

Federal Aviation Administration

AVS Research, Engineering and Development

AVS RE&D Portfolio: **Propulsion and Fuel Systems (A11B)** Research Plan: 2022- 2027

medical Inst

Part 1: BLI Definition and Scope

Program Area: Propulsion and Fuel Systems (A11B)

FAA Domain: Aircraft Safety Assurance

BLI Scope: Propulsion and Fuel Systems

The Propulsion and Fuel Systems Program conducts research on new and legacy aircraft propulsion systems in order to develop the technical basis for rules, policy, and guidance used for certification and continued airworthiness. A significant focus of the current research program (Operational Capabilities 1 - 3) is to reduce the threat of uncontained jet engine rotor failures. Uncontained engine failures occur when high-energy rotating components break into fragments that escape the engine case, which could affect other parts of the aircraft posing a serious safety threat to passengers and the continued operation of the aircraft. At least nine such uncontained events have occurred over the past 6 years, with one instance in which a fan blade failure resulted in the first fatality on a major US commercial flight in nearly a decade. Causes of these events vary, but generally involved some form of inherent material anomaly or in-service damage that reduced the engine's structural integrity and led to the premature rotor failure. To combat uncontained engine events, a three-prong safety strategy has been adopted consisting of research activities intended to:

- (1) prevent the failure from ever happening.
- (2) predict or forewarn of the impending failure to allow preventative action; and
- (3) mitigate or minimize the risk and threat when failures do occur.
- These research activities are described briefly here.

To prevent engine rotor failures, research is being conducted to ensure the structural integrity of critical turbine engine components through the application of higher sensitivity inspections and computational design tools that take into account the rare occurrence of anomalous manufacturing and material conditions. Current efforts are addressing material anomalies found in nickel and titanium engine alloys. To predict failures, a program will be initiated that will develop robust methodologies that can alert the flight crew of an impending engine failure by analyzing key operational parameters and exceedance of established thresholds. The alerts would allow the engine to be inspected prior to the next flight. To mitigate and minimize uncontained hazards, a research activity to develop data and analysis methods able to evaluate engine fragment impacts and minimize catastrophic risk will continue.

Additional areas of propulsion research under this BLI include Engine Health Monitoring (EHM) and Electric Propulsion under the Operational Capabilities 4 and 5, respectively.

EHM technology is used to prevent engine safety events by establishing robust health monitoring thresholds for key engine gas path health parameters such as temperatures, pressures in internal cavities and fuel/oil systems, vibration levels etc.

Electric propulsion is a new R&D area needed to address the high level of interest across the aviation industry in adopting electric propulsion technology for a variety of new and conventional aircraft designs and architectures, and to identify associated risks and design and certification considerations.

Part 2: Service/Office Research Requirements and Research Gap Analysis

1.0 Operational Capability: Characterization and Effect of Material Defects

Definition: Characterization and Effect of Material Defects to prevent engine uncontained rotor failures.

Sub-elements are:

1.1 Characterization and Effects of Ni Anomalies on the fatigue capability of rotors;

1.2 Characterization and Effects of Micro-Texture Regions (MTRs) on the fatigue capability of Titanium rotors, Cold Dwell Fatigue (CDF);

1.3 Development of supporting Damage Tolerance Analysis Methods, Tools and Data.

These efforts address NTSB, BEA (French NTSB) recommendations and Engine & Propeller Strategic Policy need of regulatory guidance to address these failure mechanisms. They are also in line with recommendations generated by the FAA's Engine-Aircraft Integration Safety Team (a Congressional action item).

Primary S/O: Tim Mouzakis AIR-621

Secondary S/O: Michael Gorelik AIR-600

S/O Priority: 1

Outcome: Development of regulatory guidance and implementation by the engine manufacturers into their rotor lifting systems to address Ti and Ni material anomalies, which will result in reduction of aircraft engine rotor failures as documented by the AIA Rotor Integrity Steering Committee (RISC) database.

