

The Honorable Maria Cantwell Chair, Committee on Commerce, Science, and Transportation United States Senate Washington, DC 20510

Dear Chair Cantwell:

I am pleased to provide you with a report on the Federal Aviation Administration (FAA) Air Transportation Centers of Excellence (COE) program for Fiscal Year (FY) 2021 in accordance with Section 44513(f) of Title 49 *United States Code*.

Section 44513(f) requires the FAA to submit an annual report listing (1) the research projects that have been initiated by each center in the preceding year, (2) the amount of funding for each research project and the funding source, (3) the institutions participating in each research project and their shares of the overall funding for each research project, and (4) the level of cost-sharing for each research project. The enclosed report lists this information and also includes background information on each of the six active COEs.

A similar response has been sent to the Ranking Member of the Senate Committee on Commerce, Science, and Transportation, and the Chair and Ranking Member of the House Committee on Science, Space, and Technology.

Sincerely,

Billy Nolen

Acting Administrator

The Honorable Roger F Wicker Ranking Member, Committee on Commerce, Science, and Transportation United States Senate Washington, DC 20510

Dear Ranking Member Wicker:

I am pleased to provide you with a report on the Federal Aviation Administration (FAA) Air Transportation Centers of Excellence (COE) program for Fiscal Year (FY) 2021 in accordance with Section 44513(f) of Title 49 *United States Code*.

Section 44513(f) requires the FAA to submit an annual report listing (1) the research projects that have been initiated by each center in the preceding year, (2) the amount of funding for each research project and the funding source, (3) the institutions participating in each research project and their shares of the overall funding for each research project, and (4) the level of cost-sharing for each research project. The enclosed report lists this information and also includes background information on each of the six active COEs.

A similar response has been sent to the Chair of the Senate Committee on Commerce, Science, and Transportation, and the Chair and Ranking Member of the House Committee on Science, Space, and Technology.

Sincerely,

Billy Nolen

Acting Administrator

The Honorable Eddie Bernice Johnson Chair, Committee on Science, Space, and Technology House of Representatives Washington, DC 20515

Dear Chair Johnson:

I am pleased to provide you with a report on the Federal Aviation Administration (FAA) Air Transportation Centers of Excellence (COE) program for Fiscal Year (FY) 2021 in accordance with Section 44513(f) of Title 49 *United States Code*.

Section 44513(f) requires the FAA to submit an annual report listing (1) the research projects that have been initiated by each center in the preceding year, (2) the amount of funding for each research project and the funding source, (3) the institutions participating in each research project and their shares of the overall funding for each research project, and (4) the level of cost-sharing for each research project. The enclosed report lists this information and also includes background information on each of the six active COEs.

A similar response has been sent to the Ranking Member of the House Committee on Science, Space, and Technology, and the Chair and Ranking Member of the Senate Committee on Commerce, Science, and Transportation.

Sincerely,

Billy Nolen

Acting Administrator

The Honorable Frank D. Lucas Ranking Member, Committee on Science, Space, and Technology House of Representatives Washington, DC 20515

Dear Ranking Member Lucas:

I am pleased to provide you with a report on the Federal Aviation Administration (FAA) Air Transportation Centers of Excellence (COE) program for Fiscal Year (FY) 2021 in accordance with Section 44513(f) of Title 49 *United States Code*.

Section 44513(f) requires the FAA to submit an annual report listing (1) the research projects that have been initiated by each center in the preceding year, (2) the amount of funding for each research project and the funding source, (3) the institutions participating in each research project and their shares of the overall funding for each research project, and (4) the level of cost-sharing for each research project. The enclosed report lists this information and also includes background information on each of the six active COEs.

A similar response has been sent to the Chair of the House Committee on Science, Space, and Technology, and the Chair and Ranking Member of the Senate Committee on Commerce, Science, and Transportation.

Sincerely,

Billy Nolen

Acting Administrator

Federal Aviation Administration Air Transportation Centers of Excellence Congressional Report

Fiscal Year 2021

Contents

Congressional Report - Fiscal Year 2021	3
COE for Technical Training and Human Performance	
COE for Unmanned Aircraft Systems	8
COE for Alternative Jet Fuels and Environment	9
COE for General Aviation Safety, Accessibility, and Sustainability	10
COE for Commercial Space Transportation	11
Joint COE for Advanced Materials	13
Attachment I - Summary Table	14
Attachment II - Fiscal Year 2021 Grant Awards	15
Attachment III - Fiscal Year 2021 Contract Awards	16

Congressional Report - Fiscal Year 2021

Federal Aviation Administration Air Transportation Centers of Excellence Fiscal Year 2021 Overview

Legislative Mandate

The Federal Aviation Administration (FAA) submits this report on the FAA Air Transportation Centers of Excellence (COE) for Fiscal Year (FY) 2021 in response to the mandate in Section 44513(h) of Title 49 of the United States Code (49 U.S.C.):

- (h)Annual Report.—The Administrator shall transmit annually to the Committee on Science, Space, and Technology of the House of Representatives and the Committee on Commerce, Science, and Transportation of the Senate at the time of the President's budget request a report that lists—
- (1) the research projects that have been initiated by each center in the preceding year;
- (2) the amount of funding for each research project and the funding source;
- (3) the institutions participating in each research project and their shares of the overall funding for each research project; and
- (4) the level of cost-sharing for each research project.

Mission

The FAA COE program's mission is to help develop the nation's technology base while educating the next generation of aviation professionals. The program enables collaboration and coordination between government, academia, and industry to advance aviation technologies and expand FAA research capabilities through congressionally required matching contributions. Once selected, the core and affiliate university members and industry partners serve the FAA as a primary source of subject matter expertise for a 10-year period.

Selection Criteria

Section 44513(d) provides selection criteria that must be considered when designating members of each COE team. The FAA Administrator and the Secretary of Transportation have used these criteria to conduct an open and rigorous competitive process for selecting COE team members throughout the United States over the past two decades. Each COE member is required to match federal governmental grant awards dollar-for-dollar with contributions from non-federal sources in order to establish and operate the COE, and to conduct the research activities that the grant recipient carries out thereunder. 49 U.S.C. §44513(f).

Background

The FAA awarded the first COE grants in 1993. Since this time, the FAA has established 13 COE teams — including 92 core universities. COE partners and their non-federal affiliates were required to provide more than \$454 million in matching contributions to augment FAA research grants since inception. Current and previous COE members have conducted mission-critical research in the following focus areas:

- Technical training and human performance
- Unmanned aircraft systems
- Alternative jet fuels and environment
- General aviation safety, accessibility, and sustainability
- Commercial space transportation
- Advanced materials
- Airliner cabin environment and intermodal transportation research
- Aircraft noise and aviation emissions mitigation
- General aviation research
- Airworthiness assurance
- Operations research
- Airport technology
- Computational modeling of aircraft structures

Through these long-term cost-sharing activities, the government and university-industry teams leveraged resources to advance the technological future of the nation's aviation industry. Furthermore, students have gained valuable hands-on educational experience applicable to aviation and aerospace careers, as evidenced by the more than 3,000 resulting doctoral dissertations and theses.

Determining Funding Levels

Each FAA sponsoring office commits to an annual minimum funding level over the 10-year period based on the sponsoring office's budget and the forecasted research required in each critical area. The agency chose a 10-year timeframe to provide ample opportunity for COE teams to generate matching contributions and educate a pool of future aviation professionals. The FAA allows for an additional two-year period to ensure orderly closeout of all activities. Some COE teams have been extended beyond this 10-year period based on congressional direction. The FAA awards additional funding based on the current requirements for selected research areas and the needs of various sponsors.

Following the competitive process used to select each COE team, the FAA may also execute Indefinite Delivery Indefinite Quantity (IDIQ) contracts to procure deliverables for the government's sole benefit. Contract awards are shown in this report, as well as matching contributions when applicable. Matching contributions are negotiable when provided as cost-share for work performed under the contract vehicle for the FAA's benefit.

Self-Sufficient National Resources

After completing the initial requirements, COE teams are ultimately positioned to establish themselves as a national resource capable of serving the aviation community and the nation. As a self-sufficient national aviation resource, a successful COE team will be able to exist without full reliance on the FAA and an annual FAA base funding commitment. Recognized for their superior expertise, COE members are expected to generate funding and compete for and conduct research activities for the aviation community and the FAA, as needed.

There are currently six active COE teams and seven centers deemed either self-sufficient, closed, or re-competed. The three centers that have satisfied their COE requirements and deemed self-sustaining national resources by the FAA are the National COE team for Aviation Operations Research, the COE team for Airport Technology Research, and the COE team for Airliner Cabin and Research in the Intermodal Transport Environment.

Closed and Re-competed COE

The COE team for Airworthiness Assurance (FY1997-2007) and the COE team for Computational Modeling of Aircraft Structures (FY1992-1996) have closed. The COE team for Aircraft Noise and Emissions Mitigation (FY2003-2014) was re-competed and replaced by the COE team for Alternative Jet Fuels and Environment. The COE team for General Aviation Research (FY2001-2013) was re-competed and replaced by the COE team for General Aviation Safety, Accessibility, and Sustainability.

