Administrative Announcements

Note: Only NAC Members, FAA Executive Participants, and Pre-Approved Presenters and Speakers will have panelist/video/speaking capabilities. All other participants will be view-only without speaking/video capabilities.

- When called upon to speak by the Chair:
 - > Please announce your name and organization
 - > If using Zoom computer audio, click the Mute/Unmute button in the bottom left corner
 - If using the phone line audio without a participant ID, dial *6 to unmute, as well as your phone's mute button if enabled
 - If using a phone line and entered a participant ID, click the Zoom Mute/Unmute button, dial *6 to unmute your phone line, as well as your phone's mute button if enabled

In lieu of a roll call, all meeting participants will be captured in the meeting summary.

If you have any issues, please contact Antionette Johnson, via e-mail: Antionette.CTR.Johnson@faa.gov

NextGen Advisory Committee Meeting August 22, 2024

Opening of Meeting

Chip Childs, NAC Chair President & CEO (SkyWest Airlines)

Reappointed NAC Members

Representing Operators:

- Mark Baker, President and CEO of Aircraft Owners and Pilots Association (AOPA)
- Ed Bolen, President and CEO, National Business Aviation Association
- Russell "Chip" Childs, President and CEO of SkyWest and NAC Chair

Representing Aircraft Manufacturers:

- Pete Bunce, President and CEO of General Manufacturers Association (GAMA)
- Craig Hoskins, Vice President of Safety, Security and Technical Affairs for Airbus Americas

Representing Airports:

• Candace McGraw, CEO of Cincinnati Northern Kentucky International Airport

Representing NASA:

• Robert Pearce, Associate Administrator of Aeronautics Research Mission Directorate

New NAC Members

Representing Avionics:

- Vipul Gupta, Vice President and General Manager for Honeywell Aerospace Avionics
- Scott Pfeiler, Vice President of Product Development for Collins Aerospace

Representing Environmental Interest:

• Emily Tranter, National Coordination and Executive Director for National Organization to Insure a Sound-Controlled Environment (NOISE)

Representing International Sector:

• Andreas Boschen, Executive Director for SESAR 3 Joint Undertaking

Representing Labor Unions:

- Jason Ambrosi, President of Air Line Pilots Association
- Rich Santa, President of National Air Traffic Controllers Association
- Dave Spero, President of Professional Aviation Safety Specialist

New NAC Members

Representing Aircraft Manufacturers:

• Howard McKenzie, Vice President and Chief Engineer for Boeing Commercial Airplanes

Representing Operators:

- Alan Kasher, Executive Vice President of Daily Operations for Southwest Airlines
- Dave Mets, Vice President of Flight Operations for Alaska Airlines
- Jessica Tyler, Vice President of Integrated Operation Center for American Airlines

Industry Representatives

- **Patrick DiMento**, Vice President of Flight Operations, FedEx Express, Industry Representative for Cargo Operators
- Ryan Gumm, Senior Vice President of Flight Operations, Delta Air Lines, Industry Representative for Main Line Operators
- Joe Heins, Vice President of Network Operations, United Airlines, Industry Representative for Main Line Operators
- Jeffrey Winter, Vice President of Flight Operations, JetBlue Airways, Industry Representative for Main Line Operators

Public Meeting Announcement

Kimberly Noonan, NAC Committee Manager (FAA)

Public Meeting Announcement

NextGen Advisory Committee August 22, 2024

This is the public meeting announcement for the NextGen Advisory Committee meeting convening today, August 22, 2024.

This meeting is being held pursuant to a notice published in the Federal Register on July 15, 2024. The agenda for the meeting was also included in the notice. The Assistant Administrator for NextGen, Paul Fontaine, who is the delegated Designated Federal Officer responsible for compliance with the Federal Advisory Committee Act, under which this meeting is being conducted.

On June 14, the U.S. Secretary of Transportation renewed the NAC's charter with the purpose of the NAC to receive advice on NextGen relating to the future of the Air Traffic Management System and the integration of new technologies.

Today's meeting is open to the public. Members of the public may provide written comments in advance if they wish for them to be considered by the Chair for inclusion into the record of the meeting.

