_g'm

SWIFT Developer Series

Containers and Orchestration

June 21, 2022

Jeff Stein

jstein@mitre.org
The MITRE Corporation
Principal Software Engineer

Joey MenzensKi

jmenzenski@mitre.org

The MITRE Corporation
Lead Software Engineer

Introductions

Kevin Long

klong@mitre.org

The MITRE Corporation
Principal Software Engineer

i

Recap of the SWIFT
Developer Series

SWIFT Developer Series: Objectives

 Review the basics of connecting and consuming SWIM data

» After the series, participants will:

- Have a deeper understanding of integrating SWIM
data and be empowered to develop solutions to
address a problem space

- Understand how the Automation Evolution
Strategy will enable iterative development and
common services to meet the needs of the users
(internal and external)

- Appreciate how capabilities can be collaboratively
built and evolve over time

AES VISION
Create a NAS composed of automation capabilities that utilizes layered enterprise components

and reusable services which can be developed, acquired, and sustained independently

Software developers can focus on providing
aviation-specific applications and services

)
lg!
! - H

¥

M

Softw:

Lay

g E

g 2 A set of Enterprise Services and Tools are

& - ‘-; made available to maximize reuse, accelerate
g £ 5| development and deployment of capabilities as
s é well as expand the vendor base

L "

Allows for rapid availability of infrastructure and
improved resiliency

Layer

Computing

Resources

Enterprise services and tools depicted in the diagram are examples of

capabilities that can be available within the AES architecture Administration

Developer Workshop Overview

Common Service

V1 Teams will incrementally build the API to
expand their awareness of the problem space

'

Common Service

Process g Widget AP

Flight Data

Common Service

F |

mmmm

lterative versions will be built and KsFo KK Fix1 1o 0%

deployed “live” by the platform team KATL KLGA Fixt 8 2 =X
KORD KJFK Flxz2 4 2 50%

 Participants will create an Application Programming Interface (API) that will drive an analytics chart
+ Consume data from a common data service
* Process the data to make it available for table using a known schema
» API will be deployed via pipeline
» As the exercise progresses — new versions of common service will become available with more
extensive data.
» Participants will update their applications accordingly

 Participants will have some level of language choice
« Java, Python, JavaScript

III_.l '._.I L |IJ

Preparing for the In-Person
Developer Workshop

« Webinar 1

- Experience building and running containerized software
- Familiarity with deploying containerized software

« Webinar 2

- Experience connecting to SWIM and consuming data
- Some SWIM data knowledge

« Webinar 3
- Background on the operational problem space (Trajectory Deviation Study)

All Things Containers

Overview

What is a container?
Comparison to virtual machines e, o
Containerizing an existing application vy oy
Advantages / disadvantages of using containers
Assignment: Running a containerized SCDS application

What is a Container?

« “Containerization is an approach to software
development in which an application or service, its
dependencies, and its configuration (abstracted as
deployment manifest files) are packaged together as a
container image.”

« Analogy of a meal-delivery box vs. going to the store to
buy for a recipe
— Container gives you everything you need to do stuff without
bloat
« Segmenting physical resources vs. virtualizing
hardware

« Generally, containers use less resources than
traditional virtual machines and improve portability of
software

Containers vs Virtual Machines

Bulky

— VM

Hypervisor

Physical Hardware

Container —=

Container Runtime

Physical Hardware

Containers are layered

L

AT N P e PN e o P s e e x"‘"“‘v—\
{ CONTAINER CONTAINER CONTAINER j
Tomcat PHP \}
Layer 3 3
Java Application IEVE MySQL Static Binary j
$
Layer 2 Debian Ubuntu Alpine)
Java Runtime)
Layer 1 (_?
Base Linux Files Kernel)
E g

L‘*—uw

O,

Advantages of Using Containers

 Build once, run virtually anywhere

« Faster launch time than a Virtual Machine
- Simplifies service scaling
- Service scaling can be done more rapidly for periods of high traffic demand

