquely identified
within an ·XML Schema·, no simple type definition can have the same name as
another simple or complex type definition. Simple type {name}s and {target
namespace}s are provided for reference from instances (see xsi:type (§2.6.1)), and
for use in the XML representation of schema components (specifically in <element>
and <attribute>). See References to schema components across namespaces
(§4.2.3) for the use of component identifiers when importing one schema into
another.

Note: The {name} of a simple type is not ipso facto the [(local) name] of the
element or attribute information items ·validated· by that definition. The
connection between a name and a type definition is described in Element
Declarations (§3.3) and Attribute Declarations (§3.2).

A simple type definition with an empty specification for {final} can be used as the
{base type definition} for other types derived by either of extension or restriction, or
as the {item type definition} in the definition of a list, or in the {member type
definitions} of a union; the explicit values extension, restriction, list and union
prevent further derivations by extension (to yield a complex type) and restriction (to
yield a simple type) and use in constructing lists and unions respectively.

{variety} determines whether the simple type corresponds to an atomic, list or union
type as defined by [XML Schemas: Datatypes].

As described in Type Definition Hierarchy (§2.2.1.1), every simple type definition is
a ·restriction· of some other simple type (the {base type definition}), which is the
·simple ur-type definition· if and only if the type definition in question is one of the
built-in primitive datatypes, or a list or union type definition which is not itself derived
by restriction from a list or union respectively. Each atomic type is ultimately a
restriction of exactly one such built-in primitive datatype, which is its {primitive type
definition}.

Page 125 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

{facets} for each simple type definition are selected from those defined in [XML
Schemas: Datatypes]. For atomic definitions, these are restricted to those
appropriate for the corresponding {primitive type definition}. Therefore, the value
space and lexical space (i.e. what is ·validated· by any atomic simple type) is
determined by the pair ({primitive type definition}, {facets}).

As specified in [XML Schemas: Datatypes], list simple type definitions ·validate·
space separated tokens, each of which conforms to a specified simple type
definition, the {item type definition}. The item type specified must not itself be a list
type, and must be one of the types identified in [XML Schemas: Datatypes] as a
suitable item type for a list simple type. In this case the {facets} apply to the list
itself, and are restricted to those appropriate for lists.

A union simple type definition ·validates· strings which satisfy at least one of its
{member type definitions}. As in the case of list, the {facets} apply to the union
itself, and are restricted to those appropriate for unions.

The ·simple ur-type definition· must not be named as the ·base type definition· of
any user-defined atomic simple type definitions: as it has no constraining facets,
this would be incoherent.

See Annotations (§3.13) for information on the role of the {annotation} property.

3.14.2 (non-normative) XML Representation of Simple Type Definition
Schema Components

Note: This section reproduces a version of material from [XML Schemas:
Datatypes], for local cross-reference purposes.

XML Representation Summary: simpleType Element Information Item

<simpleType
 final = (#all | List of (list | union | restriction))
 id = ID
 name = NCName
 {any attributes with non-schema namespace . . .}>
 Content: (annotation?, (restriction | list | union))
</simpleType>

<restriction
 base = QName
 id = ID
 {any attributes with non-schema namespace . . .}>
 Content: (annotation?, (simpleType?, (minExclusive |
minInclusive | maxExclusive | maxInclusive | totalDigits |
fractionDigits | length | minLength | maxLength | enumeration |
whiteSpace | pattern)*))

Page 126 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

</restriction>

<list
 id = ID
 itemType = QName
 {any attributes with non-schema namespace . . .}>
 Content: (annotation?, simpleType?)
</list>

<union
 id = ID
 memberTypes = List of QName
 {any attributes with non-schema namespace . . .}>
 Content: (annotation?, simpleType*)
</union>

Simple Type Definition Schema Component
Property Representation
{name} The ·actual value· of the name [attribute] if present,

otherwise ·absent·.
{target
namespace}

The ·actual value· of the targetNamespace [attribute] of
the <schema> ancestor element information item if
present, otherwise ·absent·.

{base type
definition}

The appropriate case among the following:
1 If the <restriction> alternative is chosen, then the type

definition ·resolved· to by the ·actual value· of the base
[attribute] of <restriction>, if present, otherwise the type
definition corresponding to the <simpleType> among the
[children] of <restriction>.

2 If the <list> or <union> alternative is chosen, then the
·simple ur-type definition·.

{final} As for the {prohibited substitutions} property of complex
type definitions, but using the final and finalDefault
[attributes] in place of the block and blockDefault
[attributes] and with the relevant set being {extension,
restriction, list, union}.

{variety} If the <list> alternative is chosen, then list, otherwise if the
<union> alternative is chosen, then union, otherwise (the
<restriction> alternative is chosen), then the {variety} of
the {base type definition}.

If the {variety} is atomic, the following additional property mappings also
apply:

Atomic Simple Type Definition Schema Component

Page 127 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

Property Representation
{primitive
type
definition}

The built-in primitive type definition from which the {base
type definition} is derived.

{facets} A set of facet components ·constituting a restriction· of the
{facets} of the {base type definition} with respect to a set of
facet components corresponding to the appropriate element
information items among the [children] of <restriction> (i.e.
those which specify facets, if any), as defined in Simple
Type Restriction (Facets) (§3.14.6).

If the {variety} is list, the following additional property mappings also apply:

List Simple Type Definition Schema Component
Property Representation
{item type
definition}

The appropriate case among the following:
1 If the <list> alternative is chosen, then the type definition

·resolved· to by the ·actual value· of the itemType
[attribute] of <list>, if present, otherwise the type definition
corresponding to the <simpleType> among the [children] of
<list>.

2 If the <restriction> option is chosen, then the {item type
definition} of the {base type definition}.

{facets} If the <restriction> alternative is chosen, a set of facet
components ·constituting a restriction· of the {facets} of the
{base type definition} with respect to a set of facet
components corresponding to the appropriate element
information items among the [children] of <restriction> (i.e.
those which specify facets, if any), as defined in Simple Type
Restriction (Facets) (§3.14.6), otherwise the empty set.

If the {variety} is union, the following additional property mappings also
apply:

Union Simple Type Definition Schema Component

Property Representation
{member
type
definitions}

The appropriate case among the following:
1 If the <union> alternative is chosen, then

[Definition:] define the explicit members as the type
definitions ·resolved· to by the items in the ·actual value·
of the memberTypes [attribute], if any, followed by the
type definitions corresponding to the <simpleType>s
among the [children] of <union>, if any. The actual value
is then formed by replacing any union type definition in

Page 128 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

the ·explicit members· with the members of their {member
type definitions}, in order.

2 If the <restriction> option is chosen, then the {member
type definitions} of the {base type definition}.

{facets} If the <restriction> alternative is chosen, a set of facet
components ·constituting a restriction· of the {facets} of the
{base type definition} with respect to a set of facet
components corresponding to the appropriate element
information items among the [children] of <restriction> (i.e.
those which specify facets, if any), as defined in Simple
Type Restriction (Facets) (§3.14.6), otherwise the empty
set.

3.14.3 Constraints on XML Representations of Simple Type Definitions

Schema Representation Constraint: Simple Type Definition Representation
OK

In addition to the conditions imposed on <simpleType> element information items
by the schema for schemas, all of the following must be true:
1 The corresponding simple type definition, if any, must satisfy the conditions set

out in Constraints on Simple Type Definition Schema Components (§3.14.6).
2 If the <restriction> alternative is chosen, either it must have a base [attribute] or

a <simpleType> among its [children], but not both.
3 If the <list> alternative is chosen, either it must have an itemType [attribute] or

a <simpleType> among its [children], but not both.
4 Circular union type definition is disallowed. That is, if the <union> alternative is

chosen, there must not be any entries in the memberTypes [attribute] at any
depth which resolve to the component corresponding to the <simpleType>.

3.14.4 Simple Type Definition Validation Rules

Validation Rule: String Valid
For a string to be locally ·valid· with respect to a simple type definition all of the
following must be true:
1 It is schema-valid with respect to that definition as defined by Datatype Valid in

[XML Schemas: Datatypes].
2 The appropriate case among the following must be true:

2.1 If The definition is ENTITY or is validly derived from ENTITY given the
empty set, as defined in Type Derivation OK (Simple) (§3.14.6), then the
string must be a ·declared entity name·.

2.2 If The definition is ENTITIES or is validly derived from ENTITIES given the
empty set, as defined in Type Derivation OK (Simple) (§3.14.6), then every
whitespace-delimited substring of the string must be a ·declared entity
name·.

Page 129 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

2.3 otherwise no further condition applies.

[Definition:] A string is a declared entity name if it is equal to the [name] of
some unparsed entity information item in the value of the [unparsedEntities]
property of the document information item at the root of the infoset containing
the element or attribute information item whose ·normalized value· the string is.

3.14.5 Simple Type Definition Information Set Contributions

None as such.

3.14.6 Constraints on Simple Type Definition Schema Components

All simple type definitions other than the ·simple ur-type definition· and the built-in
primitive datatype definitions (see Simple Type Definitions (§3.14)) must satisfy
both the following constraints.

Schema Component Constraint: Simple Type Definition Properties Correct
All of the following must be true:
1 The values of the properties of a simple type definition must be as described

in the property tableau in Datatype definition, modulo the impact of Missing
Sub-components (§5.3).

2 All simple type definitions must be derived ultimately from the ·simple ur-type
definition (so· circular definitions are disallowed). That is, it must be possible
to reach a built-in primitive datatype or the ·simple ur-type definition· by
repeatedly following the {base type definition}.

3 The {final} of the {base type definition} must not contain restriction.

Schema Component Constraint: Derivation Valid (Restriction, Simple)
The appropriate case among the following must be true:
1 If the {variety} is atomic, then all of the following must be true:

1.1 The {base type definition} must be an atomic simple type definition or a
built-in primitive datatype.

1.2 The {final} of the {base type definition} must not contain restriction.
1.3 For each facet in the {facets} (call this DF) all of the following must be

true:
1.3.1 DF must be an allowed constraining facet for the {primitive type

definition}, as specified in the appropriate subsection of 3.2 Primitive
datatypes.

1.3.2 If there is a facet of the same kind in the {facets} of the {base type
definition} (call this BF),then the DF's {value} must be a valid restriction of
BF's {value} as defined in [XML Schemas: Datatypes].

2 If the {variety} is list, then all of the following must be true:
2.1 The {item type definition} must have a {variety} of atomic or union (in

which case all the {member type definitions} must be atomic).
2.2
2.3 The appropriate case among the following must be true:

Page 130 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

2.3.1 If the {base type definition} is the ·simple ur-type definition· , then all
of the following must be true:
2.3.1.1 The {final} of the {item type definition} must not contain list.
2.3.1.2 The {facets} must only contain the whiteSpace facet component.

2.3.2 otherwise all of the following must be true:
2.3.2.1 The {base type definition} must have a {variety} of list.
2.3.2.2 The {final} of the {base type definition} must not contain

restriction.
2.3.2.3 The {item type definition} must be validly derived from the {base

type definition}'s {item type definition} given the empty set, as defined
in Type Derivation OK (Simple) (§3.14.6).

2.3.2.4 Only length, minLength, maxLength, whiteSpace, pattern and
enumeration facet components are allowed among the {facets}.

2.3.2.5 For each facet in the {facets} (call this DF), if there is a facet of
the same kind in the {facets} of the {base type definition} (call this
BF),then the DF's {value} must be a valid restriction of BF's {value} as
defined in [XML Schemas: Datatypes].

The first case above will apply when a list is derived by specifying an item
type, the second when derived by restriction from another list.

3 If the {variety} is union, then all of the following must be true:
3.1 The {member type definitions} must all have {variety} of atomic or list.
3.2
3.3 The appropriate case among the following must be true:

3.3.1 If the {base type definition} is the ·simple ur-type definition· , then all
of the following must be true:
3.3.1.1 All of the {member type definitions} must have a {final} which does

not contain union.
3.3.1.2 The {facets} must be empty.

3.3.2 otherwise all of the following must be true:
3.3.2.1 The {base type definition} must have a {variety} of union.
3.3.2.2 The {final} of the {base type definition} must not contain

restriction.
3.3.2.3 The {member type definitions}, in order, must be validly derived

from the corresponding type definitions in the {base type definition}'s
{member type definitions} given the empty set, as defined in Type
Derivation OK (Simple) (§3.14.6).

3.3.2.4 Only pattern and enumeration facet components are allowed
among the {facets}.

3.3.2.5 For each facet in the {facets} (call this DF), if there is a facet of
the same kind in the {facets} of the {base type definition} (call this
BF),then the DF's {value} must be a valid restriction of BF's {value} as
defined in [XML Schemas: Datatypes].

The first case above will apply when a union is derived by specifying one or
more member types, the second when derived by restriction from another
union.

[Definition:] If this constraint Derivation Valid (Restriction, Simple) (§3.14.6)
holds of a simple type definition, it is a valid restriction of its ·base type

Page 131 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

definition·.

The following constraint defines relations appealed to elsewhere in this
specification.

Schema Component Constraint: Type Derivation OK (Simple)
For a simple type definition (call it D, for derived) to be validly derived from a
type definition (call this B, for base) given a subset of {extension, restriction, list,
union} (of which only restriction is actually relevant) one of the following must be
true:
1 They are the same type definition.
2 All of the following must be true:

2.1 restriction is not in the subset, or in the {final} of its own {base type
definition};

2.2 One of the following must be true:
2.2.1 D's ·base type definition· is B.
2.2.2 D's ·base type definition· is not the ·ur-type definition· and is validly

derived from B given the subset, as defined by this constraint.
2.2.3 D's {variety} is list or union and B is the ·simple ur-type definition·.
2.2.4 B's {variety} is union and D is validly derived from a type definition in

B's {member type definitions} given the subset, as defined by this
constraint.

Note: With respect to clause 1, see the Note on identity at the end of (§3.4.6)
above.

Schema Component Constraint: Simple Type Restriction (Facets)
For a simple type definition (call it R) to restrict another simple type definition
(call it B) with a set of facets (call this S) all of the following must be true:
1 The {variety} of R is the same as that of B.
2 If {variety} is atomic, the {primitive type definition} of R is the same as that of

B.
3 The {facets} of R are the union of S and the {facets} of B, eliminating

duplicates. To eliminate duplicates, when a facet of the same kind occurs in
both S and the {facets} of B, the one in the {facets} of B is not included, with
the exception of enumeration and pattern facets, for which multiple
occurrences with distinct values are allowed.

Additional constraint(s) may apply depending on the kind of facet, see the
appropriate sub-section of 4.3 Constraining Facets

[Definition:] If clause 3 above holds, the {facets} of R constitute a restriction
of the {facets} of B with respect to S.

3.14.7 Built-in Simple Type Definition

There is a simple type definition nearly equivalent to the ·simple ur-type definition·
present in every schema by definition. It has the following properties:

Page 132 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

The ·simple ur-type definition· is the root of the simple type definition hierarchy,
and as such mediates between the other simple type definitions, which all
eventually trace back to it via their {base type definition} properties, and the ·ur-
type definition·, which is its {base type definition}. This is why the ·simple ur-type
definition· is exempted from the first clause of Simple Type Definition Properties
Correct (§3.14.6), which would otherwise bar it because of its derivation from a
complex type definition and absence of {variety}.

Simple type definitions for all the built-in primitive datatypes, namely string,
boolean, float, double, number, dateTime, duration, time, date, gMonth,
gMonthDay, gDay, gYear, gYearMonth, hexBinary, base64Binary, anyURI (see
the Primitive Datatypes section of [XML Schemas: Datatypes]) are present by
definition in every schema. All are in the XML Schema {target namespace}
(namespace name http://www.w3.org/2001/XMLSchema), have an atomic
{variety} with an empty {facets} and the ·simple ur-type definition· as their ·base
type definition· and themselves as {primitive type definition}.

Similarly, simple type definitions for all the built-in derived datatypes (see the
Derived Datatypes section of [XML Schemas: Datatypes]) are present by definition
in every schema, with properties as specified in [XML Schemas: Datatypes] and
as represented in XML in Schema for Schemas (normative) (§A).

3.15 Schemas as a Whole
 3.15.1 The Schema Itself
 3.15.2 XML Representations of Schemas
 3.15.3 Constraints on XML Representations of Schemas
 3.15.4 Validation Rules for Schemas as a Whole
 3.15.5 Schema Information Set Contributions
 3.15.6 Constraints on Schemas as a Whole

A schema consists of a set of schema components.

Example
<xs:schema

Simple Type Definition of the Ur-Type

Property Value
{name} anySimpleType
{target namespace} http://www.w3.org/2001/XMLSchema
{base type definition} ·the ur-type definition·
{final} The empty set
{variety} ·absent·

Page 133 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://www.example.com/example">
 . . .
</xs:schema>

The XML representation of the skeleton of a schema.

3.15.1 The Schema Itself

At the abstract level, the schema itself is just a container for its components.

Schema Component: Schema

{type definitions}
A set of named simple and complex type definitions.

{attribute declarations}
A set of named (top-level) attribute declarations.

{element declarations}
A set of named (top-level) element declarations.

{attribute group definitions}
A set of named attribute group definitions.

{model group definitions}
A set of named model group definitions.

{notation declarations}
A set of notation declarations.

{annotations}
A set of annotations.

3.15.2 XML Representations of Schemas

A schema is represented in XML by one or more ·schema documents·, that is, one
or more <schema> element information items. A ·schema document· contains
representations for a collection of schema components, e.g. type definitions and
element declarations, which have a common {target namespace}. A ·schema
document· which has one or more <import> element information items corresponds
to a schema with components with more than one {target namespace}, see Import
Constraints and Semantics (§4.2.3).

XML Representation Summary: schema Element Information Item

<schema
 attributeFormDefault = (qualified |
unqualified) : unqualified
 blockDefault = (#all | List of (extension |
restriction | substitution)) : ''

Page 134 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

 elementFormDefault = (qualified |
unqualified) : unqualified
 finalDefault = (#all | List of (extension |
restriction | list | union)) : ''
 id = ID
 targetNamespace = anyURI
 version = token
 xml:lang = language
 {any attributes with non-schema namespace . . .}>
 Content: ((include | import | redefine | annotation)*,
(((simpleType | complexType | group | attributeGroup) | element
| attribute | notation), annotation*)*)
</schema>

Schema Schema Component

Property Representation
{type
definitions}

The simple and complex type definitions corresponding to
all the <simpleType> and <complexType> element
information items in the [children], if any, plus any
included or imported definitions, see Assembling a
schema for a single target namespace from multiple
schema definition documents (§4.2.1) and References to
schema components across namespaces (§4.2.3).

{attribute
declarations}

The (top-level) attribute declarations corresponding to all
the <attribute> element information items in the [children],
if any, plus any included or imported declarations, see
Assembling a schema for a single target namespace from
multiple schema definition documents (§4.2.1) and
References to schema components across namespaces
(§4.2.3).

{element
declarations}

The (top-level) element declarations corresponding to all
the <element> element information items in the [children],
if any, plus any included or imported declarations, see
Assembling a schema for a single target namespace from
multiple schema definition documents (§4.2.1) and
References to schema components across namespaces
(§4.2.3).

{attribute
group
definitions}

The attribute group definitions corresponding to all the
<attributeGroup> element information items in the
[children], if any, plus any included or imported
definitions, see Assembling a schema for a single target
namespace from multiple schema definition documents
(§4.2.1) and References to schema components across
namespaces (§4.2.3).

Page 135 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

{model group
definitions}

The model group definitions corresponding to all the
<group> element information items in the [children], if
any, plus any included or imported definitions, see
Assembling a schema for a single target namespace from
multiple schema definition documents (§4.2.1) and
References to schema components across namespaces
(§4.2.3).

{notation
declarations}

The notation declarations corresponding to all the
<notation> element information items in the [children], if
any, plus any included or imported declarations, see
Assembling a schema for a single target namespace from
multiple schema definition documents (§4.2.1) and
References to schema components across namespaces
(§4.2.3).