Research Gap Analysis						
Research Questions	Contributio n	Research Output				
1.1 What are the effects of Ni material anomalies on fatigue life of engine LLPs?	30%	This research will identify, prepare, and test specimens containing nickel material anomalies and evaluate the effects of defects on fatigue life and crack growth. Data will support AC 33.70-6, Damage Tolerance of Nickel Anomalies in High Energy Rotors and help the FAA to address NTSB recommendations.				
1.2 What conditions cause cold dwell fatigue (CDF) of titanium LLPs and can its effect (debit) on fatigue life be quantified?	30%	Data and advisory material describing the conditions and effects of CDF that will help FAA address the BEA recommendations. This research will be conducted in collaboration with an ongoing USAF MAI (Metals Affordability Initiative) program on CDF.				
1.3 What data and risk assessment models need to be developed and	40%	Enhanced versions of the DARWIN probabilistic design code that can analyze nickel material anomalies and titanium cold dwell fatigue of life limited engine rotors.				

Research Gap Analysis

implemented into	Addressing newly identified safety threats by heavily
DARWIN s/w code to	leveraging prior FAA's R&D investments.
accurately characterize	
risk and probability of	
fracture of engine LLPs	
from nickel material	
anomalies and titanium	
CDF?	

2.0 Operational Capability: *Containment and Risk Mitigation of Uncontained Turbine Engine Failures*

Definition: Containment and Risk Mitigation of Uncontained Turbine Engine Failures Sub-elements are:

2.1 Modeling of engine fragment impact and damage progression in metal and composite containment and aircraft structures

2.2 Uncontained Engine Debris Damage Assessment Model (UEDDAM)

2.3 Open rotor engine safety assessment (support of emerging technology)

Sub-elements 2.1 and 2.2 address NTSB recommendations to the FAA from recent uncontained engine failures.

Primary S/O: Tim Mouzakis AIR-621

Secondary S/O: Mike Dostert, AIR-624

S/O Priority: 3

Outcome: Reduction of turbine engine blade and disk uncontained failures and inlet / cowl separations as documented in Continued Airworthiness Assessment Methodologies (CAAM) Committee report of safety-significant propulsion system malfunctions.

Research Gap Analysis

Research Questions	Contribution	Research Output			
2.1 Is predictive impact and damage modeling of engine blade fragment containment mature with current simulation tools and what additional capabilities need to be developed?	40%	Metal and composite material models and associated FAA technical reports for guidance. Test cases and modeling guidance developed with LS- DYNA Aerospace Working Group to ensure consistency and reliability of engine related impact modeling.			
2.2 What updates to uncontained debris fragment models and the UEDDAM vulnerability analysis code are necessary?	20%	Updates of UEDDAM software to add features, improve runtimes, and include revised debris fragment models from recent events. Also, user guidance, training and associated FAA technical reports.			
2.3 What technical data for open rotor blade release trajectory analysis is needed for FAA to determine certification	40%	Open rotor blade release trajectory analysis test plan, execution and report for guidance.			