NAC Chair Report

Chip Childs, NAC Chair President & CEO (SkyWest Airlines)

Motion for NAC Approval

• March 21, 2024 – NAC Meeting Summary Package Draft

NAC Chair Report

Chip Childs, NAC Chair President & CEO (SkyWest Airlines)

European Air Traffic Management Master Plan Update

Andreas Boschen, Executive Director, SESAR 3 Joint Undertaking (FAA)

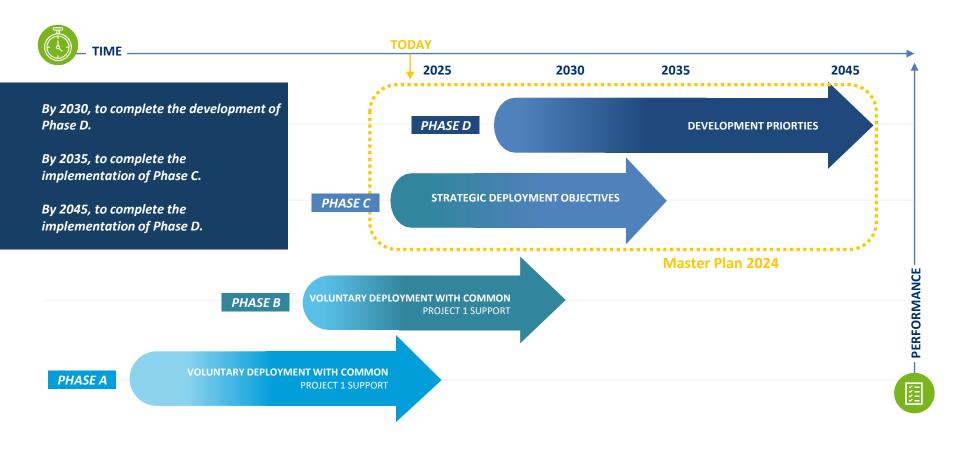
Our vision: making Europe the most efficient and environmentally friendly sky to fly in the world

Traffic management will be integrated into a multimodal transport system, including innovative solutions like air taxis, facilitating seamless, timely, and eco-friendly door-to-door passenger travel.

The continuous optimisation will be the new norm thanks to a **new service delivery model** and **high connectivity** with large volumes of data flowing in an effective and secured manner across trusted users.

All flights will operate to maximise aircraft capabilities, reducing aviation's overall climate impact (CO2 and non-CO2).

For certain phases of flight, the system will be fully automated and able to handle both nominal and nonnominal situations.



Air traffic management processes and services will optimise each flight trajectory. This optimisation is systematic, continuous and extremely precise.

In this new environment, **the role of the human has significantly evolved**, performing only the tasks that are too complex for automation to handle.

The ambition is to fully implement the Digital European Sky by 2045 with 2 key intermediate milestones for 2030 and 2035

10 Strategic Deployment Objectives to accelerate market uptake of SESAR Solutions by early movers and drive the evolution of the regulatory framework

ALERT FOR REDUCTION OF COLLISION RISKS ON TAXIWAYS & RUNWAYS

TRANSFORMATION TO

TRAJECTORY-BASED

OPERATIONS (TBO)

CNSOPTIMISATION,

MODERNISATION AND

RESILIENCE

SDO

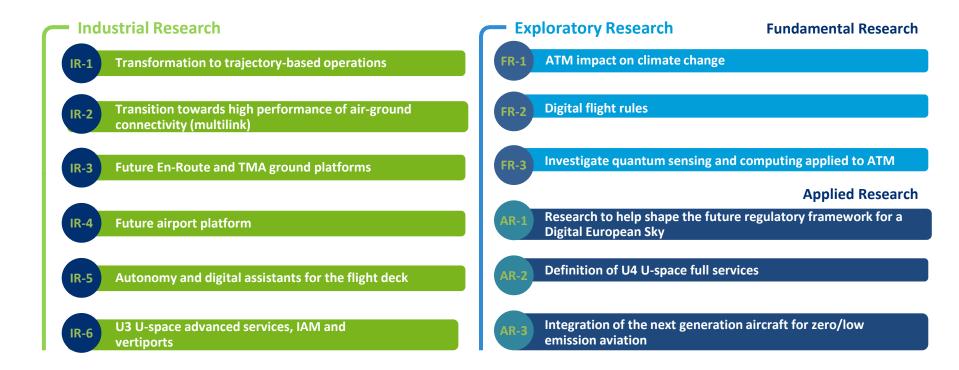
OPTIMISING AIRPORT AND TMA ENVIRONMENTAL FOOTPRINT

VIRTUALISATION OF OPERATIONS

IMPLEMENT INNOVATIVE AIR MOBILITY (IAM) & DRONE OPERATIONS

DYNAMIC AIRSPACE CONFIGURATION

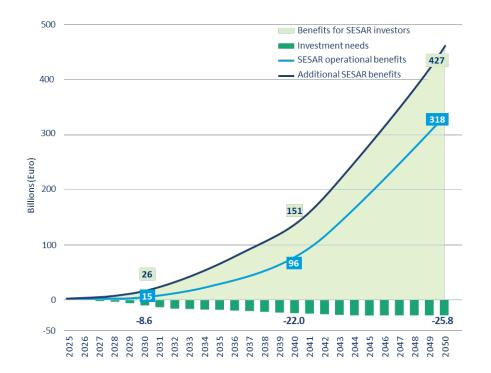
TRANSITION TOWARDS PERFORMANCE OF AIR-GROUND CONNECTIVITY (MULTILINK)



