Alternative Jet Fuels

Update to FAA REDAC E&E Subcommittee

To: E&E REDAC Subcommittee

- By: Nate Brown & Dan Williams
- Date: September 11, 2018

FAA's AJF R&D Program

Working to Achieve AJF Production

- Coordination
 - CAAFI
- Testing
 - ASTM Status
- Analysis
 - Supply chain analysis and tools
 - ICAO CORSIA

Commercial Aviation Alternative Fuels Initiative

A public – private coalition for commercial aviation to engage the emerging alternative fuels industry and government

- Communicate the Value Proposition of SAJF
- Enhance the Fuel Qualification Approach
- Implement Frameworks & Share Best Practices

 Develop the U.S. SAJF Supply by Aligning Efforts to Enable Commercial Deployment

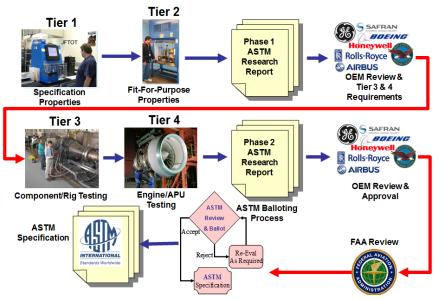
CAAFI Administrative Leadership Team:

- Steve Csonka, CAAFI Executive Director
- Chris Tindal, CAAFI Assistant Director
- Kristin Lewis, Volpe
- Peter Herzig, Volpe
- Nate Brown, FAA
- Rich Altman, CAAFI Executive Director Emeritus

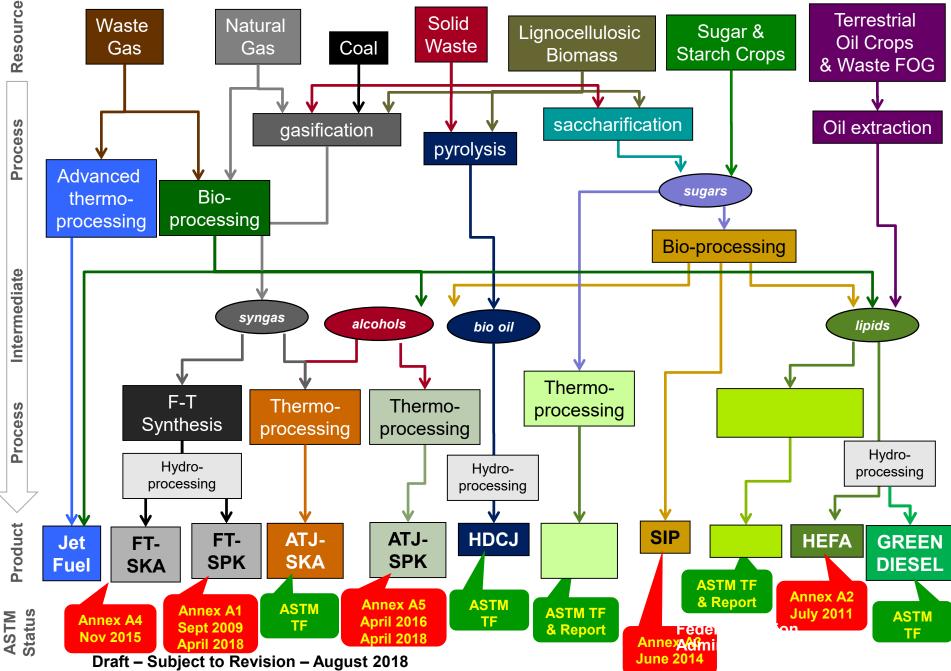
CAAFI Team Leads:

- C/Q: M. Rumizen, C/Q
- Sustainability: J. Hileman & N. Young,
- Business: J. Heimlich
- R&D : M. Lakeman, S Kramer, & G. Andac