{annotations} The annotations corresponding to all the <annotation>
element information items in the [children], if any.

Note that none of the attribute information items displayed above correspond
directly to properties of schemas. The blockDefault, finalDefault,
attributeFormDefault, elementFormDefaultand targetNamespace
attributes are appealed to in the sub-sections above, as they provide global
information applicable to many representation/component correspondences. The
other attributes (id and version) are for user convenience, and this specification
defines no semantics for them.

The definition of the schema abstract data model in XML Schema Abstract Data
Model (§2.2) makes clear that most components have a {target namespace}. Most
components corresponding to representations within a given <schema> element
information item will have a {target namespace} which corresponds to the
targetNamespace attribute.

Since the empty string is not a legal namespace name, supplying an empty string
for targetNamespace is incoherent, and is not the same as not specifying it at all.
The appropriate form of schema document corresponding to a ·schema· whose
components have no {target namespace} is one which has no targetNamespace
attribute specified at all.

Note: The XML namespaces Recommendation discusses only instance
document syntax for elements and attributes; it therefore provides no direct
framework for managing the names of type definitions, attribute group
definitions, and so on. Nevertheless, the specification applies the target
namespace facility uniformly to all schema components, i.e. not only
declarations but also definitions have a {target namespace}.

Page 136 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

Although the example schema at the beginning of this section might be a complete
XML document, <schema> need not be the document element, but can appear
within other documents. Indeed there is no requirement that a schema correspond
to a (text) document at all: it could correspond to an element information item
constructed 'by hand', for instance via a DOM-conformant API.

Aside from <include> and <import>, which do not correspond directly to any
schema component at all, each of the element information items which may
appear in the content of <schema> corresponds to a schema component, and all
except <annotation> are named. The sections below present each such item in
turn, setting out the components to which it may correspond.

3.15.2.1 References to Schema Components

Reference to schema components from a schema document is managed in a
uniform way, whether the component corresponds to an element information item
from the same schema document or is imported (References to schema
components across namespaces (§4.2.3)) from an external schema (which may,
but need not, correspond to an actual schema document). The form of all such
references is a ·QName·.

[Definition:] A QName is a name with an optional namespace qualification, as
defined in [XML-Namespaces]. When used in connection with the XML
representation of schema components or references to them, this refers to the
simple type QName as defined in [XML Schemas: Datatypes].

[Definition:] An NCName is a name with no colon, as defined in [XML-
Namespaces]. When used in connection with the XML representation of schema
components in this specification, this refers to the simple type NCName as defined
in [XML Schemas: Datatypes].

In each of the XML representation expositions in the following sections, an
attribute is shown as having type QName if and only if it is interpreted as
referencing a schema component.

Example
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:xhtml="http://www.w3.org/1999/xhtml"
 xmlns="http://www.example.com"
 targetNamespace="http://www.example.com">
 . . .

 <xs:element name="elem1" type="Address"/>

 <xs:element name="elem2" type="xhtml:blockquote"/>

 <xs:attribute name="attr1"

Page 137 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

 type="xsl:quantity"/>
 . . .
</xs:schema>

The first of these is most probably a local reference, i.e. a reference to a type
definition corresponding to a <complexType> element information item located
elsewhere in the schema document, the other two refer to type definitions from
schemas for other namespaces and assume that their namespaces have been
declared for import. See References to schema components across namespaces
(§4.2.3) for a discussion of importing.

3.15.2.2 References to Schema Components from Elsewhere

The names of schema components such as type definitions and element
declarations are not of type ID: they are not unique within a schema, just within a
symbol space. This means that simple fragment identifiers will not always work to
reference schema components from outside the context of schema documents.

There is currently no provision in the definition of the interpretation of fragment
identifiers for the text/xml MIME type, which is the MIME type for schemas, for
referencing schema components as such. However, [XPointer] provides a
mechanism which maps well onto the notion of symbol spaces as it is reflected in
the XML representation of schema components. A fragment identifier of the form
#xpointer(xs:schema/xs:element[@name="person"]) will uniquely
identify the representation of a top-level element declaration with name person,
and similar fragment identifiers can obviously be constructed for the other global
symbol spaces.

Short-form fragment identifiers may also be used in some cases, that is when a
DTD or XML Schema is available for the schema in question, and the provision of
an id attribute for the representations of all primary and secondary schema
components, which is of type ID, has been exploited.

It is a matter for applications to specify whether they interpret document-level
references of either of the above varieties as being to the relevant element
information item (i.e. without special recognition of the relation of schema
documents to schema components) or as being to the corresponding schema
component.

3.15.3 Constraints on XML Representations of Schemas

Schema Representation Constraint: QName Interpretation
Where the type of an attribute information item in a document involved in
·validation· is identified as ·QName·, its ·actual value· is composed of a
[Definition:] local name and a [Definition:] namespace name. Its ·actual value·
is determined based on its ·normalized value· and the containing element

Page 138 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

information item's [in-scope namespaces] following [XML-Namespaces]:

The appropriate case among the following must be true:
1 If its ·normalized value· is prefixed, then all of the following must be true:

1.1 There must be a namespace in the [in-scope namespaces] whose [prefix]
matches the prefix.

1.2 its ·namespace name· is the [namespace name] of that namespace.
1.3 Its ·local name· is the portion of its ·normalized value· after the colon

(':').
2 otherwise (its ·normalized value· is unprefixed) all of the following must be

true:
2.1 its ·local name· is its ·normalized value·.
2.2 The appropriate case among the following must be true:

2.2.1 If there is a namespace in the [in-scope namespaces] whose [prefix]
has no value, then its ·namespace name· is the [namespace name] of
that namespace.

2.2.2 otherwise its ·namespace name· is ·absent·.

In the absence of the [in-scope namespaces] property in the infoset for the
schema document in question, processors must reconstruct equivalent
information as necessary, using the [namespace attributes] of the containing
element information item and its ancestors.

[Definition:] Whenever the word resolve in any form is used in this chapter in
connection with a ·QName· in a schema document, the following definition QName
resolution (Schema Document) (§3.15.3) should be understood:

Schema Representation Constraint: QName resolution (Schema Document)
For a ·QName· to resolve to a schema component of a specified kind all of the
following must be true:
1 That component is a member of the value of the appropriate property of the

schema which corresponds to the schema document within which the
·QName· appears, that is the appropriate case among the following must be
true:
1.1 If the kind specified is simple or complex type definition, then the property

is the {type definitions}.
1.2 If the kind specified is attribute declaration, then the property is the

{attribute declarations}.
1.3 If the kind specified is element declaration, then the property is the

{element declarations}.
1.4 If the kind specified is attribute group, then the property is the {attribute

group definitions}.
1.5 If the kind specified is model group, then the property is the {model group

definitions}.
1.6 If the kind specified is notation declaration, then the property is the

{notation declarations}.
2 The component's {name} matches the ·local name· of the ·QName·;

Page 139 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

3 The component's {target namespace} is identical to the ·namespace name· of
the ·QName·;

4 The appropriate case among the following must be true:
4.1 If the ·namespace name· of the ·QName· is ·absent·, then one of the

following must be true:
4.1.1 The <schema> element information item of the schema document

containing the ·QName· has no targetNamespace [attribute].
4.1.2 The <schema> element information item of the that schema document

contains an <import> element information item with no namespace
[attribute].

4.2 otherwise the ·namespace name· of the ·QName· is the same as one of
the following:
4.2.1 The ·actual value· of the targetNamespace [attribute] of the

<schema> element information item of the schema document containing
the ·QName·.

4.2.2 The ·actual value· of the namespace [attribute] of some <import>
element information item contained in the <schema> element information
item of that schema document.

.

3.15.4 Validation Rules for Schemas as a Whole

As the discussion above at Schema Component Details (§3) makes clear, at the
level of schema components and ·validation·, reference to components by name is
normally not involved. In a few cases, however, qualified names appearing in
information items being ·validated· must be resolved to schema components by
such lookup. The following constraint is appealed to in these cases.

Validation Rule: QName resolution (Instance)
A pair of a local name and a namespace name (or ·absent·) resolve to a schema
component of a specified kind in the context of ·validation· by appeal to the
appropriate property of the schema being used for the ·assessment·. Each such
property indexes components by name. The property to use is determined by
the kind of component specified, that is, the appropriate case among the
following must be true:
1 If the kind specified is simple or complex type definition, then the property is

the {type definitions}.
2 If the kind specified is attribute declaration, then the property is the {attribute

declarations}.
3 If the kind specified is element declaration, then the property is the {element

declarations}.
4 If the kind specified is attribute group, then the property is the {attribute group

definitions}.
5 If the kind specified is model group, then the property is the {model group

definitions}.
6 If the kind specified is notation declaration, then the property is the {notation

Page 140 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

declarations}.
The component resolved to is the entry in the table whose {name} matches the
local name of the pair and whose {target namespace} is identical to the
namespace name of the pair.

3.15.5 Schema Information Set Contributions

Schema Information Set Contribution: Schema Information
Schema components provide a wealth of information about the basis of
·assessment·, which may well be of relevance to subsequent processing.
Reflecting component structure into a form suitable for inclusion in the ·post-
schema-validation infoset· is the way this specification provides for making this
information available.

Accordingly, [Definition:] by an item isomorphic to a component is meant an
information item whose type is equivalent to the component's, with one property
per property of the component, with the same name, and value either the same
atomic value, or an information item corresponding in the same way to its
component value, recursively, as necessary.

Processors must add a property in the ·post-schema-validation infoset· to the
element information item at which ·assessment· began, as follows:

PSVI Contributions for element information items

[schema information]
A set of namespace schema information information items, one
for each namespace name which appears as the {target
namespace} of any schema component in the schema used for that
assessment, and one for ·absent· if any schema component in the
schema had no {target namespace}. Each namespace schema
information information item has the following properties and
values:

PSVI Contributions for namespace schema
information information items

[schema namespace]
A namespace name or ·absent·.

[schema components]
A (possibly empty) set of schema component
information items, each one an ·item isomorphic· to a
component whose {target namespace} is the sibling
[schema namespace] property above, drawn from the
schema used for ·assessment·.

[schema documents]

Page 141 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

A (possibly empty) set of schema document information
items, with properties and values as follows, for each
schema document which contributed components to the
schema, and whose targetNamespace matches the
sibling [schema namespace] property above (or whose
targetNamespace was ·absent· but that contributed
components to that namespace by being <include>d by a
schema document with that targetNamespace as per
Assembling a schema for a single target namespace from
multiple schema definition documents (§4.2.1)):

PSVI Contributions for schema
document information items

[document location]
Either a URI reference, if available, otherwise
·absent·

[document]
A document information item, if available,
otherwise ·absent·.

The {schema components} property is provided for processors which wish to
provide a single access point to the components of the schema which was used
during ·assessment·. Lightweight processors are free to leave it empty, but if it is
provided, it must contain at a minimum all the top-level (i.e. named) components
which actually figured in the ·assessment·, either directly or (because an
anonymous component which figured is contained within) indirectly.

Schema Information Set Contribution: ID/IDREF Table
In the ·post-schema-validation infoset· a set of ID/IDREF binding information
items is associated with the ·validation root· element information item:

PSVI Contributions for element information items

[ID/IDREF table]
A (possibly empty) set of ID/IDREF binding information items, as
specified below.

[Definition:] Let the eligible item set be the set of consisting of every attribute or
element information item for which all of the following are true
1 its [validation context] is the ·validation root·;
2 it was successfully ·validated· with respect to an attribute declaration as per

Page 142 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

Attribute Locally Valid (§3.2.4) or element declaration as per Element Locally
Valid (Element) (§3.3.4) (as appropriate) whose attribute {type definition} or
element {type definition} (respectively) is the built-in ID, IDREF or IDREFS
simple type definition or a type derived from one of them.

Then there is one ID/IDREF binding in the [ID/IDREF table] for every distinct
string which isone of the following:
1 the ·actual value· of a member of the ·eligible item set· whose type definition is

or is derived from ID or IDREF;
2 one of the items in the ·actual value· of a member of the ·eligible item set·

whose type definition is or is derived from IDREFS.
Each ID/IDREF binding has properties as follows:

PSVI Contributions for ID/IDREF binding information items

[id]
The string identified above.

[binding]
A set consisting of every element information item for which all of
the following are true
1 its [validation context] is the ·validation root·;
2 it has an attribute information item in its [attributes] or an element

information item in its [children] which was ·validated· by the built-
in ID simple type definition or a type derived from it whose
[schema normalized value] is the [id] of this ID/IDREF binding.

The net effect of the above is to have one entry for every string used as an id,
whether by declaration or by reference, associated with those elements, if any,
which actually purport to have that id. See Validation Root Valid (ID/IDREF)
(§3.3.4) above for the validation rule which actually checks for errors here.

Note: The ID/IDREF binding information item, unlike most other aspects of
this specification, is essentially an internal bookkeeping mechanism. It is
introduced to support the definition of Validation Root Valid (ID/IDREF)
(§3.3.4) above. Accordingly, conformant processors may, but are not
required to, expose it in the ·post-schema-validation infoset·. In other words,
the above constraint may be read as saying ·assessment· proceeds as if
such an infoset item existed.

3.15.6 Constraints on Schemas as a Whole

All schemas (see Schemas as a Whole (§3.15)) must satisfy the following
constraint.

Schema Component Constraint: Schema Properties Correct
All of the following must be true:
1 The values of the properties of a schema must be as described in the property

Page 143 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

tableau in The Schema Itself (§3.15.1), modulo the impact of Missing Sub-
components (§5.3);

2 Each of the {type definitions}, {element declarations}, {attribute group
definitions}, {model group definitions} and {notation declarations} must not
contain two or more schema components with the same {name} and {target
namespace}.

4 Schemas and Namespaces: Access and Composition

This chapter defines the mechanisms by which this specification establishes the
necessary precondition for ·assessment·, namely access to one or more schemas.
This chapter also sets out in detail the relationship between schemas and
namespaces, as well as mechanisms for modularization of schemas, including
provision for incorporating definitions and declarations from one schema in
another, possibly with modifications.

Conformance (§2.4) describes three levels of conformance for schema
processors, and Schemas and Schema-validity Assessment (§5) provides a formal
definition of ·assessment·. This section sets out in detail the 3-layer architecture
implied by the three conformance levels. The layers are:

1. The ·assessment· core, relating schema components and instance
information items;

2. Schema representation: the connections between XML representations and
schema components, including the relationships between namespaces and
schema components;

3. XML Schema web-interoperability guidelines: instance->schema and
schema->schema connections for the WWW.

Layer 1 specifies the manner in which a schema composed of schema
components can be applied to in the ·assessment· of an instance element
information item. Layer 2 specifies the use of <schema> elements in XML
documents as the standard XML representation for schema information in a broad
range of computer systems and execution environments. To support interoperation
over the World Wide Web in particular, layer 3 provides a set of conventions for
schema reference on the Web. Additional details on each of the three layers is
provided in the sections below.

4.1 Layer 1: Summary of the Schema-validity Assessment Core

The fundamental purpose of the ·assessment· core is to define ·assessment· for a
single element information item and its descendants with respect to a complex
type definition. All processors are required to implement this core predicate in a
manner which conforms exactly to this specification.

·assessment· is defined with reference to an ·XML Schema· (note not a ·schema

Page 144 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

document·) which consists of (at a minimum) the set of schema components
(definitions and declarations) required for that ·assessment·. This is not a circular
definition, but rather a post facto observation: no element information item can be
fully assessed unless all the components required by any aspect of its (potentially
recursive) ·assessment· are present in the schema.

As specified above, each schema component is associated directly or indirectly
with a target namespace, or explicitly with no namespace. In the case of multi-
namespace documents, components for more than one target namespace will co-
exist in a schema.

Processors have the option to assemble (and perhaps to optimize or pre-compile)
the entire schema prior to the start of an ·assessment· episode, or to gather the
schema lazily as individual components are required. In all cases it is required
that:

The processor succeed in locating the ·schema components· transitively
required to complete an ·assessment· (note that components derived from
·schema documents· can be integrated with components obtained through
other means);
no definition or declaration changes once it has been established;
if the processor chooses to acquire declarations and definitions dynamically,
that there be no side effects of such dynamic acquisition that would cause
the results of ·assessment· to differ from that which would have been
obtained from the same schema components acquired in bulk.

Note: the ·assessment· core is defined in terms of schema components at
the abstract level, and no mention is made of the schema definition syntax
(i.e. <schema>). Although many processors will acquire schemas in this
format, others may operate on compiled representations, on a programmatic
representation as exposed in some programming language, etc.

The obligation of a schema-aware processor as far as the ·assessment· core is
concerned is to implement one or more of the options for ·assessment· given
below in Assessing Schema-Validity (§5.2). Neither the choice of element
information item for that ·assessment·, nor which of the means of initiating
·assessment· are used, is within the scope of this specification.

Although ·assessment· is defined recursively, it is also intended to be
implementable in streaming processors. Such processors may choose to
incrementally assemble the schema during processing in response, for example,
to encountering new namespaces. The implication of the invariants expressed
above is that such incremental assembly must result in an ·assessment· outcome
that is the same as would be given if ·assessment· was undertaken again with the
final, fully assembled schema.

Page 145 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

4.2 Layer 2: Schema Documents, Namespaces and
Composition
 4.2.1 Assembling a schema for a single target namespace from multiple
schema definition documents
 4.2.2 Including modified component definitions
 4.2.3 References to schema components across namespaces

The sub-sections of Schema Component Details (§3) define an XML
representation for type definitions and element declarations and so on, specifying
their target namespace and collecting them into schema documents. The two
following sections relate to assembling a complete schema for ·assessment· from
multiple sources. They should not be understood as a form of text substitution, but
rather as providing mechanisms for distributed definition of schema components,
with appropriate schema-specific semantics.

Note: The core ·assessment· architecture requires that a complete schema
with all the necessary declarations and definitions be available. This may
involve resolving both instance->schema and schema->schema references.
As observed earlier in Conformance (§2.4), the precise mechanisms for
resolving such references are expected to evolve over time. In support of
such evolution, this specification observes the design principle that references
from one schema document to a schema use mechanisms that directly
parallel those used to reference a schema from an instance document.
Note: In the sections below, "schemaLocation" really belongs at layer 3. For
convenience, it is documented with the layer 2 mechanisms of import and
include, with which it is closely associated.

4.2.1 Assembling a schema for a single target namespace from multiple
schema definition documents

Schema components for a single target namespace can be assembled from
several ·schema documents·, that is several <schema> element information items:

XML Representation Summary: include Element Information Item

<include
 id = ID
 schemaLocation = anyURI
 {any attributes with non-schema namespace . . .}>
 Content: (annotation?)
</include>

A <schema> information item may contain any number of <include> elements.
Their schemaLocation attributes, consisting of a URI reference, identify other
·schema documents·, that is <schema> information items.

Page 146 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

The ·XML Schema· corresponding to <schema> contains not only the components
corresponding to its definition and declaration [children], but also all the
components of all the ·XML Schemas· corresponding to any <include>d schema
documents. Such included schema documents must either (a) have the same
targetNamespace as the <include>ing schema document, or (b) no
targetNamespace at all, in which case the <include>d schema document is
converted to the <include>ing schema document's targetNamespace.

Schema Representation Constraint: Inclusion Constraints and Semantics
In addition to the conditions imposed on <include> element information items by
the schema for schemas, all of the following must be true:
1 If the ·actual value· of the schemaLocation [attribute] successfully resolves

one of the following must be true:
1.1 It resolves to (a fragment of) a resource which is an XML document (of

type application/xml or text/xml with an XML declaration for
preference, but this is not required), which in turn corresponds to a
<schema> element information item in a well-formed information set, which
in turn corresponds to a valid schema.

1.2 It resolves to a <schema> element information item in a well-formed
information set, which in turn corresponds to a valid schema.

In either case call the <include>d <schema> item SII, the valid schema I and the
<include>ing item's parent <schema> item SII’.

2 One of the following must be true:
2.1 SII has a targetNamespace [attribute], and its ·actual value· is identical

to the ·actual value· of the targetNamespace [attribute] of SII’ (which
must have such an [attribute]).