INCREASED AUTOMATION SUPPORT

SERVICE-ORIENTED DELIVERY MODEL (DATA DRIVEN AND CLOUD BASED)

12 strategic development priorities for future research activities in ATM from 2025



Investments and benefits

- Investment needs calculated at €25.8 bn for the period 2025 – 2050
- Operational benefits estimated at €318 bn, rising to €427 bn if additional benefits (more flights become possible) are included
- The return on investment for investors is projected to be € 7 for every euro invested in SESAR by 2040, increasing to € 17 by 2050

PLUS:

 400 million tons of CO₂ could be saved with the rollout of the vision by 2050

Conclusion

Formal adoption of new Master Plan in December 2024, built with strong stakeholder involvement and commitment

Roll-out as from 2025 (new research calls and implementation of strategic deployment objectives)

In partnership with ICAO and bilateral partners such as FAA (in particular on TBO and new air/ground connectivity)

THANK YOU FOR YOUR ATTENTION

Andreas Boschen Executive Director SESAR Joint Undertaking Andreas.Boschen@sesarju.eu

FAA Report

Paul Fontaine, Assistant Administrator, NextGen & NAC DFO Delegate (FAA)

FAA Report

Tim Arel, Chief Operating Officer (FAA)

Facility Replacement and Radar Modernization and Surveillance Strategy

Michael Freie (FAA)

Facility Replacement & Radar Modernization (FRRM) Proposal

Background

- FAA owns over 370 air traffic control facilities
 - > Air Traffic Control Towers (ATCT), with an average age of 40 years
 - > Terminal Radar Approach Control (TRACON) Facilities, with an average age of 27 years
 - > Air Route Traffic Control Centers (ARTCC), with an average age of 61 years
 - > Infrastructure Investment and Jobs Act (IIJA) and FRRM will replace 15% of FAA's air traffic control facilities
- FAA owns 618 radars with an average age of 36 years

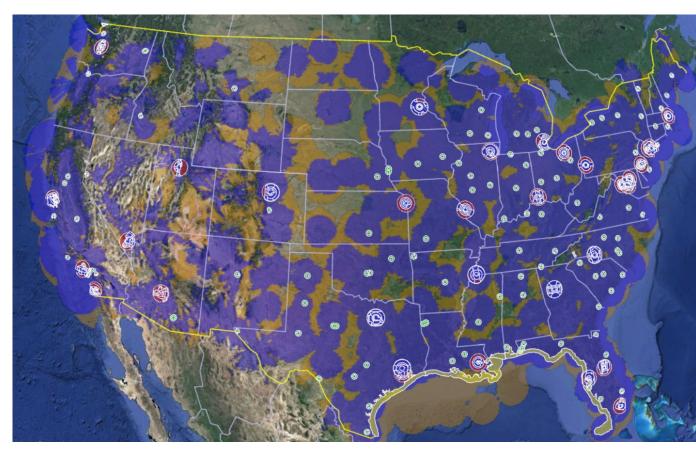

FRRM Proposal

- \$8.0 billion in mandatory funding over five fiscal years, funding:
 - > Replacement of 20-25 ATCT/TRACON facilities
 - > Recapitalization of 2 ARTCCs
 - > Modernization of up to 377 radars
- Build on the success of the Bipartisan Infrastructure Law (BIL)
 - Leverage mandatory funding from the Airport and Airway Trust Fund

National Airspace System | Surveillance Criticality

- Aging facilities and radars add risks to the system, including risk of service disruptions (delayed or cancelled flights)
- NORA was initiated to assess all operational NAS Systems likelihood of failure and severity of impact to Safety and Efficiency
 - > The Highest Risk Area identified Facilities and Cooperative and Non-cooperative Surveillance Systems

- NAS Safety Review Team (SRT) Report:
 - "The age of the FAA's crucial air traffic control systems is so advanced, it makes any private sector comparison difficult."
 - > Insufficient Funding Levels, "Without more funding, the FAA will be unable to address these needs."



