Sustainable Aviation Fuels (SAF)

Update to FAA REDAC E&E Subcommittee

To: E&E REDAC Subcommittee

By: Nate Brown & Anna Oldani

Date: September 17, 2020

FAA SAF Program Focus

Testing accelerate SAF development

- Improve testing methods
- Conduct evaluation
- Streamline approval

Analysis quantification of impacts

- Emissions reduction
- Supply potential
- Supply chain opportunities

Coordination support SAF integration

- Public-private partnership – CAAFI
- Federal cooperation
- International cooperation ICAO

Testing

- Qualification Process
- ASTM Status

Analysis

Supply Chain Tools & Analysis

- ICAO CAEP FTG & LTAG
- Federal
- Commercialization

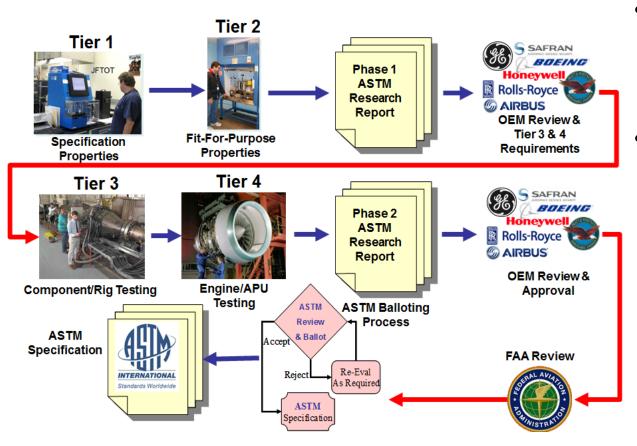
Testing

- Qualification Process
- ASTM Status

Analysis

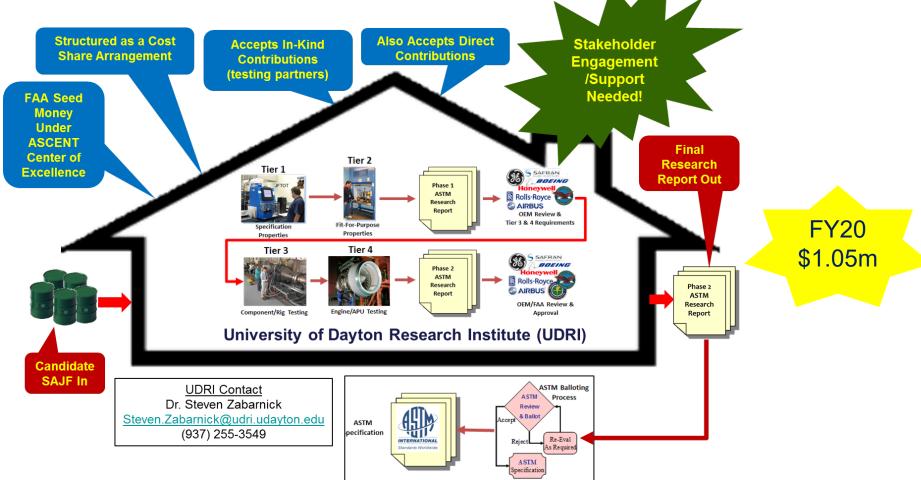
Supply Chain Tools & Analysis

- ICAO CAEP FTG & LTAG
- Federal
- Commercialization



SAF Qualification – ASTM D4054

Multi-tiered qualification process involves stakeholders across industry and government



- ASTM
 International
 manages jet fuel
 specification
- FAA and Defense support evaluation of SAF through:
 - Clearinghouse: certification & qualification testing
 - Data gathering & review
 - New test method development

Clearinghouse Concept

FAA Center of Excellence – ASCENT – facilitates centralized jet fuel testing through UDRI Clearinghouse

