# RPA P7: SOFTWARE PROGRAM DEVELOPMENT & SUPPORT

Presented to: REDAC Subcommittee on Airports

By: Qingge Jia/David Brill

Date: March 21, 2018



### **RPA P7 Overview**

#### **Need**

There is a need to develop and maintain user-friendly software programs that meet the current and future requirements of the FAA for airport design, construction, and maintenance and management tools. This RPA provides continuous support for airport Advisory Circulars, as well as the data management and data analysis needs of the Airport Technology branch.

#### **Objectives**

#### Goals:

- To upgrade FAA programs to current technologies.
- To meet FAA standards, and IT standards.
- To meet software industry standards.
- To develop tools that better serve FAA research needs.

#### Outputs:

• Software, websites, source code, and documentation.

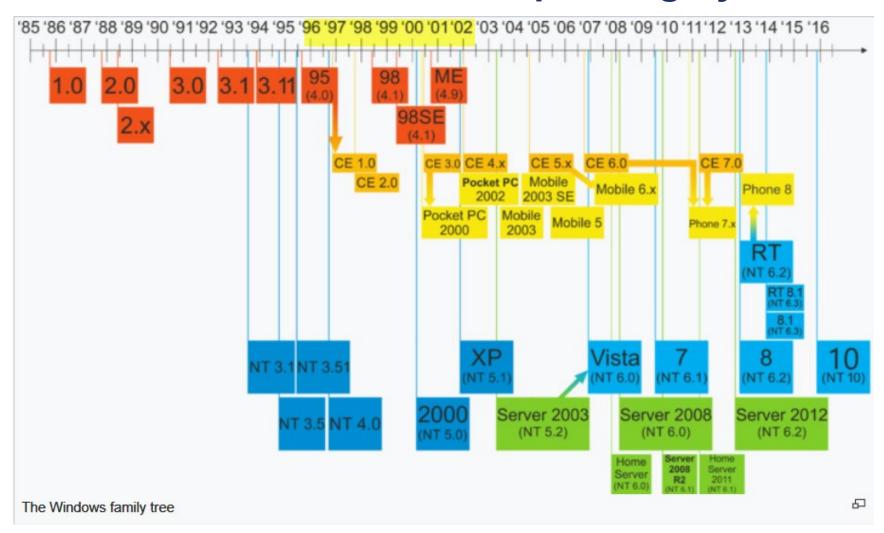
#### **Accomplishments**

- FAA PAVEAIR 3.0.2 released in February 2, 2017.
- Created French/Spanish versions of PAVEAIR.
- Developed FAA Prediction Curve Library.
- Added Micro Paver e70 compatibility.
- Created BAKFAA/ProFAA file parsers
- Implemented Object-Oriented (OO) design in all programs.
- FAA PAVEAIR improvements.
- Branch Website improvements and database accessibility improvements.



# **FAA Pavement Software Programs**

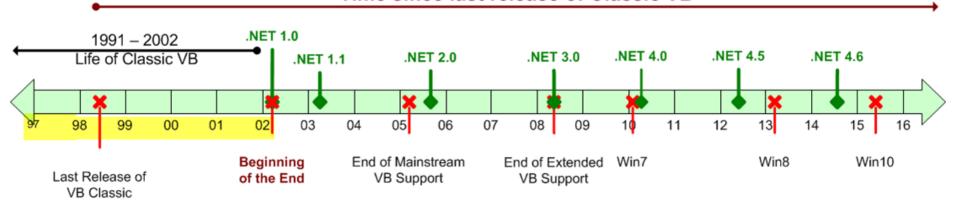
| Name          | Date of<br>Adoption | Advisory<br>Circular        | Description                                                                                                                                                                                 |
|---------------|---------------------|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PAVEAIR       | N/A                 | Recommended in 150/5380-7B  | Web-based application for airport pavement management system, including PCI evaluations.                                                                                                    |
| COMFAA 3.0    | 2011                | 150/5335-5C                 | Automatic PCN computation                                                                                                                                                                   |
| FAARFIELD 1.4 | 2016                | 150/5320-6F                 | FAA Rigid and Flexible Interactive Elastic Layer Design. Mechanistic-<br>Empirical thickness design. Uses NIKE3D for rigid and LEAF for flexible.                                           |
| ProFAA        | 2009                | 150/5380-9                  | Longitudinal roughness profile analysis, roughness index computation, and aircraft ride simulation.                                                                                         |
| FEAFAA 2.0    | NA                  |                             | 3D FEM program for rigid pavement response computation. Up to 9 slabs. Used to improve and extend FAA-NIKE3D.                                                                               |
| BAKFAA        | 2003                | Recommended in 150/5370-11A | FAA back-calculation of elastic layer properties using LEAF. Also computation of elastic layered system responses and used for LEAF development.                                            |
| LEAF          | 2003                | NA                          | Layered Elastic Analysis FAA. Windows DLL layered elastic computational engine written in Visual Basic. Can be compiled to a DLL and used as a component of other programs. (BAKFAA)        |
| ICAO-ACR      | 2018                | NA                          | Program extension to compute Aircraft Classification Rating (ACR) according to proposed new ICAO ACR-PCR standard. Can be compiled to a .NET DLL and used as a component of other programs. |




