# Extended Pavement Life RPA P8

Presented to: REDAC Subcommittee on Airports

By: David R. Brill, P.E., Ph.D.

Date: March 21, 2018



### **RPA P8 – Extended Pavement Life**

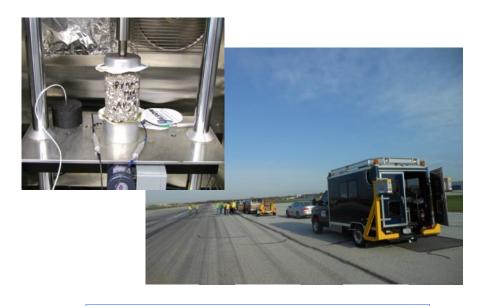
#### **Need**

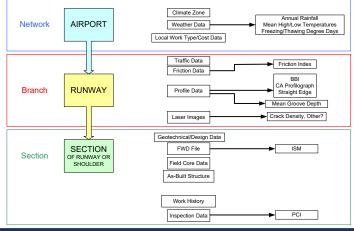
Longer design periods for airport pavements, up to double the current standard of 20 years, will provide cost savings to the AIP by reducing lifecycle costs. Extended airport pavement life also provides many green benefits, and minimizes down time at the nation's busiest airports.

#### **Research Goals**

- Link PA40 database to historical traffic data sources in ASAIS by FY17.
- Develop performance data models (Age-DL and Traffic-DL) by FY18.
- Next-generation FAARFIELD program incorporating new 40-year life design procedures by FY22.

#### **FY 2017-8 Accomplishments**


- Collect field data at DFW 18L-36R.
- Update PA40 to PAVEAIR 3.0 standard with active traffic link.
- Preliminary performance data analysis report 12/2017.


#### **Funding Requirements**

|                           | FY 2018 | FY 2019 | FY 2020 |
|---------------------------|---------|---------|---------|
| Funding Target<br>(\$000) |         |         |         |

### **Pavement Life Extension**

- Runway data collection.
  - 4-year project complete.
  - Construction and performance data on medium- and large-hub runway pavements.
  - Field data collection.
  - Current efforts focus on filling known gaps in data.
- FAA PAVEAIR database development (PA40).
- Pavement life model development.





## **Updated Runway List**

| Airport Code | Airport Name                          | Runway    | Pavement / Age              | Field Testing                             | Subcontractor | Comments                                                   |
|--------------|---------------------------------------|-----------|-----------------------------|-------------------------------------------|---------------|------------------------------------------------------------|
|              |                                       |           | Asphalt Runways, >20 years  |                                           |               |                                                            |
|              | Port Columbus International           | 10L-28R   | Flexible / >20              | PCI / FWD / Inertial Profiler & SurPro    | ARA           |                                                            |
|              | General Edward Lawrence Logan Intl.   | 04L-22R   | Flexible / >20              | PCI / FWD / Inertial Profiler             | Gemini        |                                                            |
|              | Baltimore–Washington<br>International | 10-28     | Flexible / >20              | PCI / FWD / Inertial Profiler & SurPro    | ARA           |                                                            |
| TUS          | Tucson International                  | 11L-29R   | Flexible / >20              | Yes                                       | Gemini/ARA    | Field Work Completed 12/201                                |
| SF0          | San Francisco International           | 10L & 10R | Flexible / >50              | No                                        | ARA           |                                                            |
|              | Ronald Reagan Washington<br>National  | 04-22     | Flexible / 40               | No                                        | Gemini        |                                                            |
| LGA          | New York - LaGuardia                  | 42482     | Flexible / >20              | No                                        | ARA           |                                                            |
|              | Salt Lake City International          | 16L-34R   | Flexible / >20              | PCI / FWD / Inertial Profiler & SurPro    | ARA           | Field Work completed 11/201                                |
| MCI          | Kansas City International             | 09-27     | Flexible / >30              | Yes                                       | ARA           | Field Work Completed 4/201                                 |
|              |                                       |           | Concrete Runways, >20 years |                                           |               |                                                            |
| IAD          | Washington Dulles International       | 01R-19L   | Rigid / >20                 | PCI / FWD / Inertial Profiler             | Gemini        |                                                            |
|              | Indianapolis International            | 5R-23L    | Rigid / 23                  | PCI / FWD / Inertial Profiler & SurPro    | Gemini        |                                                            |
| SEA          | Seattle-Tacoma International          | 16C-34C   | Rigid / >20                 | No ARA                                    |               |                                                            |
| LAX          | Los Angeles International             | 6R-24L    | Rigid / 26                  | No                                        | No Gemini     |                                                            |
| MCO          | Orlando International                 | 17R-35L   | Rigid / 24                  | No                                        | ARA           |                                                            |
|              | Salt Lake City International          | 16R-34L   | Rigid / 29                  | PCI / FWD / Inertial Profiler & SurPro    | ARA           | Field Work completed 11/20                                 |
|              | Denver International                  | 17L-35R   | Rigid / 19                  | No                                        | ARA           |                                                            |
|              | Hartsfield–Jackson Atlanta Intl.      | 9L-27R    | Rigid / >20                 | YES                                       | ARA           | Field work completed 2/2                                   |
|              | Dallas/Fort Worth International       | 18L-36R   | Rigid / 40                  | YES                                       | ARA           | Field work completed 3/1                                   |
|              |                                       |           | Asphalt Runways, <3 years   |                                           |               |                                                            |
|              | Port Columbus International           | 10R-28L   | Flexible / <3               | Inertial Profiler                         | ARA           |                                                            |
|              | Piedmont Triad International          | 5L-23R    | Flexible / 3                | PCI / FWD / Inertial Profiler & SurPro    | ARA           | Small Hub                                                  |
|              | Tucson International                  | 03-21     | Flexible / <3               | Yes                                       | Gemini/ARA    | Field Work Completed 12/20                                 |
|              | Miami International                   | 12-30     | Flexible / <1               | PCI / FWD / Inertial Profiler & SurPro    | ARA           | Field work Completed 2/201<br>Material samples not obtaine |
|              |                                       |           | Concrete Runways, <3 years  |                                           |               |                                                            |
|              | Seattle-Tacoma International          | 16R-34L   | Rigid / <3                  | PCI / FWD / Inertial Profiler             | ARA           |                                                            |
|              |                                       |           |                             |                                           |               |                                                            |
| IAD          | Washington Dulles                     | 01C-19C   | Rigid / <3                  | No                                        | Gemini        |                                                            |
| IAH          | George Bush Intercontinental          | 09-27     | Rigid / <3                  | No                                        | ARA           |                                                            |
|              | Fort Lauderdale-Hollywood Intl.       | 10R-28L   | Rigid / <1                  | PCI / FWD / Inertial Profiler &<br>SurPro | ARA           | Field work Completed 2/201                                 |