* “It works on my machine”
- Container images bring along everything that’s needed
- More consistent development environment
- Consistent building (ex Hadoop)

« Can build more generic applications to which you apply run-time
configuration

* Micro services architecture

Disadvantages of Using Containers

« Harder to debug than native runs

« Some additional up-front effort to implement

« Can complicate CI/CD pipelines for building and testing
 Typical workflows rely on Image Registries — more infrastructure
* “Mega containers” (monoliths)

« Some applications are not appropriate for containerization

« Set up of runtime container platform

Question Break

Image Definition: The Dockerfile

openjdk:alpine

apk update \

&& apk upgrade \ Base environment configuration
&& apk add maven \

& rm -f /var/cache/apk/*

/code

pom.xml /code/pom.xml Download application dependencies

["mvn", "dependency:resolve"]

src /code/src Application build command

["mvn", "package"]

java -DproviderUr1=$PROVIDER_URL -DconnectionFactory=$CONNECTION_FACTORY ... —-jar target/jumpstart-jar-with-dependencies.jar

\ Default application run command

SWIFT

Orchestration

Orchestration facilitates:

- Running multiple different services in cohesive container environment (e.g., a web app with a
backend API and database storage)

- Running containers at scale (e.g., 5 versions of the same service) and load balancing

Abstracts critical operational efforts
- Service scaling, networking, load balancing, health monitoring

Several tools/platforms out there for handling orchestration (e.g., Docker Swarm,
OpenShift, Kubernetes, etc.)

We’'ll talk more about container orchestration at Webinar #2 and use orchestration during
the in-person event in August

Hands-On Training Summary

e Goals

- Practice working with containers
- Get SCDS access squared away

 What will you be doing?
- Gaining access to SCDS
Downloading the Jumpstart Kit provided on SWIFT portal
Building a Docker container image
Preparing Jumpstart Kit configuration
Running a Docker container image

« Step-by-step slides and video will be posted to SWIFT portal after this
webinar concludes

Questions?

Upcoming Schedule

 Webinar #2 - July 19, 2022 at 1:00PM EDT
- Consuming SCDS Data and Container Orchestration

 Webinar #3 — August 16, 2022 at 1:00PM EDT
- Recapping the Trajectory Deviation Study

* Developer Workshop — August 29-30, 2022
- In Person Event at MITRE McLean Campus

Webinar #1 | Hands-On Training

June 21, 2022

Hands-On Training

Some Upfront Assumptions

« Have an SCDS Account and associated data approvals
- https://support.swim.faa.gov/hc/en-us/articles/360034136992-How-t0-
create-a-SWIFT-Portal-account

« Have Docker / Docker Desktop installed on the machine
- https://docs.docker.com/get-docker/

https://support.swim.faa.gov/hc/en-us/articles/360034136992-How-to-create-a-SWIFT-Portal-account
https://docs.docker.com/get-docker/

Hands-On Training
Getting Set-Up

1. Create a new subscription in SCDS for use with this exercise

2. Create a folder for development
3. Download the Jumpstart Kit for Linux

MMMMMMM

nnnnnnnnnn

Hands-On Training

Building a Docker Container Image

1. Create a Dockerfile in the development directory (sibling to
jumpstart-latest directory DOCKER-JUMPSTART

> jumpstart-latest

Dockerfile
fdps.conf

2. Write the Dockerfile

Hands-On Training

Build the Container Image

* From the development directory run the following docker

command:
- docker build -t scds—-jumpstart .

