

Leading Edge Protective Coating Against Fluid and Particulate Erosion for Turbofan Blades

Presented to: FAA Office of Environment and Energy – Industry Day

By: Delta TechOps (DTO)

GKN Aerospace (GKN)

MDS Coating Technologies (MCT)

America's Phenix, Inc. (AP)

Date: 3 November 2021

Project Overview

Objective - Demonstrate MRL & TRL 8-9 via application of LE protective coating for potential Turbofan Blade configurations:

LE Repair

High Aspect Ratio

Hollow Fan Blades

LE Ti Strips

LE Protective Coating Against Fluid and Particulate Erosion for Turbofan Blades

Benefits:

Based on 1% fuel savings for Mainline and Regional commercial carriers:

- Fuel savings between 80M to 100M gal per year
- 750M to 1.0B kg <u>CO₂ / year</u>
- 700M to 1.0B g NO_x / year

Risk

• Protect for entire tour on all TF engine types

Mitigation

- Adjust coating process parameters
- Test & compare to eroded blades in operation

Objectives:

- Quantify performance degradation
- Optimize coating protection via component tests
- Demonstrate on various TF types at TRL8-9

Work Statement:

- Conduct engine tests on degraded & O/H¹ blades
- Conduct fluid erosion tests at AFRL² SuRE³ rig
- Flight certify for PW2000
- Optimize coating protection for other TF types
- Install fully coated sets for various engine types and demonstrate at TRL8-9

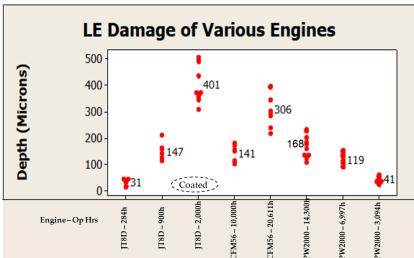
Accomplishments / Milestones

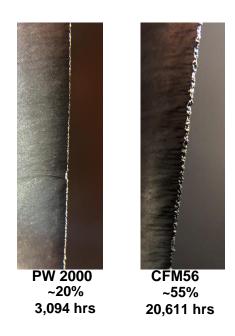
- Commenced accumulating further data to quantify rate of erosion
- Commenced certification process for PW2000 engine

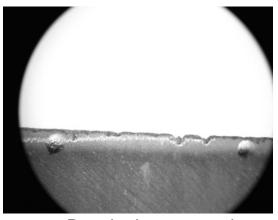
Schedule:

- Blade Condition / Operational Analysis thru 2025
- Engine tests thru 2022
- AFRL SuRE tests Jan 2022
- Flight Certification, PW2000 Jan 2023
- Flight Certification, other engines thru May 2026
- Flight Service Evaluation 2023 thru May 2026

3 Nov 2021 FAA CLEEN III_Industry Day

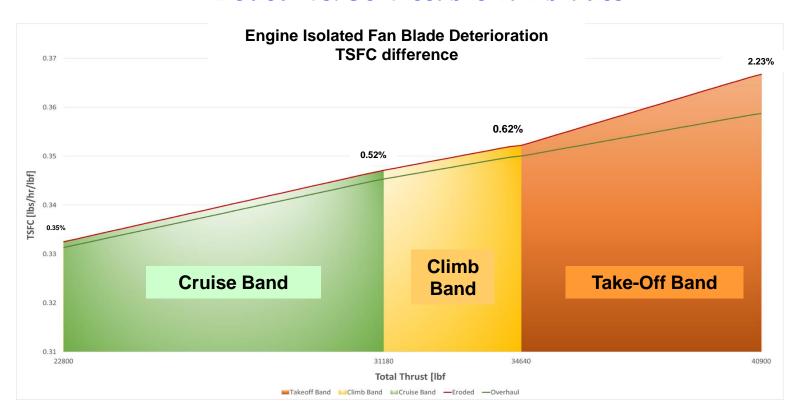

¹ Overhaul ² Air Force Research Lab ³ Supersonic Rain Erosion


Saving 1% of fuel results in: 1.15M 495,717,516 kg 107,570 81,793,390 **\$114M** USD barrels of oil of CO₂ cars off the Trees road Delta Air Lines consumed 4.566B gal of fuel in 2019 Based on \$2.50 / gal fuel price https://www.epa.gov/energy/greenhouse-gases-equivalencies-calculator-calculatios-and-references 3 Nov 2021 FAA CLEEN III_Industry Day


