TechOps

Leading Edge Protective Coating Against Fluid and Particulate Erosion for Turbofan Blades

Presented to: FAA Office of Environment and Energy

By: Delta TechOps (DTO)

GKN Aerospace (GKN)

MDS Coating (MDS)

America's Phenix, Inc. (AP)

Date: 4 May 2022

Project Overview

Objective - Demonstrate MRL & TRL 8-9 the application of a LE protective coating for all Turbofan Blade configurations:

Wet Runway Landing

CLEEN II Flight Demo

LE Cavitation of Uncoated Turbofan Blades

Coating protects LE

4 May 2022

Resulting in fuel & emission savings

Schedule (Overview)

• Phase I – Data Gathering (throughout CLEEN III program)

- Blade Condition Analysis on inducted engines and TF blades
- Engine Tests: CF34, CFM56, V2500, CF6, PW4000, PW1100

• Phase II – Coating Optimization Tests (March 2022)

- Conduct tests at AFRL Supersonic Rain Erosion (SuRE) Rig

• Phase III – Flight Certification (PW2000 by Jan 2023)

- Certification Plan
- Test Plan
- Metallographic Analysis
- Mechanical Testing & Frequency Analysis
- Impact Tests
- Instructions for Continued Airworthiness (ICA) analysis
- Phase IV Flight Demo at TRL8-9 Fully Coated 1st stage TF sets
 - PW2000 on B757 by 2Q, CY23
 - Other engine types to follow

- Measured & photographed LE condition of various engines
- Measured on-wing or on inducted blades for following engines:
 - PW2000 = 3 on-wing, 2 in-shop
 - PW4000 = 2 on-wing, 1 in-shop
 - CF34 = 2 in-shop
 - CFM56 = 3 on-wing
 - BR715 = 1 in ship
 - PW1100 = 1 in-shop

Measuring @ DTO

• V2500

FAA CLEEN III Public Release

In-Shop @ DTO

PW1100, A320neo

CFM56-5B, A321

4 May 2022

V2500, A320

F117, C-17

Phase I – Data Collection

Fuel Consumption Impact

- B757 / PW2000 Test cell data
- Isolated fuel consumption differences between <u>eroded</u> and <u>serviceable fan blades</u> on same inducted engine

Eroded fan blade negatively impacts fuel consumption

Phase II – Fluid Erosion Tests

Conducted at AFRL's Supersonic Rain Erosion (SuRE) rig facility

• PW2037, CF6, CFM56, CF34, V2500, F414, Ti sheaths

SuRE Test Rig

Chamber became very hot during testing (~30°C)

Droplets stream rasters along x-y directions on the specimens in the test area

AFRL Supersonic Rain Erosion Test

CFM56 Test Specimen

BlackGold® v12.1

V2500 Test Specimen

After 80 pases

BlackGold® v12.1

PS View

PW2000 Test Specimen

BlackGold[®] v12.x With coating enhancements

Future Work

AFRL Test Data Reduction

- Months of analysis to characterize the specimens
 - Visual Inspection, MET, microscope, SEM/EDX, Nanovea, 3D scanning and more
 - Plot pit depth versus number of passes

Phase III – PW2000 Certification

- Approval using Major Alteration
 - PW2000 Type Certificate E17NE Rev 15
- Current work:
 - Preparing part specific certification plan (594951-20-001)
 - Completing CFD / FEA analysis on loaded fan blades
 - Preparing familiarization plan for FAA
 - Coordinating with ACO for Multi-Use Major Alteration

PW2000 Certification

• CFD and FEA of PW2000 fan blades

- Aerodynamic loads on the fan blades
- Natural frequencies and mode shapes
- Stress fields for significant modes
- Determining the coating zone

FEA defines / coating zone

PW2000 models:

- Fan Blade
- Casing
- Exit guide vane
- Stator vane
- Fan-to-Shroud
- Fan-to-Disk

Summary

Data Collection

- Continuing LE condition data collection as a function of TSO
- Working with United Airlines in documenting V2500 condition on-wing

AFRL Fluid Erosion Test

- Results confirm significant LE protection with **BlackGold**[®] v12.1 coating
- Results confirm further protection with **BlackGold**[®] v12.x coating
- Data reduction in-process

PW2000 Certification

- Reviewing final FEA stress analysis models
- Confirming Certification & Test Plans with FAA ODA
- Conduct required certification tests through Nov 2022

Saving 1% of fuel results in:

\$114M USD

1.15M

DELTA

Delta Air Lines consumed 4.566B gal of fuel in 2019 Based on \$2.50 / gal fuel price https://www.epa.gov/energy/ greenhouse-gases-equivalencies-calculator-calculatios-and-references

Thank You

08 88

📥 DELTA TechOps