2.2 Neither SII nor SII’ have a targetNamespace [attribute].
2.3 SII has no targetNamespace [attribute] (but SII’ does).

3 The appropriate case among the following must be true:
3.1 If clause 2.1 or clause 2.2 above is satisfied, then the schema

corresponding to SII’ must include not only definitions or declarations
corresponding to the appropriate members of its own [children], but also
components identical to all the ·schema components· of I.

3.2 If clause 2.3 above is satisfied, then the schema corresponding to the
<include>d item's parent <schema> must include not only definitions or
declarations corresponding to the appropriate members of its own
[children], but also components identical to all the ·schema components· of
I, except that anywhere the ·absent· target namespace name would have
appeared, the ·actual value· of the targetNamespace [attribute] of SII’ is
used. In particular, it replaces ·absent· in the following places:
3.2.1 The {target namespace} of named schema components, both at the

top level and (in the case of nested type definitions and nested attribute
and element declarations whose code was qualified) nested within
definitions;

3.2.2 The {namespace constraint} of a wildcard, whether negated or not;

Page 147 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

It is not an error for the ·actual value· of the schemaLocation [attribute] to fail
to resolve it all, in which case no corresponding inclusion is performed. It is an
error for it to resolve but the rest of clause 1 above to fail to be satisfied. Failure
to resolve may well cause less than complete ·assessment· outcomes, of
course.

As discussed in Missing Sub-components (§5.3), ·QName·s in XML
representations may fail to ·resolve·, rendering components incomplete and
unusable because of missing subcomponents. During schema construction,
implementations must retain ·QName· values for such references, in case an
appropriately-named component becomes available to discharge the reference
by the time it is actually needed. ·Absent· target ·namespace name·s of such as-
yet unresolved reference ·QName·s in <include>d components must also be
converted if clause 3.2 is satisfied.

Note: The above is carefully worded so that multiple <include>ing of the same
schema document will not constitute a violation of clause 2 of Schema
Properties Correct (§3.15.6), but applications are allowed, indeed
encouraged, to avoid <include>ing the same schema document more than
once to forestall the necessity of establishing identity component by
component.

4.2.2 Including modified component definitions

In order to provide some support for evolution and versioning, it is possible to
incorporate components corresponding to a schema document with modifications.
The modifications have a pervasive impact, that is, only the redefined components
are used, even when referenced from other incorporated components, whether
redefined themselves or not.

XML Representation Summary: redefine Element Information Item

<redefine
 id = ID
 schemaLocation = anyURI
 {any attributes with non-schema namespace . . .}>
 Content: (annotation | (simpleType | complexType | group |
attributeGroup))*
</redefine>

A <schema> information item may contain any number of <redefine> elements.
Their schemaLocation attributes, consisting of a URI reference, identify other
·schema documents·, that is <schema> information items.

The ·XML Schema· corresponding to <schema> contains not only the components

Page 148 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

corresponding to its definition and declaration [children], but also all the
components of all the ·XML Schemas· corresponding to any <redefine>d schema
documents. Such schema documents must either (a) have the same
targetNamespace as the <redefine>ing schema document, or (b) no
targetNamespace at all, in which case the <redefine>d schema document is
converted to the <redefine>ing schema document's targetNamespace.

The definitions within the <redefine> element itself are restricted to be redefinitions
of components from the <redefine>d schema document, in terms of themselves.
That is,

Type definitions must use themselves as their base type definition;
Attribute group definitions and model group definitions must be supersets or
subsets of their original definitions, either by including exactly one reference
to themselves or by containing only (possibly restricted) components which
appear in a corresponding way in their <redefine>d selves.

Not all the components of the <redefine>d schema document need be redefined.

This mechanism is intended to provide a declarative and modular approach to
schema modification, with functionality no different except in scope from what
would be achieved by wholesale text copying and redefinition by editing. In
particular redefining a type is not guaranteed to be side-effect free: it may have
unexpected impacts on other type definitions which are based on the redefined
one, even to the extent that some such definitions become ill-formed.

Note: The pervasive impact of redefinition reinforces the need for
implementations to adopt some form of lazy or 'just-in-time' approach to
component construction, which is also called for in order to avoid
inappropriate dependencies on the order in which definitions and references
appear in (collections of) schema documents.

Example
v1.xsd:
 <xs:complexType name="personName">
 <xs:sequence>
 <xs:element name="title" minOccurs="0"/>
 <xs:element name="forename" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>

 <xs:element name="addressee" type="personName"/>

v2.xsd:
 <xs:redefine schemaLocation="v1.xsd">
 <xs:complexType name="personName">
 <xs:complexContent>
 <xs:extension base="personName">
 <xs:sequence>

Page 149 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

 <xs:element name="generation" minOccurs="0"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 </xs:redefine>

 <xs:element name="author" type="personName"/>

The schema corresponding to v2.xsd has everything specified by v1.xsd, with
the personName type redefined, as well as everything it specifies itself.
According to this schema, elements constrained by the personName type may
end with a generation element. This includes not only the author element,
but also the addressee element.

Schema Representation Constraint: Redefinition Constraints and Semantics
In addition to the conditions imposed on <redefine> element information items by
the schema for schemas all of the following must be true:
1 If there are any element information items among the [children] other than

<annotation> then the ·actual value· of the schemaLocation [attribute] must
successfully resolve.

2 If the ·actual value· of the schemaLocation [attribute] successfully resolves
one of the following must be true:
2.1 it resolves to (a fragment of) a resource which is an XML document (see

clause 1.1), which in turn corresponds to a <schema> element information
item in a well-formed information set, which in turn corresponds to a valid
schema.

2.2 It resolves to a <schema> element information item in a well-formed
information set, which in turn corresponds to a valid schema.

In either case call the <redefine>d <schema> item SII, the valid schema I and the
<redefine>ing item's parent <schema> item SII’.

3 One of the following must be true:
3.1 SII has a targetNamespace [attribute], and its ·actual value· is identical to

the ·actual value· of the targetNamespace [attribute] of SII’ (which must
have such an [attribute]).

3.2 Neither SII nor SII’ have a targetNamespace [attribute].
3.3 SII has no targetNamespace [attribute] (but SII’ does).

4 The appropriate case among the following must be true:
4.1 If clause 3.1 or clause 3.2 above is satisfied, then the schema

corresponding to SII’ must include not only definitions or declarations
corresponding to the appropriate members of its own [children], but also
components identical to all the ·schema components· of I, with the exception
of those explicitly redefined (see Individual Component Redefinition (§4.2.2)
below).

4.2 If clause 3.3 above is satisfied, then the schema corresponding to SII’
must include not only definitions or declarations corresponding to the

Page 150 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

appropriate members of its own [children], but also components identical to all
the ·schema components· of I, with the exception of those explicitly
redefined (see Individual Component Redefinition (§4.2.2) below), except
that anywhere the ·absent· target namespace name would have appeared,
the ·actual value· of the targetNamespace [attribute] of SII’ is used (see
clause 3.2 in Inclusion Constraints and Semantics (§4.2.1) for details).

5 Within the [children], each <simpleType> must have a <restriction> among its
[children] and each <complexType> must have a restriction or
extension among its grand-[children] the ·actual value· of whose base
[attribute] must be the same as the ·actual value· of its own name attribute
plus target namespace;

6 Within the [children], for each <group> the appropriate case among the
following must be true:
6.1 If it has a <group> among its contents at some level the ·actual value· of

whose ref [attribute] is the same as the ·actual value· of its own name
attribute plus target namespace, then all of the following must be true:
6.1.1 It must have exactly one such group.
6.1.2 The ·actual value· of both that group's minOccurs and maxOccurs

[attribute] must be 1 (or ·absent·).
6.2 If it has no such self-reference, then all of the following must be true:

6.2.1 The ·actual value· of its own name attribute plus target namespace
must successfully ·resolve· to a model group definition in I.

6.2.2 The {model group} of the model group definition which corresponds to
it per XML Representation of Model Group Definition Schema
Components (§3.7.2) must be a ·valid restriction· of the {model group} of
that model group definition in I, as defined in Particle Valid (Restriction)
(§3.9.6).

7 Within the [children], for each <attributeGroup> the appropriate case among
the following must be true:
7.1 If it has an <attributeGroup> among its contents the ·actual value· of

whose ref [attribute] is the same as the ·actual value· of its own name
attribute plus target namespace, then it must have exactly one such group.

7.2 If it has no such self-reference, then all of the following must be true:
7.2.1 The ·actual value· of its own name attribute plus target namespace

must successfully ·resolve· to an attribute group definition in I.
7.2.2 The {attribute uses} and {attribute wildcard} of the attribute group

definition which corresponds to it per XML Representation of Attribute
Group Definition Schema Components (§3.6.2) must be ·valid
restrictions· of the {attribute uses} and {attribute wildcard} of that attribute
group definition in I, as defined in clause 2, clause 3 and clause 4 of
Derivation Valid (Restriction, Complex) (§3.4.6) (where references to the
base type definition are understood as references to the attribute group
definition in I).

Note: An attribute group restrictively redefined per clause 7.2 corresponds
to an attribute group whose {attribute uses} consist all and only of those
attribute uses corresponding to <attribute>s explicitly present among the

Page 151 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

[children] of the <redefine>ing <attributeGroup>. No inheritance from the
<redefine>d attribute group occurs. Its {attribute wildcard} is similarly
based purely on an explicit <anyAttribute>, if present.

Schema Representation Constraint: Individual Component Redefinition
Corresponding to each non-<annotation> member of the [children] of a
<redefine> there are one or two schema components in the <redefine>ing
schema:
1 The <simpleType> and <complexType> [children] information items each

correspond to two components:
1.1 One component which corresponds to the top-level definition item with the

same name in the <redefine>d schema document, as defined in Schema
Component Details (§3), except that its {name} is ·absent·;

1.2 One component which corresponds to the information item itself, as
defined in Schema Component Details (§3), except that its {base type
definition} is the component defined in 1.1 above.

This pairing ensures the coherence constraints on type definitions are
respected, while at the same time achieving the desired effect, namely that
references to names of redefined components in both the <redefine>ing and
<redefine>d schema documents resolve to the redefined component as
specified in 1.2 above.

2 The <group> and <attributeGroup> [children] each correspond to a single
component, as defined in Schema Component Details (§3), except that if and
when a self-reference based on a ref [attribute] whose ·actual value· is the
same as the item's name plus target namespace is resolved, a component
which corresponds to the top-level definition item of that name and the
appropriate kind in I is used.

In all cases there must be a top-level definition item of the appropriate name and
kind in the <redefine>d schema document.

Note: The above is carefully worded so that multiple equivalent <redefine>ing
of the same schema document will not constitute a violation of clause 2 of
Schema Properties Correct (§3.15.6), but applications are allowed, indeed
encouraged, to avoid <redefine>ing the same schema document in the same
way more than once to forestall the necessity of establishing identity
component by component (although this will have to be done for the individual
redefinitions themselves).

4.2.3 References to schema components across namespaces

As described in XML Schema Abstract Data Model (§2.2), every top-level schema
component is associated with a target namespace (or, explicitly, with none). This
section sets out the exact mechanism and syntax in the XML form of schema
definition by which a reference to a foreign component is made, that is, a
component with a different target namespace from that of the referring component.

Two things are required: not only a means of addressing such foreign components
but also a signal to schema-aware processors that a schema document contains

Page 152 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

such references:

XML Representation Summary: import Element Information Item

<import
 id = ID
 namespace = anyURI
 schemaLocation = anyURI
 {any attributes with non-schema namespace . . .}>
 Content: (annotation?)
</import>

The <import> element information item identifies namespaces used in external
references, i.e. those whose ·QName· identifies them as coming from a different
namespace (or none) than the enclosing schema document's targetNamespace.
The ·actual value· of its namespace [attribute] indicates that the containing
schema document may contain qualified references to schema components in that
namespace (via one or more prefixes declared with namespace declarations in the
normal way). If that attribute is absent, then the import allows unqualified reference
to components with no target namespace. Note that components to be imported
need not be in the form of a ·schema document·; the processor is free to access or
construct components using means of its own choosing.

The ·actual value· of the schemaLocation, if present, gives a hint as to where a
serialization of a ·schema document· with declarations and definitions for that
namespace (or none) may be found. When no schemaLocation [attribute] is
present, the schema author is leaving the identification of that schema to the
instance, application or user, via the mechanisms described below in Layer 3:
Schema Document Access and Web-interoperability (§4.3). When a
schemaLocation is present, it must contain a single URI reference which the
schema author warrants will resolve to a serialization of a ·schema document·
containing the component(s) in the <import>ed namespace referred to elsewhere
in the containing schema document.

Note: Since both the namespace and schemaLocation [attribute] are
optional, a bare <import/> information item is allowed. This simply allows
unqualified reference to foreign components with no target namespace
without giving any hints as to where to find them.

Example
The same namespace may be used both for real work, and in the course of
defining schema components in terms of foreign components:
<schema xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:html="http://www.w3.org/1999/xhtml"
 targetNamespace="uri:mywork" xmlns:my="uri:mywork">

Page 153 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

 <import namespace="http://www.w3.org/1999/xhtml"/>

 <annotation>
 <documentation>
 <html:p>[Some documentation for my schema]</html:p>
 </documentation>
 </annotation>

 . . .

 <complexType name="myType">
 <sequence>
 <element ref="html:p" minOccurs="0"/>
 </sequence>
 . . .
 </complexType>

 <element name="myElt" type="my:myType"/>
</schema>

The treatment of references as ·QNames· implies that since (with the exception
of the schema for schemas) the target namespace and the XML Schema
namespace differ, without massive redeclaration of the default namespace either
internal references to the names being defined in a schema document or the
schema declaration and definition elements themselves must be explicitly
qualified. This example takes the first option -- most other examples in this
specification have taken the second.

Schema Representation Constraint: Import Constraints and Semantics
In addition to the conditions imposed on <import> element information items by
the schema for schemas all of the following must be true:
1 The appropriate case among the following must be true:

1.1 If the namespace [attribute] is present, then its ·actual value· must not
match the ·actual value· of the enclosing <schema>'s targetNamespace
[attribute].

1.2 If the namespace [attribute] is not present, then the enclosing <schema>
must have a targetNamespace [attribute]

2 If the application schema reference strategy using the ·actual value·s of the
schemaLocation and namespace [attributes], provides a referent, as defined
by Schema Document Location Strategy (§4.3.2), one of the following must be
true:
2.1 The referent is (a fragment of) a resource which is an XML document (see

clause 1.1), which in turn corresponds to a <schema> element information
item in a well-formed information set, which in turn corresponds to a valid
schema.

2.2 The referent is a <schema> element information item in a well-formed
information set, which in turn corresponds to a valid schema.

In either case call the <schema> item SII and the valid schema I.
3 The appropriate case among the following must be true:

Page 154 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

3.1 If there is a namespace [attribute], then its ·actual value· must be
identical to the ·actual value· of the targetNamespace [attribute] of SII.

3.2 If there is no namespace [attribute], then SII must have no
targetNamespace [attribute]

It is not an error for the application schema reference strategy to fail. It is an
error for it to resolve but the rest of clause 2 above to fail to be satisfied. Failure
to find a referent may well cause less than complete ·assessment· outcomes, of
course.

The ·schema components· (that is {type definitions}, {attribute declarations},
{element declarations}, {attribute group definitions}, {model group definitions},
{notation declarations}) of a schema corresponding to a <schema> element
information item with one or more <import> element information items must
include not only definitions or declarations corresponding to the appropriate
members of its [children], but also, for each of those <import> element
information items for which clause 2 above is satisfied, a set of ·schema
components· identical to all the ·schema components· of I.

Note: The above is carefully worded so that multiple <import>ing of the same
schema document will not constitute a violation of clause 2 of Schema
Properties Correct (§3.15.6), but applications are allowed, indeed
encouraged, to avoid <import>ing the same schema document more than
once to forestall the necessity of establishing identity component by
component. Given that the schemaLocation [attribute] is only a hint, it is
open to applications to ignore all but the first <import> for a given namespace,
regardless of the ·actual value· of schemaLocation, but such a strategy
risks missing useful information when new schemaLocations are offered.

4.3 Layer 3: Schema Document Access and Web-interoperability
 4.3.1 Standards for representation of schemas and retrieval of schema
documents on the Web
 4.3.2 How schema definitions are located on the Web

Layers 1 and 2 provide a framework for ·assessment· and XML definition of
schemas in a broad variety of environments. Over time, a range of standards and
conventions may well evolve to support interoperability of XML Schema
implementations on the World Wide Web. Layer 3 defines the minimum level of
function required of all conformant processors operating on the Web: it is intended
that, over time, future standards (e.g. XML Packages) for interoperability on the
Web and in other environments can be introduced without the need to republish
this specification.

4.3.1 Standards for representation of schemas and retrieval of schema
documents on the Web

Page 155 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

For interoperability, serialized ·schema documents·, like all other Web resources,
may be identified by URI and retrieved using the standard mechanisms of the Web
(e.g. http, https, etc.) Such documents on the Web must be part of XML
documents (see clause 1.1), and are represented in the standard XML schema
definition form described by layer 2 (that is as <schema> element information
items).

Note: there will often be times when a schema document will be a complete
XML 1.0 document whose document element is <schema>. There will be
other occasions in which <schema> items will be contained in other
documents, perhaps referenced using fragment and/or XPointer notation.
Note: The variations among server software and web site administration
policies make it difficult to recommend any particular approach to retrieval
requests intended to retrieve serialized ·schema documents·. An Accept
header of application/xml, text/xml; q=0.9, */* is perhaps a
reasonable starting point.

4.3.2 How schema definitions are located on the Web

As described in Layer 1: Summary of the Schema-validity Assessment Core
(§4.1), processors are responsible for providing the schema components
(definitions and declarations) needed for ·assessment·. This section introduces a
set of normative conventions to facilitate interoperability for instance and schema
documents retrieved and processed from the Web.

Note: As discussed above in Layer 2: Schema Documents, Namespaces and
Composition (§4.2), other non-Web mechanisms for delivering schemas for
·assessment· may exist, but are outside the scope of this specification.

Processors on the Web are free to undertake ·assessment· against arbitrary
schemas in any of the ways set out in Assessing Schema-Validity (§5.2).
However, it is useful to have a common convention for determining the schema to
use. Accordingly, general-purpose schema-aware processors (i.e. those not
specialized to one or a fixed set of pre-determined schemas) undertaking
·assessment· of a document on the web must behave as follows:

unless directed otherwise by the user, ·assessment· is undertaken on the
document element information item of the specified document;
unless directed otherwise by the user, the processor is required to construct
a schema corresponding to a schema document whose targetNamespace
is identical to the namespace name, if any, of the element information item
on which ·assessment· is undertaken.

The composition of the complete schema for use in ·assessment· is discussed in
Layer 2: Schema Documents, Namespaces and Composition (§4.2) above. The
means used to locate appropriate schema document(s) are processor and

Page 156 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

application dependent, subject to the following requirements:

1. Schemas are represented on the Web in the form specified above in
Standards for representation of schemas and retrieval of schema documents
on the Web (§4.3.1);

2. The author of a document uses namespace declarations to indicate the
intended interpretation of names appearing therein; there may or may not be
a schema retrievable via the namespace name. Accordingly whether a
processor's default behavior is or is not to attempt such dereferencing, it
must always provide for user-directed overriding of that default.

Note: Experience suggests that it is not in all cases safe or desirable
from a performance point of view to dereference namespace names as
a matter of course. User community and/or consumer/provider
agreements may establish circumstances in which such dereference is a
sensible default strategy: this specification allows but does not require
particular communities to establish and implement such conventions.
Users are always free to supply namespace names as schema location
information when dereferencing is desired: see below.