Fiscal Year 2021 COE Activities

In FY 2021, the FAA supported six active COE public-private partnerships with academic institutions and their industry affiliates. Upon approval from the Secretary of Transportation, the FAA COE Program Management Office executed 147 grant awards for approximately \$56.3 million during FY 2021 for years of funding 2019, 2020 and 2021. The FAA awarded these grants to 56 core universities in support of 142 projects.

Grant Federal Cost Share

Section 44513(f) requires matching contributions from COE grant recipients, and those matching contributions would provide a minimum of \$42 million to offset the cost of conducting mission-critical research with COE partners. However, \$44513(f) also provides authority for an increase in the FAA's share of costs up to a maximum of seventy-five percent if the Administrator determines that the COE would otherwise be unable to carry out its work without additional funds.

Due to the challenges of unforeseen circumstances caused by the global economic downturn in fiscal years 2020 and 2021 resulting from the COVID-19 pandemic, the Administrator

¹ The \$42 million offset cost is for FY 2021.

exercised his authority under §44513(f) after first ensuring that a new process was developed to determine and justify the need for providing any matching relief requested by a COE member university.

COE Narratives

The following sections contain descriptions for each of the active COEs. Attachments to this document list grant and contract awards executed during FY 2021 with current university members of each COE team. Required matching contributions are included in the attachments in accordance with § 44513(h)(4).

Narratives follow for each of the six active COE teams:

- COE for Technical Training and Human Performance
- COE for Unmanned Aircraft Systems
- COE for Alternative Jet Fuels and Environment
- COE for General Aviation Safety, Accessibility, and Sustainability
- COE for Commercial Space Transportation
- Joint COE for Advanced Materials

For more information, see: http://www.faa.gov/go/coe

Attachment I: COE Summary Table

Attachment II: Fiscal Year 2021 Grant Awards

Appendix A - COE for Technical Training and Human Performance

Appendix B - COE for Unmanned Aircraft Systems

Appendix C - COE for Alternative Jet Fuels and Environment

Appendix D - COE for General Aviation Safety, Accessibility and Sustainability

Appendix E - COE for Commercial Space Transportation

Appendix F - Joint COE for Advanced Materials

Attachment III: Fiscal Year 2021 Contract Awards

Appendix A - COE for Unmanned Aircraft Systems

Appendix B - COE for General Aviation Safety, Accessibility and Sustainability

COE for Technical Training and Human Performance

The FAA Administrator and Secretary of Transportation selected the Technical Training and Human Performance (TTHP) COE team in August 2016. The COE team's mission is to establish and manage a consortium among government, academia, and industry to evaluate and create solutions to enhance air transportation personnel training and operational performance. The team conducts research predominantly on topics of critical interest that seek solutions in the following training and human performance areas:

- Workforce development and training
- Human factors
- Safety
- Analytics

Sponsored by the FAA's Air Traffic Organization, research efforts include human factors training, modular curriculum design, virtual training delivery, simulation, applied game theory, visual search patterns, and learner data management, as well as other techniques aimed at understanding best practices, applying lessons learned, and advancing the state of technical training and human performance. The results of the research will inform future technical training for aviation professions across the FAA.

In five years of operation, the center has expanded the number of research efforts and sponsoring organizations throughout the FAA and added additional industry partners. The center comprises 15 core universities, 11 affiliate universities, and more than 40 industry partners.

Under the leadership of The University of Oklahoma, Embry-Riddle Aeronautical University, and Wichita State University, the following universities serve as core members of the team: Auburn University, Drexel University, Inter-American University, The Ohio State University, Oklahoma State University, Purdue University, Tulsa State Community College, University of Akron, University of Nebraska-Omaha, University of North Dakota, University of Wisconsin-Madison, and Western Michigan University.

During FY 2021, the FAA awarded grants to five core members totaling approximately \$0.9 million (see Attachment II, Appendix A). Due to the impacts of the COVID-19 pandemic on the ability of COEs to generate matching contributions, the FAA provided relief on the one-to-one matching requirements to four core members, resulting in the core members providing a 25 percent match share to the FAA's 75 percent federal share. The other member matched grant awards dollar-for-dollar from non-federal sources. The FAA is also planning to execute IDIQ contracts to procure deliverables for the government's sole benefit.

The COE TTHP team's research projects align with the Department of Transportation (DOT) strategic goals of Safety, Transformation, and Organizational Excellence.

For additional information, see http://www.coetthp.org

COE for Unmanned Aircraft Systems

The FAA Administrator and Secretary of Transportation selected the Alliance for System Safety of Unmanned Aircraft Systems (UAS) through Research Excellence (ASSURE) as the COE team for UAS in FY 2015. The COE team's mission is to help the UAS market safely grow while providing the FAA with the research needed to integrate UAS into the National Airspace System (NAS) with minimal changes to current operations, quickly, safely, and efficiently. The COE team focuses research efforts on the following topic areas:

- Air traffic control interoperability
- Airport ground operations
- Control and communication
- Detect and avoid
- Human factors
- Low altitude operations safety
- Noise reduction
- Spectrum management
- UAS crew training and certification, including pilots
- UAS traffic management
- UAS wake separation standards for UAS integration into the NAS

Led by Mississippi State University, the following universities also serve on the core team: Drexel University, Embry-Riddle Aeronautical University, Kansas State University, Montana State University, New Mexico State University, North Carolina State University, The Ohio State University, Oregon State University, University of Alabama-Huntsville, University of Alaska-Fairbanks, University of California-Davis, University of Kansas, University of North Dakota, and Wichita State University.

Affiliate members of the COE team include Auburn University, Concordia University, Indiana State University, Louisiana Tech University, University of Southampton, Technion-Israel Institute of Technology, Tuskegee University, Sinclair Community College, and Nanyang Technological University.

During FY 2021, the FAA awarded grants to 13 of the core members totaling approximately \$19.1 million (see Attachment II, Appendix B). Due to the impacts of the COVID-19 pandemic on the ability to generate matching contributions, the FAA provided relief on the one-to-one matching requirements to 13 core members, resulting in the core members providing a 25 percent match share to the FAA's 75 percent federal share. The FAA also executed IDIQ contracts to procure deliverables for the government's sole benefit. In FY 2021, the UAS COE awarded \$324,477 under one IDIQ task order. Of that amount, \$320,000 was from FY20 appropriation funds and \$4,477 was from FY 2021 appropriation funds.

The COE UAS team's research projects align with the DOT strategic goals of Safety, Transformation, and Organizational Excellence, see: http://www.assureuas.org

COE for Alternative Jet Fuels and Environment

The FAA Administrator and Secretary of Transportation selected the COE team for Alternative Jet Fuels and Environment (AJFE), also known as the Aviation Sustainability Center or ASCENT, in September 2013. The COE team's mission is to help the aviation industry overcome the environmental and energy challenges facing aviation by developing science-based, cost-effective solutions that reduce noise, improve air quality, reduce climate impacts, and improve energy efficiency. A major focus of the COE team is to explore ways to produce sustainable aviation fuels at commercial scale, thus creating an industry with substantial environmental benefit that also provides large-scale economic development and job creation, especially in rural areas. The COE team's research and development efforts address the following major topic areas:

- Feedstock development, processing, and conversion to alternative jet fuels
- Regional supply and refining infrastructure for alternative jet fuels
- Environmental benefits analysis of alternative jet fuel use
- Aircraft component deterioration and wear assessment due to alternative jet fuel use
- Fuel performance testing of alternative jet fuels
- Aviation noise and impacts
- Aviation emissions and impacts
- Aircraft technology assessment
- Environmentally and energy-efficient gate-to-gate aircraft operations
- Aviation modeling and analysis

The COE AJFE team research projects align with the DOT strategic goals of Transformation, Climate and Sustainability, Safety, and Economic Strength & Global Competitiveness. Innovation is required to develop the technological, operational, and fuels-related measures required to reduce aviation's environmental impact. New aircraft and engine technologies that reduce noise, emissions, and fuel burn, as well as updated policies and regulatory frameworks that better reflect our improved understanding of environmental and energy impacts are necessary to improve the efficiency, effectiveness, and accountability of the airspace system. These advancements will promote aviation growth, including integrating new entrants such as supersonic aircraft, unmanned aerial systems, urban air mobility vehicles, and commercial space vehicles.

Under the joint leadership of Washington State University and the Massachusetts Institute of Technology, the following universities also serve on this core team: Boston University, Georgia Institute of Technology, Missouri University of Science and Technology, Oregon State University, Pennsylvania State University, Purdue University, Stanford University, University of Dayton, University of Hawaii, University of Illinois, University of North Carolina, University of Pennsylvania, University of Tennessee, and the University of Washington.

