

Joint Simulation Environment (JSE): V&V Lessons Learned and Converging Opportunities

Joint Simulation Environment Overview

JSE Defined

JSE presents a multi-Service opportunity to revolutionize high end, complex test and training

- The JSE is a simulation environment comprised of six major building blocks
 - A software battlespace environment that is highly extensible, modular, and builds on a solid foundation of existing DoD modeling & simulation technologies
 - A physical computing infrastructure that implements the battlespace
 - One or more ownship simulations that constitute the system under test (SUT)
 - Cockpits and visual display systems that provide the pilot interface
 - Planning/control/briefing rooms that facilitate mission execution
 - An overarching facility that securely contains all of the above and the manpower to operate it
- The first two elements the battlespace environment and the physical computing infrastructure to implement the battlespace are referred to as JSE-in-a-box
- JSE threat environment and infrastructure is Government-owned and available to support DoD test and training needs

Why JSE?

PLATFORM MISSION EFFECTIVENESS

• Full Fifth Gen+ assessments not possible on open air ranges. Requires realistic, high density threat environment and high fidelity platform representation

INTEGRATED WARFIGHTING CAPABILITY

• Impossible to scale few vs few live tests to accurately assess theater-wide, multi-platform capabilities

AFFORDABILITY

• Modern system-of-systems capability complexity makes open air testing prohibitively expensive

READINESS

• Realistic environments for high end, multi-platform tactics training are severely limited

JSE ENABLES FIFTH GEN+ OPERATIONAL TEST AND HIGH END TACTICS TRAINING IN THE WORLD'S HIGHEST FIDELITY, HIGHEST DENSITY THREAT ENVIRONMENT

- Government designed, owned, and executed architecture
- Infrastructure designed to scale and support future high fidelity ownship integration
- Leverages best available models from authoritative Intelligence Community partners
- Integrates existing Government products with long established pedigree (DIADS, EAAGLES, NGTS, etc.)
- Benefits from other user investments into existing Government products

To provide the DoD's premier simulation environment for Fifth Generation+ test and training.

JSE Overview

NAVAIR

JSE V&V

NAVAIR

- Intended Use Operational Test at the mission level
 - Mission: Defensive Counter Air
 - Metric: Proportion of red strikers that do not reach their weapon release point
- V&V at the Component/Sensor-Level and at the Integrated System-Level driven to enable assessment of risk at the mission level

Mission Interactions

Level	Task	Metric	Questions
Mission-Level	DCA	Proportion of Red Strikers that do not reach their Weapons Release Point	 How sensitive is this mission metric to a performance delta in this system metric? How often will this mission metric include this system metric?
System-Level	A/A Kill Chain, System Track	System Track Accuracy	 How sensitive is this system metric to a performance difference in this component metric? How often will this system metric include this component metric?
Component-Level	Radar, Track	Track Accuracy	

NAVAIR Public Release 2017-795. JPO Public Release Number JSF17-906. Distribution Statement A. Approved for public release: distribution unlimited.

- Structured engineering approach to VV&A
 - Accreditation Plan and V&V Plan interlinked
- Individual component, system, and mission test designs
 - Measures (detection range, false alarm rate, ...)
 - Conditions (altitude, RCS, ...)
 - Levels (high/low, large/small, ...)
- VTDs provided reference matrix for 'data miners' to fill
 - Levels purposefully vague to maximize chances of finding suitable reference data
 - Gaps in reference data availability easily identified

Statistical Approach

- Primarily at Component Level
- Perform a 2-sample non-parametric statistical test to identify if real-world (reference) and sim data could be from the same statistical distribution; minimum data size required
- Null Hypothesis: H_0 = reference data and sim data come from same distribution
- 'Pass' = failed to reject H₀, and minimum data requirements met; <u>no additional</u> <u>action required</u> (unless users demand further data)
- 'Fail' = rejected H₀
 - There is a performance difference between reference and sim performance, or failed to meet minimum data requirements
 - Assess potential tactical impact, and mitigation options

- Scarcity of available expertise
 - V&V skills with SME knowledge is rare combination
 - Many projects require similar expertise
- Typical issues encountered
 - User expectations
 - Sim instrumentation
 - Data tools
 - Model tuning

- Network connectivity and robustness
- Data
 - Discovery, validity for OT, and usability
- Contracting language and specifications
- Syncing with program schedules
- V&V timeline compression

Value of a Government-led V&V

- Developers not validating their own product
 - Ensures separation even for Government-developed models
- Better understanding of intended simulation employment/mission use
- The Government generally has fewer barriers to information access
 - Security
 - Proprietary safeguarding
- Lessons learned can directly benefit future V&V efforts
 - Tools and processes
 - Robust team of subject matter experts
 - Complex organizational connections

JSE Conceptual Roadmap