3. On the other hand, in case a document author (human or not) created a
document with a particular schema in view, and warrants that some or all of
the document conforms to that schema, the schemaLocation and
noNamespaceSchemaLocation [attributes] (in the XML Schema instance
namespace, that is, http://www.w3.org/2001/XMLSchema-instance)
(hereafter xsi:schemaLocation and
xsi:noNamespaceSchemaLocation) are provided. The first records the
author's warrant with pairs of URI references (one for the namespace name,
and one for a hint as to the location of a schema document defining names
for that namespace name). The second similarly provides a URI reference as
a hint as to the location of a schema document with no targetNamespace
[attribute].

Unless directed otherwise, for example by the invoking application or by
command line option, processors should attempt to dereference each
schema document location URI in the ·actual value· of such
xsi:schemaLocation and xsi:noNamespaceSchemaLocation
[attributes], see details below.

4. xsi:schemaLocation and xsi:noNamespaceSchemaLocation
[attributes] can occur on any element. However, it is an error if such an
attribute occurs after the first appearance of an element or attribute
information item within an element information item initially ·validated· whose
[namespace name] it addresses. According to the rules of Layer 1: Summary
of the Schema-validity Assessment Core (§4.1), the corresponding schema
may be lazily assembled, but is otherwise stable throughout ·assessment·.
Although schema location attributes can occur on any element, and can be
processed incrementally as discovered, their effect is essentially global to

Page 157 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

the ·assessment·. Definitions and declarations remain in effect beyond the
scope of the element on which the binding is declared.

Example
Multiple schema bindings can be declared using a single attribute. For example
consider a stylesheet:
 <stylesheet xmlns="http://www.w3.org/1999/XSL/Transform"
 xmlns:html="http://www.w3.org/1999/xhtml"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.w3.org/1999/XSL/Transform
 http://www.w3.org/1999/XSL/Transform.xsd
 http://www.w3.org/1999/xhtml
 http://www.w3.org/1999/xhtml.xsd">

The namespace names used in schemaLocation can, but need not be
identical to those actually qualifying the element within whose start tag it is
found or its other attributes. For example, as above, all schema location
information can be declared on the document element of a document, if desired,
regardless of where the namespaces are actually used.

Schema Representation Constraint: Schema Document Location Strategy
Given a namespace name (or none) and (optionally) a URI reference from
xsi:schemaLocation or xsi:noNamespaceSchemaLocation, schema-
aware processors may implement any combination of the following strategies, in
any order:
1 Do nothing, for instance because a schema containing components for the

given namespace name is already known to be available, or because it is
known in advance that no efforts to locate schema documents will be
successful (for example in embedded systems);

2 Based on the location URI, identify an existing schema document, either as a
resource which is an XML document or a <schema> element information item,
in some local schema repository;

3 Based on the namespace name, identify an existing schema document, either
as a resource which is an XML document or a <schema> element information
item, in some local schema repository;

4 Attempt to resolve the location URI, to locate a resource on the web which is
or contains or references a <schema> element;

5 Attempt to resolve the namespace name to locate such a resource.
Whenever possible configuration and/or invocation options for selecting and/or
ordering the implemented strategies should be provided.

Improved or alternative conventions for Web interoperability can be standardized
in the future without reopening this specification. For example, the W3C is
currently considering initiatives to standardize the packaging of resources relating
to particular documents and/or namespaces: this would be an addition to the
mechanisms described here for layer 3. This architecture also facilitates innovation

Page 158 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

at layer 2: for example, it would be possible in the future to define an additional
standard for the representation of schema components which allowed e.g. type
definitions to be specified piece by piece, rather than all at once.

5 Schemas and Schema-validity Assessment

The architecture of schema-aware processing allows for a rich characterization of
XML documents: schema validity is not a binary predicate.

This specification distinguishes between errors in schema construction and
structure, on the one hand, and schema validation outcomes, on the other.

5.1 Errors in Schema Construction and Structure

Before ·assessment· can be attempted, a schema is required. Special-purpose
applications are free to determine a schema for use in ·assessment· by whatever
means are appropriate, but general purpose processors should implement the
strategy set out in Schema Document Location Strategy (§4.3.2), starting with the
namespaces declared in the document whose ·assessment· is being undertaken,
and the ·actual value·s of the xsi:schemaLocation and
xsi:noNamespaceSchemaLocation [attributes] thereof, if any, along with any
other information about schema identity or schema document location provided by
users in application-specific ways, if any.

It is an error if a schema and all the components which are the value of any of its
properties, recursively, fail to satisfy all the relevant Constraints on Schemas set
out in the last section of each of the subsections of Schema Component Details
(§3).

If a schema is derived from one or more schema documents (that is, one or more
<schema> element information items) based on the correspondence rules set out
in Schema Component Details (§3) and Schemas and Namespaces: Access and
Composition (§4), two additional conditions hold:

It is an error if any such schema document would not be fully valid with
respect to a schema corresponding to the Schema for Schemas (normative)
(§A), that is, following schema-validation with such a schema, the <schema>
element information items would have a [validation attempted] property with
value full or partial and a [validity] property with value valid.
It is an error if any such schema document is or contains any element
information items which violate any of the relevant Schema Representation
Constraints set out in Schema Representation Constraints (§C.3).

The three cases described above are the only types of error which this
specification defines. With respect to the processes of the checking of schema
structure and the construction of schemas corresponding to schema documents,

Page 159 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

this specification imposes no restrictions on processors after an error is detected.
However ·assessment· with respect to schema-like entities which do not satisfy all
the above conditions is incoherent. Accordingly, conformant processors must not
attempt to undertake ·assessment· using such non-schemas.

5.2 Assessing Schema-Validity

With a schema which satisfies the conditions expressed in Errors in Schema
Construction and Structure (§5.1) above, the schema-validity of an element
information item can be assessed. Three primary approaches to this are possible:

1 The user or application identifies a complex type definition from among the {type
definitions} of the schema, and appeals to Schema-Validity Assessment
(Element) (§3.3.4) (clause 1.2);

2 The user or application identifies a element declaration from among the {element
declarations} of the schema, checks that its {name} and {target namespace}
match the [local name] and [namespace name] of the item, and appeals to
Schema-Validity Assessment (Element) (§3.3.4) (clause 1.1);

3 The processor starts from Schema-Validity Assessment (Element) (§3.3.4) with
no stipulated declaration or definition, and either ·strict· or ·lax· assessment
ensues, depending on whether or not the element information and the schema
determine either an element declaration (by name) or a type definition (via
xsi:type) or not.

The outcome of this effort, in any case, will be manifest in the [validation
attempted] and [validity] properties on the element information item and its
[attributes] and [children], recursively, as defined by Assessment Outcome
(Element) (§3.3.5) and Assessment Outcome (Attribute) (§3.2.5). It is up to
applications to decide what constitutes a successful outcome.

Note that every element and attribute information item participating in the
·assessment· will also have a [validation context] property which refers back to the
element information item at which ·assessment· began. [Definition:] This item, that
is the element information item at which ·assessment· began, is called the
validation root.

Note: This specification does not reconstruct the XML 1.0 notion of root in
either schemas or instances. Equivalent functionality is provided for at
·assessment· invocation, via clause 2 above.
Note: This specification has nothing normative to say about multiple
·assessment· episodes. It should however be clear from the above that if a
processor restarts ·assessment· with respect to a ·post-schema-validation
infoset· some ·post-schema-validation infoset· contributions from the previous
·assessment· may be overwritten. Restarting nonetheless may be useful,
particularly at a node whose [validation attempted] property is none, in which
case there are three obvious cases in which additional useful information may

Page 160 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

result:

·assessment· was not attempted because of a ·validation· failure, but
declarations and/or definitions are available for at least some of the
[children] or [attributes];
·assessment· was not attempted because a named definition or
declaration was missing, but after further effort the processor has
retrieved it.
·assessment· was not attempted because it was skipped, but the
processor has at least some declarations and/or definitions available for
at least some of the [children] or [attributes].

5.3 Missing Sub-components

At the beginning of Schema Component Details (§3), attention is drawn to the fact
that most kinds of schema components have properties which are described
therein as having other components, or sets of other components, as values, but
that when components are constructed on the basis of their correspondence with
element information items in schema documents, such properties usually
correspond to QNames, and the ·resolution· of such QNames may fail, resulting in
one or more values of or containing ·absent· where a component is mandated.

If at any time during ·assessment·, an element or attribute information item is
being ·validated· with respect to a component of any kind any of whose properties
has or contains such an ·absent· value, the ·validation· is modified, as following:

In the case of attribute information items, the effect is as if clause 1 of
Attribute Locally Valid (§3.2.4) had failed;
In the case of element information items, the effect is as if clause 1 of
Element Locally Valid (Element) (§3.3.4) had failed;
In the case of element information items, processors may choose to continue
·assessment·: see ·lax assessment·.

Because of the value specification for [validation attempted] in Assessment
Outcome (Element) (§3.3.5), if this situation ever arises, the document as a whole
cannot show a [validation attempted] of full.

5.4 Responsibilities of Schema-aware Processors

Schema-aware processors are responsible for processing XML documents,
schemas and schema documents, as appropriate given the level of conformance
(as defined in Conformance (§2.4)) they support, consistently with the conditions
set out above.

A Schema for Schemas (normative)

Page 161 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

The XML representation of the schema for schema documents is presented here
as a normative part of the specification, and as an illustrative example of how the
XML Schema language can define itself using its own constructs. The names of
XML Schema language types, elements, attributes and groups defined here are
evocative of their purpose, but are occasionally verbose.

There is some annotation in comments, but a fuller annotation will require the use
of embedded documentation facilities or a hyperlinked external annotation for
which tools are not yet readily available.

Since a schema document is an XML document, it has optional XML and doctype
declarations that are provided here for completeness. The root schema element
defines a new schema. Since this is a schema for XML Schema: Structures, the
targetNamespace references the XML Schema namespace itself.

<!DOCTYPE xs:schema PUBLIC "-//W3C//DTD XMLSCHEMA 200102//EN" "XMLSchema

<!-- provide ID type information even for parsers which only read the
 internal subset -->
<!ATTLIST xs:schema id ID #IMPLIED>
<!ATTLIST xs:complexType id ID #IMPLIED>
<!ATTLIST xs:complexContent id ID #IMPLIED>
<!ATTLIST xs:simpleContent id ID #IMPLIED>
<!ATTLIST xs:extension id ID #IMPLIED>
<!ATTLIST xs:element id ID #IMPLIED>
<!ATTLIST xs:group id ID #IMPLIED>
<!ATTLIST xs:all id ID #IMPLIED>
<!ATTLIST xs:choice id ID #IMPLIED>
<!ATTLIST xs:sequence id ID #IMPLIED>
<!ATTLIST xs:any id ID #IMPLIED>
<!ATTLIST xs:anyAttribute id ID #IMPLIED>
<!ATTLIST xs:attribute id ID #IMPLIED>
<!ATTLIST xs:attributeGroup id ID #IMPLIED>
<!ATTLIST xs:unique id ID #IMPLIED>
<!ATTLIST xs:key id ID #IMPLIED>
<!ATTLIST xs:keyref id ID #IMPLIED>
<!ATTLIST xs:selector id ID #IMPLIED>
<!ATTLIST xs:field id ID #IMPLIED>
<!ATTLIST xs:include id ID #IMPLIED>
<!ATTLIST xs:import id ID #IMPLIED>
<!ATTLIST xs:redefine id ID #IMPLIED>
<!ATTLIST xs:notation id ID #IMPLIED>
]>

<?xml version='1.0'?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" blockDefault="#al
 elementFormDefault="qualified" xml:lang="EN"
 targetNamespace="http://www.w3.org/2001/XMLSchema"
 version="Id: structures.xsd,v 1.2 2004/01/15 11:34:25 ht Exp
 <xs:annotation>
 <xs:documentation source="../structures/structures-with-errata.html.
 The schema corresponding to this document is normative,

Page 162 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

 with respect to the syntactic constraints it expresses in the
 XML Schema language. The documentation (within <documentation> el
 below, is not normative, but rather highlights important aspects of
 the W3C Recommendation of which this is a part</xs:documentation>
 </xs:annotation>
 <xs:annotation>
 <xs:documentation>
 The simpleType element and all of its members are defined
 in datatypes.xsd</xs:documentation>
 </xs:annotation>
 <xs:include schemaLocation="datatypes.xsd"/>
 <xs:import namespace="http://www.w3.org/XML/1998/namespace"
 schemaLocation="http://www.w3.org/2001/xml.xsd">
 <xs:annotation>
 <xs:documentation>
 Get access to the xml: attribute groups for xml:lang
 as declared on 'schema' and 'documentation' below
 </xs:documentation>
 </xs:annotation>
 </xs:import>
 <xs:complexType name="openAttrs">
 <xs:annotation>
 <xs:documentation>
 This type is extended by almost all schema types
 to allow attributes from other namespaces to be
 added to user schemas.
 </xs:documentation>
 </xs:annotation>
 <xs:complexContent>
 <xs:restriction base="xs:anyType">
 <xs:anyAttribute namespace="##other" processContents="lax"/>
 </xs:restriction>
 </xs:complexContent>
 </xs:complexType>
 <xs:complexType name="annotated">
 <xs:annotation>
 <xs:documentation>
 This type is extended by all types which allow annotation
 other than <schema> itself
 </xs:documentation>
 </xs:annotation>
 <xs:complexContent>
 <xs:extension base="xs:openAttrs">
 <xs:sequence>
 <xs:element ref="xs:annotation" minOccurs="0"/>
 </xs:sequence>
 <xs:attribute name="id" type="xs:ID"/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 <xs:group name="schemaTop">
 <xs:annotation>
 <xs:documentation>
 This group is for the
 elements which occur freely at the top level of schemas.
 All of their types are based on the "annotated" type by extension.</x

Page 163 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

 </xs:annotation>
 <xs:choice>
 <xs:group ref="xs:redefinable"/>
 <xs:element ref="xs:element"/>
 <xs:element ref="xs:attribute"/>
 <xs:element ref="xs:notation"/>
 </xs:choice>
 </xs:group>
 <xs:group name="redefinable">
 <xs:annotation>
 <xs:documentation>
 This group is for the
 elements which can self-redefine (see <redefine> below).</xs:docum
 </xs:annotation>
 <xs:choice>
 <xs:element ref="xs:simpleType"/>
 <xs:element ref="xs:complexType"/>
 <xs:element ref="xs:group"/>
 <xs:element ref="xs:attributeGroup"/>
 </xs:choice>
 </xs:group>
 <xs:simpleType name="formChoice">
 <xs:annotation>
 <xs:documentation>
 A utility type, not for public use</xs:documentation>
 </xs:annotation>
 <xs:restriction base="xs:NMTOKEN">
 <xs:enumeration value="qualified"/>
 <xs:enumeration value="unqualified"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="reducedDerivationControl">
 <xs:annotation>
 <xs:documentation>
 A utility type, not for public use</xs:documentation>
 </xs:annotation>
 <xs:restriction base="xs:derivationControl">
 <xs:enumeration value="extension"/>
 <xs:enumeration value="restriction"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="derivationSet">
 <xs:annotation>
 <xs:documentation>
 A utility type, not for public use</xs:documentation>
 <xs:documentation>
 #all or (possibly empty) subset of {extension, restriction}</xs:docum
 </xs:annotation>
 <xs:union>
 <xs:simpleType>
 <xs:restriction base="xs:token">
 <xs:enumeration value="#all"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType>
 <xs:list itemType="xs:reducedDerivationControl"/>

Page 164 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

 </xs:simpleType>
 </xs:union>
 </xs:simpleType>
 <xs:simpleType name="typeDerivationControl">
 <xs:annotation>
 <xs:documentation>
 A utility type, not for public use</xs:documentation>
 </xs:annotation>
 <xs:restriction base="xs:derivationControl">
 <xs:enumeration value="extension"/>
 <xs:enumeration value="restriction"/>
 <xs:enumeration value="list"/>
 <xs:enumeration value="union"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="fullDerivationSet">
 <xs:annotation>
 <xs:documentation>
 A utility type, not for public use</xs:documentation>
 <xs:documentation>
 #all or (possibly empty) subset of {extension, restriction, list, uni
 </xs:annotation>
 <xs:union>
 <xs:simpleType>
 <xs:restriction base="xs:token">
 <xs:enumeration value="#all"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType>
 <xs:list itemType="xs:typeDerivationControl"/>
 </xs:simpleType>
 </xs:union>
 </xs:simpleType>
 <xs:element name="schema" id="schema">
 <xs:annotation>
 <xs:documentation
 source="http://www.w3.org/TR/xmlschema-1/#element-schema"/>
 </xs:annotation>
 <xs:complexType>
 <xs:complexContent>
 <xs:extension base="xs:openAttrs">
 <xs:sequence>
 <xs:choice minOccurs="0" maxOccurs="unbounded">
 <xs:element ref="xs:include"/>
 <xs:element ref="xs:import"/>
 <xs:element ref="xs:redefine"/>
 <xs:element ref="xs:annotation"/>
 </xs:choice>
 <xs:sequence minOccurs="0" maxOccurs="unbounded">
 <xs:group ref="xs:schemaTop"/>
 <xs:element ref="xs:annotation" minOccurs="0"
 maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:sequence>
 <xs:attribute name="targetNamespace" type="xs:anyURI"/>
 <xs:attribute name="version" type="xs:token"/>

Page 165 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

 <xs:attribute name="finalDefault" type="xs:fullDerivationSet"
 default="" use="optional"/>
 <xs:attribute name="blockDefault" type="xs:blockSet" default="
 use="optional"/>
 <xs:attribute name="attributeFormDefault" type="xs:formChoice"
 default="unqualified" use="optional"/>
 <xs:attribute name="elementFormDefault" type="xs:formChoice"
 default="unqualified" use="optional"/>
 <xs:attribute name="id" type="xs:ID"/>
 <xs:attribute ref="xml:lang"/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 <xs:key name="element">
 <xs:selector xpath="xs:element"/>
 <xs:field xpath="@name"/>
 </xs:key>
 <xs:key name="attribute">
 <xs:selector xpath="xs:attribute"/>
 <xs:field xpath="@name"/>
 </xs:key>
 <xs:key name="type">
 <xs:selector xpath="xs:complexType|xs:simpleType"/>
 <xs:field xpath="@name"/>
 </xs:key>
 <xs:key name="group">
 <xs:selector xpath="xs:group"/>
 <xs:field xpath="@name"/>
 </xs:key>
 <xs:key name="attributeGroup">
 <xs:selector xpath="xs:attributeGroup"/>
 <xs:field xpath="@name"/>
 </xs:key>
 <xs:key name="notation">
 <xs:selector xpath="xs:notation"/>
 <xs:field xpath="@name"/>
 </xs:key>
 <xs:key name="identityConstraint">
 <xs:selector xpath=".//xs:key|.//xs:unique|.//xs:keyref"/>
 <xs:field xpath="@name"/>
 </xs:key>
 </xs:element>
 <xs:simpleType name="allNNI">
 <xs:annotation>
 <xs:documentation>
 for maxOccurs</xs:documentation>
 </xs:annotation>
 <xs:union memberTypes="xs:nonNegativeInteger">
 <xs:simpleType>
 <xs:restriction base="xs:NMTOKEN">
 <xs:enumeration value="unbounded"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:union>
 </xs:simpleType>
 <xs:attributeGroup name="occurs">

