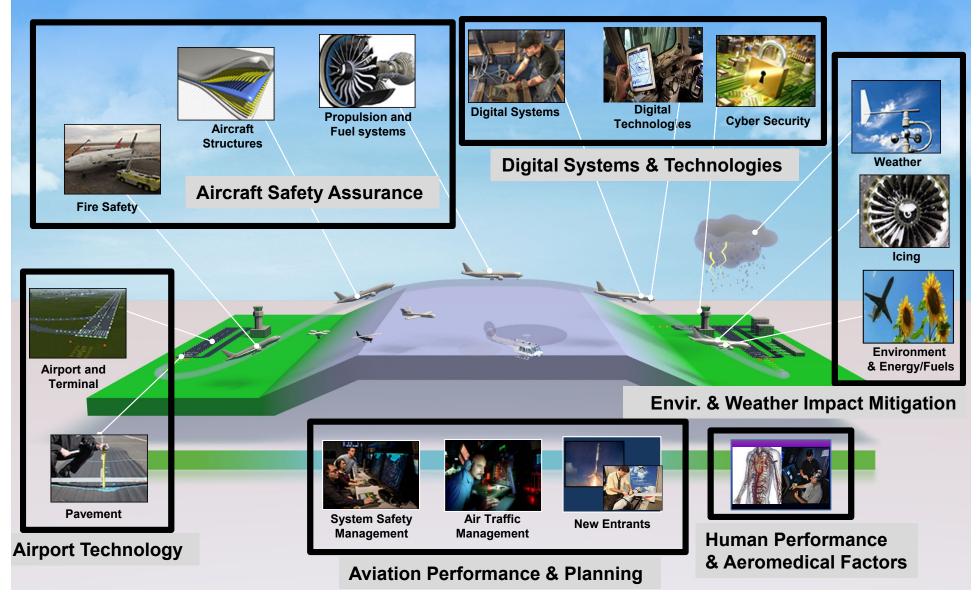


FAA Research & Development Systems Thinking

Presented for: V&V Summit


Presented by: Maureen Molz

Manager, Research and Development Management Division

September 20, 2018

FAA R&D Areas - As A System

Nature of FAA R&D

Applied Research

To analyze information and identify, develop, establish, improve, accelerate and/or enhance practicable methods, procedures and new technologies

Statute: US Code Titles 42, 49

RE&D

Funds programs that improve the NAS, by increasing its:

