

On the Resiliency of Machine Learning Systems

NIDHAL CARLA BOUAYNAYA, PHD

Professor and Associate Dean for Research and Graduate Studies Department of Electrical and Computer Engineering Henry M. Rowan College of Engineering

MULTI-AGENT HIDE AND SEEK

ARTIFICIAL INTELLIGENCE IN AVIATION

Low-cost Off-the-shelf Cameras

Instrument Panel Recognition

Attitude Prediction

Pilot Attention Behavior Monitoring

2019-02-13 09:43:19.15

Rowa

ATTITUDE PREDICTION

- Mistakes done by lower-level machine learning components can propagate up the decision making process and lead to devastating results.
- Systems where decision-making and control is handed over to autonomous systems include
- autonomous control of drones and self-driving cars
- healthcare diagnosis
- high-frequency trading

Artifacts/Noise and Adversarial Attacks

ADVERSARIAL ATTACKS ON AI

Rowa

Hummingbird

Minor perturbation

Hammer

Desk

Minor perturbation

Hare

PHYSICAL ATTACKS

Rowa

"Milla Jovovich"

Fails to see stop sign

Rowa

[Brown et al. (2018). Adversarial Patch.]

Changing Environment and Lifelong Learning

ATTITUDE PREDICTION WITH A DIFFERENT CAMERA VIEW

TOWARDS ROBUST AI

UNCERTAINTY ESTIMATION – BAYESIAN DEEP LEARNING

*

0 1 -1 $W_1 | W_2 | W_3$ $W_4 | W_5 | W_6$ $W_7 | W_8 | W_9$

(Unknown) random Filter Mike Paglione giving a

presentation to an audience

+

How confident the model is in its

inference

17

Prediction of the Dropout network, Bayesby-Backprop and VI-CNN for three randomly chosen images from the CIFAR-10 dataset corrupted by an adversarial noise created to fool each network into predicting the class label as a "cat". The adversarial noise was created at the same level, i.e. 5% for all networks.

Dropout Accuracy 52%

True: dog Pred: cat

Bayes-by-Backprop Accuracy 68%

True: dog Pred: dog

Proposed Accuracy 83%

True: airplane Pred: cat

True: horse Pred: cat

True: horse

Pred: cat

True: airplane

True: airplane True: horse Pred: airplane Pred: horse

Extended VI-CNN

TOWARDS Lifelong Learning

META LEARNING AND FEW SHOT LEARNING

Rowa