# **FAA Requirements**

- FAA Information Security and Privacy Program Policy.
- Privacy Policy
- Accessibility Section 508 Compliance
- FAA Template and Branding
- Editorial Style Guide
- Federal Source Code Policy

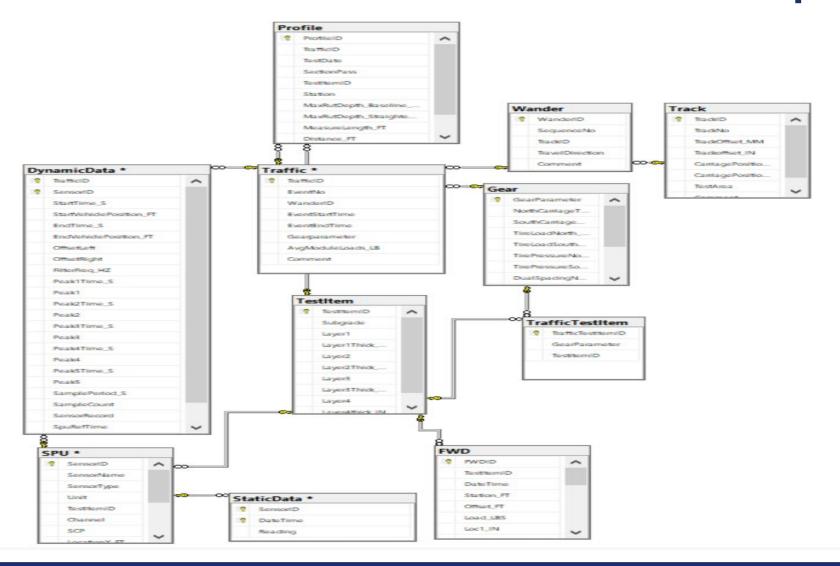



### **Software Environments, Operating Systems**

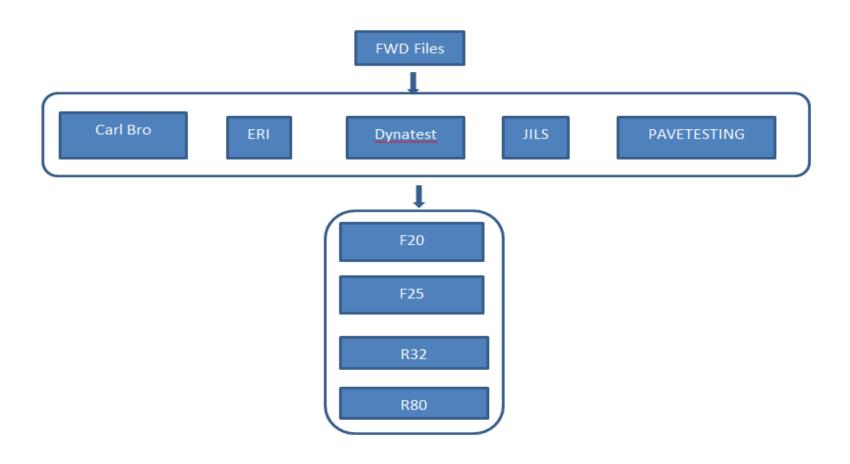




#### **Visual Basic Timeline**


#### Time since last release of Classic VB




- "Computers in the future may weigh no more than 1.5 tons."
  - Popular Mechanics, forecasting the relentless march of science, 1949
- "There is no reason anyone would want a computer in their home."
  - Ken Olson, president, chairman and founder of Digital Equipment Corp., 1977
- "640K ought to be enough for anybody."
  - Bill Gates on computer memory, 1981



