5th Gen Weapon Systems Testing ...an Elixir for Systems Thinking

Maj Gen (ret) Matt "Zap" Molloy, USAF Veritas Solutions LLC Purpose

Discuss the challenges—and opportunities associated with advanced weapon systems OT&E, specifically with respect to *test design*, *M&S*, *prototyping*, *and big data analytics ...and how this relates to YOU and the FAA*

Flight Plan

My Background

- Intro to the Complex Systems Environment of Advanced Weapons
 - "Systems Thinking Thinking": Crafting a 5th-Gen, Systems-of-Systems Test Design
 - 3 Pillars of Complex Systems Thinking
 - M&S developmental work
 - Big data analytics; Knowledge Management
 - Prototyping
- Closing Thoughts & Discussion

TESTING 5TH GENERATION WEAPON SYSTEMS ROUND 2: THE F-35

5TH GEN WEAPONS

Constructing an F-35 Test

F-35 Battlespace

F-35 Test Design

Test Trial	Design Point	Target Clutter	Priority Target Movement	Cueing	F-35 Variant	Time of Day
1	1	High	Stationary	None	F-35A	Night
	2	Low	Stationary	Real Time	F-35	Night
	3	Low	Moving	None	F-3/	Night
	4	High	Stationary	Real Time	Partner	Night
2	5	High	Moving O	V None V	With	Day
	6	High Tr	Stationary 🗘	RealTime	Academia	Day
	7	-LOV	Stationary	Real Time		Day
	8	I LOW I	Stationary 🖓	None	F-35A	Day
3	9 7	High	Stationary	Real Time	F-35B	Night
	10	Low	Stationary	O None O	F-35 B	Night
	11	High 🖓	Stationary 🖓	1 Nohe	F-35B	Night
	12	Lov	Vioving	Rea Time	F-35 B	Night
4	13	Low	Stationary	Fea Time	F-3 5C	Day
	14	Low	Stationary	None	F-35 C	Day
	15	High	/ Moving /	Peal Time	F-3 5Ć	Day
	Partner	High	Stationary	None	F-35C	Day
5	With	Low	Vioving	Real Time	F-35 B	Day
		High	Stationary	Fea Time	E-35B	Dav
	<u> </u>	Low	Stationary	E-3	35 Aerial Recc	e COI 🛛 🏭
	20	High	Stationary	*		
6	21	Low	Stationary	Partner With Developer	*	100
	22	Low	Stationary	DEOSA	-	2
	23	High	Moving	0.0		
	24	High	Stationary		Partner	Target Clutter High, Low Time of Day Day Night
7	25	High 📕	Stationary			Terrain Desert, Forest, Mountain Movement Moving, Stationary
	26	Low	Moving			Cueing None, Real Time
	27	Low	Stationary		High	Str
	28	High	Stationary		A	158
8	29	Low	Stationary		Clutter	BAIL
	30	High	Moving			Mountain
	31	High	Stationary		Low	Time of Day Night
	32	Low	Stationary			28

Realistic Test Environment

Operationally Realistic Test Environment

Constructing an advanced / IADS Environment

Constructing a Synthetic Realistic Threat

Constructing an advanced

Radar Signal Emulators (RSEs):

Reprogrammable active, electronically scanned arrays (AESA) open-loop emitters capable of emulating the signals of a wide variety of modern threat radars including complex, reactive, <u>adaptive</u>, and agile waveforms

Constructing a Synthetic Realistic Threat

Target/Objective

Have we detected all the factor threats?

Where are the:

- -- Long-range SAMs?
- -- Medium-range SAMs?
- -- Short-range air defense

systems?

-- Non-shooter radars

What do I need to attrit or suppress to get to the target area?

Constructing an advanced , IADS Environment

RSEs bring the detect/ID/geolocate and tactical employment challenges of modern, mobile SAMS into OT missions

5th-Gen Testing Challenges

- F-22 Raptors & F-35 Lightnings have voracious appetites; they chew through the adversary with volume & velocity...
- Creating a complex, threat-dense environment is key to an effective 5th-gen IOT&E and for accurately quantifying operational risk
- Open-air testing constraints
- How do we crack this nut???