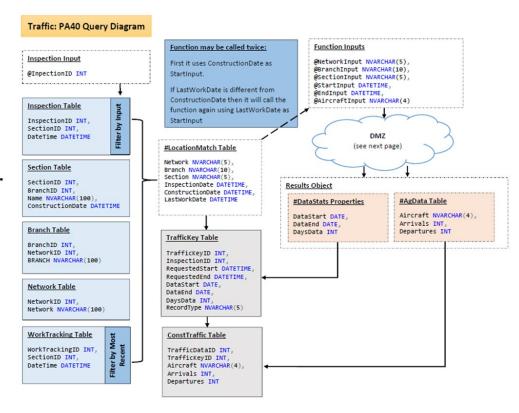
### Field Data Collection – DFW

- LAX 6R-24L field data collection cancelled.
- DFW 18L-36R field data collection:
  - Dec. 4-14, 2017 (PCI & profile data collection)
  - March 5-8, 2018 (HWD)
- Wet-No Freeze Climate Zone
- Original construction 1972 (>45 years).
- Old PCC runway exhibiting distresses including: joint seal damage, small patching, joint spalling, popouts.
- Fills gaps in PCI, HWD & profile data for old PCC runways.
- Coordinated site visit with DFW Operations.



## PA40 Status – August 2017

| Con     | neral   | PA40 Database Status, March 1, 2018 |          |    |                |     |          |          |         |  |
|---------|---------|-------------------------------------|----------|----|----------------|-----|----------|----------|---------|--|
| General |         |                                     |          |    | Extended Life  |     |          |          |         |  |
| Airport | Runway  | Inventory                           | Work PCI |    | Design Traffic | FWD | Lab Test | Grooving | Profile |  |
| ATL     | 9L-27R  | Х                                   | X        | Х  | -              | Х   | -        | Х        | X       |  |
| BOS     | 4L-22R  | Х                                   | X        | Х  | -              | Х   | -        | Х        | X       |  |
| BWI     | 10-28   | Х                                   | X        | Х  | Х              | Х   | X        | Х        | Х       |  |
| CMH     | 10L-28R | Х                                   | Х        | Х  | Х              | Х   | X        | Х        | Х       |  |
| CMH     | 10R-28L | Х                                   | X        | Х  | Х              | Х   | -        | -        | Х       |  |
| DCA     | 1-19    | X                                   | X        | Χ* | Х              | -   | -        | -        | -       |  |
| DEN     | 17L-35R | Х                                   | X        | Х  | -              | -   | -        | -        | -       |  |
| DFW     | 18L-36R | Х                                   | X        | Х  | -              | -   | -        | Х        | Х       |  |
| FLL     | 10R-28L | Х                                   | X        | Х  | X              | Х   | X        | Х        | Х       |  |
| GSO     | 5L-23R  | Х                                   | X        | Х  | -              | Х   | X        | Х        | Х       |  |
| IAD     | 1R-19L  | Х                                   | X        | X* | -              | Х   | Х        | Х        | Х       |  |
| IAD     | 1C-19C  | Х                                   | X        | X* | Х*             | -   | -        | -        | -       |  |
| IAH     | 9-27    | Х                                   | X        | Х  | X              | Х   | -        | -        | -       |  |
| IND     | 5R-23L  | Х                                   | X        | Χ* | Х              | Х   | X        | Х        | Х       |  |
| LAX     | 6R-24L  | Х                                   | X        | Χ* | -              | -   | -        | -        | -       |  |
| LGA     | 4-22    | Х                                   | X        | Х  | -              | -   | -        | -        | -       |  |