Schedule - Overview

- Phase I Data Gathering (throughout CLEEN III program)
 - Blade Condition Analysis on inducted engines and TF blades at GKN
 - Engine tests on various engine types
- Phase II Coating Optimization Tests (Jan 2022)
 - Conduct tests at AFRL Supersonic Rain Erosion (SuRE) Rig
- Phase III Flight Certification (PW2000 by Jan 2023)
 - Certification Plan
 - Test Plan
 - Metallographic Analysis
 - Mechanical Testing & Frequency Analysis
 - Impact Tests
 - Instructions for Continued Airworthiness (ICA) analysis
- Phase IV Flight Demo at TRL8-9 Fully Coated 1st stage TF sets
 - PW2000 on B757 by 2Q, CY23
 - Other engine types to follow pending AFRL SuRE Results

LE Measurements @ % Tour								
Engine	<10%	20%	40%	60%	80%	100%		
PW2000		20%	44%		89%			
Hours		3,094	6,997		14,300	16,000		
PW4000								
Hours								
CFM56				55%				
Hours				20,611		36,000		
CF34								
Hours								
V2500								
Hours								
Ti Strips								
Hours								

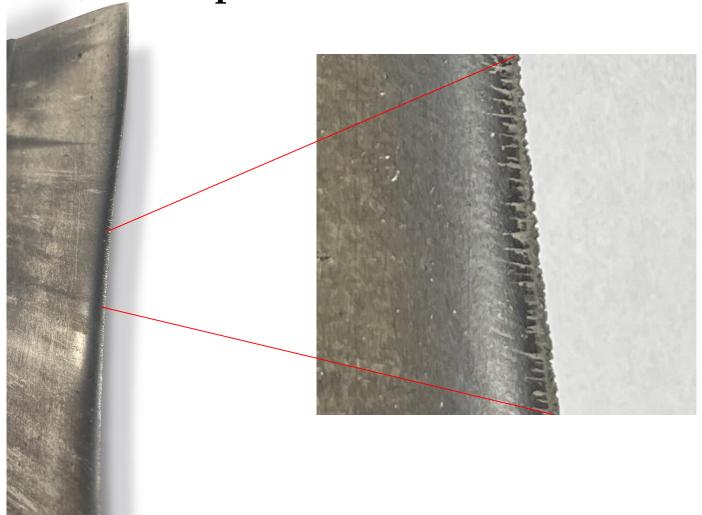


Developing new tool

Thrust Specific Fuel Consumption (TSFC) Comparison Eroded vs. Serviceable Fan blades

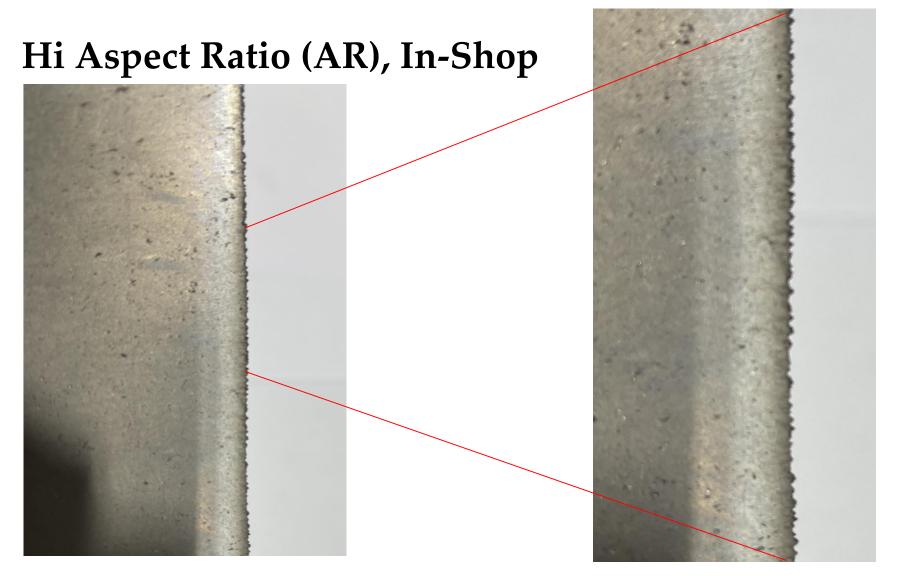
Will conduct similar comparative engine tests on various engine types