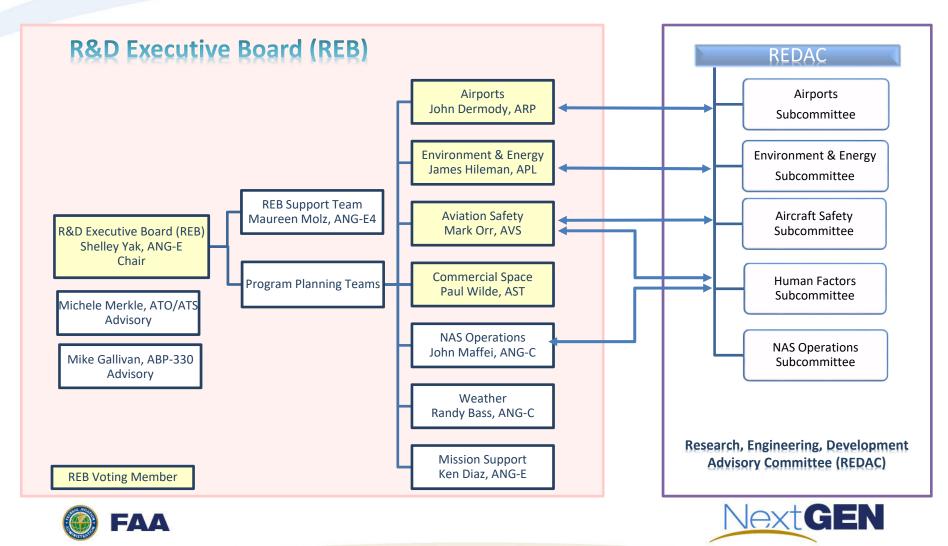
- Security
- Productivity
- Capacity

F&E

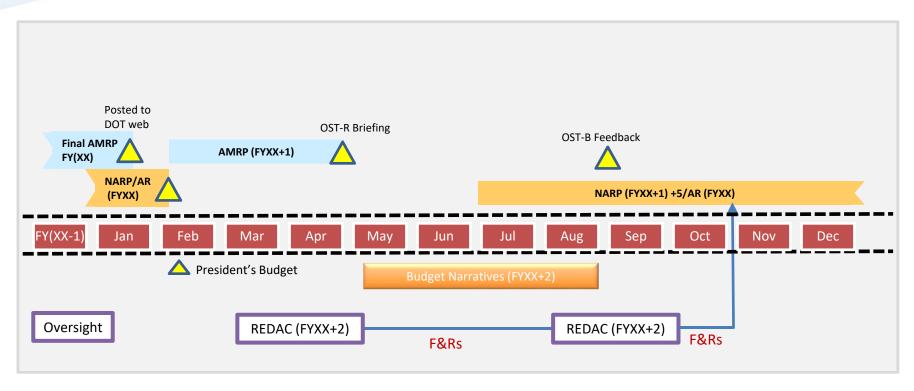
Funds capital investments for developing and validating technology and systems that support air traffic services and safety/capacity improvements:

Center for Advanced Aviation System Development(CAASD)

AIP


Funds the discovery and evaluation of new technologies and methods to enhance safety and efficiency of airport operations and the durability of its infrastructure:

- Airport Cooperative Research
- Airport Technology Research

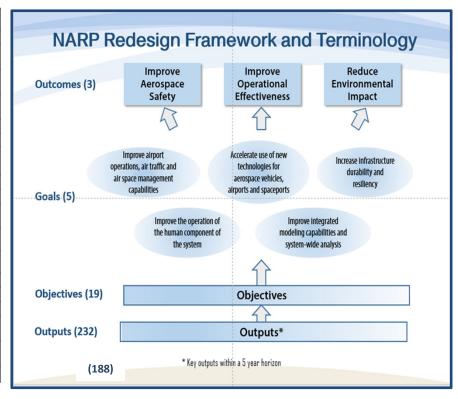


FAA R&D Governance and External Advisory System

R&D Planning and Reporting Cycle

Reporting Products

- National Aviation Research Plan (NARP)
- Annual Review (AR)
- Annual Modal Research Plan (AMRP)


Current R&D Planning Frameworks

AMRP Framework by Research Area and BLI

A	D	
Approp.	Research Program	
Airport Technology		
AIP	Airports Cooperative Research	
AIP	Airports Technology Research	
Aircraft Safety Assurance		
RE&D	Fire Research and Safety	
RE&D	Unmanned Aircraft Systems	
RE&D	Advanced Materials/Structural Safety	
RE&D	Aircraft Catastrophic Failure Prevention	
RE&D	Continued Airworthiness	
RE&D	Propulsion and Fuel Systems	
RE&D	System Safety Management Terminal Area Safety	
Digital Systems and Technologies		
RE&D	Aircraft Icing/Digital System Safety	
RE&D	NextGen – Information Security	
RE&D	NextGen – Flight deck Data Exchange Requirements	
Environment and Weather Impact Mitigation		
RE&D	Weather Program	
RE&D	NextGen – Weather Technology in The Cockpit	
RE&D	Aircraft lcing/Digital System Safety	
RE&D	Environment and Energy	
RE&D	NextGen – Environmental Research – Aircraft	
	Technologies and Fuels	
RE&D	NextGen – Alternative Fuels for General Aviation	

Approp.	Research Program	
Human Performance and Aeromedical Factors		
RE&D	Flight deck/Maintenance/Systems Integration Human Factors	
RE&D	Air Traffic Control/Technical Operations Human Factors	
RE&D	NextGen – Air Ground Integration Human Factors	
RE&D	Aeromedical Research	
Aviation Performance and Planning		
RE&D	System Safety Management Terminal Area Safety	
RE&D	Commercial Space Transportation	
RE&D	NextGen – Wake Turbulence	
F&E	Advanced Technology Development and Prototyping	
F&E	NextGen – Separation Management Portfolio	
F&E	NextGen – Traffic Flow Management Portfolio	
F&E	NextGen – On Demand NAS Portfolio	
F&E	NextGen – NAS Infrastructure Portfolio	
F&E	NextGen Support Portfolio	
F&E	NextGen – Enterprise, Concept Development, Human Factors, and Demonstrations Portfolio	
F&E	NextGen transportation System – Unmanned Airspace Systems (UAS)	
RE&D	System Planning and Resource Management	

