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MULTI-AGENT HIDE AND SEEK




ARTIFICIAL INTELLIGENCE IN AVIATION
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PILOT ATTENTION BEHAVIOR
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ATTITUDE PREDICTION
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O Mistakes done by lower-level machine learning components can
propagate up the decision making process and lead to devastating results.

O Systems where decision-making and control is handed over to
autonomous systems include

- autonomous control of drones and self-driving cars

 healthcare diagnosis
 high-frequency trading
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ADVERSARIAL ATTACKS ON Al
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PHYSICAL ATTACKS
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PHYSICAL ATTACKS
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[Brown et al. (2018). Adversarial Patch.]
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TOWARDS ROBUST Al




UNCERTAINTY ESTIMATION —
BAYESIAN DEEP LEARNING
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BAYESIAN CNN
UNCERTAINTY PROPAGATION ACROSS THE LAYERS
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Robustness to
Aversarial attacks

Prediction of the Dropout network, Bayes-
by-Backprop and VI-CNN for three
randomly chosen images from the CIFAR-
10 dataset corrupted by an adversarial
noise created to fool each network into
predicting the class label as a “cat”. The
adversarial noise was created at the same
level, i.e. 5% for all networks.
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TOWARDS Lifelong L.earnin




IVIETA LEARNING AND FEW SHOT LEARNING
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