During FY 2021, the FAA awarded grants to 13 core members totaling approximately \$14.4 million (see Attachment II, Appendix C). Due to the impacts of the COVID-19 pandemic on the ability to generate matching contributions, the FAA provided relief on the one-to-one matching requirements to five core members, resulting in the core members providing a 25 percent match share to the FAA's 75 percent federal share. For additional information, see: http://ascent.aero/

COE for General Aviation Safety, Accessibility, and Sustainability

The FAA Administrator and Secretary of Transportation selected a team of universities in 2013 to lead a COE team for General Aviation Safety, Accessibility, and Sustainability, also known as PEGASUS. The COE team performs projects that support the FAA's needs across diverse areas of general aviation (GA). The COE teams past research efforts included:

- Airport safety
- Airport pavements
- Software and systems
- Human factors
- Weather technology on the flight deck
- Structures and propulsion
- Electric vertical take-off and landing
- Urban air mobility

Additional research included GA flight safety with projects examining how to use recorded flight data to improve aviation safety for fixed-wing aircraft and rotorcraft. The team has also examined how pilots use flight deck information such as angle of attack indicators, weather information, and advanced sensor displays. These efforts included flight testing, algorithm development, and human factors research. Results from the projects helped the FAA provide guidance, and develop or update advisory circulars. This improves overall aviation safety since many COE GA team projects are also applicable to commercial operations.

Under Purdue University's leadership, the following universities serve as core members of the team: Florida Institute of Technology, Georgia Institute of Technology, Iowa State University, The Ohio State University, and Texas A&M University.

During FY 2021, the FAA awarded grants to all six of its core members totaling approximately \$0.7 million (see Attachment II, Appendix D). Members matched grant awards dollar-for-dollar from non-federal sources. The FAA also executed IDIQ contracts to procure deliverables for the government's sole benefit. In FY 2021, the FAA awarded no task orders to COE members through the IDIQ contract vehicle (see Attachment III, Appendix B).

The COE GA team's research projects align with the DOT strategic goals of Safety, Economic Strength & Global Competitiveness, and Transformation.

For additional information, see: https://www.pegasas.aero/

COE for Commercial Space Transportation

The FAA Administrator and Secretary of Transportation selected the COE team for Commercial Space Transportation (CST) in FY 2010. CST research focuses on four areas aligned with DOT and National Space Council priorities. These include safe integration of commercial space operations into the NAS, spaceport infrastructure, systemic safety initiatives, and regulatory reform. The mission of the FAA's Office of Commercial Space Transportation (AST) is to regulate commercial space launch and reentry operations, only to the extent necessary, to ensure compliance with international obligations of the U.S., and to protect the public health and safety, the safety of property, and the national security and foreign policy interests of the United States.

In addition, AST's mission includes encouraging, facilitating, and promoting commercial space launches and reentries performed by the private sector. More recently, Congress tasked AST with promoting the continuous improvement of the safety of launch vehicles designed to carry humans. AST will facilitate U.S. global leadership in CST by researching solutions that optimize safety and efficiency through innovation, collaborative research, and prototype development. AST's R&D portfolio is designed to optimize AST's mission execution by developing improved regulations, safety assessment tools, and public safety technologies. Funding supports regulatory research to address lessons learned and to keep pace with the dynamic CST industry.

Research and development has four major areas. Each research area has multiple goals that correspond to the AST mission goals of public safety and industry promotion.

Aerospace Access and Operations

• Public Safety Goals:

- Improve analytical and computational methods to evaluate uninvolved public and property safety
- Situational awareness and understanding of risks posed by resident space objects

• Industry Promotion Goals:

- Safe and equitable sharing of the NAS by air and space transportation operators, with minimal disruption caused by commercial space traffic (outbound and inbound)
- Improve spaceport interoperability and development of necessary spaceport industry infrastructure resources

Aerospace Vehicles

• Public Safety Goals:

 Improve vehicle safety and risk analyses and management, including knowledge of all safety-critical components and systems of the space vehicles and their operations

• Industry Promotion Goals:

o Improve the manufacturability, assembly, and operational efficiencies of space transportation vehicles, systems, and subsystems

Human Operations and Spaceflight

• Public Safety Goals:

o Identification and reduction of avoidable risks of human spaceflight

• Industry Promotion Goals:

 Facilitate the continuous improvement of human-carrying vehicles' operational safety (during both launch and reentry) and spaceports

Industry Innovation

• Public Safety Goals:

o Develop improved criteria for evaluating public safety, such as performance-based requirements for protecting public property and critical assets

• Industry Promotion Goals:

- o Encourage the growth of evolving space industry sectors through relevant economic, legal, legislative, regulatory, and market analyses and modeling
- o Support effective policy decision-making
- Provide a better understanding of the relationship of governmental policy, innovation adoption, and industry growth

The following universities serve as core members under the leadership of the University of Colorado-Boulder: New Mexico State University, New Mexico Institute of Mining and Technology, Florida Institute of Technology, Florida State University, Stanford University, University of Central Florida, University of Florida, Baylor College of Medicine, and the University of Texas Medical Branch at Galveston.

During FY 2021, the FAA did not award grants to its core members.

Ongoing research projects conducted by the COE CST team align with DOT strategic goals of Safety, Economic Strength & Global Competitiveness, Equity, Climate & Sustainability, Transformation and Organizational Excellence. The COE CST team's research tasks are scheduled to be completed between May and August 2022.

For additional information, see: http://www.coe-cst.org/

Joint COE for Advanced Materials

The Joint Centers of Excellence for Advanced Materials (JAMS) was established by the FAA in January 2004 to assist in ensuring the safe and reliable application of composites and advanced materials to commercial aircraft. In compliance with Section 762 of the FAA Reauthorization Act of 2018, the FAA continues to operate the Joint Centers JAMS universities conducts applied research on the following topics:

- Damage tolerance of advanced composite structures
- Durability of adhesively bonded structure
- Additive manufacturing technologies
- Crashworthiness of composite airframes and seating systems
- Environmental and aging effects on in-service composite structures
- Lightning strike on composite airframe
- Emerging material systems and innovative production technologies
- Maintenance and inspection of advanced composites

The Composite Materials Handbook-17 (CMH-17), previously known as MIL-HANDBOOK-17, is a source of public information on strength properties, design values and statistical methodologies for advanced material technologies such as fiber reinforced composites, ceramic matrix composites, thermoplastics and additive manufacturing. Technical information published by the handbook is generally accepted as meeting the FAA validation and certification requirements for aviation products because of its thorough standard procedures for development of data and information.

CMH-17 has evolved significantly over the years. Primary sponsorship of the CHM-17 as a not-for-profit consensus-based international industry standards organization was transitioned to the FAA from the DOD in 2006. Currently, the National Institute for Aviation Research at the Wichita State University is maintaining and publishing the handbook for the FAA. The funding for that effort is provided by the FAA through the JAMS framework. The FAA considers that the handbook is critically important to the FAA mission in certification and continued airworthiness of advanced aviation materials.

The FAA will continue working closely with the industry and other government agencies to develop the CHM-17 and to provide periodic updates. Under the University of Washington and Wichita State University's joint leadership, the following universities currently serve as core members: Florida International University, Oregon State University, University of Utah, Washington State University, Mississippi State University, Auburn University, and the University of California - San Diego.

During FY 2021, the FAA awarded grants to four core members totaling approximately \$21.2 million (see Attachment II, Appendix F). Members match grant awards dollar-for-dollar from non-federal sources. The JAMS COE team's research projects align with DOT strategic goals of Safety, Equity, Transformation and Organizational Excellence.

For additional information, see: http://www.jams-coe.org/

Attachment I - Summary Table Centers of Excellence Grant and Contracts Awards FY 2020 – FY 2021

(In dollars)

CENTER OF EXCELLENCE	Gran	its	Contracts	
	FY 2020	FY 2021	FY 2020	FY 2021
Technical Training and Human Performance (TTHP)	298,709	854,996	0	0
Unmanned Aircraft Systems (UAS)	13,363,638	19,144,548	0	324,477
Alternative Jet Fuels and Environment (AJFE)	34,159,355	14,438,292	0	0
General Aviation (GA)	779,207	706,937	0	0
Commercial Space Transportation (CST)	3,429,113	0	0	0
Joint Center of Excellence for Advanced Materials (JAMS)	14,923,227	21,198,809	0	0
TOTAL	66,953,249	56,343,582	0	324,477

FY 2020 Funding Source

Funding Year	RE&D	Operations	Total							
2018	22,043,345	0	22,043,345							
2019	30,412,687	0	30,412,687							
2020	14,198,508	298,837	14,497,345							
		_	66,953,377							

FY 2021 Funding Source

Funding Year	RE&D	Operations	Total
2019	13,145,635	230,000	13,375,635
2020	22,952,035	0	22,952,035
2021	19,390,915	624,996	20,015,911
			56,343,582