FRRM Strategy For Surveillance Radars

- The safety and efficiency of the national airspace system relies on:
 - > The condition of our facilities and equipment
 - > Redundancy
- Radars play a critical role in NAS operations
 - > ADS-B added a layer of surveillance with safety and efficiency benefits but did not eliminate radars
- This proposal includes funding the procurement and installation of up to 377 radars across the nation (60% percent of the radar portfolio by system count)
 - > Reduced sustainment cost through consolidation of many different systems
 - > Provides an opportunity for optimized surveillance services

Airspaces and Surveillance Coverage

ADS-B Equipage Required Airspace

ADS-B Equipage Required Airspace

Class B Mode C Veil Up to 10,000' Class C (and up to 10,000' above) Class E along Gulf Coast (12 NM from coastline from 3,000' up to 10,000') Class E over CONUS (10,000' up to 18,000') Class A (18,000' up to 60,000')

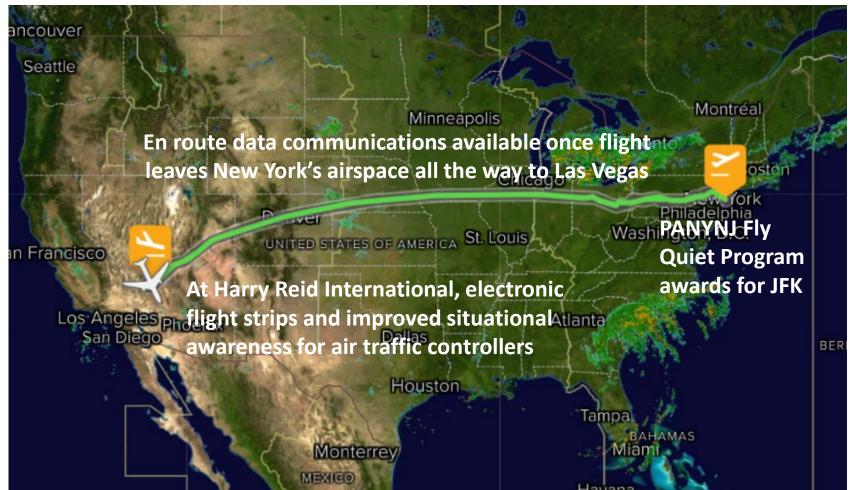
Orange: 1,500' ADS-B Coverage

Blue: 1,500' Radar Coverage

NAC Subcommittee (SC) Chair Report

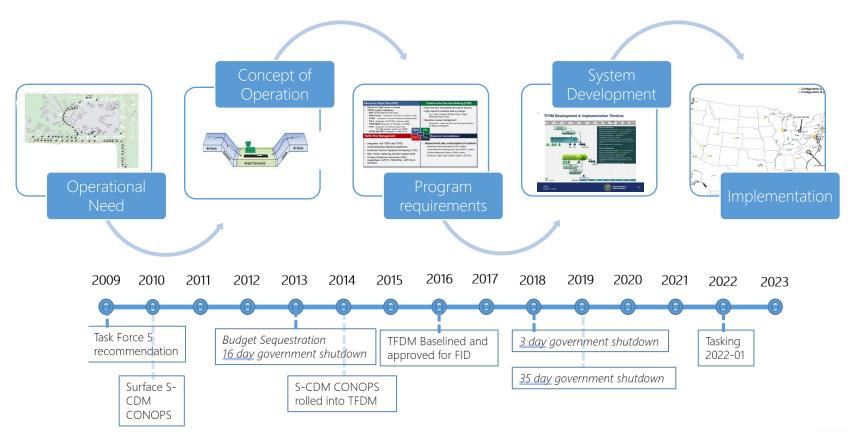
Jeffrey Winter, NAC Subcommittee Chair (JetBlue Airways)

NAC Subcommittee Report Topics


- Today's NAC Subcommittee report will outline the team's key activities, highlighting work completed over the last five months, including:
 - > Tower controller situational awareness and airport data enhancements readiness activities for Terminal Flight Data Manager
 - En route data communications operator status and update on benefits analysis for currently available services
 - Steps being made to reduce reliance on legacy procedures update on the findings from NAS Airspace Efficiencies workgroup

How are recently completed milestones contributing to operations?