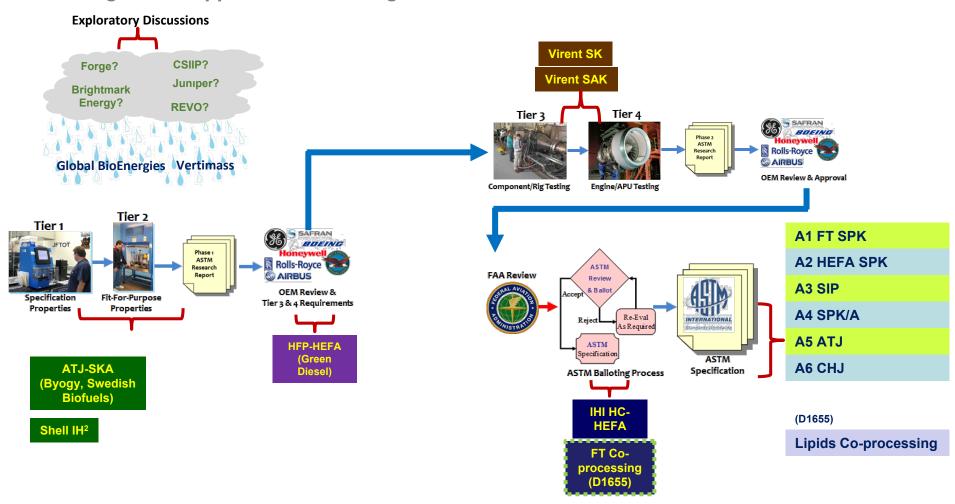
Testing

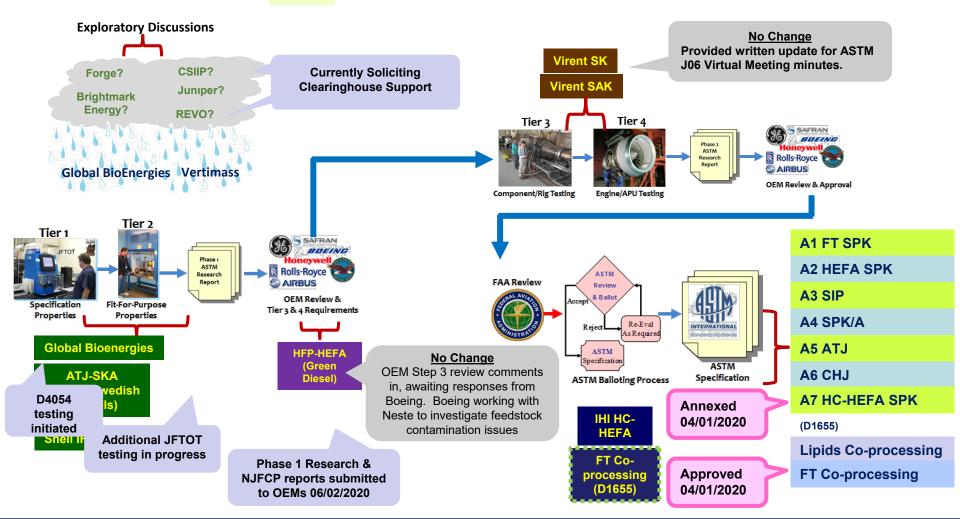
- Qualification Process
- ASTM Status

Analysis

Supply Chain Tools & Analysis

- ICAO CAEP FTG & LTAG
- Federal
- Commercialization




ASTM D4054 SAF Qualification Status

Through FAA support, six SAF categories have been annexed in ASTM D7566

ASTM D4054 SAF Qualification Status

Through FAA support, seven SAF categories have been annexed in ASTM D7566

Reduce Fuel Approval Volumes

As a result of the investments made by FAA and others, time and fuel volume requirements for ASTM International approval have fallen over time