Attachment II - Fiscal Year 2021 Grant Awards

Appendix A - COE for Technical Training and Human Performance

Appendix B - COE for Unmanned Aircraft Systems

Appendix C - COE for Alternative Jet Fuels and Environment

Appendix D - COE for General Aviation Safety, Accessibility, and Sustainability

Appendix E - COE for Commercial Space Transportation

Appendix F - Joint COE for Advanced Materials

FAA Centers of Excellence (COE) Technical Training and Human Performance Grant Awards Fiscal Year 2021 (In dollars)

Core Members: 3 Industry Members: Approximately 40 Cooperative Agreement Period of Performance: 2016–2021

Grant Number	Research Projects	Center of Excellence Award Recipients	FAA Grant Award - Subject to Matching Requirement	Total Sub-Award Amount	Non-Federal Organizations Providing Match (Source of Matching Contribution)	Amount/Value of Contribution (FY 2021)	Total Matching Amount
16-C-TTHP-UA-016	Human Factors Awareness Training for FAA Safety Specialists within Aircraft Certification – HF016	University of Akron	30,000	0	University of Akron	30,000	10,000
16-C-TTHP-ERAU-054	Human Factors Training for FAA Aviation Safety Specialists within Aircraft Certification and Flight Standards – HF018	Embry-Riddle Aeronautical University	70,000	0	Embry-Riddle Aeronautical University	70,000	23,333
16-C-TTHP-OK-047	FAA Aviation Safety Human Factors Technical Lead Support – Wichita State Univ., University of Akron, Embry-Riddle Aeronautical University, Kent State – PM029	The University of Oklahoma	19,778	0	The University of Oklahoma	19,778	6,805
16-C-TTHP-OK-048	Technical Program Management and Support (Year 6) – PM028	The University of Oklahoma	149,765	0	The University of Oklahoma	149,765	52,226
16-C-TTHP-OSU-013	FAA External Flight Safety Study (Phase II) – SA004	The Ohio State University	250,231	0	The Ohio State University	250,231	88,439
16-C-TTHP-WISU-027	Review and Analysis of Human Error Methodologies, Frameworks, and Taxonomies – HF017	Wichita State University	100,000	0	Wichita State University	100,000	100,000
16-C-TTHP-WISU-028	FAA Aviation Safety Human Factors Administrative Support – PM030	Wichita State University	10,222	7,673	Wichita State University	10,222	10,222
16-C-TTHP-WISU-029	External Flight Safety Study (Phase II) Administrative Support – SA004A	Wichita State University	25,000	18,750	Wichita State University	25,000	25,000
16-C-TTHP-WISU-030	Administrative Program Management Year 6 – PM027	Wichita State University	200,000	174,372	Wichita State University	200,000	200,000
		Total	854,996	200,795		854,996	516,025

Please note: Due to the impact of COVID-19 pandemic on the ability to generate matching contributions previously committed, the Administrator exercised his authority to grant relief from the

statutory one-to-one matching funds requirements, providing up to a 75 percent federal share on a case-by-case basis to requesting COE grant recipients.

Technical Training and Human Performance Funding by Fiscal Year (In millions)

(111 1111111111111111111111111111111111					
Fiscal	Funding				
Year	Level				
FY 2016	5.0				
FY 2017	1.5				
FY 2018	0.0				
FY 2019	2.0				
FY 2020	0.3				
FY 2021	0.9				
Total	9.7				

Grant Number	Research Projects	Center of Excellence Award Recipients	FAA Grant Award - Subject to Matching Requirement	Total Sub-Award Amount	Non-Federal Organizations Providing Match (Source of Matching Contribution)	Amount/Value of Contribution (FY 2021)	Total Matching Amount
15-C-UAS-DU-010	Best Engineering Practices for Automated Systems	Drexel University	617,165	0	Drexel University	617,165	206,256
15-C-UAS-ERAU-019	Mitigating GPS and ADS-B risks for UAS	Embry-Riddle Aeronautical University	135,000	0	Embry-Riddle Aeronautical University	135,000	45,000
15-C-UAS-ERAU-020	Shielded UAS Operations - Detect and Avoid	Embry-Riddle Aeronautical University	150,000	0	Embry-Riddle Aeronautical University	150,000	50,000
15-C-UAS-ERAU-021	sUAS Mid-Air Collision (MAC) Likelihood	Embry-Riddle Aeronautical University	215,000	0	Embry-Riddle Aeronautical University	215,000	71,667
15-C-UAS-ERAU-022	UAS Flight Data Research in Support of ASIAS	Embry-Riddle Aeronautical University	75,569	0	Embry-Riddle Aeronautical University	75,569	25,190
15-C-UAS-ERAU-026	Small Unmanned Aerial Systems (UAS) Traffic Analysis	Embry-Riddle Aeronautical University	1,876,501	0	Embry-Riddle Aeronautical University	1,876,501	625,501
15-C-UAS-ERAU-028	Identify Flight Recorder Requirements for Unmanned Aircraft Systems (UAS) Integration into the NAS	Embry-Riddle Aeronautical University	298,145	0	Embry-Riddle Aeronautical University	298,145	99,664
15-C-UAS-ERAU-029	Propose UAS Right-of-Way Rules for Unmanned Aircraft Systems (UAS) Operations and Safety Recommendations	Embry-Riddle Aeronautical University	330,000	0	Embry-Riddle Aeronautical University	330,000	165,000
15-C-UAS-KSU-017	UAS Cargo Operations - From Manned Cargo to UAS Cargo Operations: Future Trends, Performance, Reliability, and Safety Characteristics	Kansas State University	125,000	0	Kansas State University	125,000	41,667
15-C-UAS-KSU-018	Air Carrier Operations - Investigate and Identify the Key Differences Between Commercial Air Carrier Operations and Unmanned Transport	Kansas State University	220,000	0	Kansas State University	220,000	73,334

Grant Number	Research Projects	Center of Excellence Award Recipients	FAA Grant Award - Subject to Matching Requirement	Total Sub-Award Amount	Non-Federal Organizations Providing Match (Source of Matching Contribution)	Amount/Value of Contribution (FY 2021)	Total Matching Amount
15-C-UAS-KSU-019	Mitigating GPS and ADS-B risks for UAS	Kansas State University	135,000	0	Kansas State University	135,000	45,000
15-C-UAS-KSU-020	Shielded UAS Operations - DAA	Kansas State University	110,000	0	Kansas State University	110,000	36,667
15-C-UAS-KSU-021	Validation of Visual Operation Standards for sUAS	Kansas State University	190,000	0	Kansas State University	190,000	63,334
15-C-UAS-KSU-022	sUAS MAC Likelihood	Kansas State University	220,000	0	Kansas State University	220,000	73,334
15-C-UAS-KSU-024	sUAS Traffic Analysis	Kansas State University	250,000	0	Kansas State University	250,000	83,333
15-C-UAS-KSU-025	Disaster Preparedness and Emergency Response Phase II	Kansas State University	58,000	0	Kansas State University	58,000	19,333
15-C-UAS-KU-06	sUAS MAC Likelihood	University of Kansas	160,000	0	University of Kansas	160,000	108,086
15-C-UAS-KU-08	Best Engineering Practices for Automated Systems	University of Kansas	357,681	0	University of Kansas	357,681	314,406
15-C-UAS-KU-09	Propose UAS Right-of-Way Rules for UAS Operations and Safety Recommendations	University of Kansas	494,525	0	University of Kansas	494,525	247,263
15-C-UAS-MSU-053	Validation of Visual Operation Standards for sUAS	Mississippi State University	70,000	0	Mississippi State University	70,000	23,334
15-C-UAS-MSU-057	Disaster Preparedness and Emergency Response Phase II	Mississippi State University	164,285	0	Mississippi State University	164,285	54,762

Grant Number	Research Projects	Center of Excellence Award Recipients	FAA Grant Award - Subject to Matching Requirement	Total Sub-Award Amount	Non-Federal Organizations Providing Match (Source of Matching Contribution)	Amount/Value of Contribution (FY 2021)	Total Matching Amount
15-C-UAS-MSU-058	Program Management of the ASSURE COE for UAS	Mississippi State University – Sci. & Tech Ctr.	1,292,674	0	Mississippi State University – Sci. & Tech Ctr.	1,292,674	430,892
15-C-UAS-MSU-059	Advanced Materials Investigation – Composite Material Analysis for UAS	Mississippi State University	157,000	0	Mississippi State University	157,000	157,000
15-C-UAS-NCSU-011	Disaster Preparedness and Emergency Response Phase II	North Carolina State University	142,286	0	North Carolina State University	142,286	47,429
15-C-UAS-NCSU-07	Air Carrier Operations – Investigate and Identify the Key Differences Between Commercial Air Carrier Operations and Unmanned Transport	North Carolina State University	150,000	0	North Carolina State University	150,000	50,000
15-C-UAS-NCSU-08	UAS Cargo Operations – From Manned Cargo to UAS Cargo Operations: Future Trends, Performance, Reliability, and Safety Characteristics	North Carolina State University	125,000	0	North Carolina State University	125,000	41,667
15-C-UAS-NCSU-09	Shielded UAS Operations – DAA	North Carolina State University	95,000	0	North Carolina State University	95,000	31,667
15-C-UAS-NMSU-033	Shielded UAS Operations – DAA	The Regents of New Mexico State Univ. MSC PSL	140,000	0	The Regents of New Mexico State Univ. MSC PSL	140,000	46,667
15-C-UAS-NMSU-034	Validation of Visual Operation Standards for sUAS	The Regents of New Mexico State Univ. MSC PSL	120,000	0	The Regents of New Mexico State Univ. MSC PSL	120,000	40,000
15-C-UAS-NMSU-038	Disaster Preparedness and Emergency Response Phase II	The Regents of New Mexico State Univ. MSC PSL	663,941	0	The Regents of New Mexico State Univ. MSC PSL	663,941	221,314
15-C-UAS-ORSU-07	Mitigating GPS and ADS-B risks for UAS	Oregon State University	100,000	0	Oregon State University	100,000	33,334