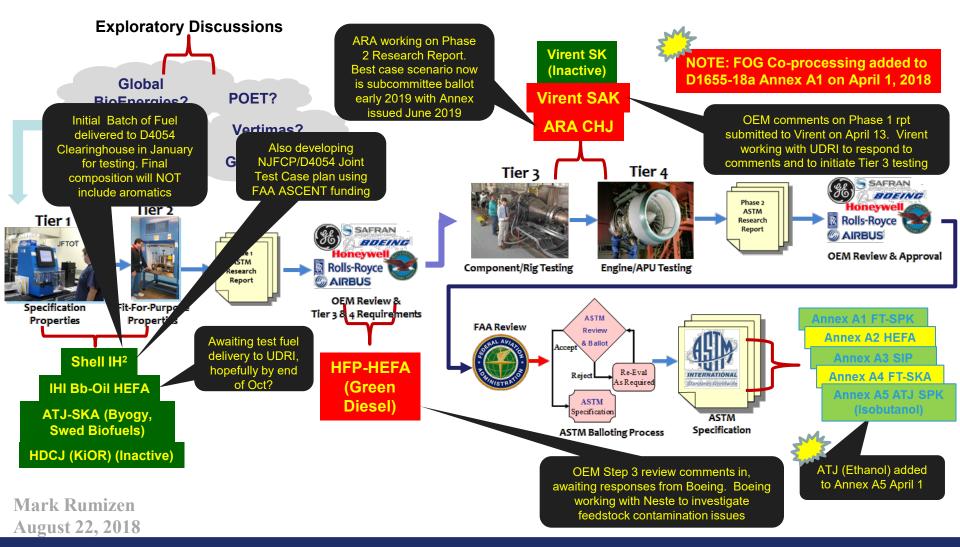
CAAFI Steering Group: AIA, ACI-NA, A4A, GE, Boeing, P&W, ASCENT, DOE, USDA


CAAFI Website: http://caafi.org

Testing: Alternative Jet Fuel Approvals


ASTM International manages jet fuel specification FAA and Defense support evaluation of alternative jet fuels

- Certification & qualification testing; data gathering & review; new test method development
- Since 2009, five fuels included in the AJF specification (ASTM D7566)
 - Two expansions
- Lipids, sugars and biomass feedstocks
- Six pathways under evaluation; more anticipated



Alternative Jet Fuel Pathways & Approval Status

Alternative Jet Fuels Evaluation Status

Alternative Jet Fuel Supply Chain Analysis

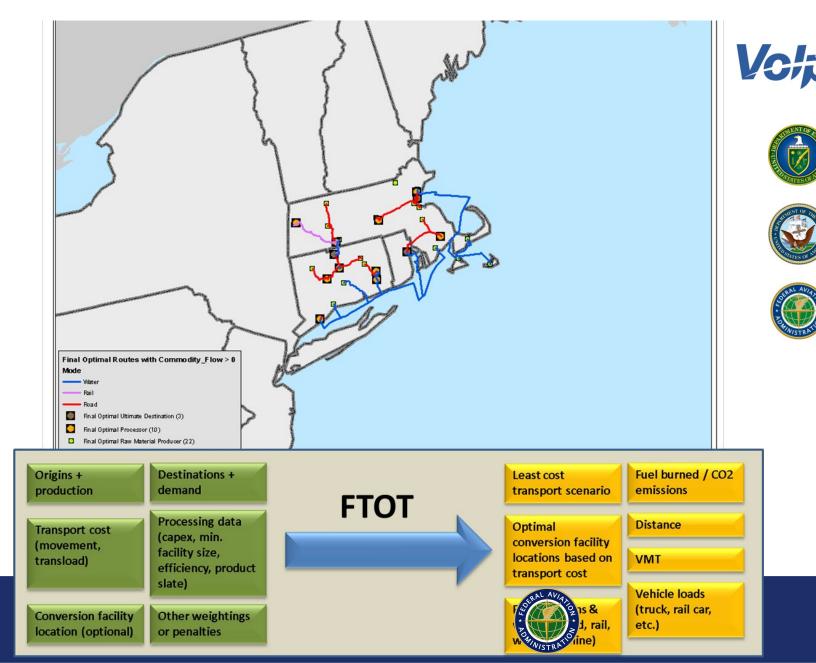
Understand benefits, costs and potential supply