Page 166 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

 <xs:annotation>
 <xs:documentation>
 for all particles</xs:documentation>
 </xs:annotation>
 <xs:attribute name="minOccurs" type="xs:nonNegativeInteger" default=
 use="optional"/>
 <xs:attribute name="maxOccurs" type="xs:allNNI" default="1" use="opt
 </xs:attributeGroup>
 <xs:attributeGroup name="defRef">
 <xs:annotation>
 <xs:documentation>
 for element, group and attributeGroup,
 which both define and reference</xs:documentation>
 </xs:annotation>
 <xs:attribute name="name" type="xs:NCName"/>
 <xs:attribute name="ref" type="xs:QName"/>
 </xs:attributeGroup>
 <xs:group name="typeDefParticle">
 <xs:annotation>
 <xs:documentation>
 'complexType' uses this</xs:documentation>
 </xs:annotation>
 <xs:choice>
 <xs:element name="group" type="xs:groupRef"/>
 <xs:element ref="xs:all"/>
 <xs:element ref="xs:choice"/>
 <xs:element ref="xs:sequence"/>
 </xs:choice>
 </xs:group>
 <xs:group name="nestedParticle">
 <xs:choice>
 <xs:element name="element" type="xs:localElement"/>
 <xs:element name="group" type="xs:groupRef"/>
 <xs:element ref="xs:choice"/>
 <xs:element ref="xs:sequence"/>
 <xs:element ref="xs:any"/>
 </xs:choice>
 </xs:group>
 <xs:group name="particle">
 <xs:choice>
 <xs:element name="element" type="xs:localElement"/>
 <xs:element name="group" type="xs:groupRef"/>
 <xs:element ref="xs:all"/>
 <xs:element ref="xs:choice"/>
 <xs:element ref="xs:sequence"/>
 <xs:element ref="xs:any"/>
 </xs:choice>
 </xs:group>
 <xs:complexType name="attribute">
 <xs:complexContent>
 <xs:extension base="xs:annotated">
 <xs:sequence>
 <xs:element name="simpleType" type="xs:localSimpleType" minOcc
 </xs:sequence>
 <xs:attributeGroup ref="xs:defRef"/>
 <xs:attribute name="type" type="xs:QName"/>

Page 167 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

 <xs:attribute name="use" default="optional" use="optional">
 <xs:simpleType>
 <xs:restriction base="xs:NMTOKEN">
 <xs:enumeration value="prohibited"/>
 <xs:enumeration value="optional"/>
 <xs:enumeration value="required"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name="default" type="xs:string"/>
 <xs:attribute name="fixed" type="xs:string"/>
 <xs:attribute name="form" type="xs:formChoice"/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 <xs:complexType name="topLevelAttribute">
 <xs:complexContent>
 <xs:restriction base="xs:attribute">
 <xs:sequence>
 <xs:element ref="xs:annotation" minOccurs="0"/>
 <xs:element name="simpleType" type="xs:localSimpleType" minOcc
 </xs:sequence>
 <xs:attribute name="ref" use="prohibited"/>
 <xs:attribute name="form" use="prohibited"/>
 <xs:attribute name="use" use="prohibited"/>
 <xs:attribute name="name" type="xs:NCName" use="required"/>
 <xs:anyAttribute namespace="##other" processContents="lax"/>
 </xs:restriction>
 </xs:complexContent>
 </xs:complexType>
 <xs:group name="attrDecls">
 <xs:sequence>
 <xs:choice minOccurs="0" maxOccurs="unbounded">
 <xs:element name="attribute" type="xs:attribute"/>
 <xs:element name="attributeGroup" type="xs:attributeGroupRef"/>
 </xs:choice>
 <xs:element ref="xs:anyAttribute" minOccurs="0"/>
 </xs:sequence>
 </xs:group>
 <xs:element name="anyAttribute" type="xs:wildcard" id="anyAttribute">
 <xs:annotation>
 <xs:documentation
 source="http://www.w3.org/TR/xmlschema-1/#element-anyAttribut
 </xs:annotation>
 </xs:element>
 <xs:group name="complexTypeModel">
 <xs:choice>
 <xs:element ref="xs:simpleContent"/>
 <xs:element ref="xs:complexContent"/>
 <xs:sequence>
 <xs:annotation>
 <xs:documentation>
 This branch is short for
 <complexContent>
 <restriction base="xs:anyType">
 ...

Page 168 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

 </restriction>
 </complexContent></xs:documentation>
 </xs:annotation>
 <xs:group ref="xs:typeDefParticle" minOccurs="0"/>
 <xs:group ref="xs:attrDecls"/>
 </xs:sequence>
 </xs:choice>
 </xs:group>
 <xs:complexType name="complexType" abstract="true">
 <xs:complexContent>
 <xs:extension base="xs:annotated">
 <xs:group ref="xs:complexTypeModel"/>
 <xs:attribute name="name" type="xs:NCName">
 <xs:annotation>
 <xs:documentation>
 Will be restricted to required or forbidden</xs:documentation>
 </xs:annotation>
 </xs:attribute>
 <xs:attribute name="mixed" type="xs:boolean" default="false"
 use="optional">
 <xs:annotation>
 <xs:documentation>
 Not allowed if simpleContent child is chosen.
 May be overriden by setting on complexContent child.</xs:documenta
 </xs:annotation>
 </xs:attribute>
 <xs:attribute name="abstract" type="xs:boolean" default="false"
 use="optional"/>
 <xs:attribute name="final" type="xs:derivationSet"/>
 <xs:attribute name="block" type="xs:derivationSet"/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 <xs:complexType name="topLevelComplexType">
 <xs:complexContent>
 <xs:restriction base="xs:complexType">
 <xs:sequence>
 <xs:element ref="xs:annotation" minOccurs="0"/>
 <xs:group ref="xs:complexTypeModel"/>
 </xs:sequence>
 <xs:attribute name="name" type="xs:NCName" use="required"/>
 <xs:anyAttribute namespace="##other" processContents="lax"/>
 </xs:restriction>
 </xs:complexContent>
 </xs:complexType>
 <xs:complexType name="localComplexType">
 <xs:complexContent>
 <xs:restriction base="xs:complexType">
 <xs:sequence>
 <xs:element ref="xs:annotation" minOccurs="0"/>
 <xs:group ref="xs:complexTypeModel"/>
 </xs:sequence>
 <xs:attribute name="name" use="prohibited"/>
 <xs:attribute name="abstract" use="prohibited"/>
 <xs:attribute name="final" use="prohibited"/>
 <xs:attribute name="block" use="prohibited"/>

Page 169 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

 <xs:anyAttribute namespace="##other" processContents="lax"/>
 </xs:restriction>
 </xs:complexContent>
 </xs:complexType>
 <xs:complexType name="restrictionType">
 <xs:complexContent>
 <xs:extension base="xs:annotated">
 <xs:sequence>
 <xs:choice minOccurs="0">
 <xs:group ref="xs:typeDefParticle"/>
 <xs:group ref="xs:simpleRestrictionModel"/>
 </xs:choice>
 <xs:group ref="xs:attrDecls"/>
 </xs:sequence>
 <xs:attribute name="base" type="xs:QName" use="required"/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 <xs:complexType name="complexRestrictionType">
 <xs:complexContent>
 <xs:restriction base="xs:restrictionType">
 <xs:sequence>
 <xs:element ref="xs:annotation" minOccurs="0"/>
 <xs:choice minOccurs="0">
 <xs:annotation>
 <xs:documentation>This choice is added simply to
 make this a valid restriction per the REC</xs:documen
 </xs:annotation>
 <xs:group ref="xs:typeDefParticle"/>
 </xs:choice>
 <xs:group ref="xs:attrDecls"/>
 </xs:sequence>
 <xs:anyAttribute namespace="##other" processContents="lax"/>
 </xs:restriction>
 </xs:complexContent>
 </xs:complexType>
 <xs:complexType name="extensionType">
 <xs:complexContent>
 <xs:extension base="xs:annotated">
 <xs:sequence>
 <xs:group ref="xs:typeDefParticle" minOccurs="0"/>
 <xs:group ref="xs:attrDecls"/>
 </xs:sequence>
 <xs:attribute name="base" type="xs:QName" use="required"/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 <xs:element name="complexContent" id="complexContent">
 <xs:annotation>
 <xs:documentation
 source="http://www.w3.org/TR/xmlschema-1/#element-complexCont
 </xs:annotation>
 <xs:complexType>
 <xs:complexContent>
 <xs:extension base="xs:annotated">
 <xs:choice>

Page 170 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

 <xs:element name="restriction" type="xs:complexRestrictionTy
 <xs:element name="extension" type="xs:extensionType"/>
 </xs:choice>
 <xs:attribute name="mixed" type="xs:boolean">
 <xs:annotation>
 <xs:documentation>
 Overrides any setting on complexType parent.</xs:documentation>
 </xs:annotation>
 </xs:attribute>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 </xs:element>
 <xs:complexType name="simpleRestrictionType">
 <xs:complexContent>
 <xs:restriction base="xs:restrictionType">
 <xs:sequence>
 <xs:element ref="xs:annotation" minOccurs="0"/>
 <xs:choice minOccurs="0">
 <xs:annotation>
 <xs:documentation>This choice is added simply to
 make this a valid restriction per the REC</xs:documen
 </xs:annotation>
 <xs:group ref="xs:simpleRestrictionModel"/>
 </xs:choice>
 <xs:group ref="xs:attrDecls"/>
 </xs:sequence>
 <xs:anyAttribute namespace="##other" processContents="lax"/>
 </xs:restriction>
 </xs:complexContent>
 </xs:complexType>
 <xs:complexType name="simpleExtensionType">
 <xs:complexContent>
 <xs:restriction base="xs:extensionType">
 <xs:sequence>
 <xs:annotation>
 <xs:documentation>
 No typeDefParticle group reference</xs:documentation>
 </xs:annotation>
 <xs:element ref="xs:annotation" minOccurs="0"/>
 <xs:group ref="xs:attrDecls"/>
 </xs:sequence>
 <xs:anyAttribute namespace="##other" processContents="lax"/>
 </xs:restriction>
 </xs:complexContent>
 </xs:complexType>
 <xs:element name="simpleContent" id="simpleContent">
 <xs:annotation>
 <xs:documentation
 source="http://www.w3.org/TR/xmlschema-1/#element-simpleConte
 </xs:annotation>
 <xs:complexType>
 <xs:complexContent>
 <xs:extension base="xs:annotated">
 <xs:choice>
 <xs:element name="restriction" type="xs:simpleRestrictionTyp

Page 171 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

 <xs:element name="extension" type="xs:simpleExtensionType"/>
 </xs:choice>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 </xs:element>
 <xs:element name="complexType" type="xs:topLevelComplexType" id="compl
 <xs:annotation>
 <xs:documentation
 source="http://www.w3.org/TR/xmlschema-1/#element-complexType
 </xs:annotation>
 </xs:element>
 <xs:simpleType name="blockSet">
 <xs:annotation>
 <xs:documentation>
 A utility type, not for public use</xs:documentation>
 <xs:documentation>
 #all or (possibly empty) subset of {substitution, extension,
 restriction}</xs:documentation>
 </xs:annotation>
 <xs:union>
 <xs:simpleType>
 <xs:restriction base="xs:token">
 <xs:enumeration value="#all"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType>
 <xs:list>
 <xs:simpleType>
 <xs:restriction base="xs:derivationControl">
 <xs:enumeration value="extension"/>
 <xs:enumeration value="restriction"/>
 <xs:enumeration value="substitution"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:list>
 </xs:simpleType>
 </xs:union>
 </xs:simpleType>
 <xs:complexType name="element" abstract="true">
 <xs:annotation>
 <xs:documentation>
 The element element can be used either
 at the top level to define an element-type binding globally,
 or within a content model to either reference a globally-defined
 element or type or declare an element-type binding locally.
 The ref form is not allowed at the top level.</xs:documentation>
 </xs:annotation>
 <xs:complexContent>
 <xs:extension base="xs:annotated">
 <xs:sequence>
 <xs:choice minOccurs="0">
 <xs:element name="simpleType" type="xs:localSimpleType"/>
 <xs:element name="complexType" type="xs:localComplexType"/>
 </xs:choice>
 <xs:group ref="xs:identityConstraint" minOccurs="0"

Page 172 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

 maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attributeGroup ref="xs:defRef"/>
 <xs:attribute name="type" type="xs:QName"/>
 <xs:attribute name="substitutionGroup" type="xs:QName"/>
 <xs:attributeGroup ref="xs:occurs"/>
 <xs:attribute name="default" type="xs:string"/>
 <xs:attribute name="fixed" type="xs:string"/>
 <xs:attribute name="nillable" type="xs:boolean" default="false"
 use="optional"/>
 <xs:attribute name="abstract" type="xs:boolean" default="false"
 use="optional"/>
 <xs:attribute name="final" type="xs:derivationSet"/>
 <xs:attribute name="block" type="xs:blockSet"/>
 <xs:attribute name="form" type="xs:formChoice"/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 <xs:complexType name="topLevelElement">
 <xs:complexContent>
 <xs:restriction base="xs:element">
 <xs:sequence>
 <xs:element ref="xs:annotation" minOccurs="0"/>
 <xs:choice minOccurs="0">
 <xs:element name="simpleType" type="xs:localSimpleType"/>
 <xs:element name="complexType" type="xs:localComplexType"/>
 </xs:choice>
 <xs:group ref="xs:identityConstraint" minOccurs="0"
 maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="ref" use="prohibited"/>
 <xs:attribute name="form" use="prohibited"/>
 <xs:attribute name="minOccurs" use="prohibited"/>
 <xs:attribute name="maxOccurs" use="prohibited"/>
 <xs:attribute name="name" type="xs:NCName" use="required"/>
 <xs:anyAttribute namespace="##other" processContents="lax"/>
 </xs:restriction>
 </xs:complexContent>
 </xs:complexType>
 <xs:complexType name="localElement">
 <xs:complexContent>
 <xs:restriction base="xs:element">
 <xs:sequence>
 <xs:element ref="xs:annotation" minOccurs="0"/>
 <xs:choice minOccurs="0">
 <xs:element name="simpleType" type="xs:localSimpleType"/>
 <xs:element name="complexType" type="xs:localComplexType"/>
 </xs:choice>
 <xs:group ref="xs:identityConstraint" minOccurs="0"
 maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="substitutionGroup" use="prohibited"/>
 <xs:attribute name="final" use="prohibited"/>
 <xs:attribute name="abstract" use="prohibited"/>
 <xs:anyAttribute namespace="##other" processContents="lax"/>
 </xs:restriction>

Page 173 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

 </xs:complexContent>
 </xs:complexType>
 <xs:element name="element" type="xs:topLevelElement" id="element">
 <xs:annotation>
 <xs:documentation
 source="http://www.w3.org/TR/xmlschema-1/#element-element"/>
 </xs:annotation>
 </xs:element>
 <xs:complexType name="group" abstract="true">
 <xs:annotation>
 <xs:documentation>
 group type for explicit groups, named top-level groups and
 group references</xs:documentation>
 </xs:annotation>
 <xs:complexContent>
 <xs:extension base="xs:annotated">
 <xs:group ref="xs:particle" minOccurs="0" maxOccurs="unbounded"/
 <xs:attributeGroup ref="xs:defRef"/>
 <xs:attributeGroup ref="xs:occurs"/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 <xs:complexType name="realGroup">
 <xs:complexContent>
 <xs:restriction base="xs:group">
 <xs:sequence>
 <xs:element ref="xs:annotation" minOccurs="0"/>
 <xs:choice minOccurs="0" maxOccurs="1">
 <xs:element ref="xs:all"/>
 <xs:element ref="xs:choice"/>
 <xs:element ref="xs:sequence"/>
 </xs:choice>
 </xs:sequence>
 <xs:anyAttribute namespace="##other" processContents="lax"/>
 </xs:restriction>
 </xs:complexContent>
 </xs:complexType>
 <xs:complexType name="namedGroup">
 <xs:complexContent>
 <xs:restriction base="xs:realGroup">
 <xs:sequence>
 <xs:element ref="xs:annotation" minOccurs="0"/>
 <xs:choice minOccurs="1" maxOccurs="1">
 <xs:element name="all">
 <xs:complexType>
 <xs:complexContent>
 <xs:restriction base="xs:all">
 <xs:group ref="xs:allModel"/>
 <xs:attribute name="minOccurs" use="prohibited"/>
 <xs:attribute name="maxOccurs" use="prohibited"/>
 <xs:anyAttribute namespace="##other" processContents
 </xs:restriction>
 </xs:complexContent>
 </xs:complexType>
 </xs:element>
 <xs:element name="choice" type="xs:simpleExplicitGroup"/>

Page 174 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

 <xs:element name="sequence" type="xs:simpleExplicitGroup"/>
 </xs:choice>
 </xs:sequence>
 <xs:attribute name="name" type="xs:NCName" use="required"/>
 <xs:attribute name="ref" use="prohibited"/>
 <xs:attribute name="minOccurs" use="prohibited"/>
 <xs:attribute name="maxOccurs" use="prohibited"/>
 <xs:anyAttribute namespace="##other" processContents="lax"/>
 </xs:restriction>
 </xs:complexContent>
 </xs:complexType>
 <xs:complexType name="groupRef">
 <xs:complexContent>
 <xs:restriction base="xs:realGroup">
 <xs:sequence>
 <xs:element ref="xs:annotation" minOccurs="0"/>
 </xs:sequence>
 <xs:attribute name="ref" type="xs:QName" use="required"/>
 <xs:attribute name="name" use="prohibited"/>
 <xs:anyAttribute namespace="##other" processContents="lax"/>
 </xs:restriction>
 </xs:complexContent>
 </xs:complexType>
 <xs:complexType name="explicitGroup">
 <xs:annotation>
 <xs:documentation>
 group type for the three kinds of group</xs:documentation>
 </xs:annotation>
 <xs:complexContent>
 <xs:restriction base="xs:group">
 <xs:sequence>
 <xs:element ref="xs:annotation" minOccurs="0"/>
 <xs:group ref="xs:nestedParticle" minOccurs="0" maxOccurs="unb
 </xs:sequence>
 <xs:attribute name="name" type="xs:NCName" use="prohibited"/>
 <xs:attribute name="ref" type="xs:QName" use="prohibited"/>
 <xs:anyAttribute namespace="##other" processContents="lax"/>
 </xs:restriction>
 </xs:complexContent>
 </xs:complexType>
 <xs:complexType name="simpleExplicitGroup">
 <xs:complexContent>
 <xs:restriction base="xs:explicitGroup">
 <xs:sequence>
 <xs:element ref="xs:annotation" minOccurs="0"/>
 <xs:group ref="xs:nestedParticle" minOccurs="0" maxOccurs="unb
 </xs:sequence>
 <xs:attribute name="minOccurs" use="prohibited"/>
 <xs:attribute name="maxOccurs" use="prohibited"/>
 <xs:anyAttribute namespace="##other" processContents="lax"/>
 </xs:restriction>
 </xs:complexContent>
 </xs:complexType>
 <xs:group name="allModel">
 <xs:sequence>
 <xs:element ref="xs:annotation" minOccurs="0"/>

Page 175 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

 <xs:choice minOccurs="0" maxOccurs="unbounded">
 <xs:annotation>
 <xs:documentation>This choice with min/max is here to
 avoid a pblm with the Elt:All/Choice/Seq
 Particle derivation constraint</xs:documentati
 </xs:annotation>
 <xs:element name="element" type="xs:narrowMaxMin"/>
 </xs:choice>
 </xs:sequence>
 </xs:group>
 <xs:complexType name="narrowMaxMin">
 <xs:annotation>
 <xs:documentation>restricted max/min</xs:documentation>
 </xs:annotation>
 <xs:complexContent>
 <xs:restriction base="xs:localElement">
 <xs:sequence>
 <xs:element ref="xs:annotation" minOccurs="0"/>
 <xs:choice minOccurs="0">
 <xs:element name="simpleType" type="xs:localSimpleType"/>
 <xs:element name="complexType" type="xs:localComplexType"/>
 </xs:choice>
 <xs:group ref="xs:identityConstraint" minOccurs="0"
 maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="minOccurs" default="1" use="optional">
 <xs:simpleType>
 <xs:restriction base="xs:nonNegativeInteger">
 <xs:enumeration value="0"/>
 <xs:enumeration value="1"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name="maxOccurs" default="1" use="optional">
 <xs:simpleType>
 <xs:restriction base="xs:allNNI">
 <xs:enumeration value="0"/>
 <xs:enumeration value="1"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:anyAttribute namespace="##other" processContents="lax"/>
 </xs:restriction>
 </xs:complexContent>
 </xs:complexType>
 <xs:complexType name="all">
 <xs:annotation>
 <xs:documentation>
 Only elements allowed inside</xs:documentation>
 </xs:annotation>
 <xs:complexContent>
 <xs:restriction base="xs:explicitGroup">
 <xs:group ref="xs:allModel"/>
 <xs:attribute name="minOccurs" default="1" use="optional">
 <xs:simpleType>
 <xs:restriction base="xs:nonNegativeInteger">