| MCI     | 9-27    | Х                                   | Х        | Х  | Х              | Х   | X        | Х        | Х       |  |
| MCO     | 17R-35L | Х                                   | X        | Х  | X              | -   | -        | -        | -       |  |
| MIA     | 12-30   | Х                                   | X        | Х  | -              | Х   | -        | Х        | Х       |  |
| ORD     | 10C-28C | Х                                   | X        | Χ* | X              | Х   | X        | Х        | Х       |  |
| SEA     | 16R-34L | Х                                   | Х        | Х  | Х              | Х   | -        | Х        | Х       |  |
| SEA     | 16C-34C | Х                                   | X        | Х  | -              | -   | X        | -        | -       |  |
| SFO     | 10L-28R | Х                                   | X        | Х  | -              | -   | -        | -        |         |  |
| SFO     | 10R-28L | Х                                   | Х        | Х  | -              | -   | -        | -        | -       |  |
| SLC     | 16L-34R | Х                                   | Х        | Х  | X              | Х   | -        | Х        | Х       |  |
| SLC     | 16R-34L | Х                                   | Х        | Х  | X              | Х   | -        | Х        | Х       |  |
| TUS     | 11L-29R | Х                                   | X        | Х  | -              | X   | X        | Х        | Х       |  |
| TUS     | 3-21    | Х*                                  | Х        | Χ* | -              | -   | -        | -        | -       |  |


| Legend |                                                                                                                                |  |  |  |  |  |
|--------|--------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| X      | Data                                                                                                                           |  |  |  |  |  |
| -      | No Data                                                                                                                        |  |  |  |  |  |
|        | Information is missing or incorrect in PA40                                                                                    |  |  |  |  |  |
|        | Some information is missing or incorrect in PA40                                                                               |  |  |  |  |  |
|        | Data is present in PA40, but not yet checked for accuracy against the source data                                              |  |  |  |  |  |
|        | Information is uploaded (where appropriate) & checked/spot-checked against source file w/ source file back-up where applicable |  |  |  |  |  |
|        | Import files have been prepared for future batch upload                                                                        |  |  |  |  |  |
|        | Delete from PA40                                                                                                               |  |  |  |  |  |

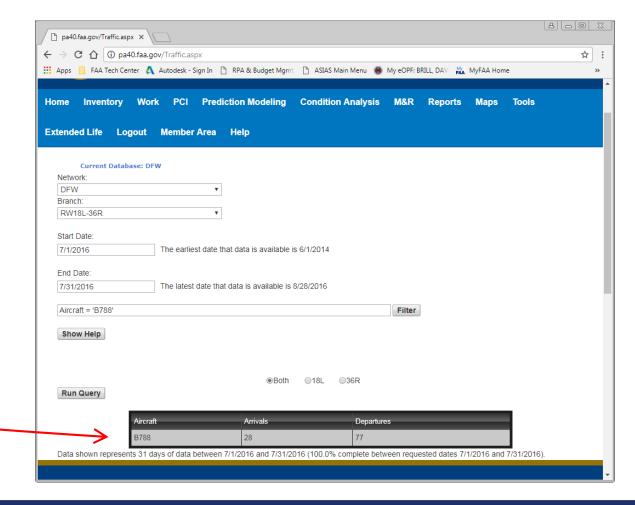
<sup>\*</sup>Missing complete source file for upload, check or correction