Fuel Type	ASTM Data Review	Final Phase II Report	ASTM Specification (D7566)	Estimated gallons of fuel produced for testing	Estimated time from first review to approval	Composition
FT-SPK	09/2007	09/2008	09/2009	710,000¹	3 years	
HEFA-SPK	06/2008	05/2010	07/2011	626,000 ²	3 years	
SIP*	06/2011	04/2013	06/2014	16,000	3 years	
Gevo ATJ-SPK (isobutanol)	12/2010	04/2015	06/2016	93,100 ³	5 ¹ / ₂ years	Mostly normal/ iso-paraffins
Lanzatech ATJ-SPK (ethanol)	09/2016	07/2017	04/2018	50 ⁴	1 ¹ / ₃ years	
ARA CHJ	06/2012	10/2018	01/2020	79,000	7 years	Wider range of molecules
IHI HC-HEFA**	02/2019	06/2019	04/2020	50	~1 year	40% cycloparffin

^{*}Approved at 10% volume

ARA – Applied Research Associates

¹USAF fuel purchases in 2007-08 for fleetwide qualification

²USAF & Navy fuel purchases in 2009-11 for fleetwide qualification

³USAF, Navy and CLEEN fuel purchases in 2012-2014

⁴Only Tier 1-2 testing due to existing knowledge base and similarity to approved fuels

^{**}First Fast Track approval – approved at 10% volume blend limit

Fuel Composition Impacts

Evaluate added value, limiting criteria or bottlenecks for alternative jet fuels

066 High Thermal Stability Fuels

(University of Dayton, GE)

- Characterize system benefits from high thermal stability fuels - AJFs
 - Improve coolant features
 - Eliminate redundant engine components
 - → Reduce fuel burn and emissions
- Evaluate impact of fuel composition on thermal stability

<u>073 Combustor Durability</u> (UDRI)

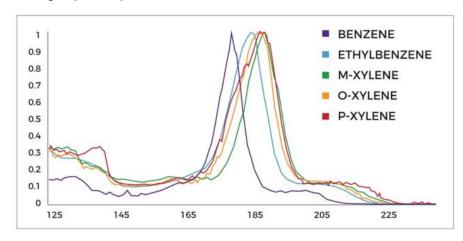
- Examine effect of fuel composition on combustor life
- Quantify potential system benefits
 - Improve combustor durability
 - Reduce lifetime maintenance costs
 - → Determine added value of AJFs

Operability & Safety

Value & Performance

Fuel Prescreening Efforts

Facilitate minimal volume screening to support fuel producers


- Develop rapid, early stage fuel screening
- Support market penetration of US-based AJFs
- Identify and address potential bottlenecks and opportunities for AJF producers

Develop methods to predict key properties from

minimal fuel volumes

<u>025 Infrared Fuel Screening</u> (Stanford)

<u>065 Rapid Testing Approaches</u> (University of Dayton)

Testing

- Qualification Process
- ASTM Status

Analysis

Supply Chain Tools & Analysis

- ICAO CAEP FTG & LTAG
- Federal
- Commercialization


Freight & Fuels Transportation Optimization Tool (FTOT)

Motivation: Transportation costs, infrastructure requirements & emissions depend on mode choice & routing

Objective: Understand transportation needs & impacts of SAF production

Outcome: FTOT

- Optimize mode choice & routing of feedstocks
 & products
 - Assess viable options
 - Identify SAF supply patterns
- Optimize routings & material flow over multimodal GIS network
- Collaboration with WSU; USAF; Southeast Partnership for Advanced Renewables from Carinata (SPARC) and others
- FTOT 2020.2 released 06/23/20
- https://github.com/VolpeUSDOT/FTOT-Public

A01 Supply Chain Analysis (sampling of publications)

- Impact of co-product selection on techno-economic analyses of alternative jet fuels produced with forest harvest residuals – Biofuel Bioproducts Biorefineries (Biofpr). (WSU)
- Rank-Ordered Analysis of Consumer Preferences for the Attributes of a Value-Added Biofuel Co-Product (UTenn)
- Hydrotreatment of Pyrolysis Bio-oil: A Review Fuel Processing Technology.
 (WSU)
- Pulp Mill Integration with Alcohol-to-Jet Conversion Technology Fuel Processing Technology. (WSU)
- Cost and Profitability Analysis of a Prospective Pennycress to Sustainable Aviation Fuel Supply Chain in Southern USA – Energies. (UTenn)
- US biofuel production and policy: implications for land use changes in Malaysia and Indonesia - Biotechnology for Biofuels (Purdue)
- Review of biomass resources and conversion technologies for alternative jet
 fuel production in Hawai'i and tropical regions Energy & Fuels. (UH and WSU)

