
SWIFT Developer Series

Containers and Orchestration

June 21, 2022



Introductions

2

Jeff Stein
jstein@mitre.org

The MITRE Corporation

Principal Software Engineer 

Joey Menzenski
jmenzenski@mitre.org

The MITRE Corporation

Lead Software Engineer 

Kevin Long
klong@mitre.org

The MITRE Corporation

Principal Software Engineer 



Recap of the SWIFT 
Developer Series

3



SWIFT Developer Series: Objectives

• After the series, participants will:
- Have a deeper understanding of integrating SWIM 

data and be empowered to develop solutions to 
address a problem space

- Understand how the Automation Evolution 
Strategy will enable iterative development and 
common services to meet the needs of the users 
(internal and external)

- Appreciate how capabilities can be collaboratively 
built and evolve over time

4

• Review the basics of connecting and consuming SWIM data



Developer Workshop Overview

• Participants will create an Application Programming Interface (API) that will drive an analytics chart

• Consume data from a common data service

• Process the data to make it available for table using a known schema

• API will be deployed via pipeline

• As the exercise progresses – new versions of common service will become available with more 
extensive data.

• Participants will update their applications accordingly

• Participants will have some level of language choice

• Java, Python, JavaScript

5



Preparing for the In-Person 
Developer Workshop

• Webinar 1
- Experience building and running containerized software

- Familiarity with deploying containerized software

• Webinar 2
- Experience connecting to SWIM and consuming data

- Some SWIM data knowledge

• Webinar 3
- Background on the operational problem space (Trajectory Deviation Study)

6



All Things Containers



Overview
• What is a container?

• Comparison to virtual machines

• Containerizing an existing application

• Advantages / disadvantages of using containers

• Assignment: Running a containerized SCDS application

8



What is a Container?

9

• “Containerization is an approach to software 

development in which an application or service, its 

dependencies, and its configuration (abstracted as 

deployment manifest files) are packaged together as a 

container image.”

• Analogy of a meal-delivery box vs. going to the store to 

buy for a recipe

– Container gives you everything you need to do stuff without 

bloat

• Segmenting physical resources vs. virtualizing 

hardware

• Generally, containers use less resources than 

traditional virtual machines and improve portability of 

software



Containers vs Virtual Machines

Physical Hardware

Host OS

Container Runtime

Bins/

Libs

App 1

Bins/

Libs

App 2

Bins/

Libs

App 3

Physical Hardware

Host OS

Hypervisor

Guest 

OS

Bins/

Libs

App 1

Guest 

OS

Bins/

Libs

App 2

Guest 

OS

Bins/

Libs

App 3

VM Container

Bulky

10



Containers are layered

Layer 1

Base Linux Files

Layer 2

Java Runtime

Layer 3

Java Application

11



Advantages of Using Containers

• Build once, run virtually anywhere

• Faster launch time than a Virtual Machine
- Simplifies service scaling

- Service scaling can be done more rapidly for periods of high traffic demand

• “It works on my machine”
- Container images bring along everything that’s needed

- More consistent development environment

- Consistent building (ex Hadoop)

• Can build more generic applications to which you apply run-time 
configuration

• Micro services architecture

12



Disadvantages of Using Containers

• Harder to debug than native runs

• Some additional up-front effort to implement

• Can complicate CI/CD pipelines for building and testing

• Typical workflows rely on Image Registries – more infrastructure

• “Mega containers” (monoliths)

• Some applications are not appropriate for containerization

• Set up of runtime container platform

13



Question Break

14



Image Definition: The Dockerfile

Base environment configuration

Download application dependencies

Application build command

Default application run command

15



Orchestration

• Orchestration facilitates:
- Running multiple different services in cohesive container environment (e.g., a web app with a 

backend API and database storage)

- Running containers at scale (e.g., 5 versions of the same service) and load balancing

• Abstracts critical operational efforts

- Service scaling, networking, load balancing, health monitoring

• Several tools/platforms out there for handling orchestration (e.g., Docker Swarm, 
OpenShift, Kubernetes, etc.)

• We’ll talk more about container orchestration at Webinar #2 and use orchestration during 
the in-person event in August

16



Hands-On Training Summary

• Goals
- Practice working with containers

- Get SCDS access squared away

• What will you be doing?
- Gaining access to SCDS

- Downloading the Jumpstart Kit provided on SWIFT portal

- Building a Docker container image

- Preparing Jumpstart Kit configuration

- Running a Docker container image

• Step-by-step slides and video will be posted to SWIFT portal after this 
webinar concludes

17



Questions?