Page 176 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

 <xs:enumeration value="0"/>
 <xs:enumeration value="1"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name="maxOccurs" default="1" use="optional">
 <xs:simpleType>
 <xs:restriction base="xs:allNNI">
 <xs:enumeration value="1"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:anyAttribute namespace="##other" processContents="lax"/>
 </xs:restriction>
 </xs:complexContent>
 </xs:complexType>
 <xs:element name="all" type="xs:all" id="all">
 <xs:annotation>
 <xs:documentation source="http://www.w3.org/TR/xmlschema-1/#elemen
 </xs:annotation>
 </xs:element>
 <xs:element name="choice" type="xs:explicitGroup" id="choice">
 <xs:annotation>
 <xs:documentation
 source="http://www.w3.org/TR/xmlschema-1/#element-choice"/>
 </xs:annotation>
 </xs:element>
 <xs:element name="sequence" type="xs:explicitGroup" id="sequence">
 <xs:annotation>
 <xs:documentation
 source="http://www.w3.org/TR/xmlschema-1/#element-sequence"/>
 </xs:annotation>
 </xs:element>
 <xs:element name="group" type="xs:namedGroup" id="group">
 <xs:annotation>
 <xs:documentation source="http://www.w3.org/TR/xmlschema-1/#elemen
 </xs:annotation>
 </xs:element>
 <xs:complexType name="wildcard">
 <xs:complexContent>
 <xs:extension base="xs:annotated">
 <xs:attribute name="namespace" type="xs:namespaceList" default="
 use="optional"/>
 <xs:attribute name="processContents" default="strict" use="optio
 <xs:simpleType>
 <xs:restriction base="xs:NMTOKEN">
 <xs:enumeration value="skip"/>
 <xs:enumeration value="lax"/>
 <xs:enumeration value="strict"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 <xs:element name="any" id="any">

Page 177 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

 <xs:annotation>
 <xs:documentation source="http://www.w3.org/TR/xmlschema-1/#elemen
 </xs:annotation>
 <xs:complexType>
 <xs:complexContent>
 <xs:extension base="xs:wildcard">
 <xs:attributeGroup ref="xs:occurs"/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 </xs:element>
 <xs:annotation>
 <xs:documentation>
 simple type for the value of the 'namespace' attr of
 'any' and 'anyAttribute'</xs:documentation>
 </xs:annotation>
 <xs:annotation>
 <xs:documentation>
 Value is
 ##any - - any non-conflicting WFXML/attribute at all

 ##other - - any non-conflicting WFXML/attribute from
 namespace other than targetNS

 ##local - - any unqualified non-conflicting WFXML/attri

 one or - - any non-conflicting WFXML/attribute from
 more URI the listed namespaces
 references
 (space separated)

 ##targetNamespace or ##local may appear in the above list, to
 refer to the targetNamespace of the enclosing
 schema or an absent targetNamespace respectively</xs:documentati
 </xs:annotation>
 <xs:simpleType name="namespaceList">
 <xs:annotation>
 <xs:documentation>
 A utility type, not for public use</xs:documentation>
 </xs:annotation>
 <xs:union>
 <xs:simpleType>
 <xs:restriction base="xs:token">
 <xs:enumeration value="##any"/>
 <xs:enumeration value="##other"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType>
 <xs:list>
 <xs:simpleType>
 <xs:union memberTypes="xs:anyURI">
 <xs:simpleType>
 <xs:restriction base="xs:token">
 <xs:enumeration value="##targetNamespace"/>
 <xs:enumeration value="##local"/>
 </xs:restriction>

Page 178 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

 </xs:simpleType>
 </xs:union>
 </xs:simpleType>
 </xs:list>
 </xs:simpleType>
 </xs:union>
 </xs:simpleType>
 <xs:element name="attribute" type="xs:topLevelAttribute" id="attribute
 <xs:annotation>
 <xs:documentation
 source="http://www.w3.org/TR/xmlschema-1/#element-attribute"/
 </xs:annotation>
 </xs:element>
 <xs:complexType name="attributeGroup" abstract="true">
 <xs:complexContent>
 <xs:extension base="xs:annotated">
 <xs:group ref="xs:attrDecls"/>
 <xs:attributeGroup ref="xs:defRef"/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 <xs:complexType name="namedAttributeGroup">
 <xs:complexContent>
 <xs:restriction base="xs:attributeGroup">
 <xs:sequence>
 <xs:element ref="xs:annotation" minOccurs="0"/>
 <xs:group ref="xs:attrDecls"/>
 </xs:sequence>
 <xs:attribute name="name" type="xs:NCName" use="required"/>
 <xs:attribute name="ref" use="prohibited"/>
 <xs:anyAttribute namespace="##other" processContents="lax"/>
 </xs:restriction>
 </xs:complexContent>
 </xs:complexType>
 <xs:complexType name="attributeGroupRef">
 <xs:complexContent>
 <xs:restriction base="xs:attributeGroup">
 <xs:sequence>
 <xs:element ref="xs:annotation" minOccurs="0"/>
 </xs:sequence>
 <xs:attribute name="ref" type="xs:QName" use="required"/>
 <xs:attribute name="name" use="prohibited"/>
 <xs:anyAttribute namespace="##other" processContents="lax"/>
 </xs:restriction>
 </xs:complexContent>
 </xs:complexType>
 <xs:element name="attributeGroup" type="xs:namedAttributeGroup"
 id="attributeGroup">
 <xs:annotation>
 <xs:documentation
 source="http://www.w3.org/TR/xmlschema-1/#element-attributeGr
 </xs:annotation>
 </xs:element>
 <xs:element name="include" id="include">
 <xs:annotation>
 <xs:documentation

Page 179 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

 source="http://www.w3.org/TR/xmlschema-1/#element-include"/>
 </xs:annotation>
 <xs:complexType>
 <xs:complexContent>
 <xs:extension base="xs:annotated">
 <xs:attribute name="schemaLocation" type="xs:anyURI" use="requ
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 </xs:element>
 <xs:element name="redefine" id="redefine">
 <xs:annotation>
 <xs:documentation
 source="http://www.w3.org/TR/xmlschema-1/#element-redefine"/>
 </xs:annotation>
 <xs:complexType>
 <xs:complexContent>
 <xs:extension base="xs:openAttrs">
 <xs:choice minOccurs="0" maxOccurs="unbounded">
 <xs:element ref="xs:annotation"/>
 <xs:group ref="xs:redefinable"/>
 </xs:choice>
 <xs:attribute name="schemaLocation" type="xs:anyURI" use="requ
 <xs:attribute name="id" type="xs:ID"/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 </xs:element>
 <xs:element name="import" id="import">
 <xs:annotation>
 <xs:documentation
 source="http://www.w3.org/TR/xmlschema-1/#element-import"/>
 </xs:annotation>
 <xs:complexType>
 <xs:complexContent>
 <xs:extension base="xs:annotated">
 <xs:attribute name="namespace" type="xs:anyURI"/>
 <xs:attribute name="schemaLocation" type="xs:anyURI"/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 </xs:element>
 <xs:element name="selector" id="selector">
 <xs:annotation>
 <xs:documentation
 source="http://www.w3.org/TR/xmlschema-1/#element-selector"/>
 </xs:annotation>
 <xs:complexType>
 <xs:complexContent>
 <xs:extension base="xs:annotated">
 <xs:attribute name="xpath" use="required">
 <xs:simpleType>
 <xs:annotation>
 <xs:documentation>A subset of XPath expressions for use
in selectors</xs:documentation>
 <xs:documentation>A utility type, not for public

Page 180 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

use</xs:documentation>
 </xs:annotation>
 <xs:restriction base="xs:token">
 <xs:annotation>
 <xs:documentation>The following pattern is intended to
 expressions per the following EBNF:
 Selector ::= Path ('|' Path)*
 Path ::= ('.//')? Step ('/' Step)*
 Step ::= '.' | NameTest
 NameTest ::= QName | '*' | NCName ':' '*'
 child:: is also allowed
 </xs:documentation>
 </xs:annotation>
 <xs:pattern
 value="(\.//)?(((child::)?((\i\c*:)?(\i\c*|*)))|\.
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 </xs:element>
 <xs:element name="field" id="field">
 <xs:annotation>
 <xs:documentation source="http://www.w3.org/TR/xmlschema-1/#elemen
 </xs:annotation>
 <xs:complexType>
 <xs:complexContent>
 <xs:extension base="xs:annotated">
 <xs:attribute name="xpath" use="required">
 <xs:simpleType>
 <xs:annotation>
 <xs:documentation>A subset of XPath expressions for use
in fields</xs:documentation>
 <xs:documentation>A utility type, not for public
use</xs:documentation>
 </xs:annotation>
 <xs:restriction base="xs:token">
 <xs:annotation>
 <xs:documentation>The following pattern is intended to
 expressions per the same EBNF as for selector
 with the following change:
 Path ::= ('.//')? (Step '/')* (Step | '@' NameTest)
 </xs:documentation>
 </xs:annotation>
 <xs:pattern
 value="(\.//)?((((child::)?((\i\c*:)?(\i\c*|*)))|\
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 </xs:element>
 <xs:complexType name="keybase">
 <xs:complexContent>

Page 181 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

 <xs:extension base="xs:annotated">
 <xs:sequence>
 <xs:element ref="xs:selector"/>
 <xs:element ref="xs:field" minOccurs="1" maxOccurs="unbounded"
 </xs:sequence>
 <xs:attribute name="name" type="xs:NCName" use="required"/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 <xs:group name="identityConstraint">
 <xs:annotation>
 <xs:documentation>The three kinds of identity constraints, all wit
 type of or derived from 'keybase'.
 </xs:documentation>
 </xs:annotation>
 <xs:choice>
 <xs:element ref="xs:unique"/>
 <xs:element ref="xs:key"/>
 <xs:element ref="xs:keyref"/>
 </xs:choice>
 </xs:group>
 <xs:element name="unique" type="xs:keybase" id="unique">
 <xs:annotation>
 <xs:documentation
 source="http://www.w3.org/TR/xmlschema-1/#element-unique"/>
 </xs:annotation>
 </xs:element>
 <xs:element name="key" type="xs:keybase" id="key">
 <xs:annotation>
 <xs:documentation source="http://www.w3.org/TR/xmlschema-1/#elemen
 </xs:annotation>
 </xs:element>
 <xs:element name="keyref" id="keyref">
 <xs:annotation>
 <xs:documentation
 source="http://www.w3.org/TR/xmlschema-1/#element-keyref"/>
 </xs:annotation>
 <xs:complexType>
 <xs:complexContent>
 <xs:extension base="xs:keybase">
 <xs:attribute name="refer" type="xs:QName" use="required"/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 </xs:element>
 <xs:element name="notation" id="notation">
 <xs:annotation>
 <xs:documentation
 source="http://www.w3.org/TR/xmlschema-1/#element-notation"/>
 </xs:annotation>
 <xs:complexType>
 <xs:complexContent>
 <xs:extension base="xs:annotated">
 <xs:attribute name="name" type="xs:NCName" use="required"/>
 <xs:attribute name="public" type="xs:public"/>
 <xs:attribute name="system" type="xs:anyURI"/>

Page 182 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 </xs:element>
 <xs:simpleType name="public">
 <xs:annotation>
 <xs:documentation>
 A utility type, not for public use</xs:documentation>
 <xs:documentation>
 A public identifier, per ISO 8879</xs:documentation>
 </xs:annotation>
 <xs:restriction base="xs:token"/>
 </xs:simpleType>
 <xs:element name="appinfo" id="appinfo">
 <xs:annotation>
 <xs:documentation
 source="http://www.w3.org/TR/xmlschema-1/#element-appinfo"/>
 </xs:annotation>
 <xs:complexType mixed="true">
 <xs:sequence minOccurs="0" maxOccurs="unbounded">
 <xs:any processContents="lax"/>
 </xs:sequence>
 <xs:attribute name="source" type="xs:anyURI"/>
 <xs:anyAttribute namespace="##other" processContents="lax"/>
 </xs:complexType>
 </xs:element>
 <xs:element name="documentation" id="documentation">
 <xs:annotation>
 <xs:documentation
 source="http://www.w3.org/TR/xmlschema-1/#element-documentati
 </xs:annotation>
 <xs:complexType mixed="true">
 <xs:sequence minOccurs="0" maxOccurs="unbounded">
 <xs:any processContents="lax"/>
 </xs:sequence>
 <xs:attribute name="source" type="xs:anyURI"/>
 <xs:attribute ref="xml:lang"/>
 <xs:anyAttribute namespace="##other" processContents="lax"/>
 </xs:complexType>
 </xs:element>
 <xs:element name="annotation" id="annotation">
 <xs:annotation>
 <xs:documentation
 source="http://www.w3.org/TR/xmlschema-1/#element-annotation"
 </xs:annotation>
 <xs:complexType>
 <xs:complexContent>
 <xs:extension base="xs:openAttrs">
 <xs:choice minOccurs="0" maxOccurs="unbounded">
 <xs:element ref="xs:appinfo"/>
 <xs:element ref="xs:documentation"/>
 </xs:choice>
 <xs:attribute name="id" type="xs:ID"/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

Page 183 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

 </xs:element>
 <xs:annotation>
 <xs:documentation>
 notations for use within XML Schema schemas</xs:documentation>
 </xs:annotation>
 <xs:notation name="XMLSchemaStructures" public="structures"
 system="http://www.w3.org/2000/08/XMLSchema.xsd"/>
 <xs:notation name="XML" public="REC-xml-19980210"
 system="http://www.w3.org/TR/1998/REC-xml-19980210"/>
 <xs:complexType name="anyType" mixed="true">
 <xs:annotation>
 <xs:documentation>
 Not the real urType, but as close an approximation as we can
 get in the XML representation</xs:documentation>
 </xs:annotation>
 <xs:sequence>
 <xs:any minOccurs="0" maxOccurs="unbounded" processContents="lax"/
 </xs:sequence>
 <xs:anyAttribute processContents="lax"/>
 </xs:complexType>
</xs:schema>

Note: And that is the end of the schema for schema documents.

B References (normative)

XML 1.0 (Second Edition)
Extensible Markup Language (XML) 1.0, Second Edition, Tim Bray et al.,
eds., W3C, 6 October 2000. See http://www.w3.org/TR/2000/REC-xml-
20001006

XML Schema Requirements
XML Schema Requirements , Ashok Malhotra and Murray Maloney, eds.,
W3C, 15 February 1999. See http://www.w3.org/TR/1999/NOTE-xml-
schema-req-19990215

XML Schemas: Datatypes
XML Schema Part 2: Datatypes, Paul V. Biron and Ashok Malhotra, eds.,
W3C, 2 May 2001. See http://www.w3.org/TR/2004/REC-xmlschema-2-
20041028/datatypes.html

XML-Infoset
XML Information Set, John Cowan and Richard Tobin, eds., W3C, 16 March
2001. See http://www.w3.org/TR/2001/WD-xml-infoset-20010316/

XML-Namespaces
Namespaces in XML, Tim Bray et al., eds., W3C, 14 January 1999. See
http://www.w3.org/TR/1999/REC-xml-names-19990114/

XPath
XML Path Language, James Clark and Steve DeRose, eds., W3C, 16
November 1999. See http://www.w3.org/TR/1999/REC-xpath-19991116

XPointer
XML Pointer Language (XPointer), Eve Maler and Steve DeRose, eds.,
W3C, 8 January 2001. See http://www.w3.org/TR/2001/WD-xptr-20010108/

Page 184 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

C Outcome Tabulations (normative)

To facilitate consistent reporting of schema errors and ·validation· failures, this
section tabulates and provides unique names for all the constraints listed in this
document. Wherever such constraints have numbered parts, reports should use
the name given below plus the part number, separated by a period ('.'). Thus for
example cos-ct-extends.1.2 should be used to report a violation of the
clause 1.2 of Derivation Valid (Extension) (§3.4.6).

C.1 Validation Rules

cvc-assess-attr
Schema-Validity Assessment (Attribute)

cvc-assess-elt
Schema-Validity Assessment (Element)

cvc-attribute
Attribute Locally Valid

cvc-au
Attribute Locally Valid (Use)

cvc-complex-type
Element Locally Valid (Complex Type)

cvc-datatype-valid
Datatype Valid

cvc-elt
Element Locally Valid (Element)

cvc-enumeration-valid
enumeration valid

cvc-facet-valid
Facet Valid

cvc-fractionDigits-valid
fractionDigits Valid

cvc-id
Validation Root Valid (ID/IDREF)

cvc-identity-constraint
Identity-constraint Satisfied

cvc-length-valid
Length Valid

cvc-maxExclusive-valid
maxExclusive Valid

cvc-maxInclusive-valid
maxInclusive Valid

cvc-maxLength-valid
maxLength Valid

cvc-minExclusive-valid
minExclusive Valid

cvc-minInclusive-valid

Page 185 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

minInclusive Valid
cvc-minLength-valid

minLength Valid
cvc-model-group

Element Sequence Valid
cvc-particle

Element Sequence Locally Valid (Particle)
cvc-pattern-valid

pattern valid
cvc-resolve-instance

QName resolution (Instance)
cvc-simple-type

String Valid
cvc-totalDigits-valid

totalDigits Valid
cvc-type

Element Locally Valid (Type)
cvc-wildcard

Item Valid (Wildcard)
cvc-wildcard-namespace

Wildcard allows Namespace Name

C.2 Contributions to the post-schema-validation infoset

attribute information item properties
[attribute declaration] (Attribute Declaration)
[member type definition] (Attribute Validated by Type)
[member type definition anonymous] (Attribute Validated by Type)
[member type definition name] (Attribute Validated by Type)
[member type definition namespace] (Attribute Validated by Type)
[schema default] (Attribute Validated by Type)
[schema error code] (Validation Failure (Attribute))
[schema normalized value] (Attribute Validated by Type)
[schema specified] (Assessment Outcome (Attribute))
[type definition] (Attribute Validated by Type)
[type definition anonymous] (Attribute Validated by Type)
[type definition name] (Attribute Validated by Type)
[type definition namespace] (Attribute Validated by Type)
[type definition type] (Attribute Validated by Type)
[validation attempted] (Assessment Outcome (Attribute))
[validation context] (Assessment Outcome (Attribute))
[validity] (Assessment Outcome (Attribute))

element information item properties
[element declaration] (Element Declaration)
[ID/IDREF table] (ID/IDREF Table)
[identity-constraint table] (Identity-constraint Table)
[member type definition] (Element Validated by Type)

Page 186 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

[member type definition anonymous] (Element Validated by Type)
[member type definition name] (Element Validated by Type)
[member type definition namespace] (Element Validated by Type)
[nil] (Element Declaration)
[notation] (Validated with Notation)
[notation public] (Validated with Notation)
[notation system] (Validated with Notation)
[schema default] (Element Validated by Type)
[schema error code] (Validation Failure (Element))
[schema information] (Schema Information)
[schema normalized value] (Element Validated by Type)
[schema specified] (Element Default Value)
[type definition] (Element Validated by Type)
[type definition anonymous] (Element Validated by Type)
[type definition name] (Element Validated by Type)
[type definition namespace] (Element Validated by Type)
[type definition type] (Element Validated by Type)
[validation attempted] (Assessment Outcome (Element))
[validation context] (Assessment Outcome (Element))
[validity] (Assessment Outcome (Element))

ID/IDREF binding information item properties
[binding] (ID/IDREF Table)
[id] (ID/IDREF Table)

Identity-constraint Binding information item properties
[definition] (Identity-constraint Table)
[node table] (Identity-constraint Table)

namespace schema information information item properties
[schema components] (Schema Information)
[schema documents] (Schema Information)
[schema namespace] (Schema Information)

schema document information item properties
[document] (Schema Information)
[document location] (Schema Information)