Grant Number	Research Projects	Center of Excellence Award Recipients	FAA Grant Award - Subject to Matching Requirement	Total Sub-Award Amount	Non-Federal Organizations Providing Match (Source of Matching Contribution)	Amount/Value of Contribution (FY 2021)	Total Matching Amount
15-C-UAS-ORSU-011	Best Engineering Practices for Automated Systems	Oregon State University	1,782,450	0	Oregon State University	1,782,450	594,150
15-C-UAS-ORSU-012	Airborne Collision Severity Evaluation – Engine Ingestion	Oregon State University	199,286	0	Oregon State University	199,286	66,429
15-C-UAS-OSU-027	Air Carrier Operations – Investigate and Identify the Key Differences Between Commercial Air Carrier Operations and Unmanned Transport	The Ohio State University	149,745	0	The Ohio State University	149,745	49,915
15-C-UAS-OSU-028	UAS Cargo Operations – From Manned Cargo to UAS Cargo Operations: Future Trends, Performance, Reliability, and Safety Characteristics	The Ohio State University	124,996	0	The Ohio State University	124,996	41,665
15-C-UAS-OSU-029	High-Bypass UAS Engine Ingestion Test	The Ohio State University	340,000	0	The Ohio State University	340,000	113,333
15-C-UAS-OSU-031	Best Engineering Practices for Automated Systems	The Ohio State University	593,405	0	The Ohio State University	593,405	197,802
15-C-UAS-UAF-019	Mitigating GPS and ADS-B risks for UAS	University of Alaska- Fairbanks	135,000	0	University of Alaska- Fairbanks	135,000	45,000
15-C-UAS-UAF-020	Air Carrier Operations – Investigate and Identify the Key Differences Between Commercial Air Carrier Operations and Unmanned Transport	University of Alaska- Fairbanks	150,000	0	University of Alaska- Fairbanks	150,000	50,000
15-C-UAS-UAF-021	UAS Cargo Operations - From Manned Cargo to UAS Cargo Operations: Future Trends, Performance, Reliability, and Safety Characteristics	University of Alaska- Fairbanks	240,000	0	University of Alaska- Fairbanks	240,000	80,000

Grant Number	Research Projects	Center of Excellence Award Recipients	FAA Grant Award - Subject to Matching Requirement	Total Sub-Award Amount	Non-Federal Organizations Providing Match (Source of Matching Contribution)	Amount/Value of Contribution (FY 2021)	Total Matching Amount
15-C-UAS-UAF-024	Disaster Preparedness and Emergency Response Phase II	University of Alaska- Fairbanks	753,746	0	University of Alaska- Fairbanks	753,746	251,249
15-C-UAS-UAH-020	UAS Cargo Operations – From Manned Cargo to UAS Cargo Operations: Future Trends, Performance, Reliability, and Safety Characteristics	University of Alabama in Huntsville	124,987	0	University of Alabama in Huntsville	124,987	41,663
15-C-UAS-UAH-025	Disaster Preparedness and Emergency Response Phase II ASIAS	University of Alabama-Huntsville	1,297,107	0	University of Alabama-Huntsville	1,297,107	432,369
15-C-UAS-UND-028	UAS Flight Data Research in Support of ASIAS	University of North Dakota	393,693	0	University of North Dakota	393,693	131,231
15-C-UAS-UND-029	Air Carrier Operations – Investigate and Identify the Key Differences Between Commercial Air Carrier Operations and Unmanned Transport	University of North Dakota	130,000	0	University of North Dakota	130,000	43,333
15-C-UAS-UND-030	Mitigating GPS and ADS-B risks for UAS	University of North Dakota	325,000	0	University of North Dakota	325,000	108,333
15-C-UAS-UND-031	Shielded UAS Operations – DAA	University of North Dakota	430,000	0	University of North Dakota	430,000	143,333
15-C-UAS-UND-032	UAS Cargo Operations – From Manned Cargo to UAS Cargo Operations: Future Trends, Performance, Reliability, and Safety Characteristics	University of North Dakota	60,000	0	University of North Dakota	60,000	20,000
15-C-UAS-UND-038	Best Engineering Practices for Automated Systems	University of North Dakota	271,215	0	University of North Dakota	271,215	90,405
15-C-UAS-UND-039	Propose UAS Right-of-Way Rules for UAS Operations and Safety Recommendations	University of North Dakota	569,242	0	University of North Dakota	569,242	284,623

Core Members: 15 Industry Members: Approximately 40 Cooperative Agreement Period of Performance: 2016–2021

Grant Number	Research Projects	Center of Excellence Award Recipients	FAA Grant Award - Subject to Matching Requirement	Total Sub-Award Amount	Non-Federal Organizations Providing Match (Source of Matching Contribution)	Amount/Value of Contribution (FY 2021)	Total Matching Amount
15-C-UAS-UND-040	Identify Flight Recorder Requirements for UAS Integration into the NAS	University of North Dakota	390,945	0	University of North Dakota	390,945	195,473
15-C-UAS-WISU-017	High-Bypass UAS Engine Ingestion Test	Wichita State University	100,000	0	Wichita State University	100,000	100,000
15-C-UAS-WISU-018	Visual Operation Standards for UAS	Wichita State University	120,000	0	Wichita State University	120,000	120,000
15-C-UAS-WISU-019	sUAS MAC Likelihood	Wichita State University	464,000	0	Wichita State University	464,000	464,000
15-C-UAS-WISU-022	sUAS Traffic Analysis	Wichita State University	200,000	0	Wichita State University	200,000	200,000
15-C-UAS-WISU-023	Identify Flight Recorder Requirements for UAS Integration into the NAS	Wichita State University	400,000	0	Wichita State University	400,000	400,000
15-C-UAS-WISU-024	Advanced Materials Investigation – Composite Material Analysis for UAS	Wichita State University	161,958	0	Wichita State University	161,958	161,958
		Total	19,144,547	0		19,144,547	7,998,365

Please note: Due to the impact of COVID-19 on the ability to generate matching contributions previously committed, the Administrator exercised his authority to grant relief to the one-to-one matching requirements and to provide up to 75 percent federal share as requested by COE grant recipients on a case-by-case basis.

Unmanned Aircraft Systems
Total Funding Awarded by Fiscal Year
(In Millions of Dollars)

((III I I IIII ons of Bollars)				
Fiscal	Funding				
Year	Level				
FY 2015	4.8				
FY 2016	3.4				
FY 2017	3.8				
FY 2018	6.1				
FY 2019	3.5				
FY 2020	13.4				
FY 2021	19.1				
Total	54.1				