### **CC5 Database Tables and Relationship**



# **FWD File Parsing**

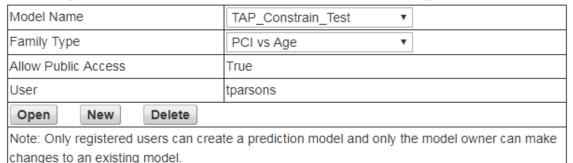


## Pavement M&R Cost - Road

| PCI | Stopgap | Preventive | Major  | Unit |
|-----|---------|------------|--------|------|
| 0   | \$0.60  | \$1.52     | \$5.56 | ft²  |
| 10  | \$0.39  | \$1.32     | \$5.56 | ft²  |
| 20  | \$0.29  | \$0.73     | \$5.56 | ft²  |
| 30  | \$0.21  | \$0.58     | \$5.56 | ft²  |
| 40  | \$0.19  | \$0.35     | \$5.56 | ft²  |
| 50  | \$0.14  | \$0.21     | \$2.19 | ft²  |
| 60  | \$0.11  | \$0.11     | \$1.88 | ft²  |
| 70  | \$0.09  | \$0.05     | \$1.70 | ft²  |
| 80  | \$0.06  | \$0.02     | \$1.31 | ft²  |
| 90  | \$0.01  | \$0.01     | \$1.27 | ft²  |
| 100 | \$0.00  | \$0.00     | \$0.00 | ft²  |



## **M&R Cost - Airfield**


| PCI | Stopgap | Preventive | Major  | Unit   |
|-----|---------|------------|--------|--------|
| 0   | \$1.24  | \$0.57     | \$8.39 | $ft^2$ |
| 10  | \$0.45  | \$0.47     | \$8.39 | $ft^2$ |
| 20  | \$0.14  | \$0.42     | \$8.39 | $ft^2$ |
| 30  | \$0.05  | \$0.23     | \$8.39 | $ft^2$ |
| 40  | \$0.03  | \$0.14     | \$8.39 | $ft^2$ |
| 50  | \$0.02  | \$0.08     | \$1.78 | $ft^2$ |
| 60  | \$0.02  | \$0.04     | \$1.66 | $ft^2$ |
| 70  | \$0.01  | \$0.02     | \$1.60 | $ft^2$ |
| 80  | \$0.00  | \$0.01     | \$1.27 | $ft^2$ |
| 90  | \$0.00  | \$0.01     | \$1.26 | $ft^2$ |
| 100 | \$0.00  | \$0.00     | \$0.00 | $ft^2$ |




## Multiple Databases in Prediction Model

#### FAA PAVEAIR: Prediction Modeling

#### Current Database: TAP\_STANDARD





### **French**

Accueil Inventaire Travail PCI Modèle prédictif Analyse d'état Entretien et réfection (E et R) Rapports Cartes Outils Connexion Zone membres Aide

**FAA PAVEAIR** 

Base de données activeTAP\_STANDARD

#### Bienvenue à FAA PAVEAIR


FAA PAVEAIR est une application Web publique conçue pour aider les organisations dans l'évaluation, la gestion et l'entreien de leurs réseaux de chaussées. PAVEAIR est conçu pour répondre aux exigences d'un système de gestion des chaussées d'aéroport tel

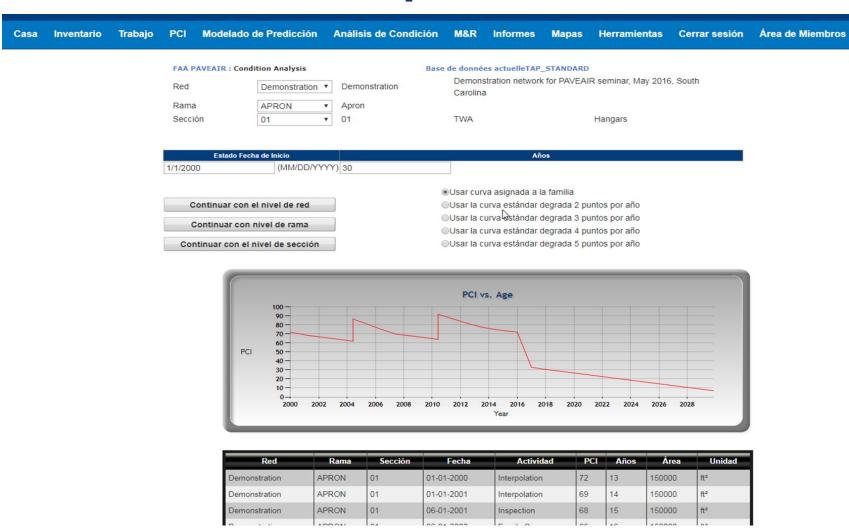
La FAA est heureuse d'annoncer la sortie de FAA PAVEAIR v3.0.2. Cette version inclut plusieurs nouvelles fonctionnalités importantes, telles que: des modèles de prédiction améliorés, un outil d'analyse de condition amélioré, l'utilisation de modèles de prédiction dans la planification d'analyse de condition et de M & R et le support de MicroPAVER e70.