C.3 Schema Representation Constraints

schema_reference
Schema Document Location Strategy

src-annotation
Annotation Definition Representation OK

src-attribute
Attribute Declaration Representation OK

src-attribute_group
Attribute Group Definition Representation OK

src-ct
Complex Type Definition Representation OK

src-element

Page 187 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

Element Declaration Representation OK
src-expredef

Individual Component Redefinition
src-identity-constraint

Identity-constraint Definition Representation OK
src-import

Import Constraints and Semantics
src-include

Inclusion Constraints and Semantics
src-list-itemType-or-simpleType

itemType attribute or simpleType child
src-model_group

Model Group Representation OK
src-model_group_defn

Model Group Definition Representation OK
src-multiple-enumerations

Multiple enumerations
src-multiple-patterns

Multiple patterns
src-notation

Notation Definition Representation OK
src-qname

QName Interpretation
src-redefine

Redefinition Constraints and Semantics
src-resolve

QName resolution (Schema Document)
src-restriction-base-or-simpleType

base attribute or simpleType child
src-simple-type

Simple Type Definition Representation OK
src-single-facet-value

Single Facet Value
src-union-memberTypes-or-simpleTypes

memberTypes attribute or simpleType children
src-wildcard

Wildcard Representation OK

C.4 Schema Component Constraints

a-props-correct
Attribute Declaration Properties Correct

ag-props-correct
Attribute Group Definition Properties Correct

an-props-correct
Annotation Correct

au-props-correct

Page 188 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

Attribute Use Correct
c-fields-xpaths

Fields Value OK
c-props-correct

Identity-constraint Definition Properties Correct
c-selector-xpath

Selector Value OK
cos-all-limited

All Group Limited
cos-applicable-facets

applicable facets
cos-aw-intersect

Attribute Wildcard Intersection
cos-aw-union

Attribute Wildcard Union
cos-choice-range

Effective Total Range (choice)
cos-ct-derived-ok

Type Derivation OK (Complex)
cos-ct-extends

Derivation Valid (Extension)
cos-element-consistent

Element Declarations Consistent
cos-equiv-class

Substitution Group
cos-equiv-derived-ok-rec

Substitution Group OK (Transitive)
cos-group-emptiable

Particle Emptiable
cos-list-of-atomic

list of atomic
cos-no-circular-unions

no circular unions
cos-nonambig

Unique Particle Attribution
cos-ns-subset

Wildcard Subset
cos-particle-extend

Particle Valid (Extension)
cos-particle-restrict

Particle Valid (Restriction)
cos-seq-range

Effective Total Range (all and sequence)
cos-st-derived-ok

Type Derivation OK (Simple)
cos-st-restricts

Derivation Valid (Restriction, Simple)

Page 189 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

cos-valid-default
Element Default Valid (Immediate)

ct-props-correct
Complex Type Definition Properties Correct

derivation-ok-restriction
Derivation Valid (Restriction, Complex)

e-props-correct
Element Declaration Properties Correct

enumeration-required-notation
enumeration facet value required for NOTATION

enumeration-valid-restriction
enumeration valid restriction

fractionDigits-totalDigits
fractionDigits less than or equal to totalDigits

fractionDigits-valid-restriction
fractionDigits valid restriction

length-minLength-maxLength
length and minLength or maxLength

length-valid-restriction
length valid restriction

maxExclusive-valid-restriction
maxExclusive valid restriction

maxInclusive-maxExclusive
maxInclusive and maxExclusive

maxInclusive-valid-restriction
maxInclusive valid restriction

maxLength-valid-restriction
maxLength valid restriction

mg-props-correct
Model Group Correct

mgd-props-correct
Model Group Definition Properties Correct

minExclusive-less-than-equal-to-maxExclusive
minExclusive <= maxExclusive

minExclusive-less-than-maxInclusive
minExclusive < maxInclusive

minExclusive-valid-restriction
minExclusive valid restriction

minInclusive-less-than-equal-to-maxInclusive
minInclusive <= maxInclusive

minInclusive-less-than-maxExclusive
minInclusive < maxExclusive

minInclusive-minExclusive
minInclusive and minExclusive

minInclusive-valid-restriction
minInclusive valid restriction

minLength-less-than-equal-to-maxLength

Page 190 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

minLength <= maxLength
minLength-valid-restriction

minLength valid restriction
n-props-correct

Notation Declaration Correct
no-xmlns

xmlns Not Allowed
no-xsi

xsi: Not Allowed
p-props-correct

Particle Correct
range-ok

Occurrence Range OK
rcase-MapAndSum

Particle Derivation OK (Sequence:Choice -- MapAndSum)
rcase-NameAndTypeOK

Particle Restriction OK (Elt:Elt -- NameAndTypeOK)
rcase-NSCompat

Particle Derivation OK (Elt:Any -- NSCompat)
rcase-NSRecurseCheckCardinality

Particle Derivation OK (All/Choice/Sequence:Any --
NSRecurseCheckCardinality)

rcase-NSSubset
Particle Derivation OK (Any:Any -- NSSubset)

rcase-Recurse
Particle Derivation OK (All:All,Sequence:Sequence -- Recurse)

rcase-RecurseAsIfGroup
Particle Derivation OK (Elt:All/Choice/Sequence -- RecurseAsIfGroup)

rcase-RecurseLax
Particle Derivation OK (Choice:Choice -- RecurseLax)

rcase-RecurseUnordered
Particle Derivation OK (Sequence:All -- RecurseUnordered)

sch-props-correct
Schema Properties Correct

st-props-correct
Simple Type Definition Properties Correct

st-restrict-facets
Simple Type Restriction (Facets)

totalDigits-valid-restriction
totalDigits valid restriction

w-props-correct
Wildcard Properties Correct

whiteSpace-valid-restriction
whiteSpace valid restriction

D Required Information Set Items and Properties

Page 191 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

(normative)

This specification requires as a precondition for ·assessment· an information set
as defined in [XML-Infoset] which supports at least the following information items
and properties:

Attribute Information Item
[local name], [namespace name], [normalized value]

Character Information Item
[character code]

Element Information Item
[local name], [namespace name], [children], [attributes], [in-scope
namespaces] or [namespace attributes]

Namespace Information Item
[prefix], [namespace name]

In addition, infosets should support the [unparsedEntities] property of the
Document Information Item. Failure to do so will mean all items of type ENTITY or
ENTITIES will fail to ·validate·.

This specification does not require any destructive alterations to the input
information set: all the information set contributions specified herein are additive.

This appendix is intended to satisfy the requirements for Conformance to the
[XML-Infoset] specification.

E Schema Components Diagram (non-normative)

Page 192 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

Page 193 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

F Glossary (non-normative)

The listing below is for the benefit of readers of a printed version of this document:
it collects together all the definitions which appear in the document above.

absent
Throughout this specification, the term absent is used as a distinguished
property value denoting absence

actual value
The phrase actual value is used to refer to the member of the value space
of the simple type definition associated with an attribute information item
which corresponds to its ·normalized value·

assessment
the word assessment is used to refer to the overall process of local
validation, schema-validity assessment and infoset augmentation

base type definition
A type definition used as the basis for an ·extension· or ·restriction· is known
as the base type definition of that definition

component name
Declarations and definitions may have and be identified by names, which are
NCNames as defined by [XML-Namespaces]

conformance to the XML Representation of Schemas
·Minimally conforming· processors which accept schemas represented in the
form of XML documents as described in Layer 2: Schema Documents,
Namespaces and Composition (§4.2) are additionally said to provide
conformance to the XML Representation of Schemas.

content model
A particle can be used in a complex type definition to constrain the
·validation· of the [children] of an element information item; such a particle is
called a content model

context-determined declaration
During ·validation·, associations between element and attribute information
items among the [children] and [attributes] on the one hand, and element
and attribute declarations on the other, are established as a side-effect. Such
declarations are called the context-determined declarations

declaration
declaration components are associated by (qualified) name to information
items being ·validated·

declared entity name
A string is a declared entity name if it is equal to the [name] of some
unparsed entity information item in the value of the [unparsedEntities]
property of the document information item at the root of the infoset
containing the element or attribute information item whose ·normalized value·
the string is.

definition
definition components define internal schema components that can be used

Page 194 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

in other schema components
element substitution group

Through the new mechanism of element substitution groups, XML
Schemas provides a more powerful model supporting substitution of one
named element for another

extension
A complex type definition which allows element or attribute content in
addition to that allowed by another specified type definition is said to be an
extension

final
the complex type is said to be final, because no further derivations are
possible

fully conforming
Fully conforming processors are network-enabled processors which are not
only both ·minimally conforming· and ·in conformance to the XML
Representation of Schemas·, but which additionally must be capable of
accessing schema documents from the World Wide Web according to
Representation of Schemas on the World Wide Web (§2.7) and How schema
definitions are located on the Web (§4.3.2).

implicitly contains
A list of particles implicitly contains an element declaration if a member of
the list contains that element declaration in its ·substitution group·

initial value
the initial value of some attribute information item is the value of the
[normalized value] property of that item. Similarly, the initial value of an
element information item is the string composed of, in order, the [character
code] of each character information item in the [children] of that element
information item

item isomorphic to a component
by an item isomorphic to a component is meant an information item whose
type is equivalent to the component's, with one property per property of the
component, with the same name, and value either the same atomic value, or
an information item corresponding in the same way to its component value,
recursively, as necessary

laxly assessed
an element information item's schema validity may be laxly assessed if its
·context-determined declaration· is not skip by ·validating· with respect to the
·ur-type definition· as per Element Locally Valid (Type) (§3.3.4)

minimally conforming
Minimally conforming processors must completely and correctly implement
the ·Schema Component Constraints·, ·Validation Rules·, and ·Schema
Information Set Contributions· contained in this specification

NCName
An NCName is a name with no colon, as defined in [XML-Namespaces].
When used in connection with the XML representation of schema
components in this specification, this refers to the simple type NCName as
defined in [XML Schemas: Datatypes]

Page 195 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

normalized value
The normalized value of an element or attribute information item is an
·initial value· whose white space, if any, has been normalized according to
the value of the whiteSpace facet of the simple type definition used in its
·validation·:

partition
Define a partition of a sequence as a sequence of sub-sequences, some or
all of which may be empty, such that concatenating all the sub-sequences
yields the original sequence

post-schema-validation infoset
We refer to the augmented infoset which results from conformant processing
as defined in this specification as the post-schema-validation infoset, or
PSVI

QName
A QName is a name with an optional namespace qualification, as defined in
[XML-Namespaces]. When used in connection with the XML representation
of schema components or references to them, this refers to the simple type
QName as defined in [XML Schemas: Datatypes]

resolve
Whenever the word resolve in any form is used in this chapter in connection
with a ·QName· in a schema document, the following definition QName
resolution (Schema Document) (§3.15.3) should be understood

restriction
A type definition whose declarations or facets are in a one-to-one relation
with those of another specified type definition, with each in turn restricting the
possibilities of the one it corresponds to, is said to be a restriction

schema component
Schema component is the generic term for the building blocks that
comprise the abstract data model of the schema.

Schema Component Constraint
Constraints on the schema components themselves, i.e. conditions
components must satisfy to be components at all. Located in the sixth sub-
section of the per-component sections of Schema Component Details (§3)
and tabulated in Schema Component Constraints (§C.4)

schema document
A document in this form (i.e. a <schema> element information item) is a
schema document

Schema Information Set Contribution
Augmentations to ·post-schema-validation infoset·s expressed by schema
components, which follow as a consequence of ·validation· and/or
·assessment·. Located in the fifth sub-section of the per-component sections
of Schema Component Details (§3) and tabulated in Contributions to the
post-schema-validation infoset (§C.2)

Schema Representation Constraint
Constraints on the representation of schema components in XML beyond
those which are expressed in Schema for Schemas (normative) (§A).
Located in the third sub-section of the per-component sections of Schema

Page 196 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

Component Details (§3) and tabulated in Schema Representation
Constraints (§C.3)

simple ur-type definition
the simple ur-type definition, a special restriction of the ·ur-type definition·,
whose name is anySimpleType in the XML Schema namespace

substitution group
Every element declaration (call this HEAD) in the {element declarations} of a
schema defines a substitution group, a subset of those {element
declarations}, as follows:

symbol space
this specification introduces the term symbol space to denote a collection of
names, each of which is unique with respect to the others

target namespace
Several kinds of component have a target namespace, which is either
·absent· or a namespace name, also as defined by [XML-Namespaces]

type definition
This specification uses the phrase type definition in cases where no
distinction need be made between simple and complex types

Type Definition Hierarchy
Except for a distinguished ·ur-type definition·, every ·type definition· is, by
construction, either a ·restriction· or an ·extension· of some other type
definition. The graph of these relationships forms a tree known as the Type
Definition Hierarchy

ur-type definition
A distinguished complex type definition, the ur-type definition, whose name
is anyType in the XML Schema namespace, is present in each ·XML
Schema·, serving as the root of the type definition hierarchy for that schema

valid
the word valid and its derivatives are used to refer to clause 1 above, the
determination of local schema-validity

valid extension
If this constraint Derivation Valid (Extension) (§3.4.6) holds of a complex
type definition, it is a valid extension of its {base type definition}

valid restriction
If this constraint Derivation Valid (Restriction, Complex) (§3.4.6) holds of a
complex type definition, it is a valid restriction of its {base type definition}

valid restriction
If this constraint Derivation Valid (Restriction, Simple) (§3.14.6) holds of a
simple type definition, it is a valid restriction of its ·base type definition·

validation root
This item, that is the element information item at which ·assessment· began,
is called the validation root

Validation Rules
Contributions to ·validation· associated with schema components. Located in
the fourth sub-section of the per-component sections of Schema Component
Details (§3) and tabulated in Validation Rules (§C.1)

XML Schema

Page 197 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

An XML Schema is a set of ·schema components·

G DTD for Schemas (non-normative)

The DTD for schema documents is given below. Note there is no implication here
that schema must be the root element of a document.

Although this DTD is non-normative, any XML document which is not valid per this
DTD, given redefinitions in its internal subset of the 'p' and 's' parameter entities
below appropriate to its namespace declaration of the XML Schema namespace,
is almost certainly not a valid schema document, with the exception of documents
with multiple namespace prefixes for the XML Schema namespace itself.
Accordingly authoring XML Schema documents using this DTD and DTD-based
authoring tools, and specifying it as the DOCTYPE of documents intended to be
XML Schema documents and validating them with a validating XML parser, are
sensible development strategies which users are encouraged to adopt until XML
Schema-based authoring tools and validators are more widely available.

<!-- DTD for XML Schemas: Part 1: Structures
 Public Identifier: "-//W3C//DTD XMLSCHEMA 200102//EN"
 Official Location: http://www.w3.org/2001/XMLSchema.dtd -->
<!-- Id: structures.dtd,v 1.1 2003/08/28 13:30:52 ht Exp -->
<!-- With the exception of cases with multiple namespace
 prefixes for the XML Schema namespace, any XML document which is
 not valid per this DTD given redefinitions in its internal subset o
 'p' and 's' parameter entities below appropriate to its namespace
 declaration of the XML Schema namespace is almost certainly not
 a valid schema. -->

<!-- The simpleType element and its constituent parts
 are defined in XML Schema: Part 2: Datatypes -->
<!ENTITY % xs-datatypes PUBLIC 'datatypes' 'datatypes.dtd' >

<!ENTITY % p 'xs:'> <!-- can be overriden in the internal subset of a
 schema document to establish a different
 namespace prefix -->
<!ENTITY % s ':xs'> <!-- if %p is defined (e.g. as foo:) then you must
 also define %s as the suffix for the appropriat
 namespace declaration (e.g. :foo) -->
<!ENTITY % nds 'xmlns%s;'>

<!-- Define all the element names, with optional prefix -->
<!ENTITY % schema "%p;schema">
<!ENTITY % complexType "%p;complexType">
<!ENTITY % complexContent "%p;complexContent">
<!ENTITY % simpleContent "%p;simpleContent">
<!ENTITY % extension "%p;extension">
<!ENTITY % element "%p;element">
<!ENTITY % unique "%p;unique">
<!ENTITY % key "%p;key">
<!ENTITY % keyref "%p;keyref">

Page 198 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

<!ENTITY % selector "%p;selector">
<!ENTITY % field "%p;field">
<!ENTITY % group "%p;group">
<!ENTITY % all "%p;all">
<!ENTITY % choice "%p;choice">
<!ENTITY % sequence "%p;sequence">
<!ENTITY % any "%p;any">
<!ENTITY % anyAttribute "%p;anyAttribute">
<!ENTITY % attribute "%p;attribute">
<!ENTITY % attributeGroup "%p;attributeGroup">
<!ENTITY % include "%p;include">
<!ENTITY % import "%p;import">
<!ENTITY % redefine "%p;redefine">
<!ENTITY % notation "%p;notation">

<!-- annotation elements -->
<!ENTITY % annotation "%p;annotation">
<!ENTITY % appinfo "%p;appinfo">
<!ENTITY % documentation "%p;documentation">

<!-- Customisation entities for the ATTLIST of each element type.
 Define one of these if your schema takes advantage of the
 anyAttribute='##other' in the schema for schemas -->

<!ENTITY % schemaAttrs ''>
<!ENTITY % complexTypeAttrs ''>
<!ENTITY % complexContentAttrs ''>
<!ENTITY % simpleContentAttrs ''>
<!ENTITY % extensionAttrs ''>
<!ENTITY % elementAttrs ''>
<!ENTITY % groupAttrs ''>
<!ENTITY % allAttrs ''>
<!ENTITY % choiceAttrs ''>
<!ENTITY % sequenceAttrs ''>
<!ENTITY % anyAttrs ''>
<!ENTITY % anyAttributeAttrs ''>
<!ENTITY % attributeAttrs ''>
<!ENTITY % attributeGroupAttrs ''>
<!ENTITY % uniqueAttrs ''>
<!ENTITY % keyAttrs ''>
<!ENTITY % keyrefAttrs ''>
<!ENTITY % selectorAttrs ''>
<!ENTITY % fieldAttrs ''>
<!ENTITY % includeAttrs ''>
<!ENTITY % importAttrs ''>
<!ENTITY % redefineAttrs ''>
<!ENTITY % notationAttrs ''>
<!ENTITY % annotationAttrs ''>
<!ENTITY % appinfoAttrs ''>
<!ENTITY % documentationAttrs ''>

<!ENTITY % complexDerivationSet "CDATA">
 <!-- #all or space-separated list drawn from derivationChoice -->
<!ENTITY % blockSet "CDATA">
 <!-- #all or space-separated list drawn from
 derivationChoice + 'substitution' -->

Page 199 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

<!ENTITY % mgs '%all; | %choice; | %sequence;'>
<!ENTITY % cs '%choice; | %sequence;'>
<!ENTITY % formValues '(qualified|unqualified)'>

<!ENTITY % attrDecls '((%attribute;| %attributeGroup;)*,(%anyAttribut

<!ENTITY % particleAndAttrs '((%mgs; | %group;)?, %attrDecls;)'>

<!-- This is used in part2 -->
<!ENTITY % restriction1 '((%mgs; | %group;)?)'>

%xs-datatypes;

<!-- the duplication below is to produce an unambiguous content model
 which allows annotation everywhere -->
<!ELEMENT %schema; ((%include; | %import; | %redefine; | %annotation;)*,
 ((%simpleType; | %complexType;
 | %element; | %attribute;
 | %attributeGroup; | %group;
 | %notation;),
 (%annotation;)*)*)>
<!ATTLIST %schema;
 targetNamespace %URIref; #IMPLIED
 version CDATA #IMPLIED
 %nds; %URIref; #FIXED 'http://www.w3.org
 xmlns CDATA #IMPLIED
 finalDefault %complexDerivationSet; ''
 blockDefault %blockSet; ''
 id ID #IMPLIED
 elementFormDefault %formValues; 'unqualified'
 attributeFormDefault %formValues; 'unqualified'
 xml:lang CDATA #IMPLIED
 %schemaAttrs;>
<!-- Note the xmlns declaration is NOT in the Schema for Schemas,
 because at the Infoset level where schemas operate,
 xmlns(:prefix) is NOT an attribute! -->
<!-- The declaration of xmlns is a convenience for schema authors -->