Grant Number	Research Projects	Center of Excellence Award Recipients	FAA Grant Award – Subject to Matching Requirement	Total Sub-Award Amount	Non-Federal Organizations Providing Match (Source of Matching Funds)	Amount/Value of Contribution (FY 2021)	Total Matching Amount
13-C-AJFE-UI-038	Alternative Fuels Test Database Library – 33	Board of Trustees of the Univ. of Illinois	150,000	0	Board of Trustees of the Univ. of Illinois	150,000	163,410
13-C-AJFE-UI-039	Fuel Testing Approaches for Rapid Jet Fuel Prescreening – 65b	Board of Trustees of the Univ. of Illinois	150,000	0	Board of Trustees of the Univ. of Illinois	150,000	180,000
13-C-AJFE-UI-040	Evaluation of FAA Climate Tools - 22	Board of Trustees of the Univ. of Illinois	150,000	0	Board of Trustees of the Univ. of Illinois	150,000	150,000
13-C-AJFE-UI-041	Modeling Supersonic Jet Noise Reduction with Global Resolvent Modes – 59C	Board of Trustees of the Univ. of Illinois	199,999	0	Board of Trustees of the Univ. of Illinois	199,999	50,000
13-C-AJFE-SU-031	Chemical Kinetics Combustion Experiments – 25	Board of Trustees of Leland Stanford Jr Univ. CS	200,000	0	Board of Trustees of Leland Stanford Jr Univ. CS	200,000	200,000
13-C-AJFE-SU-032	Jet Noise Modeling to Support Low Noise Supersonic Aircraft Technology Development – 59D	Board of Trustees of Leland Stanford Jr Univ. CS	200,000	0	Board of Trustees of Leland Stanford Jr Univ. CS	200,000	66,666.67
12-C-AJFE-GIT-0100	Predictive Simulation of Nonvolatile Particulate Matter (nvPM) Emissions in Aircraft Combustors – 71	Georgia Tech Research Corporation	500,000	0	Georgia Tech Research Corporation	500,000	500,000
12-C-AJFE-GIT-0101	Alternative Design Configurations to meet Future Demand – 64	Georgia Tech Research Corporation	1,199,999	0	Georgia Tech Research Corporation	1,199,999	400,000
12-C-AJFE-GIT-102	Low Emission Premixed Combustion Technology for Supersonic Civil Transport – 74	Georgia Tech Research Corporation	999,995	0	Georgia Tech Research Corporation	999,995	1,000,000
12-C-AJFE-GIT-103	Improved Open Rotor Noise Prediction Capabilities – 76	Georgia Tech Research Corporation	300,000	0	Georgia Tech Research Corporation	300,000	75,000
12-C-AJFE-GIT-104	Analytical Methods for Expanding the Aviation Environmental Design Tool (AEDT) Aircraft Fleet Database – 60	Georgia Tech Research Corporation	150,001	0	Georgia Tech Research Corporation	150,001	150,000

Grant Number	Research Projects	Center of Excellence Award Recipients	FAA Grant Award – Subject to Matching Requirement	Total Sub-Award Amount	Non-Federal Organizations Providing Match (Source of Matching Funds)	Amount/Value of Contribution (FY 2021)	Total Matching Amount
12-C-AJFE-GIT-105	Reduction of nvPM emissions from aero-engine fuel injectors – 70	Georgia Tech Research Corporation	500,000	0	Georgia Tech Research Corporation	500,000	500,000
12-C-AJFE-GIT-106	Noise Model Validation for AEDT – 62	Georgia Tech Research Corporation	235,000	0	Georgia Tech Research Corporation	235,000	235,000
12-C-AJFE-GIT-107	Geospatially Driven Noise Estimation Module – 9	Georgia Tech Research Corporation	249,999	0	Georgia Tech Research Corporation	249,999	83,333
12-C-AJFE-GIT-108	Aircraft Technology Modeling and Assessment – 10	Georgia Tech Research Corporation	700,000	0	Georgia Tech Research Corporation	700,000	233,333
12-C-AJFE-GIT-109	Noise Certification Streamlining – 61	Georgia Tech Research Corporation	250,000	0	Georgia Tech Research Corporation	250,000	83,333
12-C-AJFE-GIT-110	Modeling and Measurements of Supersonic Civil Transport Jet Noise – 59b	Georgia Tech Research Corporation	250,000	0	Georgia Tech Research Corporation	250,000	250,000
12-C-AJFE-GIT-111	Jet noise modeling to support low noise supersonic aircraft technology development – 59A	Georgia Tech Research Corporation	100,000	0	Georgia Tech Research Corporation	100,000	33,333
13-C-AJFE-MIT-086	Contrail Avoidance Decision Support and Evaluation – 78	Massachusetts Institute of Technology	550,000	0	Massachusetts Institute of Technology	550,000	550,000
13-C-AJFE-MIT-087	Analysis to Support the Development of an Engine nvPM Emissions Standard – 48	Massachusetts Institute of Technology	200,000	0	Massachusetts Institute of Technology	200,000	200,000
13-C-AJFE-MIT-088	Alternative Jet Fuels Supply Chain Analysis – 1	Massachusetts Institute of Technology	450,000	0	Massachusetts Institute of Technology	450,000	450,000
13-C-AJFE-MIT-089	Improving Policy Analysis Tools to Evaluate Higher-Altitude Aircraft Operations – 58	Massachusetts Institute of Technology	150,000	0	Massachusetts Institute of Technology	150,000	150,000

Grant Number	Research Projects	Center of Excellence Award Recipients	FAA Grant Award – Subject to Matching Requirement	Total Sub-Award Amount	Non-Federal Organizations Providing Match (Source of Matching Funds)	Amount/Value of Contribution (FY 2021)	Total Matching Amount
13-C-AJFE-MIT-090	Clean Sheet Supersonic Engine Design and Performance – 47	Massachusetts Institute of Technology	200,000	0	Massachusetts Institute of Technology	200,000	200,000
13-C-AJFE-MIT-091	Hydrogen and Power to Liquid (PtL) Concepts for SAF Production – 80	Massachusetts Institute of Technology	150,000	0	Massachusetts Institute of Technology	150,000	150,000
13-C-AJFE-PSU-078	Combustor Wall Cooling Concepts for Dirt Mitigation – 68	Pennsylvania State University	150,000	0	Pennsylvania State University	150,000	50,000
13-C-AJFE-PSU-079	Novel Noise Liner Development Enabled by Advanced Manufacturing – 79	Pennsylvania State University	299,867	0	Pennsylvania State University	299,867	322,821
13-C-AJFE-PSU-080	Measurements to Support Noise Certification for UAS/UAM Vehicles and Identify Noise Reduction – 77	Pennsylvania State University	500,000	0	Pennsylvania State University	500,000	500,491
13-C-AJFE-PSU-081	Rotorcraft Noise Abatement Procedures Development – 38	Pennsylvania State University	150,000	0	Pennsylvania State University	150,000	75,000
13-C-AJFE-PSU-082	Urban Air Mobility Noise Reduction Modeling – 49	Pennsylvania State University	280,000	0	Pennsylvania State University	280,000	93,334
13-C-AJFE-PSU-083	Noise Model Validation for AEDT – 62	Pennsylvania State University	140,000	0	Pennsylvania State University	140,000	46,667
13-C-AJFE-PSU-084	Jet noise modeling to support low noise supersonic aircraft technology development – 59E	Pennsylvania State University	100,000	0	Pennsylvania State University	100,000	33,335
13-C-AJFE-PU-045	Impact of Fuel Heating on Combustion Performance and Emissions – 67	Purdue University	250,000	0	Purdue University	250,000	250,000
13-C-AJFE-PU-046	Alternative Jet fuel supply Chain Analysis – CORSIA Fuel Support – 1	Purdue University	350,000	0	Purdue University	350,000	350,000

Grant Number	Research Projects	Center of Excellence Award Recipients	FAA Grant Award – Subject to Matching Requirement	Total Sub-Award Amount	Non-Federal Organizations Providing Match (Source of Matching Funds)	Amount/Value of Contribution (FY 2021)	Total Matching Amount
13-C-AJFE-MST-019	Ambient Conditions Corrections for Non-volatile PM Emissions Measurements – 2	The Curators of the Univ. of Missouri - Rolla	521,246	0	The Curators of the Univ. of Missouri - Rolla	521,246	521,246
13-C-AJFE-MST-020	Transitioning a Research nvPM Mass Calibration Procedure to Operations – 69	The Curators of the Univ. of Missouri - Rolla	100,853	0	The Curators of the Univ. of Missouri - Rolla	100,853	100,853
13-C-AJFE-BU-025	Improved Engine Fan Broadband Noise Prediction Capabilities – 75	Trustees of Boston University, BUMC	300,000	0	Trustees of Boston University, BUMC	300,000	300,000
13-C-AJFE-BU-026	Community Measurements of Aviation Emissions Contribution to Ambient Air Quality – 18	Trustees of Boston University, BUMC	599,371	0	Trustees of Boston University, BUMC	599,371	599,371
13-C-AJFE-UD-038	Alternative Jet Fuels Test and Evaluation – 31	University of Dayton Research Institute	499,784	0	University of Dayton Research Institute	499,784	499,784
13-C-AJFE-UD-039	Evaluation of High Thermal Stability Fuels – 66	University of Dayton Research Institute	100,000	0	University of Dayton Research Institute	100,000	21,291
13-C-AJFE-UD-040	Fuel Composition Impact on Combustor Durability – 73	University of Dayton Research Institute	199,865	0	University of Dayton Research Institute	199,865	199,865
13-C-AJFE-UH-017	Alternative Jet Fuel Supply Chain Analysis – Tropical Region Analysis – 1	University of Hawaii	100,000	0	University of Hawaii	100,000	100,000
13-C-AJFE-UNC-016	Development of Aviation Air Quality Tools for Airport-Specific Impact Assessment – 19	University of North Carolina at Chapel Hill	650,000	0	University of North Carolina at Chapel Hill	650,000	650,000
13-C-AJFE-UTENN-016	Techno Market Analysis of US Biorefinery Supply Chains from Feedstock to Alternative Jet Fuels – 1	University of Tennessee	100,000	0	University of Tennessee	100,000	100,000
13-C-AJFE-WASU-030	Alternative Jet Fuel Supply Chain Analysis – 1	Washington State University	412,313	0	Washington State University	412,313	137,438

Core Members: 16 Industry Members: Approximately 60 Cooperative Agreement Period of Performance: 2013–2021

Grant Number	Research Projects	Center of Excellence Award Recipients	FAA Grant Award – Subject to Matching Requirement	Total Sub-Award Amount	Non-Federal Organizations Providing Match (Source of Matching Funds)	Amount/Value of Contribution (FY 2021)	Total Matching Amount
13-C-AJFE-WASU-031	Hydrogen production alternatives for Sustainable Aviation Fuel (SAF) production – 80	Washington State University	450,000	0	Washington State University	450,000	150,000
		Total	14,438,292	0		14,438,292	11,154,905

Please note: Due to the impact of COVID-19 on the ability to generate matching contributions previously committed, the Administrator exercised his authority to grant relief to the one-to-one matching requirements and to provide up to 75 percent federal share as requested by COE grant recipients on a case-by-case basis.