5th Gen Modeling & Sim

- Creating this environment is key to an effective 5th-gen IOT&E
 It allows us to fully "stress" the system under test
- Creating an advanced modeling & simulation environment
 - There are tough challenges posed by 5th-gen M&S:
 - Creating the virtual battlespace and how the stealthy air vehicle dynamically interacts within it
 - Accurately modeling advanced threats
 - Inserting blue forces into the virtual battlespace

Modeling & Simulation Integrated LVC Across Domains

Big, well...big-ish Data

- Terabytes of data flow from F-35 OT&E sorties
 ...same for the M&S environment, but with potentially dozens of
 "runs for score" for one test event....
- Big data analytics/knowledge management is a growth area for 5th-Gen/3rd Offset Strategy weapons systems

Exponential Growth of Aircraft Bus Data Rates

JSF Data Evolution

Building a Big Data Strategy

- We must be prepared to adequately test emergent cyber-driven, technology-infused weapons systems leveraging the latert in thniques
- Crafting a
 - Starts with supporting

How might this apply to the FAA and/or your organization??

wed by a

- Goal is to move h asso, to a common integrated data platform p an arranced analytic environment
- Will incorporate:
 - Data mining
 - Predictive analysis
 - Cyber security tools
 - Cloud enterprise

- Machine learning
- Dashboards
- Human capital
- Education

Big Data & Data Strategy

22

Federal Aviation Administration

Executive Summary

The Destination 2005 vision captures the ideal future we strive toward – a tonsformation of the Nation's aviation system in which on testific will move safely swiftly efficiently, and seamlessly around the globe. Flights will take off and land on time, every time, without delay and there will be no fatal accidents. Air travel will be routine and uneventful for everyone involved: passengers, crews, ground support, and communities. Costs will be contained for both operators and passengers, and there will be no negative impact to the environment. Manned and unmanned flights will each achieve safe flight, as will commercial launches to space. This is a vision that captures the future we will strive to achieve – to transform the Nation's aviation system by 2025.

Destination2025

Delivering Aviation Access through Innovation

Our Goal

Enhance the flying experience of the traveling public and other users by improved access to and increased capacity of the nation's aviation system. Ensure airport and airspace capacity are more efficient, predictable, cost-effective and matched to public needs.

Experimentation & Prototyping

 Acquisition history has shown competitive system prototyping, followed by live experimentation on the ranges and quick iterations on system design helped earlier defense systems evolve quickly

Experimentation & Prototyping

Searching for a Threat-Representative Aerial Target

Introducing "5GAT"

- 5th-Generation Aerial Target, "5GAT"
 - DOT&E-led prototyping effort, focused in innovative and disruptive technologies, tools, and business processes with the goal of delivering two 5th generation, unmanned targets for advanced test and training needs:

✓ Representative: *size, stealthiness, speed, maneuverability, EA*

5GAT Prototype

• "Old School" Approach:

- Stable & demo-focused requirements:

- 1. High confidence cost data
- 2. Meet RCS goals for advanced 5th gen testing
- 3. Demonstrate required aero performance
- 4. Integrate and demo advanced EA capability

- Agile Contracting

- 14 months from contract to ground test
- ...21 months to 1st flight

5GAT Prototype

• "Old School" Approach:

- Entirely gov't owned design, tools, data, & code

- Simple parts & reduced number of tools

- Design simplicity & soft tooling

5GAT Prototype

• "Old School" Approach:

 Reduced parts, simple parts, soft tooling = Order of magnitude savings

Cost Estimate: \$6-7M

- Full scale, F-16 size

How Does this Apply?

Governmental agencies should embrace more entrepreneurial & experimental approaches

- Involvement will likely be non-traditional
- Integrated (labs/developers/testers/users)

Take-Aways Prototyping & Experimentation

- Focus: To learn...quickly
- Remove the Acq red tape...fund fast (inside the POM)
- Fail Forward...Fast
- Gov't needs to "own it" (risk, tools, data)
- Integrated testing (labs, developer, DT, OT, operators)
- Fly before you buy...
- Go for the 80% solution

Overall Take-Aways Complex systems thinking

- ✓ Don't over think it... "old school's good school" wrt test design
- ✓ Setting an appropriate analysis aperture is critical
- ✓ M&S will play an ever-increasing role wrt system analysis
- ✓ Big data will continue to get bigger...how's your data strategy??
- ✓ Prototyping & experimentation are useful acquisition tools
- Integrated testing (CT/DT/OT....Agile-type) may help meet the pace of need

Questions and Comments

