Emissions Research Update

Office of Environment & Energy (AEE)

Presented to: REDAC E&E Subcommittee

By:	S. Daniel Jacob and Ralph lovinelli			
Date:	March 19, 2019			

Federal Aviation Administration

- Emissions Research Overview
- Selected Research Results
- Summary

Emissions Research Roadmap

Emissions Research Overview

ASCENT Project	Description	Emissions Roadmap	
2	nvPM Emissions Engine Measurements		
10	Forecast Technology and Influence of Commercial SST		
18 *	Health Effects of Aviation Emissions		
19	AQ Dispersion Model Development		
20 *	Fast-time APMT-I AQ Model Development (Adjoint)		
21 *	Updates to APMT-I Climate Model		
22 *	Independent Evaluation of APMT-I Climate Model		
39*	Removing Naphthalene from Jet-A		
47 *	Clean-Sheet Supersonic Engine Evaluation (New)		
48 *	Engine nvPM Emissions Standard Setting Support		

*On Hold – Projects in varying stages of grant process

Health	Emissions	Emissions	Climate	Certification	Aviation
Impacts	Tools	Source	Impacts	and	Emissions
Research	Development	Characterization	Research	Regulations	Modeling

A2: Engine Emissions Measurements

Major Accomplishments:

- Standardized non-Volatile Particulate Matter (nvPM) Measurement for Certification
- 2016 CAEP/10 nvPM Standard
- 2019 CAEP/11 nvPM Landing Take Off (LTO) mass and number standards
 - Representative Engine nvPM Emissions Measurement
 - Engine to Engine Variability
 - Combustor Rig nvPM Emissions Measurement
- ND-MAX/ECLIF-II Studies = NASA/DLR Multidisciplinary Airborne eXperiments/Emission and Climate Impact of Alternative Fuels Second Campaign - Measurements completed February 2018
 - FAA (MS&T and Aerodyne), NASA, German DLR, Canadian NRC

A2: Engine Emissions Measurements

Future Work Plan – Proposal submitted March 2018 – In Process:

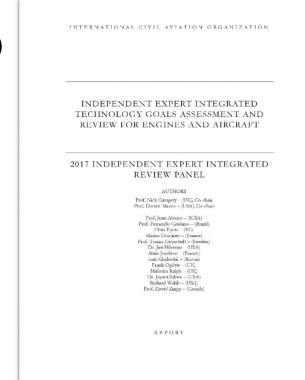
- NASA NDMAX Data Analysis Impact of Alt Fuels on nvPM Emissions
- Conduct combustor rig tests at Honeywell
 - Addresses nvPM ambient condition corrections for certification
 - Data collection for ground-to-cruise nvPM correlation and cruiseclimb NOx modeling
 - Evaluate cruise modeling methods (supports work for ASCENT Project 48)
 - Feeds in to ASCENT Projects 20, 21 and 22 on NOx and nvPM Impacts on the atmosphere and air quality.
 - Use of two additional alternative fuels in combustor rig tests
- Inform modeling blended fuels

A48: Engine nvPM Emissions Standard Development and Modeling Research

Major Accomplishments:

- Application of Tools to inform CAEP/11 nvPM standards decision making
- Analysis in support of characteristic factors development (i.e. engine to engine variability)
- Evaluation of Smoke Number replacement with the CAEP/10 nvPM mass concentration standard Smoke Number replaced on 1 January 2023

<u>Future Work Plan – Proposal submitted June 2018 – In Process:</u>

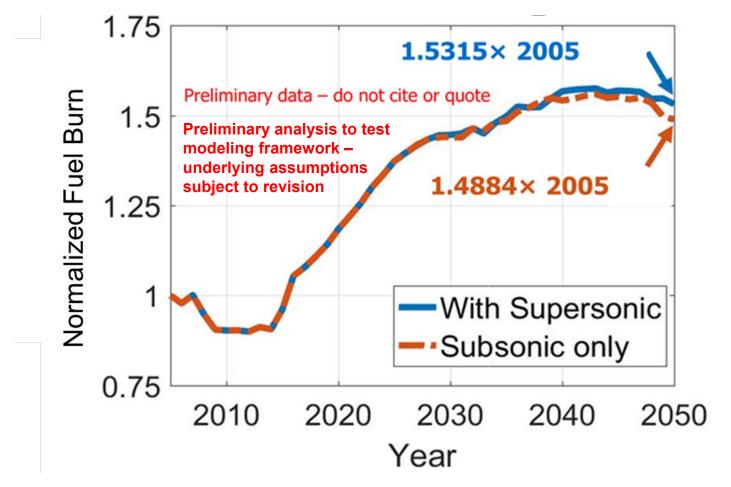

- Develop nvPM and NOx cruise-climb modeling using data from ASCENT Project 2
 - Addressing a major gap critical for Impacts Modeling
- Analysis of reported nvPM emissions data and margins with respect to CAEP/11 nvPM LTO mass and number standards
- ICAO Doc 9889 updates More accurate representation aircraft emissions

A10: CAEP IEIR

Independent Experts Integrated Technology Goals Assessment and Review for Engines and Aircraft (IEIR) Outcomes:

- Considered Noise and Fuel Burn Interdependencies to establish mid-term (MT 2027) and long-term (LT 2037) technology goals
 - Business Jets, Regional Jets, Single Aisle, and Twin Aisle
- Independent Experts recommended new MT LTO NOx goal and examination of cruise NOx.
- Georgia Tech team and their modeling was essential to the successful completion of the work
- Had good collaboration between IEs and industry, which was a direct result of Georgia Tech's work

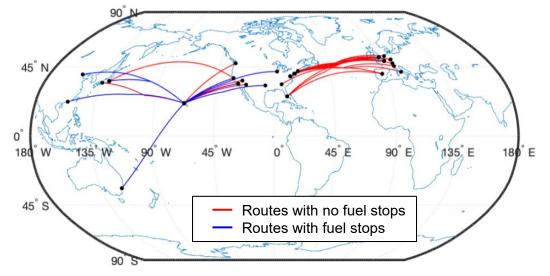
A10: Forecast Technology and Influence of Commercial SST


FY17 Outcomes:

- Completed first supersonic demand and route estimates
 - Demonstrated that presence of supersonic aircraft can change the use, retirement and acquisition of subsonic aircraft in the fleet
- Developed preliminary supersonic vehicle sizing environment and key environmental indicator (KEI) estimates
- Tested AEDT modeling for supersonic vehicles
- Computed first fleet level supersonic results using multiple fleet evaluation tools

A10: Forecast Technology and Influence of Commercial SST

Fleet-level Fuel-Burn Predictions with Placeholder Supersonic Aircraft


Have forecasting efforts with A10 team, Volpe and BAH

A10: Forecast Technology and Influence of Commercial SST

FY18 Funding - Ongoing:

- First order estimates for conceptual supersonic vehicles
- Recommendations for AEDT supersonic modeling capability
- Fleet Level Results

FY19 Funding - Plan:

- Refine fleet assumptions & demand assessments Demand, Distance, Ticket Price
- Fleet analysis with gradual introduction of supersonic aircraft in to the fleet
- Vehicle modeling and AEDT vehicle definition
- Assess Interdependencies Cruise efficiency vs LTO Noise, NOx vs Noise etc.

A47: Clean-Sheet Supersonic Engine Evaluation

- Industry has proposed using existing engine cores for new civil supersonic transport engines.
- What would a civil supersonic engine look like if it was designed from scratch using state-of-the-art technologies?

- What environmental performance in terms of regulated pollutants and noise could be potentially achieved?
- Use SST aircraft designs announced in media to determine thrust requirements, specific fuel consumption, engine size and weight limits, etc. Consider trade-offs in terms of performance with cruise Mach number and design range.
- Integrate results into system modeling work of ASCENT Project 10.


A19: AQ Dispersion Model Development

One source at 3,000 feet

The American Society/Environmental Protection Agency Regulatory Model (AERMOD) is the mandatory tool used to demonstrate Air Quality compliance for airports.

- AERMOD is designed for stationary sources
- Aircraft Emissions are used as horizontal "area sources" in AEDT, which have no buoyancy behavior. Instead, a constant "release height" is used.

Limitations of this approach are well known – but have been workable until recently.

What specification impacts prediction of **ground-level concentrations** the most?

- Horizontal orientation?
- Lack of buoyant behavior?
- Lack of wake modeling?
- Single trail of sources for multi-engine aircraft?
- Usage of stair steps?
- Source at 3,000 feet?

A19: AQ Dispersion Model Development

- Challenge: AERMOD produces artificial modelled violations of EPA's new 1hour NO₂ NAAQS
 - National Ambient Air Quality Standard (NAAQS) and National Environmental Policy Act (NEPA) compliance very difficult to achieve with modelled exceedences
 - Accuracy of dispersion modeling is important for demonstrating 1-Hour NO_2 NAAQS compliance
 - Representation of aircraft emissions needs to be improved
- Critical need for approval of new airport infrastructure projects
- Perform a comprehensive review of modeling aircraft sources and current science on aircraft emissions dispersion modeling
- Expected Outcome A more accurate model to demonstrate airport air quality compliance that is acceptable to EPA.
 - Improved version of EPA's AERMOD
 - A new model reflecting the best science and algorithms

- There are no comprehensive data sets yet to develop and validate models
- Knowledge of NO NO₂ splits based on very small number of monitor data (1 or 2)
- Systematic measurement of emissions species including NO, NO₂ and Particulate Matter along with Meteorological Data is needed
 - Multiple Airports in different climatic zones
 - Multiple monitors in a single airport
 - Co-located meteorological measurements
- Critical need for new infrastructure projects

- Have a comprehensive emissions research portfolio
- Research is needed to inform:
 - Cruise-climb NOx and nvPM Modeling
 - nvPM Ambient Conditions Corrections
 Development
 - Improved Dispersion Modeling for Airport NAAQS/ NEPA Compliance
 - AEDT modeling of Commercial SST including supersonic engine evaluation

S. Daniel Jacob and Ralph Iovinelli Emissions Division Federal Aviation Administration Office of Environment and Energy Email: Daniel.Jacob@faa.gov

