NAS Enterprise Architecture

Service Roadmaps v17.0

BASELINE

February 2025

Content Summary

Section	
Service Roadmaps Overview	
Service Group 1: Air Traffic Management	
Service 101: Flight Planning	
Service 102: Air Traffic Control – Separation Assurance	
<u>Service 103: Air Traffic Control – Advisory</u>	
Service 104: Traffic Management – Synchronization	
<u>Service 105: Traffic Management – Strategic Flow</u>	
Service 106: Emergency and Alerting	
Service 107: Navigation	
Service 108: Airspace Design and Management	
Service 109: Government/Agency Support	
Service Group 6: Certification	
Service 601: Risk-Based Decision Making	
Service Group 7: Environment and Energy	
Service 701: Science and Tools	
Service 702: Technology	
Service 703: Alternative Fuels	
Carrier 704 Dallas Davids and t	

Service 704: Policy Development

Service Roadmaps Overview

What are the Service Roadmaps?

- The NAS Service Roadmaps depict current NAS operations and the timeline for planned improvements that will deliver benefits to NAS users in pursuit of the Next Generation Air Transportation System (NextGen) vision and move towards a fully integrated information environment for select FAA services.
- The Service Roadmaps are updated annually as research and analyses more clearly define FAA service evolution.

Guidelines for Understanding the Roadmaps

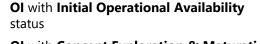
- The Operational Improvement (OI) bars represent the date range within which an Operational Improvement is expected to be initially (e.g. at the first location) available to users. For OIs that are expected to be made operationally available incrementally, the range represents the earliest date for the first initial operational change to the latest date for the final operational change.
- Each Service Roadmap diagram is segmented by service capabilities, which are depicted by alternating gray and white backgrounds. The diagrams use segments with green background to capture Support Activities as needed.
- Appendix A contains the list of OIs that were completed and are no longer included on the current Service Roadmaps

Roadmap Legend

Roadmap Shape Information

Timeline (calendar year)

Current Operational Environment (COE) Arrow indicates sustainment



Current Operation (CO) Triangle indicates full operational availability

Operational Improvement (OI) Fill color indicates status

OI with Concept Exploration & Maturation status

OI with Development status

Operational Improvements (OIs) by Status

OI with Planned status

Support Activities (SAs)

Support Activity which is primarily tracked on Service Roadmaps

Support Activity which is primarily tracked on another NAS EA Roadmap

XYZ

Planned Support Activity

External Data Element being researched or developed by a NextGen partner agency/entity

BASELINE

Service Roadmaps Overview

OI Status Definitions

- OI status is determined by the most mature capability solution, until the most mature solution achieves Initial Operational Availability (IOA) status.
- Once the most mature capability solution achieves IOA, the OI will remain IOA until all capability solutions are complete, and then the OI will transition to a Current Operation (CO).

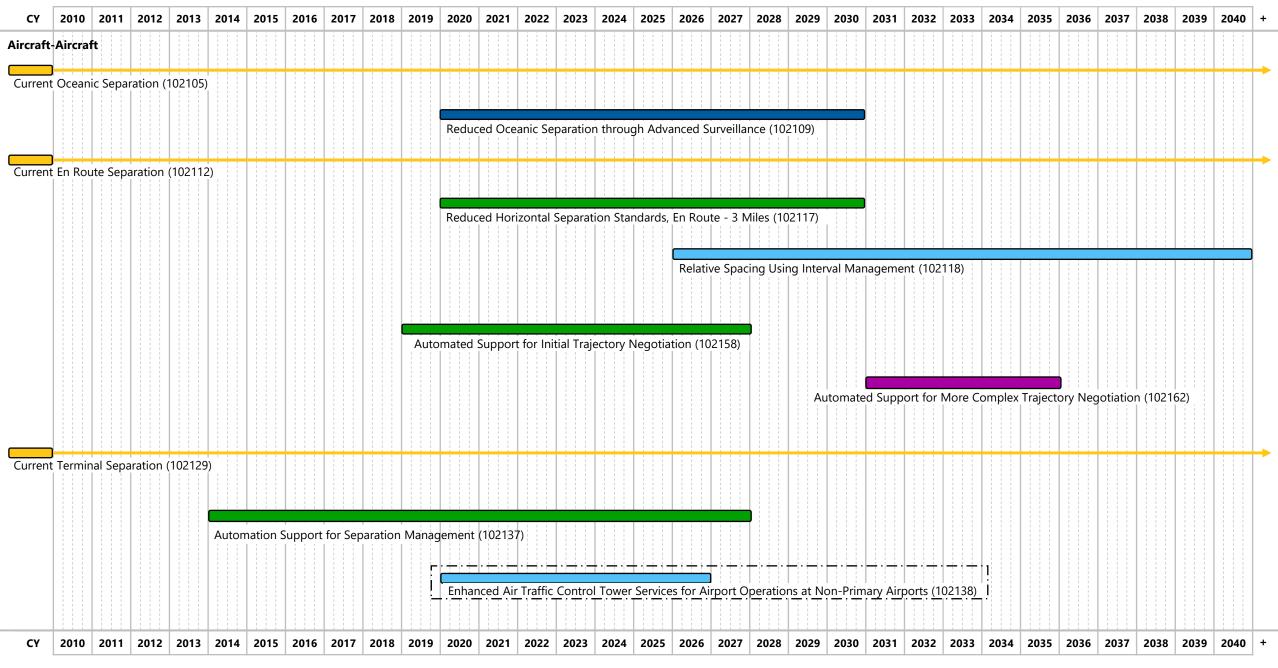
OI Status	Definition
Planned	No funding – either internally or externally (e.g. NASA or other partner agency) – has been allocated. The OI represents a potential future concept.
Concept Exploration & Maturation	Work is underway and funded to define the concept, develop acquisition artifacts, mitigate risks, and determine the options for the implementation strategy. Solutions under development to deliver this operational change are currently in either concept and requirement definition or investment analysis up until a final investment decision is achieved (or a comparable agreement on the scope/implementation).
Development	The most mature solutions to deliver the operational change are under development. There may be additional solutions needed to fully deliver this OI which are less mature.
Initial Operational Availability	At least one of the capability solutions needed to deliver the operational change has been achieved or approved for use at an initial site. IOA occurs after demonstration of initial operational capability at the key test site(s). An OI remains in IOA until all capability solutions have achieved operational use.
Current Operational Environment (COE)	The current operational state of FAA service delivery to NAS users.
Current Operation (CO)	All capability solutions needed to fully deliver the OI are complete.