* The previous command should end similar to this:

Hands-On Training

Configuration Files

 Create a configuration file in the development directory for the
subscription you created earlier (e.g., fdps.conf)

* The configuration file should have the following lines using the
values from the subscription “Details” page:

providerUrl:”<JMS Connection URL>" < Make sure this is in quotes!!!

queue:<Queue Name>
connectionFactory:<Connection Factory>
username:<Connection Username>
password:<Connection Password>
vpn:<Message VPN>

metrics:false

output:com.harris.cinnato.outputs.StdoutOutput

Jjson:true

Hands-On Training

Run the Container

* From the development directory run the following docker command

- docker run -1t --rm --name scds-jumpstart-fdps -v
S{PWD}/fdps.conf:/app/application.conf scds-jumpstart

 After running the above command, the container should launch and you should begin to
see SCDS messages being received and displayed on the console:

{"ns5:MessageCollection”: {"xmlns:ns2":"http://www.fixm.aero/base/3.0","xmlns:ns5":"http://www.faa.aero/nas/3.0", "xmlns:ns3":"http://www.fixm.aero/flight/3.0","xmlns:ns4":"http://ww
w.fixm.aero/foundation/3.0", "message": {"flight":{"gufi": {"codeSpace":"urn:uuid","content":"65617b75-7c99-4832-bd03-

972e775d360e"}, "enRoute": {"xsi:type" :"ns5:NasEnRouteType", "boundaryCrossings": {"xsi:type":"ns5:NasUnitBoundaryType", "handoff":{"xsi:type":"ns5:NasHandoffType","receivingUnit":{"xsi
rtype":"ns2:IdentifiedUnitReferenceType", "sectorIdentifier":35,"unitIdentifier":"ZDC"}, "event" :"INITIATION", "transferringUnit":{"xsi:type":"ns2:IdentifiedUnitReferenceType", "sector
Identifier":50, "unitIdentifier":"ZDC"}}}},"flightIdentification":{"computerId":113,"aircraftIdentification":"AAL688","siteSpecificPlanId":634,"xsi:type":"ns5:NasFlightIdentificatio
nType"}, "arrival":{"xsi:type":"ns5:NasArrivalType", "runwayPositionAndTime": {" runwayTime": {"estimated": {"time":"2022-06-

07T17:51:00Z"}}}, "arrivalPoint" :"KMIA"},"flightPlan": {"identifier":"KN50460300"}, "xsi:type":"ns5:NasFlightType", "centre":"ZDC", "flightStatus":{"xsi:type":"ns5:NasFlightStatusType",
"fdpsFlightStatus":"ACTIVE"}, "supplementalData":{"xsi:type":"ns5:NasSupplementalDataType", "additionalFlightInformation": {"nameValue":[{"name":"MSG_ SEQ NO","value":24252322}, { "name"
:"FDPS_GUFI","value":"us.fdps.2022-06-

07T14:01:002.000/13/300"}, {"name":"FLIGHT PLAN SEQ NO","value":8}, {"name":"SOURCE TIME AND SEQ","value":1608307321}, {"name":" SOURCE TIME","value":"16 08 30"}]}},"source":"OH", "oper
ator":{"operatingOrganization":{"organization":{"name":"AAL"}}}, "system":"SLC", "departure": {"departurePoint":"KJFK", "xsi:type":"ns5:NasDepartureType", "runwayPositionAndTime": {" runw
ayTime": {"actual”:{"time":"2022-06-07T15:29:00Z"}}}}, "timestamp":"2022-06-07T16:08:30.2402"},"xsi:type":"ns5:FlightMessageType", "xmlns :xsi":"http://www.w3.0rg/2001/XMLSchema-

instance"}}}

 To exit the container use Ctrl-C to stop the running jumpstart app

Hands-On Training
Some Things to Try

« Use difference configuration files to configure the container to consume
different SCDS subscriptions:

- docker run -it --rm --name scds-jumpstart-stdds -v
S{PWD}/stdds.conf:/app/application.conf scds-jumpstart

« Change the output of the jJumpstart application
- View options in *${PWD} /jumpstart-latest/README .md”

- Try making a volume mount between the host machine and the container’s log
directory to save files on the host machine
» Hint: Add -v ${PWD}/log:/app/log to docker run command