18



Upcoming Schedule

• Webinar #2 - July 19, 2022 at 1:00PM EDT
- Consuming SCDS Data and Container Orchestration

• Webinar #3 – August 16, 2022 at 1:00PM EDT
- Recapping the Trajectory Deviation Study

• Developer Workshop – August 29-30, 2022
- In Person Event at MITRE McLean Campus

19



SWIFT Developer Series

Webinar #1 | Hands-On Training

June 21, 2022



Hands-On Training
Some Upfront Assumptions

• Have an SCDS Account and associated data approvals
- https://support.swim.faa.gov/hc/en-us/articles/360034136992-How-to-

create-a-SWIFT-Portal-account

• Have Docker / Docker Desktop installed on the machine
- https://docs.docker.com/get-docker/

21

https://support.swim.faa.gov/hc/en-us/articles/360034136992-How-to-create-a-SWIFT-Portal-account
https://docs.docker.com/get-docker/


Hands-On Training 
Getting Set-Up

1. Create a new subscription in SCDS for use with this exercise

2. Create a folder for development

3. Download the Jumpstart Kit for Linux

4. Extract the downloaded archive to the development folder

22



Hands-On Training 
Building a Docker Container Image

1. Create a Dockerfile in the development directory (sibling to 
jumpstart-latest directory

2. Write the Dockerfile

23



Hands-On Training
Build the Container Image

• From the development directory run the following docker 
command:
- docker build -t scds-jumpstart .

• The previous command should end similar to this:

24



Hands-On Training
Configuration Files

• Create a configuration file in the development directory for the 
subscription you created earlier (e.g., fdps.conf)

• The configuration file should have the following lines using the 
values from the subscription “Details” page:

providerUrl:”<JMS Connection URL>"

queue:<Queue Name>

connectionFactory:<Connection Factory>

username:<Connection Username>

password:<Connection Password>

vpn:<Message VPN>

metrics:false

output:com.harris.cinnato.outputs.StdoutOutput

json:true

Make sure this is in quotes!!!

25



Hands-On Training
Run the Container

• From the development directory run the following docker command
- docker run –it --rm --name scds-jumpstart-fdps -v 

${PWD}/fdps.conf:/app/application.conf scds-jumpstart

• After running the above command, the container should launch and you should begin to 
see SCDS messages being received and displayed on the console:

• To exit the container use Ctrl-C to stop the running jumpstart app

{"ns5:MessageCollection":{"xmlns:ns2":"http://www.fixm.aero/base/3.0","xmlns:ns5":"http://www.faa.aero/nas/3.0","xmlns:ns3":"http://www.fixm.aero/flight/3.0","xmlns:ns4":"http://ww

w.fixm.aero/foundation/3.0","message":{"flight":{"gufi":{"codeSpace":"urn:uuid","content":"65617b75-7c99-4832-bd03-

972e775d360e"},"enRoute":{"xsi:type":"ns5:NasEnRouteType","boundaryCrossings":{"xsi:type":"ns5:NasUnitBoundaryType","handoff":{"xsi:type":"ns5:NasHandoffType","receivingUnit":{"xsi

:type":"ns2:IdentifiedUnitReferenceType","sectorIdentifier":35,"unitIdentifier":"ZDC"},"event":"INITIATION","transferringUnit":{"xsi:type":"ns2:IdentifiedUnitReferenceType","sector

Identifier":50,"unitIdentifier":"ZDC"}}}},"flightIdentification":{"computerId":113,"aircraftIdentification":"AAL688","siteSpecificPlanId":634,"xsi:type":"ns5:NasFlightIdentificatio

nType"},"arrival":{"xsi:type":"ns5:NasArrivalType","runwayPositionAndTime":{"runwayTime":{"estimated":{"time":"2022-06-

07T17:51:00Z"}}},"arrivalPoint":"KMIA"},"flightPlan":{"identifier":"KN50460300"},"xsi:type":"ns5:NasFlightType","centre":"ZDC","flightStatus":{"xsi:type":"ns5:NasFlightStatusType",

"fdpsFlightStatus":"ACTIVE"},"supplementalData":{"xsi:type":"ns5:NasSupplementalDataType","additionalFlightInformation":{"nameValue":[{"name":"MSG_SEQ_NO","value":24252322},{"name"

:"FDPS_GUFI","value":"us.fdps.2022-06-

07T14:01:00Z.000/13/300"},{"name":"FLIGHT_PLAN_SEQ_NO","value":8},{"name":"SOURCE_TIME_AND_SEQ","value":1608307321},{"name":"SOURCE_TIME","value":"16_08_30"}]}},"source":"OH","oper

ator":{"operatingOrganization":{"organization":{"name":"AAL"}}},"system":"SLC","departure":{"departurePoint":"KJFK","xsi:type":"ns5:NasDepartureType","runwayPositionAndTime":{"runw

ayTime":{"actual":{"time":"2022-06-07T15:29:00Z"}}}},"timestamp":"2022-06-07T16:08:30.240Z"},"xsi:type":"ns5:FlightMessageType","xmlns:xsi":"http://www.w3.org/2001/XMLSchema-

instance"}}}

26



Hands-On Training
Some Things to Try

• Use difference configuration files to configure the container to consume 
different SCDS subscriptions:
- docker run –it --rm --name scds-jumpstart-stdds -v 

${PWD}/stdds.conf:/app/application.conf scds-jumpstart

• Change the output of the jumpstart application
- View options in “${PWD}/jumpstart-latest/README.md”

- Try making a volume mount between the host machine and the container’s log 
directory to save files on the host machine

▪ Hint: Add -v ${PWD}/log:/app/log to docker run command

27