Full list of publications: https://ascent.aero/project/alternative-jet-fuel-supply-chain-analysis/

Testing

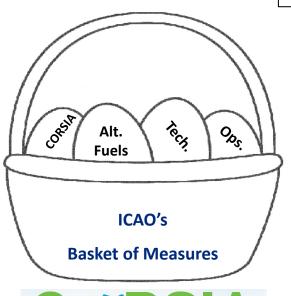
- Qualification Process
- ASTM Status

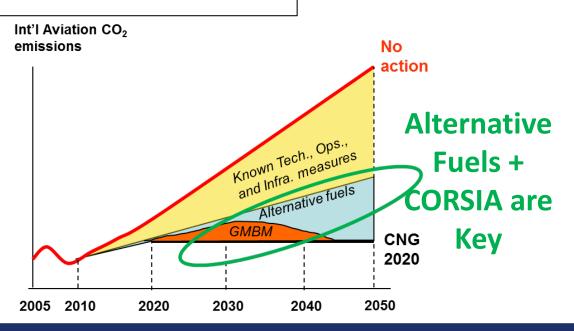
Analysis

Supply Chain Tools & Analysis

- ICAO CAEP FTG & LTAG
- Federal
- Commercialization

Alternative Fuels and CORSIA


CORSIA Eligible Fuels provide a secondary means to comply with CORSIA


1. Offsetting

2. Claiming Emissions Reductions from CEF

 $\bullet ER_{y} = FCF * \left[\sum_{f} MS_{f,y} * \left(1 + \frac{LS_{f}}{LC} \right) \right]$

Life cycle emissions value for a CORSIA eligible fuel

Update on the ICAO Fuels Task Group (FTG)

- FTG working in five subgroups.
- Held two meetings in Montreal: FTG/1 (May 2019), and FTG/2 (Sep 2019)

 Held two meetings virtually: FTG/4 (Jun 2020), and FTG/5 (Jul 2020)

 Next virtual meeting FTG/6 (Nov 2020)

Subgroup	Task Number	Task Title	
	S.01.01	Computation of induced land use change emissions for SAF for use in CORSIA	
*****	S.01.02	Low ILUC risk practices	
ILUC	S.03	Co-processing of esters and fatty acids in petroleum refineries – just ILUC calculation	
	S.04.02	Methodology refinements – ILUC	
	S.01.03	Feedstocks classification	
	S.02	Computation of default core LCA emission values for SAF for use in CORSIA	
Core LCA	S.03	Co-processing of esters and fatty acids in petroleum refineries – methodology for conducting LCA and default core LCA values	
	S.04.01	Methodology refinements – core LCA	
	S.04.03	Methodology refinements – Emission Credits	
Emission Reductions	S.11	Double counting	
	S.12	ILUC Permanence	
All FTG	S.05	CORSIA Package Updates	
0 4 1 1774	S.06	Sustainability criteria	
Sustainability	S.07	SCS Requirements	
	S.08	Technology evaluation	
Technology and Production	S.09	Fuel Production Evaluation	
Technology and Froduction	S.10	Guidance on Potential Policies and Coordinated Approaches for the Deployment of SAF	

Ongoing Efforts in CAEP relating to SAF

CAEP Fuels Task Group (FTG)

- Maintenance of the fuels-related sections of Annex 16 Vol IV (CORSIA), including:
 - Determination of how to calculate life cycle emissions values for Lower Carbon Aviation Fuels (LCAF)
 - Calculation of default life cycle emission values for Sustainable Aviation Fuels (SAF) (including both core LCA values and ILUC values).
 - Development of proposals on strengthened sustainability criteria
- Development of guidance on potential policies for deployment of SAF