An example using JetBlue JFK to LAS flight



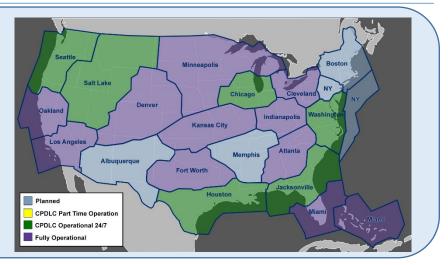
Terminal Flight Data Manager Program Update

Rob Goldman (Delta Air Lines) & Chris Oswald (ACI-NA)

Surface & Data Sharing Development Timeline

Setting the Stage for the Fall NAC Meeting

- Surface/Data Sharing NIWG continues its focus on way to enhance industry readiness for surface metering at the 27 airports where this capability will be available
- Areas of focus for readiness include:
 - > Roles and responsibilities of key stakeholders
 - > Policies and procedures
 - > Enabling technologies
- Also focusing on the benefits that TFDM provides beyond surface metering including at the 22 additional "non-surface metering" airports
 - > Reduced controller workload
 - > Improved surface management flexibility
 - > Improved flight operator and airport situational awareness
 - > Improved during- and after-event analytics, including those dealing with compliance
 - Setting the foundation for information-centric NAS operations and trajectory-based operations
- Fall NIWG briefing will focus on our findings and recommendations in both areas

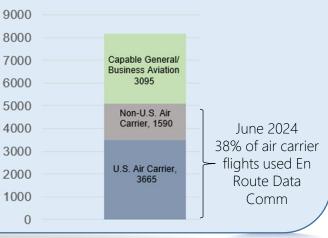

Data Communication NIWG Update

Chris Collings (L3Harris) & Ed Evans (Southwest Airlines) Kathy Torrence (FAA)

Data Comm NIWG Update (August 2024)

En Route Data Comm Deployment

- + 16 centers operational 24/7
- + En Route Full Services Increment 1 active at all active centers
- + Planning En Route deployment to remaining 4 centers.
- + 10 centers declared IOC



Upcoming Center Start Dates (Initial Testing):

Albuquerque: 26 Sep 2024 | Boston: 6 Nov 2024 | Memphis: Dec 2024 | New York: Feb 2025

Industry Updates

- Over 38% of En Route air carrier traffic used
 Data Comm in June 2024
- + Installation of avionics updates 77% complete
- Continue to receive positive user feedback as a usage grows
- + GA/BA NOTAM lifted revised En Route participation list published May 2024

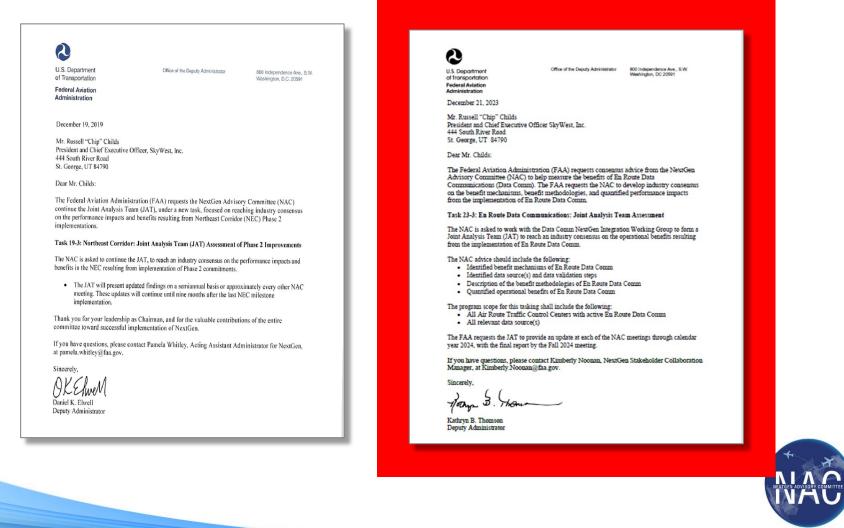
Data Comm En Route Aircraft Equipage

Data Comm Equipped Capable Fleet

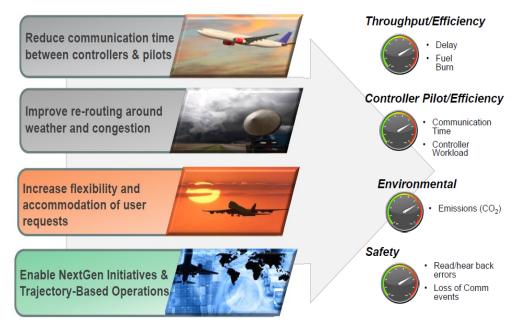
US Air Transport Operators	DCL Participating	En Route Participating	
American Airlines	\checkmark	\checkmark	
ABX Air	\checkmark	\checkmark	
Amerijet International	\checkmark		
Alaska Airlines	\checkmark	\checkmark	
Air Transport International	\checkmark	\checkmark	
Kalitta Air	\checkmark	\checkmark	
Delta Air Lines	\checkmark	\checkmark	
Eastern Airlines	\checkmark		
FedEx	\checkmark	\checkmark	
Atlas Air	\checkmark		
Hawaiian Airlines	\checkmark		
JetBlue	\checkmark	\checkmark	
National Air Cargo Group	\checkmark	\checkmark	
Spirit Airlines	\checkmark		
Omni Air	\checkmark		
Polar Air Cargo	\checkmark		к
Republic Airways	Initial ops with select crews and aircraft		Participating
Southwest Airlines	\checkmark	\checkmark	
United Airlines	\checkmark	\checkmark	Future User
UPS	\checkmark	\checkmark	
Western Global Airlines	\checkmark		
Business Aviation Fleet Size	4,619	3,095	
Non-US Air Transport Operators	74	38	