## **PA40 Traffic Data Integration**

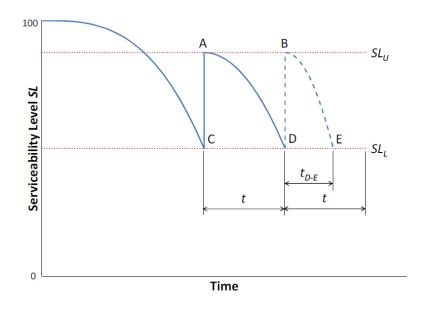
- Search runway usage data by:
  - Aircraft type.
  - Runway end.
  - Arrival or departure event.
- Designed to return runway traffic since:
  - Construction or major work date.
  - Previous inspection date.
- Access threaded track data (TTD) via NPN shared services.




## **PA40 Updates**

- PA40 deployed in PAVEAIR 3.0 code base.
- January 2018 updates:
  - Added traffic link filters, SQL command information, and examples to the traffic link.
  - Added units added to the header rows of the lab data tables.
  - Updated BWI section names to be consistent with the BWI database.
  - Updated FWD offset information.
  - Added DFW data (PCI, profile, groove).
- Additional updates in March 2018:
  - Add DFW data (HWD) & SLC lab test.
  - Code base update.



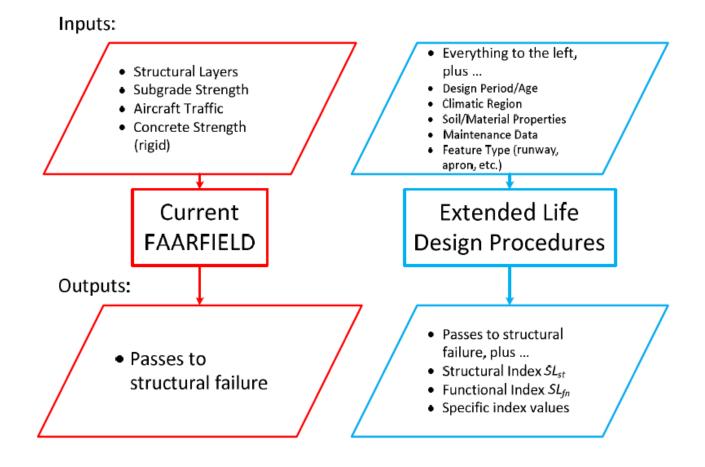

## PA40 Updates – Traffic Link

Sample query returns all arrivals and departures of B787-8 aircraft on DFW RWY 18L-36R during July 2016.





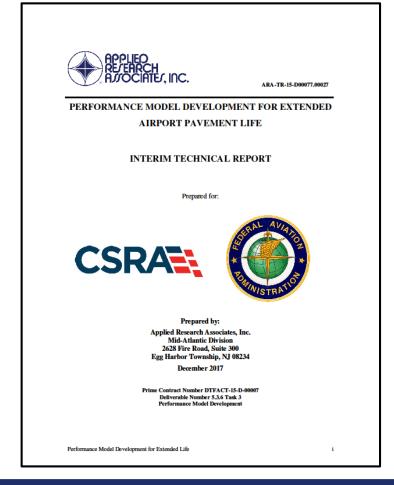
## **Serviceability Level Concept**




- Points A and B represent rehabilitations to restore serviceability.
- Points C and D represent "end of serviceability."
- Point D also represents "end of life" <u>if</u>:

$$\Pr(t_{D-E} > t) < p$$

 Goal: find components of SL, and parameters SL<sub>L</sub>, p such that "end of life" agrees with LCCA-based decision to reconstruct.


## Schematic for Generalizing Design Procedures



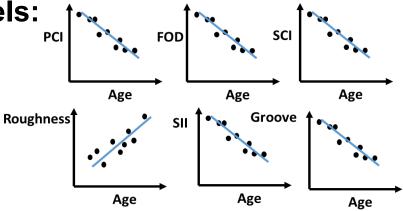
## Performance Modeling Framework

- Interim Report:

   Performance Model
   Development for
   Extended Airport
   Pavement Life,
   December 2017.
- Establish analytical framework for model development.
- Analyze data from 28 runways in PA40.



## 7-Step Analytic Procedure for Performance Model Development


#### 1. Identify dates of major rehabilitation or reconstruction.

 Assume pavement undergoing major rehabilitation is at or below the lower serviceability threshold SL<sub>L</sub>.

#### 2. Calculate functional age for section.

- Defined as the age counted from either the construction date of date of last major rehabilitation.
- Assume that any major rehab resets to "perfect" condition.

