

BCA Airplane Programs

Existing Fail-Safe/Structural Damage Capability (SDC) Practices

Presenter: Mark Farthing

Date: March 15, 2016

Copyright © 2016 Boeing. All rights reserved.

<u>Agenda</u>

- Purpose
- Existing Fail-Safe Design Philosophy
- Examples
- Summary

<u>Purpose</u>

- Give a high level overview of existing Boeing fail-safe design philosophy
- Show examples of how this philosophy is applied to our design practices

Philosophy and Evolution

- Fail-safety typically requires redundancy for single element failures and for certain multiple element damage scenarios
- Damage tolerance can be achieved without such redundancy
- Fail-safety has been maintained as a foundational requirement even on structure certified as damage tolerant
- Fail-safety has evolved from considering any single element failed to considering large damage scenarios that consider element failure coupled with adjacent damage
- Increased use of composites has resulted in accounting for threats not previously considered

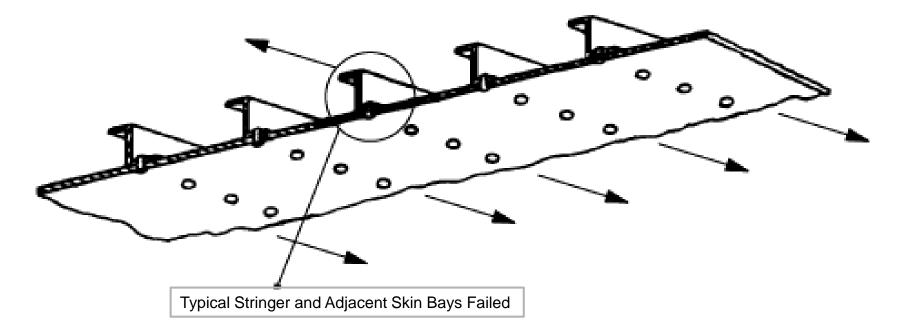
Both damage tolerance and fail-safety are essential elements of airplane safety

Philosophy (cont.)

Generic fail-safe features can be summarized into the following categories:

- alternate/intermediate/adjacent members that pick up load from failed members
- fastener and bondline capability matched to load redistribution requirements
- damage containment features, such as fuselage tear straps
- boundaries of components and subcomponents, such as major joints or heavy frames
- material toughness, as applied to damage containment and residual strength capability in fail-safe scenarios

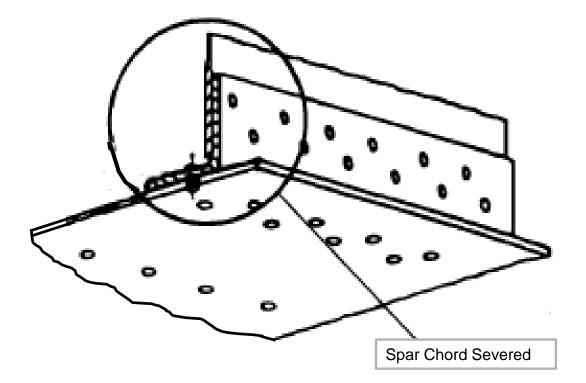
Fail-safe designs are intended to provide redundant load paths and damage containment


Key points in application of fail-safe principles

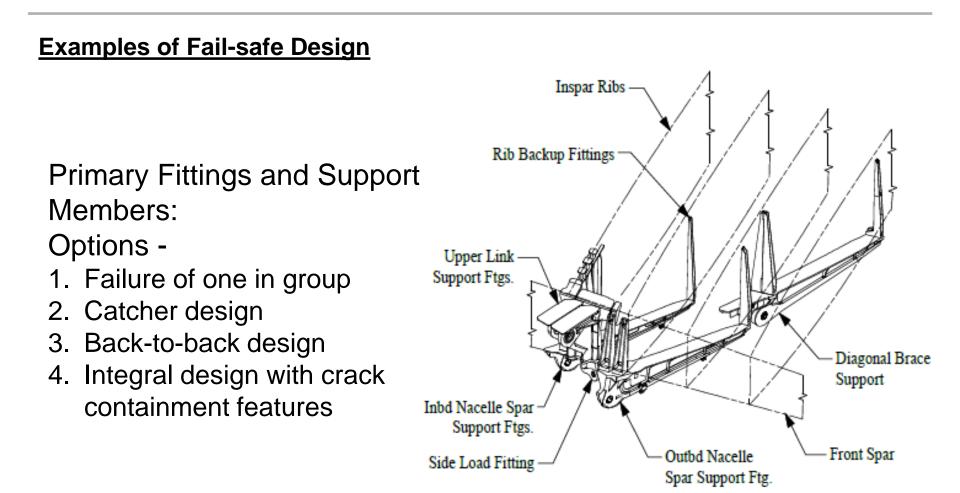
- All primary flight-loaded structure, including trailing edge flaps and control surfaces, must be designed with sufficient residual strength to carry limit load with failure or partial failure of a principal structural element (PSE).
- Where fail-safe and damage tolerant designs are not practical for a PSE, such as groundloaded structure, then the structure must be designed for safe life.
- The wing, empennage, and fuselage shall be designed for limit load assuming one stiffening member and adjacent panels failed.
- For composite wing and empennage structure, the load level considered for the above two-bay multiple element damage criterion is 70% of limit load if the damage would be pilot evident and immediately obvious.
- Fail-safe design concepts should provide for visual damage detection by minimizing hidden critical details.

Key points in application of fail-safe principles (cont.)

- Any new design approach must have the equivalent damage containment capabilities as the "standard" which is based upon traditional fail-safe design approaches. Such equivalency must be established by analysis supported by test and/or service experience.
- Structure must meet requirements for discrete events including discrete source damage.
- Structure must be free from flutter for failure conditions described in FAR 25.629. This is
 particularly important for control surfaces, wing/tail tips, nacelle and struts (including their
 attachments), and actuator load loops.
- Integral or "monolithic" structure must be designed for fail-safety. If integral structure cannot be shown to have fail-safety with complete failure of the integral member, then the integral structure must include damage containment features.
- Primary composite structure shall be designed to carry design limit loads following skinstringer disbond between damage arrestment features.
- Primary composite structure shall be designed to carry design limit loads following damage states which must be clearly obvious to the inspector during a general visual (GVI) planned inspection.


Examples of Fail-safe Design

Panelized Construction


Example - Recent Boeing designs are designed with the assumption that one typical stiffening member and its adjacent bays are failed. The load is redistributed to adjacent skin and stringers.

Examples of Fail-safe Design

Substructure

Example – Wing and Empennage Spars: Severed chord with chord end load redistributed to skin panel and spar web

Summary

- Fail-safe features provide added protection against unanticipated, inadvertent damage that airplanes may encounter in their service life.
- Fail-safety has been a fundamental Boeing design requirement since the advent of the 707 program; Boeing will continue to utilize fail-safe design practices.
- Existing fail-safe practices could be captured as possible means of compliance for SDC in the advisory materials we are currently evaluating.

There is a potential increase in complexity between meeting internal design requirements versus making formal compliance findings with respect to SDC