✓ ▲

Key

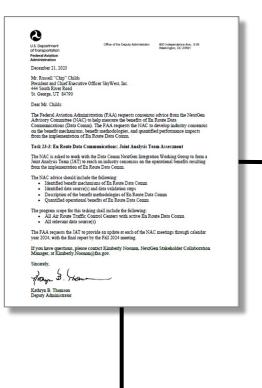


NAC Task 23-3: Joint Analysis Team: En Route Data Comm Update


Eric Silverman (American Airlines) & Alex Burnett (United Airlines) Dave Knorr (FAA) & Kathy Torrence (FAA)

Two Active JAT Taskings

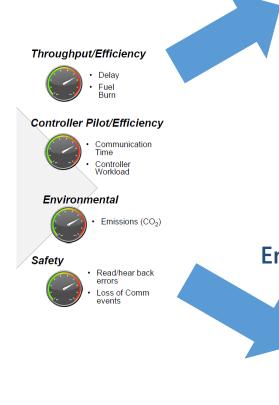
Main focus through 2024 spring/early summer has been Enroute Data Comm


We all believe in en route Data Comm benefits

- Agree with the underlying benefit tenets
- <u>But</u> quantifying the benefits is complex (qualitative easier than quantitative)
- Similar but different from tower data comm
- Still early in the Data Comm program
 - Ongoing issues continue to be worked between FAA/industry
 - En Route Full Services beginning deployment
 - **o** Additional complexity on measurement

Looking at two approaches to quantifying benefits

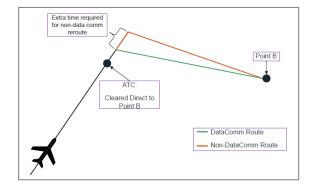
Big Data Approach (L3Harris)


- Similar to Tower Benefits in comparing transaction times (flights with data comm re-route versus those with voice)
- Expect signal to increase with more Data Comm ARTCC implementation, full services, and more flights + once ongoing issues are resolved
- To include comparisons at the city pair level
- May need more tweaks for consensus agreement on metrics, data sources, and methodology

Scenario Based Analyses

- Identify and build out examples of that
- illustrate direct operational benefits e.g., space launch/convective WX/military-SUA airspace

Working through data contributing to quantified benefits



Statistically-based efficiency analysis is complex

- Estimates small savings from faster transition from current to new route
- Small percentage of flight time/distance
- Often unrelated to the "efficiency" of the reroute

Cor

2 3

Error rate and time saved may be more straightforward

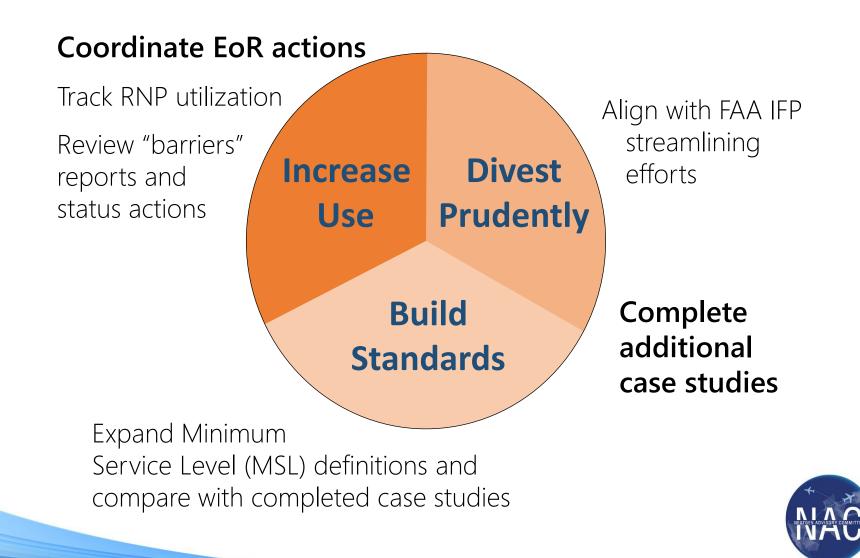
Complexity and Error Rate Estimates								
mplexity	Error Rate							
	0.00%							
	4.08%							
	5.83%							
	Comm Time Saved = Voice Message Time – CPDLC Message Time Controller CPDLC Message Time Voice Message Time Message Time							
	Time							