requirements for these new engine								
types?								
3.0 Operational Capability: <i>Improvement of NDE capabilities for life-limited</i>								
engine components								
Definition : Improvement of NDE capabilities for life-limited engine components.								
	Sub elements are: 3.1 Improved Billet UT inspection for detection of Ni material anomalies (NTSB Rec);							
3.2 Improved Nickel forging and finished								
3.3 Develop effective NDE capabilities for	•							
grade alloys (BEA recommendation).	·							
Primary S/O: Tim Mouzakis, AIR-621								
Secondary S/O: N/A								
S/O Priority: 2	+h	a and field comited of critical consists rate as						
Outcome: Improved NDE methods during will more effectively detect anomalies and		÷						
reduction of engine rotor failures as docu								
database.								
Res	earch Gap Ar	alysis						
Research Questions	Contribution	Research Output						
3.1 Improved Ni Billet Inspection. What	40%	New industry standard for inspecting Ni						
is an acceptable inspection standard for		billet that will result in better anomalies						
lawaa waalial hillada waa al huudha		alata ati an anna biliti an an d'anfata.						
large nickel billets used by the		detection capabilities and safety						
large nickel billets used by the commercial airline industry?		improvements. This research will leverage						
		improvements. This research will leverage previous FAA efforts on titanium to apply						
		improvements. This research will leverage previous FAA efforts on titanium to apply higher sensitivity ultrasonic methods such						
		improvements. This research will leverage previous FAA efforts on titanium to apply						
commercial airline industry?	2007	improvements. This research will leverage previous FAA efforts on titanium to apply higher sensitivity ultrasonic methods such as multi-zone and advanced phased arrays to Ni billet.						
commercial airline industry? 3.2 Improved Ni forging and finished	30%	 improvements. This research will leverage previous FAA efforts on titanium to apply higher sensitivity ultrasonic methods such as multi-zone and advanced phased arrays to Ni billet. Improved methods to inspect forgings and 						
commercial airline industry? 3.2 Improved Ni forging and finished parts UT inspection. What inspection	30%	 improvements. This research will leverage previous FAA efforts on titanium to apply higher sensitivity ultrasonic methods such as multi-zone and advanced phased arrays to Ni billet. Improved methods to inspect forgings and finished parts that will result in better 						
commercial airline industry? 3.2 Improved Ni forging and finished parts UT inspection. What inspection practices for forged/finished and in-	30%	 improvements. This research will leverage previous FAA efforts on titanium to apply higher sensitivity ultrasonic methods such as multi-zone and advanced phased arrays to Ni billet. Improved methods to inspect forgings and finished parts that will result in better anomalies detection capabilities and 						
commercial airline industry? 3.2 Improved Ni forging and finished parts UT inspection. What inspection practices for forged/finished and in- service parts are necessary and what are	30%	 improvements. This research will leverage previous FAA efforts on titanium to apply higher sensitivity ultrasonic methods such as multi-zone and advanced phased arrays to Ni billet. Improved methods to inspect forgings and finished parts that will result in better 						
commercial airline industry? 3.2 Improved Ni forging and finished parts UT inspection. What inspection practices for forged/finished and in- service parts are necessary and what are the best NDE practices and standards?		 improvements. This research will leverage previous FAA efforts on titanium to apply higher sensitivity ultrasonic methods such as multi-zone and advanced phased arrays to Ni billet. Improved methods to inspect forgings and finished parts that will result in better anomalies detection capabilities and safety improvements. 						
 commercial airline industry? 3.2 Improved Ni forging and finished parts UT inspection. What inspection practices for forged/finished and inservice parts are necessary and what are the best NDE practices and standards? 3.3 What NDE methods are best able to 	30%	 improvements. This research will leverage previous FAA efforts on titanium to apply higher sensitivity ultrasonic methods such as multi-zone and advanced phased arrays to Ni billet. Improved methods to inspect forgings and finished parts that will result in better anomalies detection capabilities and safety improvements. NDE to detect micro texture regions 						
commercial airline industry? 3.2 Improved Ni forging and finished parts UT inspection. What inspection practices for forged/finished and in- service parts are necessary and what are the best NDE practices and standards? 3.3 What NDE methods are best able to detect MTRs and what standards are		 improvements. This research will leverage previous FAA efforts on titanium to apply higher sensitivity ultrasonic methods such as multi-zone and advanced phased arrays to Ni billet. Improved methods to inspect forgings and finished parts that will result in better anomalies detection capabilities and safety improvements. NDE to detect micro texture regions (MTRs) in titanium. Cold dwell fatigue is 						