NARP Framework

BLIs included in multiple research areas

TWO PERSPECTIVES OF THE SAME WORK

NARP Research Goals/Objectives at a Glance

Goal 1. Improve airport operations, air traffic and air space management capabilities

Gate to Gate

Separation/

ATM

Widgets

- 1a. Separation Management
- 1b. Air/Surface Traffic Management
- 1c. Integrated Weather Information
- 1d. Collaborative Decision Making
- 1e. Airport/Spaceport Systems
- 1f. Aerospace Vehicle Operation
- 1g. Noise and Emission Management

Goal 2. Accelerate use of new technologies for aerospace vehicles, airports and spaceports

- 2a. Applied Innovation
- 2b. Certification/Licensing
- 2c. Alternative Fuels
- 2d. Data Analysis

Goal 3. Increase infrastructure durability and resiliency

- 3a. Durability NAS, Airport & Spaceport Infrastructure
- 3b. Resiliency NAS, Airport & Spaceport Infrastructure
- 3b. Cybersecurity Aviation Ecosystem

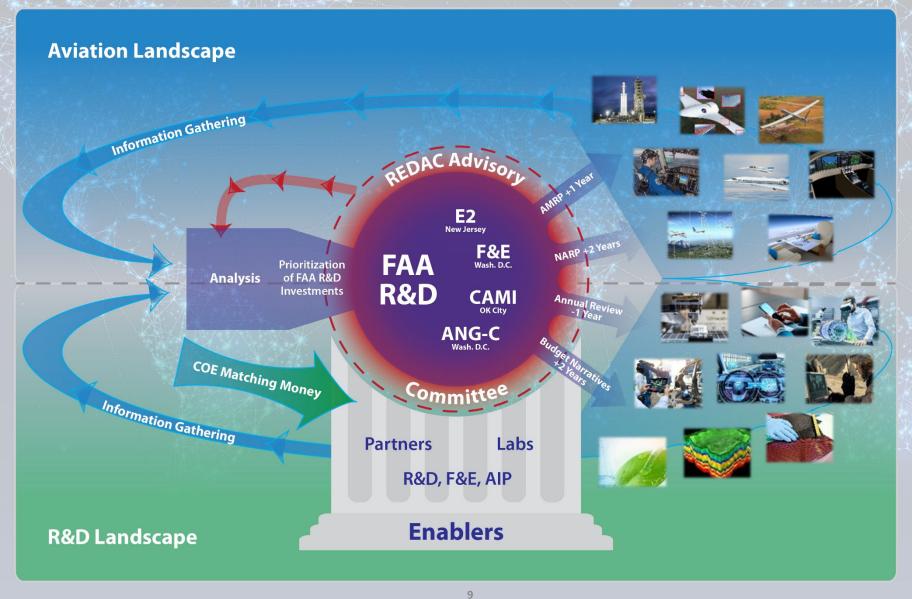
Goal 4. Improve the operation of the human component of the system

- 4a. Human Performance
- 4b. Aeromedical Factors

Goal 5. Improve integrated modeling capabilities and system-wide analysis

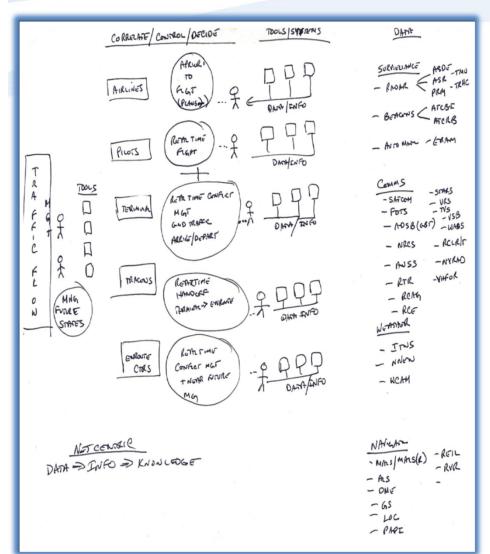
- 5a. Aerospace System
- 5b. Data Engineering
- 5c. System Performance