Alternative Jet Fuels and Environment Total Funding Awarded by Fiscal Year (In Millions of Dollars)

(01 2 011012)
Fiscal Year	Funding Level
FY 2013	0.1
FY 2014	9.3
FY 2015	10.6
FY 2016	9.4
FY 2017	9.8
FY 2018	3.1
FY 2019	7.7
FY 2020	34.2
FY 2021	14.4
Total	98.6

Attachment II Appendix C

FAA Centers of Excellence

General Aviation Safety, Accessibility, and Sustainability Grant Awards Fiscal Year 2021

(In dollars)

Core Members: 6 Industry Members: Approximately 35 Cooperative Agreement Period of Performance: 2012–2020

Grant Number	Research Projects	Center of Excellence Award Recipients	FAA Grant Award - Subject to Matching Requirement	Total Sub-Award Amount	Non-Federal Organizations Providing Match (Source of Matching Contribution)	Amount/Value of Contribution (FY 2021)	Total Matching Amount
12-C-GA-FIT-045	Rotorcraft Wire Strike – 32	Florida Institute of Technology	15,000	0	Florida Institute of Technology	15,000	15,000
12-C-GA-FIT-048	Management and Administration of COE – 0	Florida Institute of Technology	5,000	0	Florida Institute of Technology	5,000	5,000
12-C-GA-FIT-049	Augmented Weather Interfaces Project (AWIP) – 33	Florida Institute of Technology	36,713	0	Florida Institute of Technology	36,713	36,713
12-C-GA-GIT-053	Rotorcraft Wire Strike – 32	Georgia Tech Research Corporation	170,000	0	Georgia Tech Research Corporation	170,000	170,000
12-C-GA-GIT-055	Management and Administration of COE – 0	Georgia Tech Research Corporation	5,000	0	Georgia Tech Research Corporation	5,000	5,000
12-C-GA-GIT-056	Rotorcraft Aviation Safety Information Analysis & Sharing	Georgia Tech Research Corporation	167,500	0	Georgia Tech Research Corporation	167,500	167,500
12-C-GA-ISU-046	Rotorcraft Wire Strike – 32	Iowa State University of Science and Technology	130,000	0	Iowa State University of Science and Technology	130,000	130,000
12-C-GA-ISU-048	Management and Administration of COE – 0	Iowa State University of Science and Technology	5,000	0	Iowa State University of Science and Technology	5,000	5,000
12-C-GA-OSU-067	Management and Administration of COE – 0	The Ohio State University	5,000	0	The Ohio State University	5,000	5,000
12-C-GA-PU-102	Augmented Weather Interfaces Project (AWIP) – 33	Purdue University	27,724	0	Purdue University	27,724	27,724
12-C-GA-PU-103	Management and Administration of COE – 0	Purdue University	135,000	0	Purdue University	135,000	135,000
12-C-GA-TEES-039	Management and Administration of COE – 0	Texas A&M Engineering Experiment Station	5,000	0	Texas A&M Engineering Experiment Station	5,000	5,000
	•	Total	706,937	0	1	706,937	706,937

Please note: Due to the impact of COVID-19 on the ability to generate matching contributions previously committed, the Administrator exercised his authority to grant relief to the one-to-one matching requirements and to provide up to 75 percent federal share as requested by COE grant recipients on a case-by-case basis.

General Aviation Safety, Accessibility, and Sustainability Total Funding Awarded by Fiscal Year (In Millions of Dollars)

Fiscal	Funding
Year	Level
FY 2012	0.5
FY 2013	1.7
FY 2014	3.2
FY 2015	3.1
FY 2016	3.7
FY 2017	3.3
FY 2018	0.3
FY 2019	2.0
FY 2020	0.8
FY 2021	0.7
Total	19.3

FAA Centers of Excellence

Commercial Space Transportation (CST) Grant Awards Fiscal Year 2020

(In dollars)

Grant Number	Research Projects	Center of Excellence Award Recipients	FAA Grant Award	Total Sub- Award Amount	Non-Federal Organizations Providing Match (Source of Matching Contribution)	Amount/Value of Contribution (FY20)	Total Matching Amount
15-C-CST-UC-026	CubeSat Cluster Deployment Tracking	University of Colorado Boulder	173,653	0	University of Colorado Boulder	173,653	173,653
15-C-CST-UTMB-023	Development of Commercial Space Occupational Medicine Health Standards	University of Texas Medical Branch At Galveston	191,803	0	University of Texas Medical Branch At Galveston	191,803	191,803
15-C-CST-UC-27	FAA COE CST Executive Director and Administration	University of Colorado Boulder	716,667	0	University of Colorado Boulder	716,667	716,667
15-C-CST-FSU-010	High Temp Pressure Sensor	Florida State University	203,313	0	Florida State University	203,313	203,313
15-C-CST-FIT-013	Human Input Systems for Commercial Space Transportation	Florida Institute of Technology	160,000	0	Florida Institute of Technology	160,000	160,000
15-C-CST-UCF-012	LED-based Low Cost Gas Sensor for Crew and Vehicle Safety	University of Central Florida	178,800	0	University of Central Florida	178,800	178,800
15-C-CST-UC-25	Mapping Life Support System Functions and Technologies to Commercial Spaceflight Applications	University of Colorado Boulder	149,799	0	University of Colorado Boulder	149,799	149,799
15-C-CST-FIT-015	Measurements of Thunderstorm Electrical Parameters For Improvement of the Lightning Flight Commit Criteria	Florida Institute of Technology	163,822	0	Florida Institute of Technology	163,822	163,822
15-C-CST-UCF-011	Novel Techniques for Efficient Uncertainty Quantification, Probability of Collision and Benchmarking in Space	University of Central Florida	87,414	0	University of Central Florida	87,414	87,414
15-C-CST-NMT-021	OMIS Integration and COE Program Support	New Mexico Institute of Mining and Technology	150,000	0	New Mexico Institute of Mining and Technology	150,000	150,000
15-C-CST-FSU-09	Optical Measurements of Rocket Nozzle Thrust and Noise	Florida State University	198,984	0	Florida State University	198,984	198,984
15-C-CST-UC-24	Resident Space Object System Mechanics	University of Colorado Boulder	89,185	0	University of Colorado Boulder	89,185	89,185

FAA Centers of Excellence Commercial Space Transportation (CST) Grant Awards Fiscal Year 2020 (In dollars)

Core Members: 10 Industry Members: Approximately 35 Cooperative Agreement Period of Performance: 2010–2020

Grant Number	Research Projects	Center of Excellence Award Recipients	FAA Grant Award	Total Sub- Award Amount	Non-Federal Organizations Providing Match (Source of Matching Contribution)	Amount/Value of Contribution (FY20)	Total Matching Amount
15-C-CST-FIT-012	Small Launch Vehicle Sector (SLVS): Industry Dynamics and Public Policy	Florida Institute of Technology	149,734	0	Florida Institute of Technology	149,734	149,734
15-C-CST-NMSU-08	Space Object Database	The Regents New Mexico State University	204,533	0	The Regents New Mexico State University	204,533	204,533
15-C-CST-NMSU-08	Spaceport Operations Online Reference Guide: Spaceport Industry Study	The Regents New Mexico State University	101,908	0	The Regents New Mexico State University	101,908	101,908
15-C-CST-NMSU-07	Spaceport Ops Online Reference Guide	The Regents New Mexico State University	101,589	0	The Regents New Mexico State University	101,589	101,589
15-C-CST-FIT-014	Streamlined Export Control for Commercial Space Transportation	Florida Institute of Technology	160,000	0	Florida Institute of Technology	160,000	160,000
15-C-CST-NMT-022	Structural Health Monitoring Framework	New Mexico Institute of Mining and Technology	200,000	0	New Mexico Institute of Mining and Technology	200,000	200,000
15-C-CST-UCF-010	Ultra High Temperature Composites Thermal Protection Systems	University of Central Florida	47,909	0	University of Central Florida	47,909	47,909
		Total	3,429,113	0		3,429,113	3,429,113

Please note: Due to the impact of COVID-19 on the ability to generate matching contributions previously committed, the Administrator exercised his authority to grant relief to the one-to-one matching requirements and to provide up to 75% federal share as requested by COE grant recipients on a case-by-case basis.