 commercial airline industry? 3.2 Improved Ni forging and finished parts UT inspection. What inspection practices for forged/finished and inservice parts are necessary and what are the best NDE practices and standards? 3.3 What NDE methods are best able to 		 improvements. This research will leverage previous FAA efforts on titanium to apply higher sensitivity ultrasonic methods such as multi-zone and advanced phased arrays to Ni billet. Improved methods to inspect forgings and finished parts that will result in better anomalies detection capabilities and safety improvements. NDE to detect micro texture regions (MTRs) in titanium. Cold dwell fatigue is more likely to occur in titanium alloys 						
commercial airline industry? 3.2 Improved Ni forging and finished parts UT inspection. What inspection practices for forged/finished and in- service parts are necessary and what are the best NDE practices and standards? 3.3 What NDE methods are best able to detect MTRs and what standards are		 improvements. This research will leverage previous FAA efforts on titanium to apply higher sensitivity ultrasonic methods such as multi-zone and advanced phased arrays to Ni billet. Improved methods to inspect forgings and finished parts that will result in better anomalies detection capabilities and safety improvements. NDE to detect micro texture regions (MTRs) in titanium. Cold dwell fatigue is more likely to occur in titanium alloys containing MTRs. New inspection 						
commercial airline industry? 3.2 Improved Ni forging and finished parts UT inspection. What inspection practices for forged/finished and in- service parts are necessary and what are the best NDE practices and standards? 3.3 What NDE methods are best able to detect MTRs and what standards are		 improvements. This research will leverage previous FAA efforts on titanium to apply higher sensitivity ultrasonic methods such as multi-zone and advanced phased arrays to Ni billet. Improved methods to inspect forgings and finished parts that will result in better anomalies detection capabilities and safety improvements. NDE to detect micro texture regions (MTRs) in titanium. Cold dwell fatigue is more likely to occur in titanium alloys containing MTRs. New inspection techniques to detect MTRs, and NDE 						
commercial airline industry? 3.2 Improved Ni forging and finished parts UT inspection. What inspection practices for forged/finished and in- service parts are necessary and what are the best NDE practices and standards? 3.3 What NDE methods are best able to detect MTRs and what standards are		 improvements. This research will leverage previous FAA efforts on titanium to apply higher sensitivity ultrasonic methods such as multi-zone and advanced phased arrays to Ni billet. Improved methods to inspect forgings and finished parts that will result in better anomalies detection capabilities and safety improvements. NDE to detect micro texture regions (MTRs) in titanium. Cold dwell fatigue is more likely to occur in titanium alloys containing MTRs. New inspection techniques to detect MTRs, and NDE guidance and standards for inspection of 						
commercial airline industry? 3.2 Improved Ni forging and finished parts UT inspection. What inspection practices for forged/finished and in- service parts are necessary and what are the best NDE practices and standards? 3.3 What NDE methods are best able to detect MTRs and what standards are		 improvements. This research will leverage previous FAA efforts on titanium to apply higher sensitivity ultrasonic methods such as multi-zone and advanced phased arrays to Ni billet. Improved methods to inspect forgings and finished parts that will result in better anomalies detection capabilities and safety improvements. NDE to detect micro texture regions (MTRs) in titanium. Cold dwell fatigue is more likely to occur in titanium alloys containing MTRs. New inspection techniques to detect MTRs, and NDE guidance and standards for inspection of MTRs. This research will be conducted in 						
commercial airline industry? 3.2 Improved Ni forging and finished parts UT inspection. What inspection practices for forged/finished and in- service parts are necessary and what are the best NDE practices and standards? 3.3 What NDE methods are best able to detect MTRs and what standards are		 improvements. This research will leverage previous FAA efforts on titanium to apply higher sensitivity ultrasonic methods such as multi-zone and advanced phased arrays to Ni billet. Improved methods to inspect forgings and finished parts that will result in better anomalies detection capabilities and safety improvements. NDE to detect micro texture regions (MTRs) in titanium. Cold dwell fatigue is more likely to occur in titanium alloys containing MTRs. New inspection techniques to detect MTRs, and NDE guidance and standards for inspection of 						