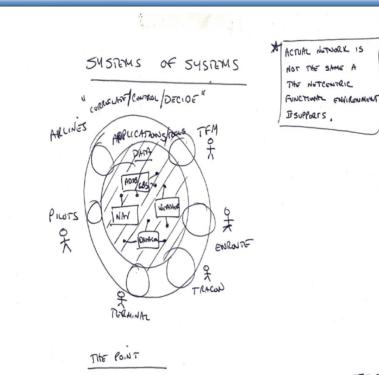
Enterprise


NARP Objectives

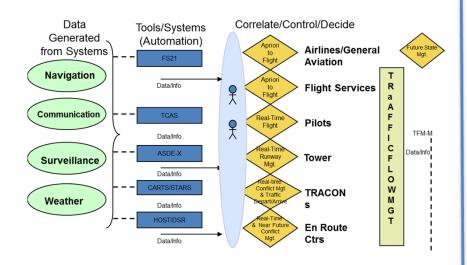
- Communicate driving forces for research (Vision)
- Communicate big picture (Strategy)
- Prioritize research that is results focused and properly positions the FAA
- Communicate costs and align investments
 - Include in-house/other resources (i.e. agencies, COEs, etc.)
 - Communicate strategy for leveraging other resources
- Communicate impacts/mitigations/alternatives of budget decisions on research
- REDAC review and advise on planned R&D
 - Share insights on research activities occurring within industry/academia
 - Identify future/long-term R&D requirements, emerging technologies, and knowledge gaps

Growing and Technologically Advancing World



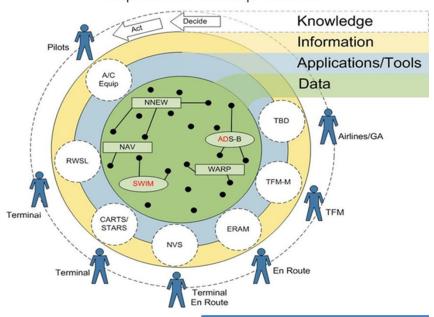

Systems Thinking?

What is this?


- THE SYSTEMS IN THE SYSTEMS-OF-SYSTEM CAN NO LONGER BE TESTED
- · SECULITY NOW BECOMES CRITICAL AS NUTWORK OPENS UP.

Formalization of Systems Views

Conceptual View of Current NAS


Interoperable systems that exchange data in a point-to-point manner with human intensive manual processes

Verification & Validation Systems of System Assessment Platform 10-13-2010

Conceptual View of a Net-Centric NAS: NextGen

Net-centric systems that gather, fuse and analyze multiple pieces of data from multiple sources to meet unique user needs

NetCentric has 2 components:
The transport layers and
The information layers.

This is about the information layers

Data: Individual facts, measurements or observations which may or may not be sufficient to make a particular decision

Information: Obtained when elements of data are assembled, reconciled, fused and placed in operational context

Knowledge: Derived from being able to use information to construct and use an exploratory model based on understanding of the situation or phenomenon

Do you remember this?

Solution Architecture

The SoS Assessment Platform and toolkit provides: Solution Overview **NextGEN Environment Major Components** The SoS Assessment Platform and toolkit provides:

Benefits

- Test entire NAS as a system-of systems
- Influence concept evaluation and *test*
- Evaluation in realistic/intended environment
- Simulate the air traffic, decisionmaking, and communications across each system in the NAS

Provides

 An end-to-end System of Systems integration and test environment supporting the full breadth and depth of the NAS

NextGEN

Holism – The Big Picture

"Zoom In"

System of Interest:

Constructs

Structure: *Hierarchy*

Behaviors: *Specification*

"Zoom Out"

System of Interest:

Perspectives

Emergence: Interactions

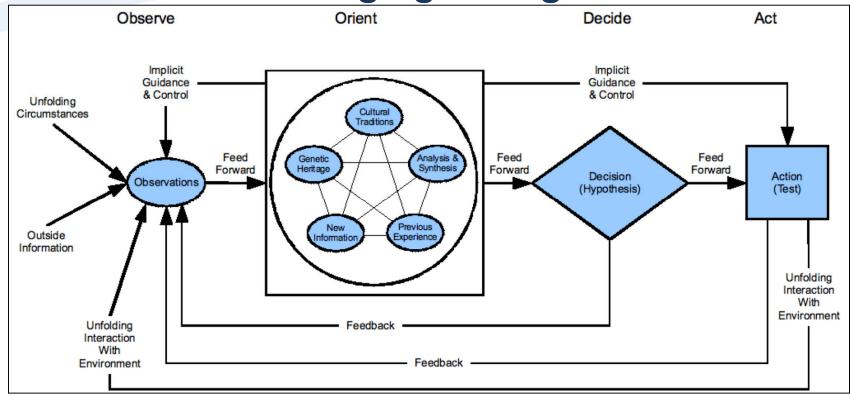
Entities: *Attributes*

Zoom Out

- Sense a change in conditions
- Assess the time frame: How much time before the risk profile changes?
- Assess with rigor: Do the new conditions call for disrupting plans? If so, how?

Then Zoom In

 Focus on supreme execution of plans and objectives


System Context

Quoted from Jim Collins & Morten Hansen, Great By Choice, HarperCollins, 2011

Boyd's OODA Loop as a Tool for Managing Change

Note how orientation shapes observation, shapes decision, shapes action, and in turn is shaped by the feedback and other phenomena coming into our sensing or observing window.

Also not how the entire "loop" (not just orientation) is an ongoing many-sided implicit cross-referencing process of projection, empathy, correlation, and rejection.

From "The Essence of Winning and Losing" John R. Boyd. January 1996

What are Mental Models?

What are Mental Models made of?

Meaning
Values Ideas
Beliefs Concepts
Premises Images
Common sense Smells
Representations
Previous Experiences
Symbols Language
Assumptions

"Mental models are deeply held internal images of how the world works, images that limit us to familiar ways of thinking and acting. Very often, we are not consciously aware of our mental models or the effects they have on our behavior."

Peter Senge

Georgia Tech – FAA Applied System Thinking Course August 18-19, 2015

These are critical for communication complex information for the purpose of problem solving and decision making

Bias and Errors

- ➤ Bias tendency to use information in making decisions in a way that does not conform to rules of logic, and has no rational basis
- Characteristic error a common decision making error that arises from a bias

Biased decisions are not necessarily errors; erroneous decisions are not necessarily biased.

Common Biases

- Errors of formal logic (examples)
 - Conjunction Bias
 - Inappropriate Generalization
 - > Affirming the Null
- Interpolation and Extrapolation of Trends

A Wicked Problem... depends on how you look at it

Cannot be characterized up front, you can't understand a wicked problem until you have defined a potential solution.

"Vision"

Solutions to wicked problems are not right or wrong, only better or worse (which is a social context not a physical context).

Every solution to a wicked problem is a trial operation, & can have other consequences.

Have no end point, there is no definitive problem so there is no definitive solution.

They are unique.
Solutions will
always be custom
and defined to fit.

Cannot be characterized as a set of alternative solutions, there may be just one or many but you can't know ahead of time.

What are you trying to do? Articulate your objective using absolutely no jargon

How is it done today, and what are the limits of current practice?

What's new in your approach and why do you think it will be successful?

What are the midterm and final "exams" to check for success?

Heilmeier Questions

How long will it take?

How much will it cost?

What are the risks and the payoffs?

Who cares?

If you're successful, what difference will it make?

If you can't answer these you don't understand your problem.

Georgia Tech – FAA Applied System Thinking Course August 18-19, 2015

Conclusion

- Everything is a system.
- In the end its all about THINKING.
- We all have unique perspectives and all these should be used in solving tough problems, but consensus management does not work quickly. So how do we do this? "Vision" and "Planning".
- We all have bias' that shape our thought.

Biases are only as powerful as our inability to hear another approach.

The trick to solving tough systems problems might be to:

- Envision what you (the community) wants the future to look like.
- Be able to create a mental model to ensure understanding and debate.
- Plan to that vision then adjust the vision depending on the constraints of the program execution (technical barriers, resources, heavy community resistance).
- Don't give up.

Innovation Technical Advisory Council (ITAC)

- ☐ Bringing new innovative ideas that support the ANG/William J. Hughes Technical Center Mission(s)
- ☐ Facilitate a culture of technological innovation and advancement at the WJHTC where the workforce is empowered to develop new ideas, utilize its expertise, and influence the direction of the Center's future technological capabilities.
- ☐ Guide research and development into new technology innovations.