Commercial Space Transportation Total Funding Awarded by Fiscal Year (In millions of dollars)

Fiscal	Funding
Year	Level
FY 2010	2.0
FY 2011	1.1
FY 2012	1.1
FY 2013	1.1
FY 2014	1.1
FY 2015	1.3
FY 2016	1.2
FY 2017	1.3
FY 2018	0.8
FY 2019	0.0
FY 2020	3.4
FY 2021	0.0
Total	14.4

FAA Centers of Excellence Joint COE for Advanced Materials (JAMS) Grant Awards Fiscal Year 2021 (In dollars)

Grant Number	Research Projects	Center of Excellence Award Recipients	FAA Grant Award - Subject to Matching Requirement	Total Sub-Award Amount	Non-Federal Organizations Providing Match (Source of Matching Contribution)	Amount/Value of Contribution (FY21)	Total Matching Amount
12-AM-MSU-007	Technology Readiness Assessment for Stitched and Unstitched Resin Infused Composites	Mississippi State University	1,500,000	0	Mississippi State University	1,500,000	1,500,000
12-AM-MSU-008	Effects of New Jet Fuel Exposure & Post-Crash Fire Forensic Analysis on Aerospace Composites	Mississippi State University	499,999	0	Mississippi State University	499,999	499,999
12-AM-WISU-154	Additive Manufacturing Guidance for Aircraft Design and Certification	Wichita State University	4,500,000	0	Wichita State University	4,500,000	4,500,000
12-AM-WISU-155	Adhesive Bond Qualification Guidance for Aircraft Design and Certification	Wichita State University	900,000	0	Wichita State University	900,000	900,000
12-AM-WISU-156	Advanced Fiber Reinforced Polymer Composite Materials Guidance for Aircraft Design, Certification, and Process Control	Wichita State University	700,000	0	Wichita State University	700,000	700,000
12-AM-WISU-157	Development of Higher-Level Building Block Testing Standards	Wichita State University	700,000	0	Wichita State University	700,000	700,000
12-AM-WISU-158	Thermoplastic Welding Process Qualification Protocols for Aircraft Design and Certification	Wichita State University	350,000	0	Wichita State University	350,000	350,000
12-AM-WISU-159	Investigation of Static Strength Variability between Composites and Metallic with respect to Overload Factors	Wichita State University	100,000	0	Wichita State University	100,000	100,000
12-C-AM-AU-005	Surface Integrity of Additively Manufactured Ti-6A1-4V Parts	Auburn University	1,500,000	0	Auburn University	1,500,000	1,500,000
12-C-AM-MSU-009	Technology Readiness Assessment for Stitched and Unstitched Resin Infused Composites – Phase II	Mississippi State University	2,000,000	0	Mississippi State University	2,000,000	2,000,000
12-C-AM-UW-054	Characterizing Mechanical Property Variability in Ti6A14V produced by Laser Powder Bed Fusion (LPBF) Additive Manufacturing	University of Washington	753,440	0	University of Washington	753,440	753,440
12-C-AM-WISU-161	Airframe Crashworthiness Testing and Simulation	Wichita State University	36,500	0	Wichita State University	36,500	36,500

FAA Centers of Excellence Joint COE for Advanced Materials (JAMS) Grant Awards Fiscal Year 2021 (In dollars)

Grant Number	Research Projects	Center of Excellence Award Recipients	FAA Grant Award - Subject to Matching Requirement	Total Sub-Award Amount	Non-Federal Organizations Providing Match (Source of Matching Contribution)	Amount/Value of Contribution (FY21)	Total Matching Amount
12-C-AM-WISU-162	Effects of the use of cleaning and disinfectants chemicals/processes in the mechanical and flammability characteristics of aircraft interior	Wichita State University	239,386	0	Wichita State University	239,386	239,386
12-C-AM-WISU-165	Wind Tunnel Testing Services	Wichita State University	32,634	0	Wichita State University	32,634	32,634
12-C-AM-WISU-166	Effects of the use of cleaning and disinfectants chemicals/processes in the mechanical and flammability characteristics of aircraft interior	Wichita State University	84,227	0	Wichita State University	84,227	84,227
12-C-AM-WISU-167	Electric Vertical Takeoff and Landing (eVTOL) Crashworthiness: An Integrated Safety Approach	Wichita State University	249,883	0	Wichita State University	249,883	249,883
12-C-AM-WISU-168	Evaluation of Aged Structural Bonds on Rotor Blades	Wichita State University	650,000	0	Wichita State University	650,000	650,000
12-C-AM-WISU-169	Development for Process Specification and Quality Assurance of Slit Tape for Automated Fiber Placement	Wichita State University	400,000	0	Wichita State University	400,000	400,000
12-C-AM-WISU-170	Development of Higher-Level Building Block Testing Standards	Wichita State University	900,000	0	Wichita State University	900,000	900,000
12-C-AM-WISU-171	Advanced Fiber Reinforced Polymer Composite Materials Guidance for Aircraft Design, Certification and Process Control	Wichita State University	550,000	0	Wichita State University	550,000	550,000
12-C-AM-WISU-172	Ceramic Matrix Composite (CMC) Materials Guidelines for Aircraft Design and Certification	Wichita State University	750,000	0	Wichita State University	750,000	750,000
12-C-AM-WISU-173	Development of Guidance for Technical Standard Order (TSO) for Composite Materials	Wichita State University	500,000	0	Wichita State University	500,000	500,000
12-C-AM-WISU-174	Additive Manufacturing Guidance for Aircraft Design and Certification	Wichita State University	3,000,000	0	Wichita State University	3,000,000	3,000,000
12-C-AM-WISU-175	Effects of cleaning & disinfectants chemicals/processes in the mechanical & flammability characteristics of aircraft interior	Wichita State University	302,740	0	Wichita State University	302,740	302,740
		Total	21,198,809	0		21,198,809	21,198,809

Please note: Due to the impact of COVID-19 on the ability to generate matching contributions previously committed, the Administrator exercised his authority to grant relief to the one-to-one matching requirements and to provide up to 75 percent federal share as requested by COE grant recipients on a case-by-case basis.

Joint COE for Advanced Materials Total Funding Awarded by Fiscal Year (In millions of dollars)

Fiscal	Funding
Year	Level
FY 2004	2.4
FY 2005	2.7
FY 2006	2.8
FY 2007	1.4
FY 2008	3.7
FY 2009	2.0
FY 2010	2.5
FY 2011	2.3
FY 2012	2.2
FY 2013	1.8
FY 2014	2.4
FY 2015	2.4
FY 2016	5.6
FY 2017	4.9
FY 2018	1.5
FY 2019	5.2
FY 2020	14.9
FY 2021	21.2
Total	81.9

Attachment III - Fiscal Year 2021 Contract Awards

Appendix A - COE for Unmanned Aircraft Systems Appendix B - COE for General Aviation Safety, Accessibility, and Sustainability

Contract Number	Title of Research	COE Award Recipients	FAA Award Amount	Sub-Award Recipients	Total Sub-Award Amounts	Source of Matching Contribution	Amount/Value of Contribution (FY 2021)
		University of Alabama-Huntsville	324,477		0	0	0
		Total	324,477		0	0	0

Note: Contracts are awarded by (Acquisitions and Contracting Division). The requirements of the Indefinite Delivery Indefinite Quantity contracts determined the award amounts and matching contributions.

Unmanned Aircraft Systems - ASSURE
Total Contract Funding Awarded by Fiscal Year
__(In millions of Dollars)

Fiscal	Funding
Year	Level
FY 2018	0.1
FY 2019	2.0
FY 2020	0.0
FY 2021	0.3
Total	2.4

FAA Centers of Excellence (COE) General Aviation (GA) Contract Awards Fiscal Year 2021

Contract Number	Title of Research	COE Award Recipients	FAA Award Amount	Sub-Award Recipients	Total Sub-Award Amounts	Source of Matching Contribution	Amount/Value of Contribution (FY 2021)
	None awarded in FY21		0		0	0	0
		Total	0		0	0	0

Note: Contracts are awarded by (Acquisitions and Contracting Division). The requirements of the Indefinite Delivery Indefinite Quantity contracts determined the award amounts.

General Aviation
Total Contract Funding Awarded by Fiscal Year
(In millions of Dollars)

Fiscal	Funding
Year	Level
FY 2012	0.0
FY 2013	0.1
FY 2014	1.6
FY 2015	1.8
FY 2016	0.0
FY 2017	0.0
FY 2018	0.06
FY 2019	0.05
FY 2020	0.0
FY 2021	0.0
Total	3.61