- Considering the entire supply chain via multiple aspects:
 - Feedstock production
 - Techno-economics of pathways
 - Existing infrastructure
 - Community assets
 - Transportation routes and capacity
 - Economic Impacts
- Three regional studies:
 - Inland Pacific NW
 - Hawaii
 - Southeast/Tennessee
- Developing open source tools for evaluation of supply chains
 - TEA; CAAM; FTOT

Research Team:

- ASCENT: Washington State U., MIT, Purdue, U. Tennessee, U. of Hawaii, Penn State U.
- U.S. DOT Volpe Transportation Center, DOE Argonne National Lab & National Renewable Energy Lab (NREL)

University of Hawaii Supply Chain Study

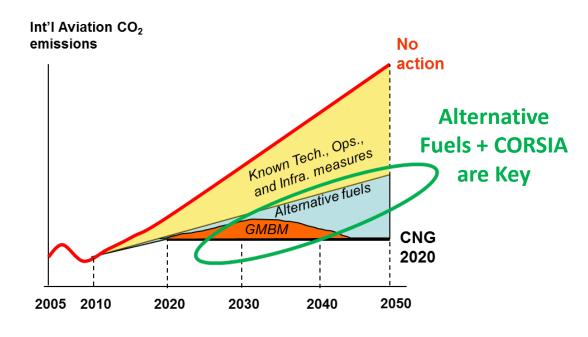

Possible Locations of Value Chain Participants

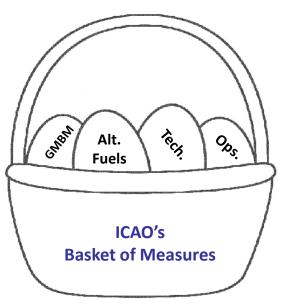
PVT Land Company

Freight and Fuels Transportation Optimization Tool (FTOT)

Farm to Fly 2.0 (F2F2) Agreement

- Resolved to "enable commercially viable, sustainable bio-Jet Fuel supply chains in the U.S."
- Focus government & aviation industry efforts towards U.S. state and regional fuel supply opportunities
- Our activities are complementary and coordinated
 - CAAFI & ASCENT (FAA)
 - NIFA AFRI CAPs (USDA)
 - DPA and IBR programs (DOE)


FAA funding for R&D and coordination SBAR DOE funding for Jet fuel SPARC process development


USDA NIFA AFRI Coordinated Agriculture Projects (CAPs)

CORSIA and the Basket of Measures

CORSIA is a complement to the other elements of ICAO's "basket of measures" to reduce the CO_2 emissions from international aviation.

Alternative Fuels and CORSIA

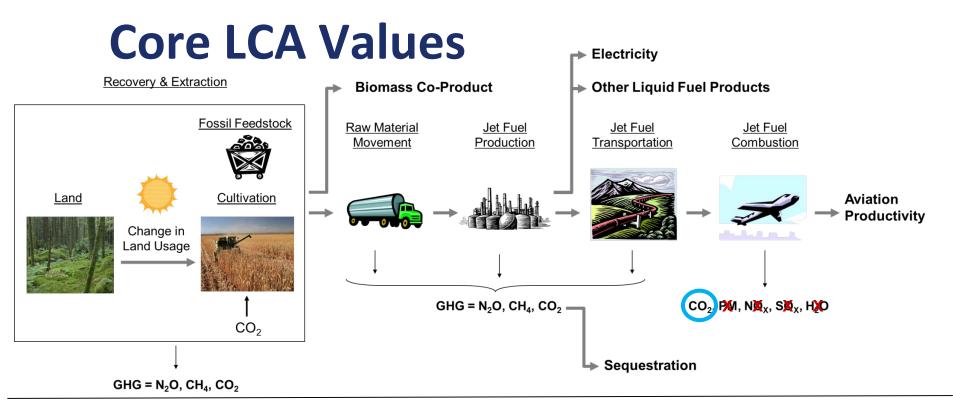
CORSIA Eligible Fuels provide a secondary means to comply with CORSIA