<!-- The id attribute here and below is for use in external references
 from non-schemas using simple fragment identifiers.
 It is NOT used for schema-to-schema reference, internal or
 external. -->

<!-- a type is a named content type specification which allows attribute
 declarations-->
<!-- -->

<!ELEMENT %complexType; ((%annotation;)?,
 (%simpleContent;|%complexContent;|
 %particleAndAttrs;))>

<!ATTLIST %complexType;
 name %NCName; #IMPLIED
 id ID #IMPLIED

Page 200 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

 abstract %boolean; #IMPLIED
 final %complexDerivationSet; #IMPLIED
 block %complexDerivationSet; #IMPLIED
 mixed (true|false) 'false'
 %complexTypeAttrs;>

<!-- particleAndAttrs is shorthand for a root type -->
<!-- mixed is disallowed if simpleContent, overriden if complexContent
 has one too. -->

<!-- If anyAttribute appears in one or more referenced attributeGroups
 and/or explicitly, the intersection of the permissions is used -->

<!ELEMENT %complexContent; ((%annotation;)?, (%restriction;|%extension;
<!ATTLIST %complexContent;
 mixed (true|false) #IMPLIED
 id ID #IMPLIED
 %complexContentAttrs;>

<!-- restriction should use the branch defined above, not the simple
 one from part2; extension should use the full model -->

<!ELEMENT %simpleContent; ((%annotation;)?, (%restriction;|%extension;)
<!ATTLIST %simpleContent;
 id ID #IMPLIED
 %simpleContentAttrs;>

<!-- restriction should use the simple branch from part2, not the
 one defined above; extension should have no particle -->

<!ELEMENT %extension; ((%annotation;)?, (%particleAndAttrs;))>
<!ATTLIST %extension;
 base %QName; #REQUIRED
 id ID #IMPLIED
 %extensionAttrs;>

<!-- an element is declared by either:
 a name and a type (either nested or referenced via the type attribute)
 or a ref to an existing element declaration -->

<!ELEMENT %element; ((%annotation;)?, (%complexType;| %simpleType;)?,
 (%unique; | %key; | %keyref;)*)>
<!-- simpleType or complexType only if no type|ref attribute -->
<!-- ref not allowed at top level -->
<!ATTLIST %element;
 name %NCName; #IMPLIED
 id ID #IMPLIED
 ref %QName; #IMPLIED
 type %QName; #IMPLIED
 minOccurs %nonNegativeInteger; #IMPLIED
 maxOccurs CDATA #IMPLIED
 nillable %boolean; #IMPLIED
 substitutionGroup %QName; #IMPLIED
 abstract %boolean; #IMPLIED
 final %complexDerivationSet; #IMPLIED
 block %blockSet; #IMPLIED

Page 201 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

 default CDATA #IMPLIED
 fixed CDATA #IMPLIED
 form %formValues; #IMPLIED
 %elementAttrs;>
<!-- type and ref are mutually exclusive.
 name and ref are mutually exclusive, one is required -->
<!-- In the absence of type AND ref, type defaults to type of
 substitutionGroup, if any, else the ur-type, i.e. unconstrained -->
<!-- default and fixed are mutually exclusive -->

<!ELEMENT %group; ((%annotation;)?,(%mgs;)?)>
<!ATTLIST %group;
 name %NCName; #IMPLIED
 ref %QName; #IMPLIED
 minOccurs %nonNegativeInteger; #IMPLIED
 maxOccurs CDATA #IMPLIED
 id ID #IMPLIED
 %groupAttrs;>

<!ELEMENT %all; ((%annotation;)?, (%element;)*)>
<!ATTLIST %all;
 minOccurs (1) #IMPLIED
 maxOccurs (1) #IMPLIED
 id ID #IMPLIED
 %allAttrs;>

<!ELEMENT %choice; ((%annotation;)?, (%element;| %group;| %cs; | %any;)*
<!ATTLIST %choice;
 minOccurs %nonNegativeInteger; #IMPLIED
 maxOccurs CDATA #IMPLIED
 id ID #IMPLIED
 %choiceAttrs;>

<!ELEMENT %sequence; ((%annotation;)?, (%element;| %group;| %cs; | %any;
<!ATTLIST %sequence;
 minOccurs %nonNegativeInteger; #IMPLIED
 maxOccurs CDATA #IMPLIED
 id ID #IMPLIED
 %sequenceAttrs;>

<!-- an anonymous grouping in a model, or
 a top-level named group definition, or a reference to same -->

<!-- Note that if order is 'all', group is not allowed inside.
 If order is 'all' THIS group must be alone (or referenced alone) at
 the top level of a content model -->
<!-- If order is 'all', minOccurs==maxOccurs==1 on element/any inside --
<!-- Should allow minOccurs=0 inside order='all' . . . -->

<!ELEMENT %any; (%annotation;)?>
<!ATTLIST %any;
 namespace CDATA '##any'
 processContents (skip|lax|strict) 'strict'
 minOccurs %nonNegativeInteger; '1'
 maxOccurs CDATA '1'
 id ID #IMPLIED

Page 202 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

 %anyAttrs;>

<!-- namespace is interpreted as follows:
 ##any - - any non-conflicting WFXML at all

 ##other - - any non-conflicting WFXML from namespac
 than targetNamespace

 ##local - - any unqualified non-conflicting WFXML/a
 one or - - any non-conflicting WFXML from
 more URI the listed namespaces
 references

 ##targetNamespace ##local may appear in the above list
 with the obvious meaning -->

<!ELEMENT %anyAttribute; (%annotation;)?>
<!ATTLIST %anyAttribute;
 namespace CDATA '##any'
 processContents (skip|lax|strict) 'strict'
 id ID #IMPLIED
 %anyAttributeAttrs;>
<!-- namespace is interpreted as for 'any' above -->

<!-- simpleType only if no type|ref attribute -->
<!-- ref not allowed at top level, name iff at top level -->
<!ELEMENT %attribute; ((%annotation;)?, (%simpleType;)?)>
<!ATTLIST %attribute;
 name %NCName; #IMPLIED
 id ID #IMPLIED
 ref %QName; #IMPLIED
 type %QName; #IMPLIED
 use (prohibited|optional|required) #IMPLIED
 default CDATA #IMPLIED
 fixed CDATA #IMPLIED
 form %formValues; #IMPLIED
 %attributeAttrs;>
<!-- type and ref are mutually exclusive.
 name and ref are mutually exclusive, one is required -->
<!-- default for use is optional when nested, none otherwise -->
<!-- default and fixed are mutually exclusive -->
<!-- type attr and simpleType content are mutually exclusive -->

<!-- an attributeGroup is a named collection of attribute decls, or a
 reference thereto -->
<!ELEMENT %attributeGroup; ((%annotation;)?,
 (%attribute; | %attributeGroup;)*,
 (%anyAttribute;)?) >
<!ATTLIST %attributeGroup;
 name %NCName; #IMPLIED
 id ID #IMPLIED
 ref %QName; #IMPLIED
 %attributeGroupAttrs;>

<!-- ref iff no content, no name. ref iff not top level -->

Page 203 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

<!-- better reference mechanisms -->
<!ELEMENT %unique; ((%annotation;)?, %selector;, (%field;)+)>
<!ATTLIST %unique;
 name %NCName; #REQUIRED
 id ID #IMPLIED
 %uniqueAttrs;>

<!ELEMENT %key; ((%annotation;)?, %selector;, (%field;)+)>
<!ATTLIST %key;
 name %NCName; #REQUIRED
 id ID #IMPLIED
 %keyAttrs;>

<!ELEMENT %keyref; ((%annotation;)?, %selector;, (%field;)+)>
<!ATTLIST %keyref;
 name %NCName; #REQUIRED
 refer %QName; #REQUIRED
 id ID #IMPLIED
 %keyrefAttrs;>

<!ELEMENT %selector; ((%annotation;)?)>
<!ATTLIST %selector;
 xpath %XPathExpr; #REQUIRED
 id ID #IMPLIED
 %selectorAttrs;>
<!ELEMENT %field; ((%annotation;)?)>
<!ATTLIST %field;
 xpath %XPathExpr; #REQUIRED
 id ID #IMPLIED
 %fieldAttrs;>

<!-- Schema combination mechanisms -->
<!ELEMENT %include; (%annotation;)?>
<!ATTLIST %include;
 schemaLocation %URIref; #REQUIRED
 id ID #IMPLIED
 %includeAttrs;>

<!ELEMENT %import; (%annotation;)?>
<!ATTLIST %import;
 namespace %URIref; #IMPLIED
 schemaLocation %URIref; #IMPLIED
 id ID #IMPLIED
 %importAttrs;>

<!ELEMENT %redefine; (%annotation; | %simpleType; | %complexType; |
 %attributeGroup; | %group;)*>
<!ATTLIST %redefine;
 schemaLocation %URIref; #REQUIRED
 id ID #IMPLIED
 %redefineAttrs;>

<!ELEMENT %notation; (%annotation;)?>
<!ATTLIST %notation;
 name %NCName; #REQUIRED
 id ID #IMPLIED

Page 204 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

 public CDATA #REQUIRED
 system %URIref; #IMPLIED
 %notationAttrs;>

<!-- Annotation is either application information or documentation -->
<!-- By having these here they are available for datatypes as well
 as all the structures elements -->

<!ELEMENT %annotation; (%appinfo; | %documentation;)*>
<!ATTLIST %annotation; %annotationAttrs;>

<!-- User must define annotation elements in internal subset for this
 to work -->
<!ELEMENT %appinfo; ANY> <!-- too restrictive -->
<!ATTLIST %appinfo;
 source %URIref; #IMPLIED
 id ID #IMPLIED
 %appinfoAttrs;>
<!ELEMENT %documentation; ANY> <!-- too restrictive -->
<!ATTLIST %documentation;
 source %URIref; #IMPLIED
 id ID #IMPLIED
 xml:lang CDATA #IMPLIED
 %documentationAttrs;>

<!NOTATION XMLSchemaStructures PUBLIC
 'structures' 'http://www.w3.org/2001/XMLSchema.xsd' >
<!NOTATION XML PUBLIC
 'REC-xml-1998-0210' 'http://www.w3.org/TR/1998/REC-xml-199802

H Analysis of the Unique Particle Attribution Constraint
(non-normative)

A specification of the import of Unique Particle Attribution (§3.8.6) which does not
appeal to a processing model is difficult. What follows is intended as guidance,
without claiming to be complete.

[Definition:] Two non-group particles overlap if

They are both element declaration particles whose declarations have the
same {name} and {target namespace}.

or

They are both element declaration particles one of whose {name} and {target
namespace} are the same as those of an element declaration in the other's
·substitution group·.

or

Page 205 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

They are both wildcards, and the intensional intersection of their {namespace
constraint}s as defined in Attribute Wildcard Intersection (§3.10.6) is not the
empty set.

or

One is a wildcard and the other an element declaration, and the {target
namespace} of any member of its ·substitution group· is ·valid· with respect
to the {namespace constraint} of the wildcard.

A content model will violate the unique attribution constraint if it contains two
particles which ·overlap· and which either

are both in the {particles} of a choice or all group

or

may ·validate· adjacent information items and the first has {min occurs} less
than {max occurs}.

Two particles may ·validate· adjacent information items if they are separated by at
most epsilon transitions in the most obvious transcription of a content model into a
finite-state automaton.

A precise formulation of this constraint can also be offered in terms of operations
on finite-state automaton: transcribe the content model into an automaton in the
usual way using epsilon transitions for optionality and unbounded maxOccurs,
unfolding other numeric occurrence ranges and treating the heads of substitution
groups as if they were choices over all elements in the group, but using not
element QNames as transition labels, but rather pairs of element QNames and
positions in the model. Determinize this automaton, treating wildcard transitions as
opaque. Now replace all QName+position transition labels with the element
QNames alone. If the result has any states with two or more identical-QName-
labeled transitions from it, or a QName-labeled transition and a wildcard transition
which subsumes it, or two wildcard transitions whose intentional intersection is
non-empty, the model does not satisfy the Unique Attribution constraint.

I References (non-normative)

DCD
Document Content Description for XML (DCD), Tim Bray et al., eds., W3C,
10 August 1998. See http://www.w3.org/TR/1998/NOTE-dcd-19980731

DDML
Document Definition Markup Language, Ronald Bourret, John Cowan, Ingo
Macherius, Simon St. Laurent, eds., W3C, 19 January 1999. See
http://www.w3.org/TR/1999/NOTE-ddml-19990119

Page 206 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

SOX
Schema for Object-oriented XML, Andrew Davidson et al., eds., W3C, 1998.
See http://www.w3.org/1999/07/NOTE-SOX-19990730/

SOX-2
Schema for Object-oriented XML, Version 2.0, Andrew Davidson, et al.,
W3C, 30 July 1999. See http://www.w3.org/TR/NOTE-SOX/

XDR
XML-Data Reduced, Charles Frankston and Henry S. Thompson, 3 July
1998. See http://www.ltg.ed.ac.uk/~ht/XMLData-Reduced.htm

XML Schema: Primer
XML Schema Part 0: Primer, David C. Fallside, ed., W3C, 2 May 2001. See
http://www.w3.org/TR/2004/REC-xmlschema-0-20041028/primer.html

XML-Data
XML-Data, Andrew Layman et al., W3C, 05 January 1998. See
http://www.w3.org/TR/1998/NOTE-XML-data-0105/

J Acknowledgements (non-normative)

The following contributed material to the first edition of this specification:

David Fallside, IBM
Scott Lawrence, Agranat Systems
Andrew Layman, Microsoft
Eve L. Maler, Sun Microsystems
Asir S. Vedamuthu, webMethods, Inc

The editors acknowledge the members of the XML Schema Working Group, the
members of other W3C Working Groups, and industry experts in other forums who
have contributed directly or indirectly to the process or content of creating this
document. The Working Group is particularly grateful to Lotus Development Corp.
and IBM for providing teleconferencing facilities.

At the time the first edition of this specification was published, the members of the
XML Schema Working Group were:

Jim Barnette, Defense Information Systems Agency (DISA)
Paul V. Biron, Health Level Seven
Don Box, DevelopMentor
Allen Brown, Microsoft
Lee Buck, TIBCO Extensibility
Charles E. Campbell, Informix
Wayne Carr, Intel
Peter Chen, Bootstrap Alliance and LSU
David Cleary, Progress Software
Dan Connolly, W3C (staff contact)
Ugo Corda, Xerox

Page 207 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

Roger L. Costello, MITRE
Haavard Danielson, Progress Software
Josef Dietl, Mozquito Technologies
David Ezell, Hewlett-Packard Company
Alexander Falk, Altova GmbH
David Fallside, IBM
Dan Fox, Defense Logistics Information Service (DLIS)
Matthew Fuchs, Commerce One
Andrew Goodchild, Distributed Systems Technology Centre (DSTC Pty Ltd)
Paul Grosso, Arbortext, Inc
Martin Gudgin, DevelopMentor
Dave Hollander, Contivo, Inc (co-chair)
Mary Holstege, Invited Expert
Jane Hunter, Distributed Systems Technology Centre (DSTC Pty Ltd)
Rick Jelliffe, Academia Sinica
Simon Johnston, Rational Software
Bob Lojek, Mozquito Technologies
Ashok Malhotra, Microsoft
Lisa Martin, IBM
Noah Mendelsohn, Lotus Development Corporation
Adrian Michel, Commerce One
Alex Milowski, Invited Expert
Don Mullen, TIBCO Extensibility
Dave Peterson, Graphic Communications Association
Jonathan Robie, Software AG
Eric Sedlar, Oracle Corp.
C. M. Sperberg-McQueen, W3C (co-chair)
Bob Streich, Calico Commerce
William K. Stumbo, Xerox
Henry S. Thompson, University of Edinburgh
Mark Tucker, Health Level Seven
Asir S. Vedamuthu, webMethods, Inc
Priscilla Walmsley, XMLSolutions
Norm Walsh, Sun Microsystems
Aki Yoshida, SAP AG
Kongyi Zhou, Oracle Corp.

The XML Schema Working Group has benefited in its work from the participation
and contributions of a number of people not currently members of the Working
Group, including in particular those named below. Affiliations given are those
current at the time of their work with the WG.

Paula Angerstein, Vignette Corporation
David Beech, Oracle Corp.
Gabe Beged-Dov, Rogue Wave Software
Greg Bumgardner, Rogue Wave Software
Dean Burson, Lotus Development Corporation

Page 208 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

Mike Cokus, MITRE
Andrew Eisenberg, Progress Software
Rob Ellman, Calico Commerce
George Feinberg, Object Design
Charles Frankston, Microsoft
Ernesto Guerrieri, Inso
Michael Hyman, Microsoft
Renato Iannella, Distributed Systems Technology Centre (DSTC Pty Ltd)
Dianne Kennedy, Graphic Communications Association
Janet Koenig, Sun Microsystems
Setrag Khoshafian, Technology Deployment International (TDI)
Ara Kullukian, Technology Deployment International (TDI)
Andrew Layman, Microsoft
Dmitry Lenkov, Hewlett-Packard Company
John McCarthy, Lawrence Berkeley National Laboratory
Murata Makoto, Xerox
Eve Maler, Sun Microsystems
Murray Maloney, Muzmo Communication, acting for Commerce One
Chris Olds, Wall Data
Frank Olken, Lawrence Berkeley National Laboratory
Shriram Revankar, Xerox
Mark Reinhold, Sun Microsystems
John C. Schneider, MITRE
Lew Shannon, NCR
William Shea, Merrill Lynch
Ralph Swick, W3C
Tony Stewart, Rivcom
Matt Timmermans, Microstar
Jim Trezzo, Oracle Corp.
Steph Tryphonas, Microstar

The lists given above pertain to the first edition. At the time work on this second
edition was completed, the membership of the Working Group was:

Leonid Arbouzov, Sun Microsystems
Jim Barnette, Defense Information Systems Agency (DISA)
Paul V. Biron, Health Level Seven
Allen Brown, Microsoft
Charles E. Campbell, Invited expert
Peter Chen, Invited expert
Tony Cincotta, NIST
David Ezell, National Association of Convenience Stores
Matthew Fuchs, Invited expert
Sandy Gao, IBM
Andrew Goodchild, Distributed Systems Technology Centre (DSTC Pty Ltd)
Xan Gregg, Invited expert
Mary Holstege, Mark Logic

Page 209 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

Mario Jeckle, DaimlerChrysler
Marcel Jemio, Data Interchange Standards Association
Kohsuke Kawaguchi, Sun Microsystems
Ashok Malhotra, Invited expert
Lisa Martin, IBM
Jim Melton, Oracle Corp
Noah Mendelsohn, IBM
Dave Peterson, Invited expert
Anli Shundi, TIBCO Extensibility
C. M. Sperberg-McQueen, W3C (co-chair)
Hoylen Sue, Distributed Systems Technology Centre (DSTC Pty Ltd)
Henry S. Thompson, University of Edinburgh
Asir S. Vedamuthu, webMethods, Inc
Priscilla Walmsley, Invited expert
Kongyi Zhou, Oracle Corp.

We note with sadness the accidental death of Mario Jeckle shortly after the
completion of work on this document. In addition to those named above, several
people served on the Working Group during the development of this second
edition:

Oriol Carbo, University of Edinburgh
Tyng-Ruey Chuang, Academia Sinica
Joey Coyle, Health Level 7
Tim Ewald, DevelopMentor
Nelson Hung, Corel
Melanie Kudela, Uniform Code Council
Matthew MacKenzie, XML Global
Cliff Schmidt, Microsoft
John Stanton, Defense Information Systems Agency
John Tebbutt, NIST
Ross Thompson, Contivo
Scott Vorthmann, TIBCO Extensibility

Page 210 of 210XML Schema Part 1: Structures Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-1/