Service Group 1: Air Traffic Management

Air traffic management encompasses all of the services required to provide air traffic services to users. It consists of all aspects of the operations required to ensure safety of flight operations. It consists of air traffic control aircraft separation services, air traffic control advisories, air traffic flow management services for effective planning to ensure a safe allocation of resources, and airspace management. The air traffic management service group includes provision of services to both commercial and general aviation operations under both positive control and the flight planning services provided to those flying under visual flight rules. It also includes the navigation services provided to all aircraft, as well as air traffic support to other government entities.

Service 101: Flight Planning

The Flight Planning Service provides both flight plan support and flight plan data processing to support the safe and efficient use of the nation's airspace through the development and use of coordinated flight plans. This includes preparing and conducting preflight and in-flight briefings, filing flight plans and amendments, managing flight plan evaluation and acceptance, preparing flight planning broadcast messages, managing and broadcasting flight status throughout the flight including changes, and maintaining flight-planning data archives. This service offers preparation to conduct a flight within the NAS and allows changes to flight profiles while operating within the NAS.


Flight Planning (1 of 1)

СҮ	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	+
Flight P	an Sup	port																														
Current	Flight	Plan Su	pport (101101))																											
									Provic	de Flight	t Plan Ev	valuatic	on and I	Feedbad	ck in all	Phases	of Fligh	nt (1011	03)													
																	Provic	le Autor	mated F	Flight P	lan Con	straint	Evaluati	l on with	Feedb	ack (10	1104)					
Qualifi	ed Serv	vices –	Flight F	Plan Su	pport			UAS F	light In	formatio	on (101	301)																				
																							ETM F	light Inf	formati	on (101	302)					
Flight D	ata Ma	inagem	ent																													
Current	Flight	Data M	anagen	nent (10	01201)																											
																		Flight	Manag	ement	with Tra	ajectory	v (10120	2)								
Qualifi	ed Serv	vices - I	Flight D	Data Ma	anagem	nent																										
Suppor	t Activ	/ities								Flick	+ 1																					
										Fligh		Nation I Evolutio	Manage on	ement																		
] тво і	ive Flig	jht Dem	0														
															Engine	ering A	nalyses	for Upp	per Clas	s E Ope	erations											
															M Fligh gineerir																	
													V		on of Glo ige Capa																	
															Concept			Flight	Testing													
СҮ	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	+
									= • • •																							1

Service 102: Air Traffic Control (ATC) – Separation Assurance

The separation assurance service ensures that aircraft maintain a safe distance from other aircraft, vehicles, terrain, obstacles, and certain airspace not designated for routine air travel. Separation assurance involves the application of separation standards to ensure safety. Standards are defined for aircraft based on the operating environment as well as aircraft type, size, and equipment. Controllers at ATC facilities are responsible for the safe separation of aircraft under their control using vertical, lateral, longitudinal or visual separation methods.