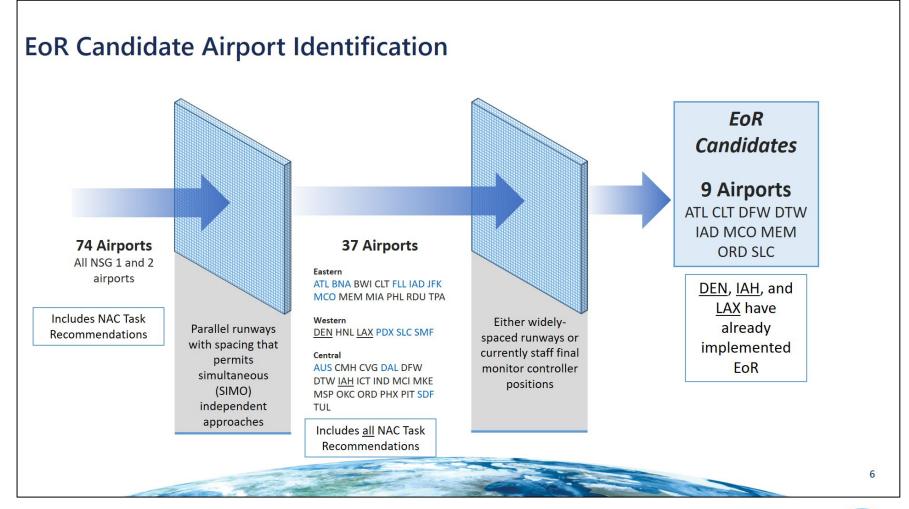
1,038,875 readback errors mitigated

3,924,215 minutes of comm time saved

Next Steps for Task 23-3 (En Route Data Comm)

- Continue deliberations to reach consensus approach to measuring operational impact of en route data communications
 - > Additional follow up on the statistical-based benefits calculations
 - > Explore complementary methodologies, scenarios and illustrative examples
 - Build out more direct operational benefits e.g., space launch/weather
 - Provide interim analysis for Fall 2024 and highlight opportunities for value from a future secondary analysis
 - > Potential Industry led pilot survey through A4A Ops Council in August
 - Gain insights on what industry pilots are experiencing may be a more qualitative look




NAC Task 23-2: NAS Airspace Efficiencies Update

Lee Brown (JetBlue Airways) & Ron Renk (United Airlines) Greg Schwab (FAA) & Chris Southerland (FAA)

Plan for Addressing Task Elements

Considering Expansion of EoR Sites

Additional Case Studies

Examining other airports will harden divestiture process and MSL recommendations

<u>Category</u>

- Military use: HNL, VPS
- NSG 3/4: HUT, PVD
- NSG 1/2: DEN, DTW
- HPN, MMU, SWF, FRG, ISP

Selection Logic

- Look at operations that include heavy number of military flights
- Sample general aviation operations and equipage
- Examine a full NSG 1 airport along with NSG 2 hub
- NY area: JFK, LGA, EWR, TEB, Consider a large network of airports; varying equipage and PBN procedure inventories

NSG 3&4 Airport Case Studies (HUT & PVD)

Procedures will continue to be reviewed through the established IAP periodic review process. As part of that review process, the FAA should consider the following assumptions, lessons learned, and criteria:

- Underlying assumptions
 - These criteria may need to be applied to all airports, regardless of NSG level
 - Low utilization does not equal no need
- Lessons learned
 - $_{\odot}~$ The end state may differ from the initial impression
 - <u>Robust</u> coordination will be required between FAA, state and local stakeholders, and pilot communities

NSG 3&4 Airport Case Studies

Criteria

- 1. Is this the only IAP at the airport?
- 2. Is this airport susceptible to unusual weather conditions?
- 3. Are there specific flight training considerations? What is the closest alternative procedure for training purposes?
- 4. Are there commercial operating requirements do OPSPECS or SOPs stipulate precision or vertical guidance?
- 5. Is this procedure a designated MON airport procedure? (VOR or ILS)
- 6. Will removal eliminate lowest landing minima to an individual runway?
- 7. Does this procedure exist because of high terrain or an obstacle that makes a straight-in procedure unfeasible or which would result in the straight-in minimums being higher than the circling minima?
- 8. Is this circling-only procedure (1) at an airport where not all runway ends have a straight-in IAP, and (2) does it have a Final Approach Course not aligned within 45 degrees of a runway which has a straight-in IAP?