- Measured & photographed LE condition of various engines at DTO in October 2021
- Measured on-wing or on inducted blades on various engine engines

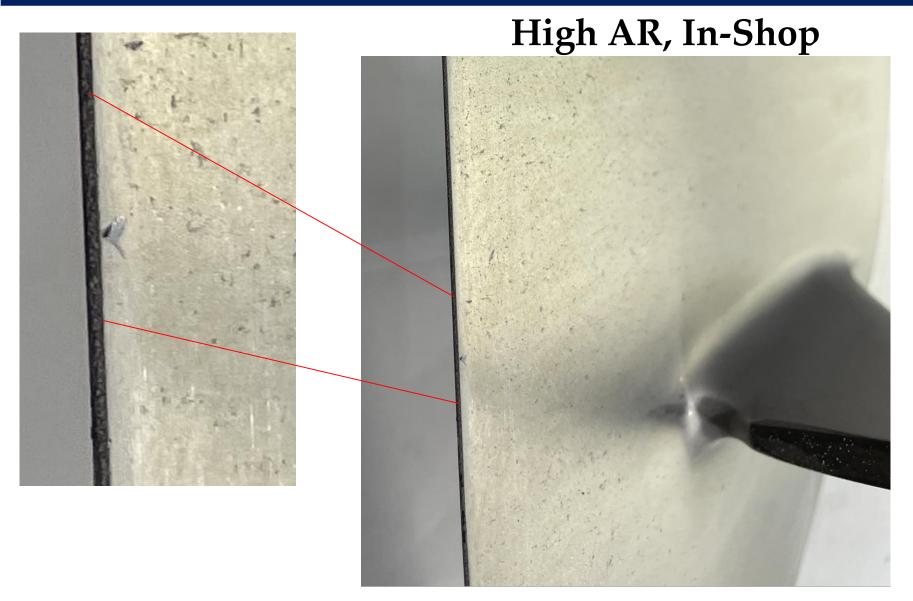


On-wing Repliset @ DTO

Measuring @ DTO


LE Sheaths, In-Shop

Regional Jets, In-Shop



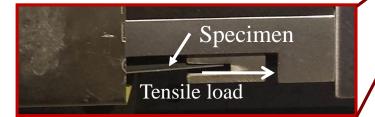
Low AR, On-wing

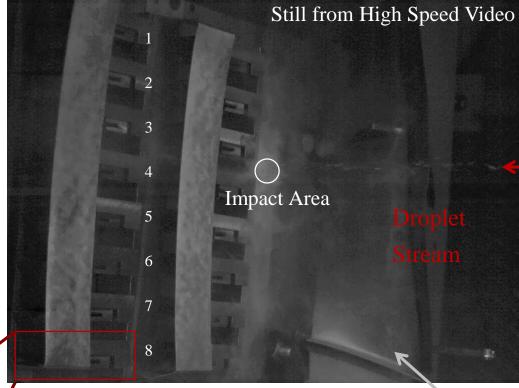
High AR, On-wing

Phase II – Fluid Erosion Test

@ AFRL – Supersonic Rain Erosion (SuRE) Rig

Specimen Preparation



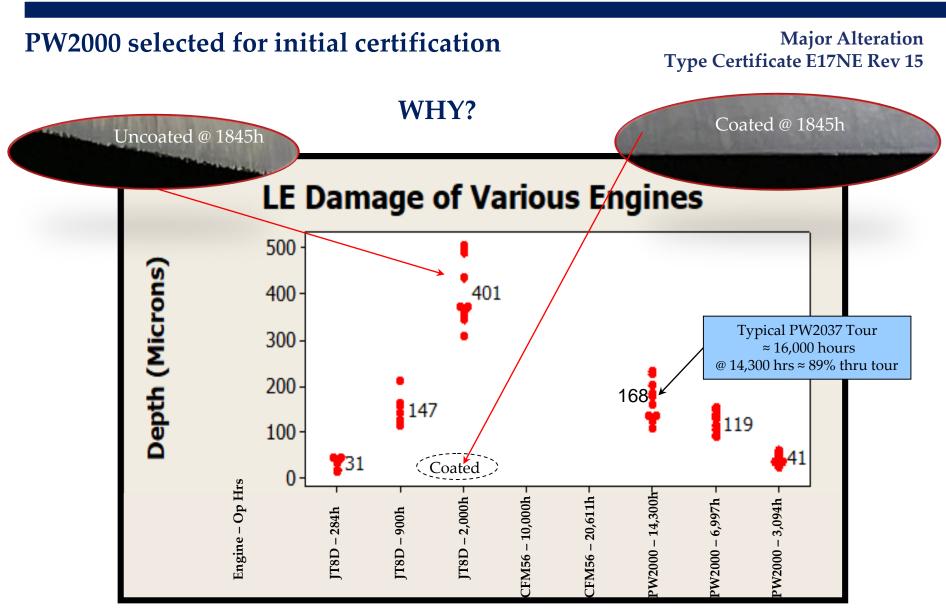

Specimen Tooling

Uncoated Blade Specimen

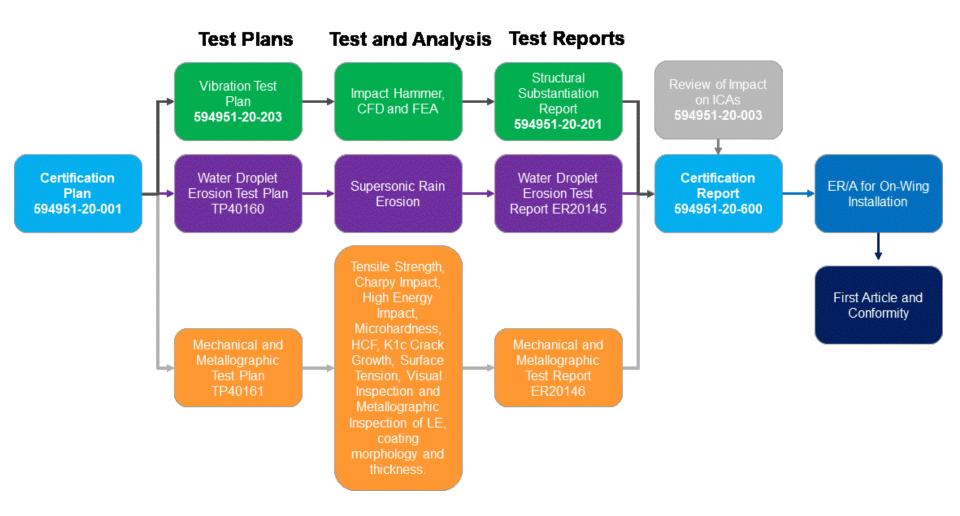
BlackGold® Coated Blade Specimen

Coated Blade

Phase II – Fluid Erosion Tests


- UDRI conducting fluid erosion tests using Supersonic Rain Erosion (SuRE) test rig at AFRL in Dayton
 - 30 specimens: 3 rails X 10 specimens
- SuRE test conditions
 - Representative fluid droplet size and LE impact speeds

Specimens for AFRL Test


	Rail 1	Rail 2	Rail 3
1	TS1	TS2	TS3
2	TS4	TS5	TS6
3	TS7	TS8	TS9
4	TS10	TS11	TS12
5	TS13	TS14	TS15
6	TS16	TS17	TS18
7	TS19	TS20	TS21
8	TS22	TS23	TS24
9	TS25	TS26	TS27
10	TS28	TS29	TS30

Phase III - Certification

Phase III – PW2000 Certification

Certification Overview

Future Work

Data Collection

- Measure pit depths on repliset molds from 12 different engines
 - Populate data collection matrix and plot
- Correlate LE laser measuring tool with repliset data on JT8D blade
- Continue LE condition data collection as a function of time-since-overhaul

AFRL Fluid Erosion Test

- Confirm test date at AFRL SuRE's facility in January 2022
- Manufacture test fixture (3 x 10 racks)
- Issue Purchase Order to conduct test
- Coat test specimens from different TF 1st stage engine blades

PW2000 Certification

Defining Certification & Test Plans