4.0 Operational Capability: *Engine Safety Event Prevention thru EHM (Engine Health Monitoring)*

Definition: Engine Safety Event Prevention thru EHM (Engine Health Monitoring). Methodology to establish robust safety thresholds for engine gas path health parameters, temperatures, pressures in internal cavities and fuel/oil systems, vibration levels and broadband signatures.

Primary S/O: Deepak Kamath AIR-627

Secondary S/O: N/A

S/O Priority: 4

Outcome: The safety thresholds to be used to generate alerts to enable inspection & maintenance decisions prior to the next flight, in order to prevent propagation of the unsafe condition to a hazardous or catastrophic failure in the next flight.

		ution Becomete Output				
Research Questions	Contribution	Research Output				
4.1 How much engine module performance deterioration can the embedded engine models and tracking filters available in the industry detect reliably; and is that capability sufficient for annunciation of internal failures (such as inter-stage seal failure) before it progresses to a hazardous or catastrophic event (turbine disk overheating and uncontained failure)?	30%	Quantitative Guidance and baseline thresholds on engine module performance parameters to detect system unsafe conditions that have the potential to progress to hazardous or catastrophic conditions for the engine and aircraft. Approach: Analyze the trends, scatter and consistency for engine gas path module health parameters (e.g. flow scalers/efficiencies for Fan/Booster, HPC, HPT, LPT) and fuel/oil system or internal cavity parameters (pressures, temperatures, contamination) for 'normal Aging' of engines. Use a sample population of recent model engines e.g. CFM Leap, PW Geared Turbofan and RR Trent 1000/XWB which have embedded engine models with tracking filters for gas path health monitoring. Establish normal statistical variation in engine gas path and fuel/oil system health parameters, analytics parametric correlations, and develop thresholds.				
4.2 Can synchronous or non- synchronous vibration limits be used reliably to detect gas turbine structural issues such as bearing wear, damper degradation, wear or partial failures of seals, fuel nozzles,	30%	Quantitative Guidance and baseline thresholds on engine fan, core rotor vibration parameters for a typical engine to detect system unsafe conditions that have the potential to progress to hazardous or catastrophic conditions for the engine and aircraft. Approach: Quantify the synchronous and nonsynchronous vibration levels and signatures				

Research Gap Analysis

blades or other gas path hardware?		for engine rotors, bearings and accessory drives in different flight phases and ambient conditions for 'normal aging and variation' of engines. Target a sample population of recent model engines e.g. GEnx, CFM Leap and PW Geared Turbofan, which have broadband vibration monitoring capability. Establish normal statistical variation in engine vibration levels and develop methodology for
4.3 Can non-synchronous or synchronous vibration limits be used to detect unsafe conditions with gear boxes, drive shafts that can lead to hazardous engine or	30%	analytical thresholds for different phases of flight. Quantitative Guidance and baseline thresholds on engine gear box(es) and driveshafts for a typical engine, to detect system unsafe conditions that have the potential to progress to hazardous or catastrophic conditions for the engine and
airplane effects?		aircraft. Approach: Evaluate the engine health parameter thresholds using actual field event data from FMD (Failures, Malfunction & Defects) events; and effect of simulated failures (such as interstage seal failures) on engine module performance (e.g. HPT, HPC) and turbomachinery cavity or disk space temperatures.
		Confirm ability to detect unsafe condition in pre- event flight and in the event flight.
4.4 Evaluate the engine health parameter thresholds using field data from normal (non failure) flights in extreme operating conditions and high time engines.	10%	Evaluate potential for false alerts.

5.0 Operational Capability: *Electric Propulsion*

Definition: Evaluate key certification considerations for electric propulsion systems, including endurance and durability assessment, development of mission spectra, and fire protection.

Primary S/O: Mark Bouyer, AIR-627

Secondary S/O: N/A

S/O Priority: 5

Outcome: Establish technical criteria for testing electric engines that are used for propulsion and control surfaces in VTOL aircraft. Develop an understanding of associated mission profiles and methods for their characterization.

Part 3: RE&D Management Team Programming

BLI Planning 3 Year Funding Profile (FY22-24) as of 1/28/2022

YEAR	Appropriation or Formulation Contract Funding (\$)	INITIAL BLI TEAM PLANNING CONTRACT FUNDING – AFN BLI Target minus the Hold Back (\$)	AVS-1 APPROVED CONTRACT FUNDING (\$)
FY22 formulation or appropriation (if known)	\$955,764		
FY23 formulation	\$3,099,803		
FY24 AFN funding		\$1,085,481	\$3,440,587
allocation target		÷=,000,401	<i> </i>

BLI Plan 5 Year Outlook (FY22-27)

-				
	Complete (C)	In Progress (IP)	Programmed (P)	Need (N)