Les questions concernant l'application ou les données peuvent être adressées à Qingge Jia, responsable du programme FAA PAVEAIR, à l'adresse suivante: qingge.jia@faa.gov.

Des détails sur les améliorations apportées à FAA PAVEAIR sont disponibles dans le Journal des changements

Pour les nouvelles et les événements à venir, s'il vous plaît visitez le Nouvelles et Evènements page.

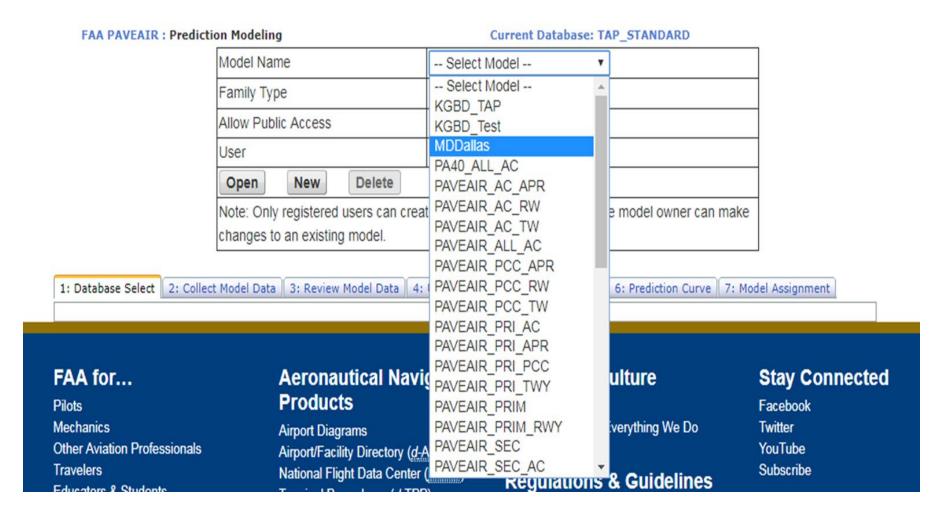



#### Bases de données:

Utilisez le bouton "Sélectionner une base de données" ci-dessous pour sélectionner une base de données.
Vous devrez vous connecter pour accéder à vos bases de données utilisateur. Les bases de données publiques sont en lecture seule.