Long Term Aspirational Goal (LTAG)

- Exploring feasibility of a long-term global aspirational goal for international civil aviation CO2 emissions reductions (LTAG)
- Examining future developments in fuels, technology and operations
- Working to inform 41st ICAO Assembly in October 2022

Testing

- Qualification Process
- ASTM Status

Analysis

Supply Chain Tools & Analysis

- ICAO CAEP FTG & LTAG
- Federal
- Commercialization

Biomass R&D Board

- BRDB: multi-agency initiative chartered to implement Federal Bioeconomy Initiative
- July 30th unanimous vote to create:
 - The Advanced Aviation Fuels Interagency Working Group (AAF IWG) under the board
- Recognition:
 - aviation sector a key driver of economic growth and job creation
 - R&D on SAF needed to reduce cost, ensure performance and address implementation for commercial, business, and military sectors
 - Several Federal government agencies playing a central role
 - DOT-FAA's ASCENT; USDA's Regional CAPs and Biorefinery Assistance Programs; and DOE-BETO's financial assistance programs and support for technology/fuel development and biorefinery demonstration.
- AAF IWG will engage federal agencies and stakeholders and report to the Board

DOE funding announcements

New Bioenergy Crop Research – DOE Science – 8/7/2020

- 15 projects; 5 years; \$68M
- Enhance understanding of the molecular mechanisms that allow the feedstock crops to be productive and survive in stressful environments.
- ~1/3 of projects focus on pennycress (Thlaspi arvense) & camelina (Camelina sativa) both SAF relevant

Bioenergy Research & Development – DOE BETO - 7/31/2020

- 33 projects; \$97M in grants
- Scale-up of biofuel processes; waste to energy strategies; cost reduction of algal biofuels; quantification of economic and environmental benefits of energy crops, etc.
- ~\$23M for projects with SAF focus

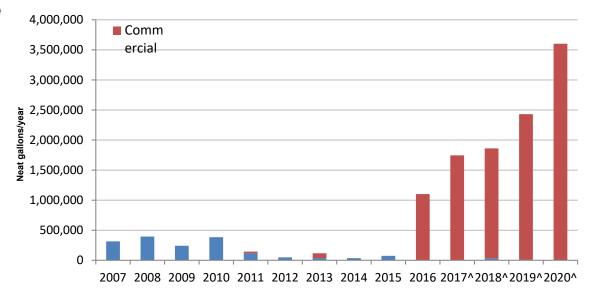
Testing

- Qualification Process
- ASTM Status

Analysis

Supply Chain Tools & Analysis

- ICAO CAEP FTG & LTAG
- Federal
- Commercialization



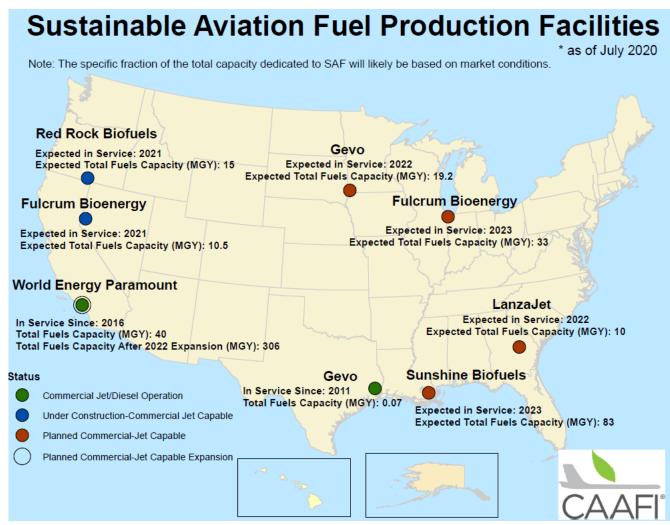
Where we stand on U.S. SAF use

Initiation under way, still early, but growing

- Four years of sustained & increasing commercial use
- 3.6M gallons already in 2020!
- EPA RINs for tracking
- Commercial & General Aviation engaged
- One+ facilities in operation
- Two facilities under construction, others in development
- Cost delta still a challenge, but offtakes continue to be signed
- R&D support from federal agencies increasing