3. Create regression models:



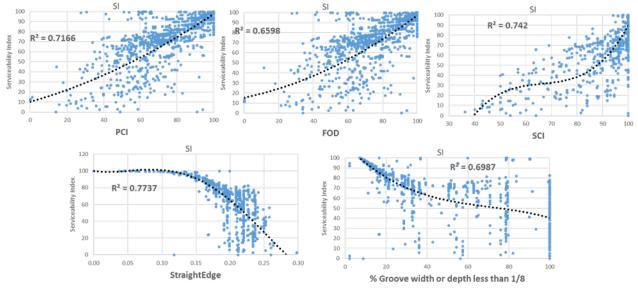
## 7-Step Analytic Procedure for Performance Model Development (cont.)

#### 4. Estimate missing condition indexes.

- Estimate condition of pavement at time of rehabilitation using condition analysis tools in PAVEAIR.
- Estimate any missing condition indexes.

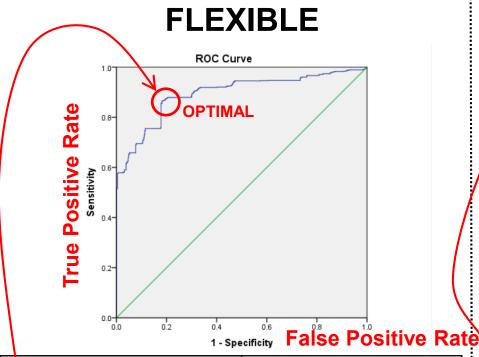
#### 5. Create pavement condition matrixes from PA40 database.

- Records associated with estimated conditions at time of rehab are assigned "unserviceable" value.
- Others assigned "serviceable."


#### 6. Develop serviceability level (SL) index.

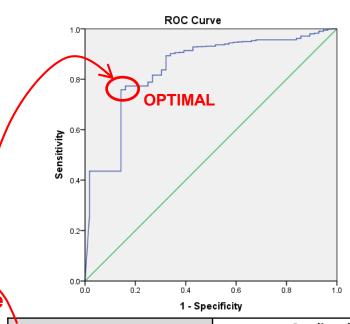
- Based on a binary logistic regression model ("logit").
- Find probability of section being unserviceable given condition indexes.

#### 7. Establish SL thresholds for unserviceable pavements.


Identify the threshold value that <u>maximizes</u> correct classification.

## **Initial Performance Model Development Based on PA40 Data (Flexible)**




| Component<br>Index | Asphalt<br>Trigger | Correct<br>Classification of<br>Unserviceable<br>Pavements | Correct<br>Classification of<br>in-service<br>Pavements |
|--------------------|--------------------|------------------------------------------------------------|---------------------------------------------------------|
| PCI                | 65                 | 82%                                                        | 64%                                                     |
| FOD                | 65                 | 83%                                                        | 63%                                                     |
| SCI                | 85                 | 91%                                                        | 42%                                                     |
| Straightedge       | 0.2 in             | 80%                                                        | 71%                                                     |
| Grooves            | 40% < 1/8          | 69%                                                        | 79%                                                     |

## **Logit Model Analysis**



| SL <sub>L</sub> = 65 gives the optimal separation between |              |     | Predicted |         |      |  |
|-----------------------------------------------------------|--------------|-----|-----------|---------|------|--|
|                                                           |              |     | Servic    | Percent |      |  |
| serviceable and non-<br>serviceable pavements.            |              | Yes | No        | Correct |      |  |
| Observed Completed 2                                      |              | Yes | 1236      | 175     | 87.6 |  |
| Observed                                                  | Serviceable? | No  | 100       | 395     | 79.8 |  |
| Overall Percentag                                         |              |     |           |         | 85.6 |  |

#### **RIGID**



| SL <sub>L</sub> = 95 gives the optimal separation between serviceable and non-serviceable pavements. |                     |     | Predicted |         |         |  |
|------------------------------------------------------------------------------------------------------|---------------------|-----|-----------|---------|---------|--|
|                                                                                                      |                     |     | Servic    | Percent |         |  |
|                                                                                                      |                     |     | Yes       | No      | Correct |  |
| Observed                                                                                             | Serviceable? Yes No | Yes | 1182      | 374     | 76      |  |
|                                                                                                      |                     | 9   | 47        | 83.9    |         |  |
|                                                                                                      | 76.2                |     |           |         |         |  |

### **Planned Work**

- Extend regression models to include traffic history and climate cycles as independent variables (in addition to functional age).
- Incorporate new FAA airport roughness index.
- Re-evaluate alternate structural indexes (based on HWD) with additional data.