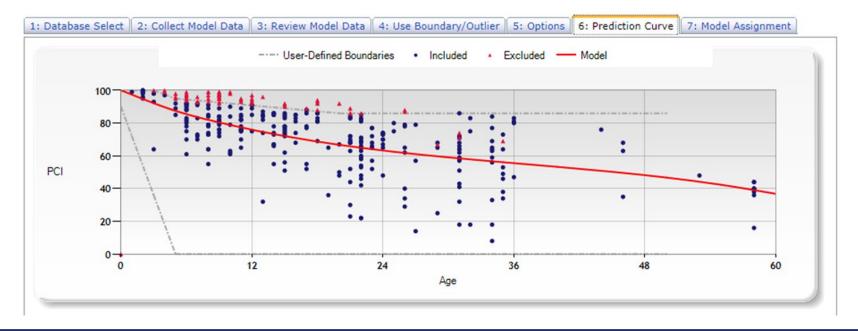
Sélectionner une base de données




## **Spanish**





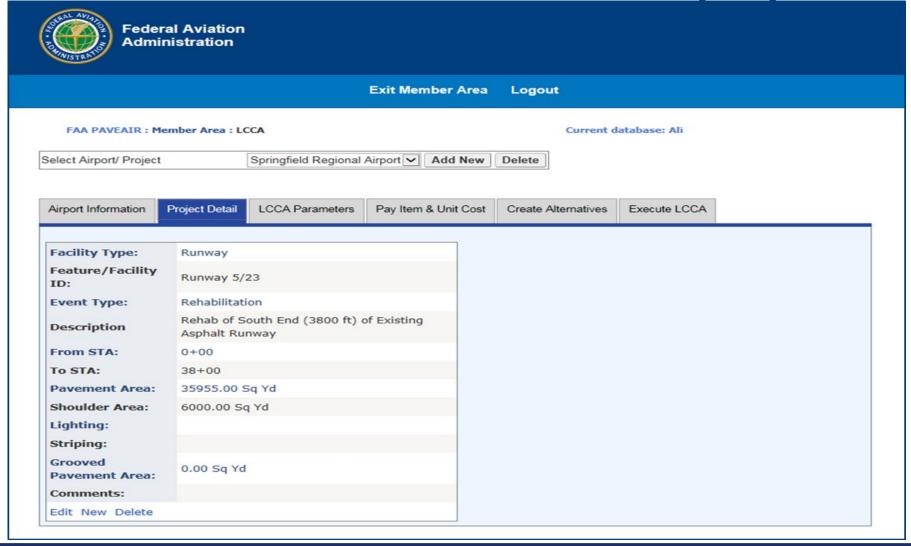

Ayuda

# **Prediction Modeling Library**



# **Prediction Model Library – AC, TW**

| FAA PAVEAIR : Predict | ion Modelin              | g                        |        | Current Database: TAP_STANDARD                            |  |  |  |  |  |
|-----------------------|--------------------------|--------------------------|--------|-----------------------------------------------------------|--|--|--|--|--|
|                       | Model Na                 | ne                       |        | PAVEAIR_AC_TW •                                           |  |  |  |  |  |
|                       | Family Typ               | oe                       |        | PCI vs Age ▼                                              |  |  |  |  |  |
|                       | Allow Public Access User |                          |        | True<br>fclibrary                                         |  |  |  |  |  |
|                       |                          |                          |        |                                                           |  |  |  |  |  |
|                       | Open                     | New                      | Delete |                                                           |  |  |  |  |  |
|                       |                          | registered<br>an existin |        | eate a prediction model and only the model owner can make |  |  |  |  |  |