- 1. Offsetting
- 2. Claiming Emissions Reductions from CEF

$$ER_{y} = FCF * \left[\sum_{f} MS_{f,y} * \left(1 - \frac{LS_{f}}{LC}\right)\right]$$
 emissions value
for a CORSIA
eligible fuel

GMBM work added in 2014

 CAEP directed AFTF to develop a methodology for assessing AJF GHG emissions so that the benefits of AJF could be incorporated into a GMBM


Current Status: Three sub-tasks to this work

- Development of Core LCA Values
- Calculation of Induced Land Use Change Values

Defining Sustainability Criteria for AJF

Used to create "default values"

Life cycle

Stage #1:

Production at source (feedstock cultivation)

Stage #2:

Conditioning at source (harvest, collection, recovery) **Stage #3:**

Feedstock processing and extraction

Stage #4:

Feedstock transportation to processing and fuel production facilities

Stage #5:

Feedstock-to-fuel conversion process **Stage #6:** Fuel transportation and distribution to the blend point **Stage #7:** Fuel combustion in aircraft engine

CORSIA Core LCA Calculations being done by ASCENT Project 1 (MIT) and Argonne National Labs

Induced Land Use Change Values

As part of the methodology for CORSIA Eligible Fuels, ICAO agreed to include ILUC values for fuels that are not derived from wastes, residues, or by-products

Estimate the global land use change using an economic equilibrium model

- CARD-FAPRI (FASOM, US EPA), GTAP-BIO (CARB)
- MIRAGE-BioF (EU), GLOBIOM (EU)

Calculate emissions using an emission factor/accounting model

- plant biomass carbon
- soil carbon
- forgone carbon sequestration

There are important disparities among models/estimations

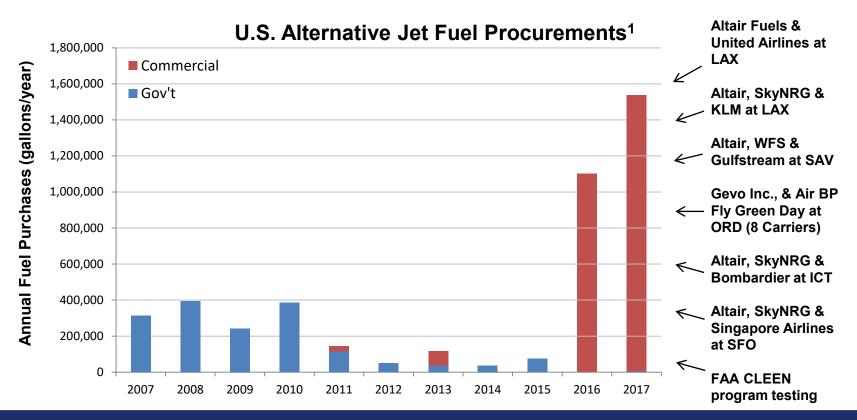
- Modelling theoretical background
- Baseline assumptions, shock size, simulation approach
- Emissions calculation (amortization periods, etc.).

CORSIA ILUC calcs being done by ASCENT P1 (Purdue)

Putting It All Together

	Agricultural residues	#.#			#.#	
	Forestry residues	#.#			#.#	
	Municipal and solid waste (MSW), 0% non-biogenic carbon (NBC)	#.#	#.#		#.#	
	Municipal solid waste (MSW) (NBC given as a percentage of the non- biogenic carbon content)	#.#			#.#	
	Tallow	#.#			#.#	
	Used cooking oil	#.#	#.#		#.#	П
	Palm fatty acid distillate	#.#			#.#	Т
	Corn oil	#.#			#.#	Τ
	Agricultural residues	#.#	#.#		#.#	
	Forestry residues	#.#		7	#.#	

$$ER_{y} = FCF * \left[\sum_{f} MS_{f,y} * \left(1 - \frac{LS_{f}}{LC}\right)\right]$$


Questions

Where We Stand Today

- Commercial flights on AJF are taking place
- 1.5 million gallons in 2017 from two commercial producers, many commercial users

Notes:

1. Includes procurements of fuel by U.S. government, U.S. airlines, manufacturers, and foreign carriers delivered to U.S. airports

Where are we headed?

Potential for 250 million gallons/year in five years

