

May 4, 2022

FAA CLEEN III Consortium Industry Day

GE Aviation

Approved for Public Use

GE Aviation: Committed to a more sustainable future for aviation

Products

Developing and maturing technology solutions to dramatically reduce aircraft emissions

Industry Partnerships

Partnering globally to shape and guide industry dialogue and actions

Operations

Accelerating efforts to achieve carbon neutrality in our facilities by 2030

RISE Program Overview

RISE PROGRAM

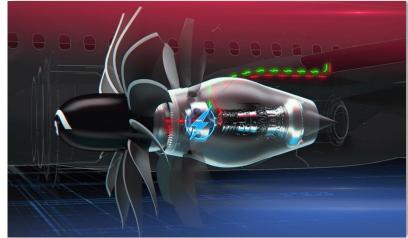

REVOLUTIONARY INNOVATION FOR SUSTAINABLE ENGINES

TARGETING MORE THAN 20% LOWER CO₂ EMISSIONS

Advancing **open fan** architectures

Advanced materials

100% SAF, hydrogen capability


Step change in **propulsive efficiency**

Hybrid-electric

Build on proven technologies

Technology Maturation	Ground & flight tests	EIS by the mid-2030s	
		Approved for Public Use	

CFM RISE Technologies

Objectives

- **Open Fan**: develop unducted single fan architecture
- Low emissions combustor: develop low NOx and nvPM combustor and enable compact, high OPR core to achieve 20% fuel burn
- Develop Advanced Thermal Management System and waste heat recovery system
- **Hybrid Electric Generator**: develop integrated electricpower generation system within the engine

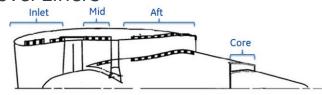
Anticipated Benefits

- Noise: 13 EPNdB cum margin relative to Stage 5
- Combined Fuel Burn: 20+% reduction relative to current CFM LEAP* engine
- Targeting NOx reduction for a future high overall pressure ratio engine cycle, equivalent to 70% margin to the CAEP/8 standard at 30 OPR

High Level Schedule

	2021		2022	2023
Design				
Fabrication, Procurement, Assembly				
Technology Demonstration				

Milestones


- 10+ design reviews completed
- 3 tests initiated
- Test components fabrication started

CLEEN III Advanced Acoustics

Novel Liners

Fan Source Strength Reduction

Objectives:

- Develop Novel Acoustic Liners.
- Develop Fan Source Strength Reduction Concepts

Work Statement:

- Execute subscale acoustic test of fan source strength reduction concept hardware developed under CLEEN II
- Down-select most promising technology (novel liner or fan source strength reduction concept as predicted on a production engine platform
- Complete detailed designed of full-scale down-selected technology
- Manufacture full-scale down-selected hardware suitable for testing

Anticipated Benefits:

Novel Liner:

2 EPNdB cumulative noise reduction relative to SDOF w/ neutral performance impact

or

•

•

Fan Source Strength Reduction Concept:

1 EPNdB cumulative noise reduction w/ performance neutral impact

High Level Schedule

Advanced Acoustics		CY 2022				CY 2023			CY 2024				CY 2025			
Task	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
Full Scale Hardware Design Phase																
Advanced Acoustic Liner Design																
Fan Source Strength Reduction Concept Design																
Downselect Technology																
Downselected Technology Final Design																
Fabrication, Procurement and Assemebly																
Fabricate Part(s) for Down-selected Design																
Technology Demonstration Phase																
Execute subscale fan test of fan source strength																

- Delayed subscale test due to facility availability
- All deliverable target dates within period of performance
- Design efforts progressing based on revised schedule

CLEEN III MESTANG III

Anticipated Benefits:

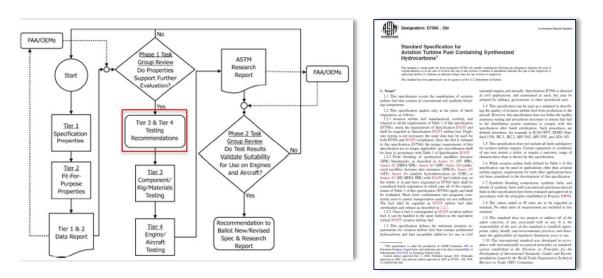
- More Efficient +/- 270Vdc generator with high power density and increased fuel savings
- New cooling method for increased thermal performance
- Self contained oil system

Risk/Mitigation Plans:

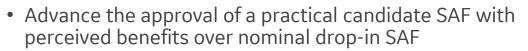
Risk : Oil Pump performance failed to meet requirements
Mitigation : Lab test with dummy generator

Objectives:

Mature a +/- 270Vdc electric generator development as part of an integrated more-electric primary power system


Work Statement:

- Design and develop a 90 kW, +/- 270Vdc generator to address requirements of mid-size aircraft, business jets.
- Improved power generation system design with increased power density at lower cost.


Project Milestones

- ✓ Program Kick Off October 1, 2021
- ✓ FAA Consortium November 2, 2021
- Complete System Requirement Document (SRD) November 30, 2021
- Preliminary Design Review May 31, 2022
- Critical Design Review August 31, 2022
- Complete Procurement of Hardware October 31, 2022
- Complete Prototype build January 15, 2023
- Prototype testing with shared Oil February 28, 2023
- FAA Demo and Final Report March 31, 2023

Sustainable Aviation Fuel

Anticipated Benefits

• Accelerate the standardization and therefore the introduction of 100% SAF

Objectives

- Support qualification of candidate SAF test/demo
- Advance standardization of 100% SAF

Work Statement:

- Evaluate 100% & 50% (if needed) of CPK-0 SAF for combustor (FAR*) operability/emissions
- Help develop ASTM standard of 100% SAF

High Level Schedule

	2021	2022	2023		202	4	
Fuel Testing							
Development of Fuel Specification for 100% SAF							
Final Report							

Building a world that works