NSG 3&4 Airport Case Studies

Name				HUTCHI	SON KANSAS				Data Source					
ICAO Cod				KHUT										
Nav Servi	•				num Capabilities - I	LS, RNP APCH,	VOR, NDB		FAA					
MON AIR	PORT			NO										
NPIAS	Runway	Length (LD	A) Lighting Ai	ds Procedure Tit	e RNP APCH REQ	ILS or LPV	LNAV/VNAV	LNAV or S/I	Utilization Rate	In Complia	nce In Comp	liance With	For Noise	
FAR 139 Ir	_					Minima	Minima	Minima			nt Current A		Abatement	
Airspace O						(SM - HAT)	(SM - HAT)	(SM - HAT)			eria Design St	-		
Runway C	Runway	1				(,		(,						
_			deral Aviation											
Common			ministration	Pro	ocedure Usa	ge and E	quipage							
Airport Lig	onti Runway	13												
Noise Con		13						КНИТ	Please click on th	he arrow to se	lect airport			
Review Cu									Thease click off th	to allow to se	acce an port			
Operat														
Contro		leral Aviation	Proc	edure Usad	e and Equipa	de								
Fleet N	Adır	ministration		ouulo ooug	o ana Equipa	90							Aircraft	Type
Operat														
Equipa						K	PVD 💽 Please	e click on the arrow	to select airport					
Airport														
Types (PROCEDUR	RE USAGE	E	EQUIPAGE						
Operat	Carrier		Procedure	Operations			Procedure Co	unt			Aircraft T	vpe		
Militar		4 002										2,239		
Proced	SWA	4,002 1,541	STA	R		15,810	STAR			2	B737 A320	2,239		
Special	MXY					10,010	APPROACH	12			B738	1,047		
Contin	JIA	1,517	APPROAC	-		_	Grand Total			14	BCS3	1,192		
Jser Ro ATC Re	AAL DAL	1,237 1,163	Grand Tota	al		16,419					CRJ9	1,033		
Redun	GA	877									CRJ7	1,024		
Proced	JBU	812	Route Type		rocedure Name						E145	836		
TOCEU	RPA	708	CONV		S OR LOC RWY 05						B38M	770		
- L	PDT	542			S OR LOC RWY 34						A321	674		
- L	ENY	450			OR RWY 05						A319	623		
	EDV	316			OR Z RWY 34						E170	587		
	UCA	276	ILS	APPROACH		2					E75L	483		
	EJA	270			S OR LOC RWY 05	123					E195	411		
	AAY	251			S OR LOC RWY 23	122					B752	364		
	UPS	242	LDA	APPROACH	S OR LOC RWY 34	10 9					E75S	297		
	GJS	163	LOC		S OR LOC RWY 23	3					B712	256		
	UAL	157	RNAV		ORDN TWO (RNAV)	3				11,769	C56X	181		
	ASH	152	0000		IPOR THREE (RNAV)		4,041			11,703	C750	156		
	FDX	121		APPROACH	in on thise (MAV)	24	4,041				F2TH	148		
	SKW	107			NAV (GPS) RWY 05	54					E190	142		
	LXJ	96			NAV (GPS) RWY 16	4					C68A	121		+
	JRE	57			NAV (GPS) RWY 34	3					E55P	105		
	HRT	53			AV (OP3) T RWT 23	10					CL35	81		
	SCX	49	C	R	NAV (RNP) Z RWY 23	9					G280	76		NEXTGEN
	SHH	46	VISUAL	APPROACH V	ISUAL	229					GLF4	74		(LA'
	EJM	35	VOR		OR/DME RWY 23	1					H25B	62		and the second
	FTH	29									C700	56		

Schedule to December Deliverables

August	September	October	November								
RNP Utilization: Select sites & metrics coordination EoR: Formalize feedback & status check on barriers report Case studies: Initiate remaining cases											
L	RNP Utilization: Review & base EoR: FAA update on FY2025 pl Case studies: Complete remain MSL: Incorporate case study in	ans ning cases									
		Formulate recommendations and start documentation	ns Review report with NACSC and prepare for Dec 10 NAC								
			NIAC								

50

Review of Action Items & Other Business

Kimberly Noonan, NAC Committee Manager (FAA)

Closing Comments & Adjourn

Chip Childs, NAC Chair President & CEO (SkyWest Airlines)