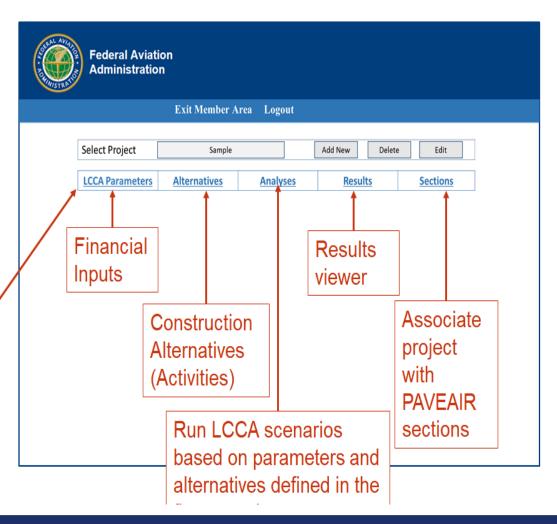



## **Traffic Model – PA40**

| Home | Inventory | Work         | PCI      | Prediction Modeling            | Condition Analysis                                            | M&R        | Reports    | Maps       | Tools       | Extended Life         | Logout | Member Area | Help |
|------|-----------|--------------|----------|--------------------------------|---------------------------------------------------------------|------------|------------|------------|-------------|-----------------------|--------|-------------|------|
|      |           | -            | 1.0      | tabase: GSO                    |                                                               |            |            |            |             |                       |        |             |      |
|      |           | Network:     | rrent Da | tabase: GSO                    |                                                               |            |            |            |             |                       |        |             |      |
|      |           | GSO          |          | 2                              | •                                                             |            |            |            |             |                       |        |             |      |
|      |           | Branch:      |          |                                |                                                               |            |            |            |             |                       |        |             |      |
|      |           | RW05L-2      | 23R      | <u> </u>                       | •                                                             |            |            |            |             |                       |        |             |      |
|      |           | Start Date   | 2:       |                                |                                                               |            |            |            |             | B                     |        |             |      |
|      |           | 6/1/2014     |          | The earliest date              | e that data is available is 6/                                | 1/2014     |            |            |             |                       |        |             |      |
|      |           |              |          |                                |                                                               |            |            |            |             |                       |        |             |      |
|      |           | End Date:    |          | 75-1-1-1-1                     | h - 1 - 1 - 1 - 1 - 1 - 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 | 10040      |            |            |             |                       |        |             |      |
|      |           | 8/28/2016    | 6        | The latest date t              | hat data is available is 8/28                                 | 3/2016     |            |            |             |                       |        |             |      |
|      |           | aircraft lik | ke 'a3%' |                                |                                                               |            |            | Filter     |             |                       |        |             |      |
|      |           | Show Help    |          |                                |                                                               |            |            |            |             |                       |        |             |      |
|      |           | ●Both        |          |                                |                                                               |            |            |            |             |                       |        |             |      |
|      |           |              |          | Aircraft                       | Arrivals                                                      |            | Departures | 5          |             |                       |        |             |      |
|      |           |              |          | A306                           | 69                                                            |            | 69         |            |             |                       |        |             |      |
|      |           |              |          | A310                           | 12                                                            |            | 12         |            |             |                       |        |             |      |
|      |           |              |          | A319                           | 66                                                            |            | 63         |            |             |                       |        |             |      |
|      |           |              |          | A320                           | 22                                                            |            | 23         |            |             |                       |        |             |      |
|      |           | Data show    | vn repre | sents 503 days of data between |                                                               | 6 (61.3% ( |            | een reques | ted dates ( | 6/1/2014 and 8/28/201 | 16).   |             |      |

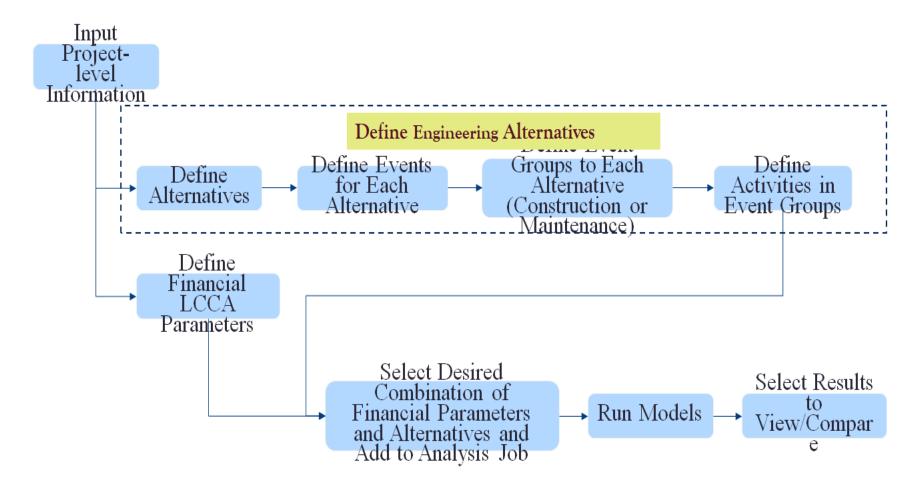


# LCCA User Interface (UI)

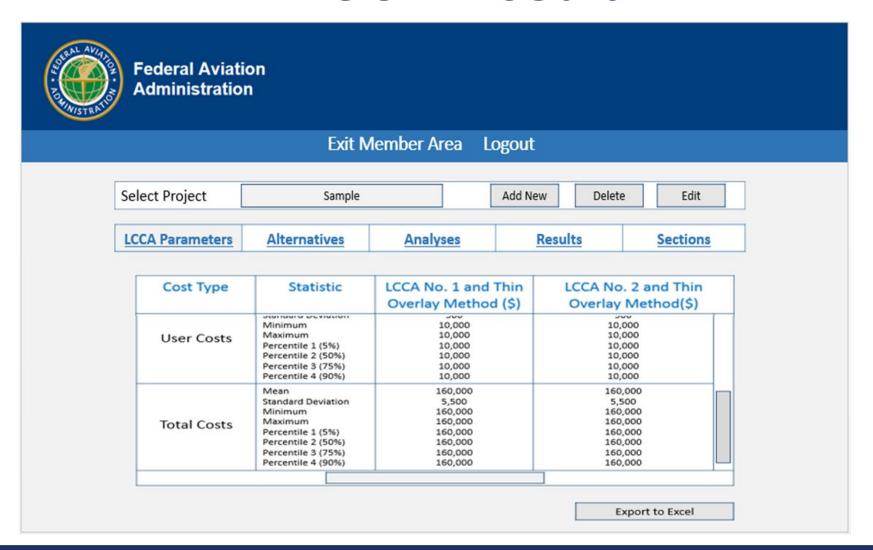





### LCCA UI


- Drop down lists to open a project
- Add New and Edit to define or edit the general information of a project