Research Activities	FY22	FY23	FY24	FY25	FY26	FY27
Operational Capability 1.0: Characterization and Effect of Material Defects						
1.1 What are the effects of Ni material anomalies on	IP	Р	N	N	С	С
fatigue life of engine LLPs?						
1.2 What conditions cause cold dwell fatigue (CDF) of	IP	Р	N	N	С	С
titanium LLPs and can its debit effect on fatigue life be						
quantified?						
1.3 What data and risk assessment models need to be	IP	Р	N	N	N	С
developed and implemented into DARWIN to accurately						
characterize risk and probability of fracture of engine LLPs						
from nickel anomalies and titanium CDF?						
Research Activities	FY22	FY23	FY24	FY25	FY26	FY27
Operational Capability 2.0: Containment and Risk Mitig	gation o	f Uncont	tained R	otor Blac	de Failur	es
2.1 Is predictive impact and damage modeling of engine	IP	Р	N	N	N	N
blade fragment containment mature with current						
simulation tools and what additional capabilities need to						
be developed?						
2.2 What updates to uncontained debris models and the	IP	Р	N	N	N	N
UEDDAM vulnerability analysis code are necessary?						
2.3 What technical data for open rotor blade release	N	N	N	С	С	С
trajectory analysis is needed for FAA to determine						
certification requirements for these new engine types?						
Research Activities	FY22	FY23	FY24	FY25	FY26	FY27
Operational Capability 3.0: Improvement of NDE capa	bilities f	or life-li	mited en	ngine cor	nponent	S
3.1 What is an acceptable inspection standard for large	IP	IP	IP	С	С	С
nickel billets used by the commercial airline industry?						

3.2 What inspection practices for forged/finished and in-		Р	N	N	N	N
service parts are necessary and what are the best NDE						
practices and standards?						
3.3 What NDE methods are best able to detect MTRs and	N	Р	N	Ν	Ν	N
what standards are available or need to be developed?						
Research Activities	FY22	FY23	FY24	FY25	FY26	FY27
Operational Capability 4.0: Engine Safety Event Prever	tion thr	u EHM (engine h	ealth m	onitorin	g)
4.1 How much engine module performance deterioration	N	Р	С	С	С	С
can the embedded engine models and tracking filters						
available in the industry detect reliably; and is that						
capability sufficient for annunciation of internal failures						
(such as interstage seal failure) before it progresses to a						
hazardous event (turbine disk overheating and						
uncontained failure)?						
4.2 Can synchronous or non-synchronous vibration limits	N	Р	IP	IP	С	С
be used reliably to detect gas turbine structural issues						
such as bearing wear, damper degradation, wear or						
partial failures of seals, fuel nozzles, blades or other gas						
path hardware?						
4.3 Can non-synchronous or synchronous vibration limits	N	Р	IP	IP	С	С
be used to detect unsafe conditions with gear boxes, drive						
shafts that can lead to hazardous engine or airplane						
effects?						
4.4 How can engine health parameter thresholds using	N	Р	IP	IP	С	С
field data from normal (non-failure) flights in extreme						
operating conditions and high time engines can be used to						
establish the possibility of false alerts?						
Research Activities	FY22	FY23	FY24	FY25	FY26	FY27
Operational Capability 5.0: E	ectric Pi	ropulsio	n			
5.1 What necessary components can be defined for			N	Ν		
Endurance/Durability testing for electric engines used in						
single-engine airplanes and distributed propulsion aircraft						
to include the following considerations?						

Part 4: BLI Team Members

Participants Name	Role	Routing Symbol
Jorge Fernandez	BLI Chair	AIR - 670
Maria DiPasquantonio	REDMT Voting Member	AIR-600
Michael Gorelik	CSTA, BLI Lead	AIR-600
Tim Mouzakis	Sponsor SME	AIR-6A1
Deepak Kamath	Sponsor SME	AIR-627
Mark Bouyer	Sponsor SME	AIR-627
Mike Dostert	Sponsor SME	AIR-6A1
Dan Cordasco	Performer SME	ANG-E282
Dave Galella	Performer SME	ANG-E282