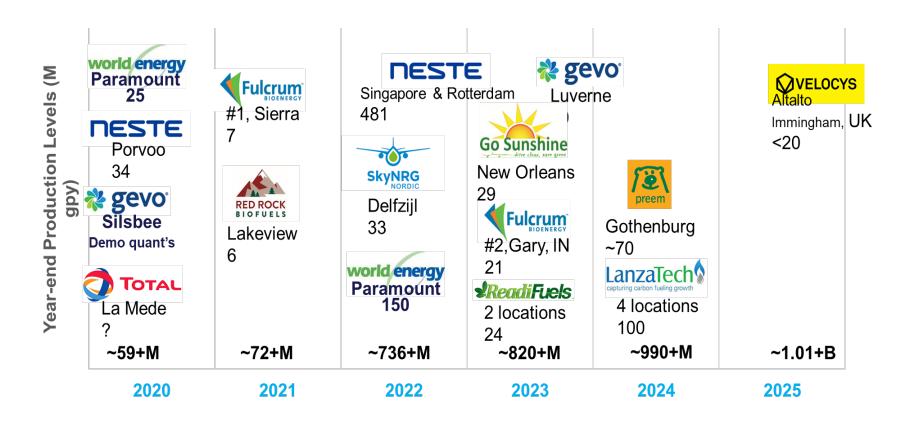
U.S. Alternative Jet Fuel Procurements*

^{*}Reflects voluntarily reported data on use by U.S. airlines, U.S. government, manufacturers, other fuel users, and foreign carriers uplifting at U.S. airports.


^{^ 2017-2020} calculation incorporates data reported by EPA for RFS2 RINs for renewable jet fuel.

Announced SAF Production Plans in U.S.

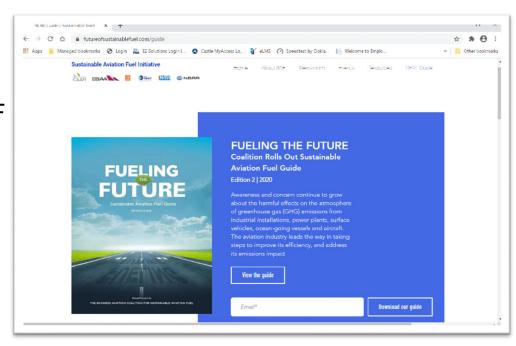
Six SAF producers <u>public</u>


- Two currently in operation
- Two nearing construction completion
- Four in planning
- Total fuel capacity is diesel and SAF = ~500M gallons
- Available in ~3 years
- Others not yet public

Credit: CAAFI®

Worldwide SAF production forecast

Announced intentions* with specific commitments to SAF



Credit: CAAFI®

^{*} Not comprehensive; CAAFI estimates (based on technology used & public reports) where production slates are not specified

Business Aviation

- The Business Aviation Coalition for Sustainable Aviation Fuel
 - Coalition of CAAFI, EBAA,
 GAMA, IBAC, NATA, NBAA
 - Address knowledge gap
 - Advance proliferation of SAF
- Sustainable Aviation Fuel Guide
 - FUELING THE FUTURE
- Summit this week (Sep. 14-15, 2020)

https://www.futureofsustainablefuel.com/

Expect to see with SAF (from last REDAC)

- Continued high level of international interest
- Melding of Commercial and BizAv efforts
 - New opportunities with BizAv build on CAAFI effort
- Concerted efforts on policy to level/advantage SAF monetize benefits
 - RFS, LCFS, blenders tax credit, CORSIA
- Renewed Federal agency coordination (BRDB)
- More aggressive airline approaches & announcements
- Engagement/Announcements from Big Oil

? QUESTIONS