Keep the tab-based interface concept, which is consistent with other parts of PAVEAIR (e.g., M&R and Prediction Modeling)



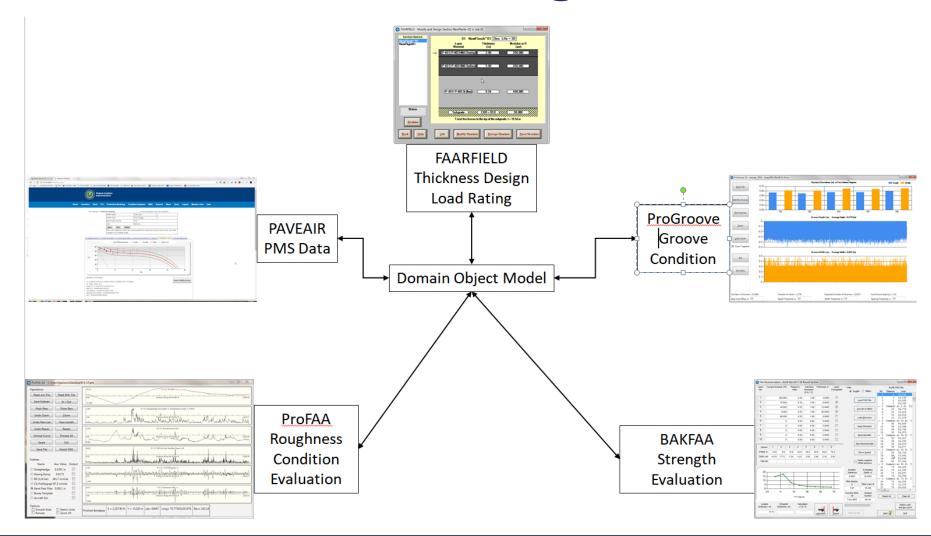



## **LCCA Workflow**

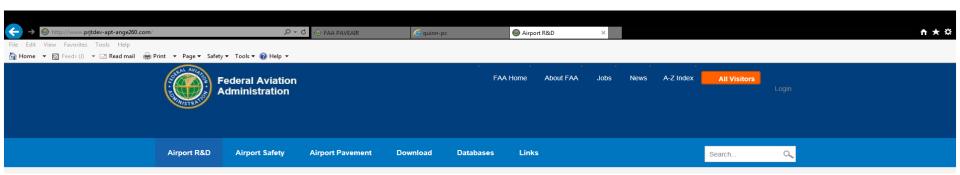


## **LCCA** Result






# **BAKFAA** development


- FWD file parsing
- Objected-Oriented Design
- Ul improvements



# **Software Integration**



## www.airporttech.tc.faa.gov



#### FAA Airport Technology Research & Development Branch Home Page





#### Airport Pavement (ANG-E262)



#### **About Us**

The Airport Technology Research and Development Branch supports the FAA's mission by conducting the necessary research and development required to enhance the safety of operations at our nation's airports and to ensure the adequacy of engineering specifications and standards in all areas of the airport systems and, where necessary, develop data to support new standards.

With the implementation of new procedures from the NextGen research, the role of airports will be to accommodate the increased traffic safely. This is especially critical during aircraft operations in inclement weather. The increased traffic will necessitate efficient inspection and maintenance of our runways and taxiways. This will require development of technologies to heat airport pavements, reliable methods to assess the braking performance of aircraft, development of lighting and marking materials providing higher visibility, development of new lighting technologies, such as, holograms, developing methods to mitigate wildlife at or near the airport, and developing new and efficient techniques for aircraft rescue and fire fighting.

Manager (ANG-E260) Dr. Michel Hovan Phone: 609-485-6179 Administrative Contacts
Barbara Davenport, Secretary
Phone: 609-485-5147

Program Analyst Tina Dilanni Phone: 609-485-5409