ATC – Separation Assurance (1 of 3)

ATC – Separation Assurance (2 of 3)

сү	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039 2	2040	+
Aircraft	Aircra	ft (con	.)																													
Aircrait	AIrcra	rt (com													In	nprovec	d Paralle	el Runw	ау Оре	rations		Remo	otely Sta Applica	r-wise W ffed Fec	/ake Tu leral To)2157)	rbuleno	ry Using ce Sepa prvices (1 (102155	o2155)	l Manago 02152)	ement (102148	
Qualifi	ed Sen	vices – '	ſehicle	-Vehicl	le Sepa	ration			In	nproved	Paralle	l Runw	ay Oper	Aircra								Advar (102163	3)					ion Mar	nagemen	t (10216	50)	
	2010	2011	2012	2012	2014	2015	2016	2017	2019	2010	2020	2021	2022	2022	2024	2025	2026	2027											Corrido			-
СҮ	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039 2	2040	۲

BASELINE

NAS Enterprise Architecture Service Roadmaps Version 17.0

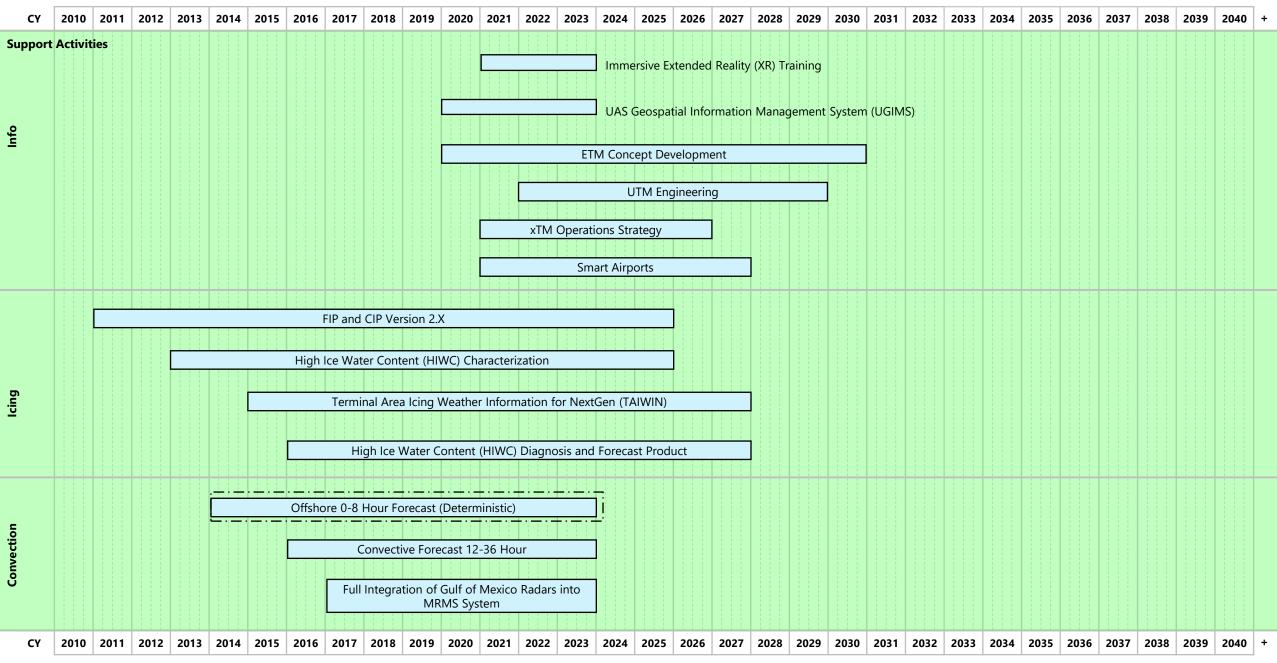
ATC – Separation Assurance (3 of 3)

СҮ	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	+
Aircraft-	Terrair	n/Obsta	icles Se	parati	on																											
Curren	t Aircra	aft To Te	errain / (Obstac	le Sepa	aration (1	102201))																								
Qualifie	ed Serv	vices – \	/ehicle	-Terra	in/Obst	tacles S	Self Sep	aration																								
Aircraft-	Airspa	ce Sepa	aration																													
Curren	t Aircra	ift To Ai	rspace S	Separat	ion (10)2301)																										
Qualifie	ed Serv	vices – N	/ehicle	– Airsp	oace Se	eparatio	on																									
Surface	Separa	tion																														
Curren	surfac	ce Sepa	ration (102401)																											
Qualifie	ed Serv	vices – S	Surface	Separa	ation																											
Suppor	t Activ	ities] Conc	ept of C	Operatio	ons for	Use of .	Alternat	ive Cor	nmunic	ations ii	n the Od	cean				
				Clos	ely Spa	aced Par	rallel Ru	inway O	peratio	ns - Re	vised Se	eparatio	on Stanc	lards																		
																			:::	Asses	s Impa	ct of Ne	ew Entra	ants on	1090 M	lHz Spe	ctrum					
													A	AM Eng																		
																				n Advis		ormatio	n									
																		nce Beh	avior R	esearch 1												
													Separat																			
СҮ	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	+

BASELINE

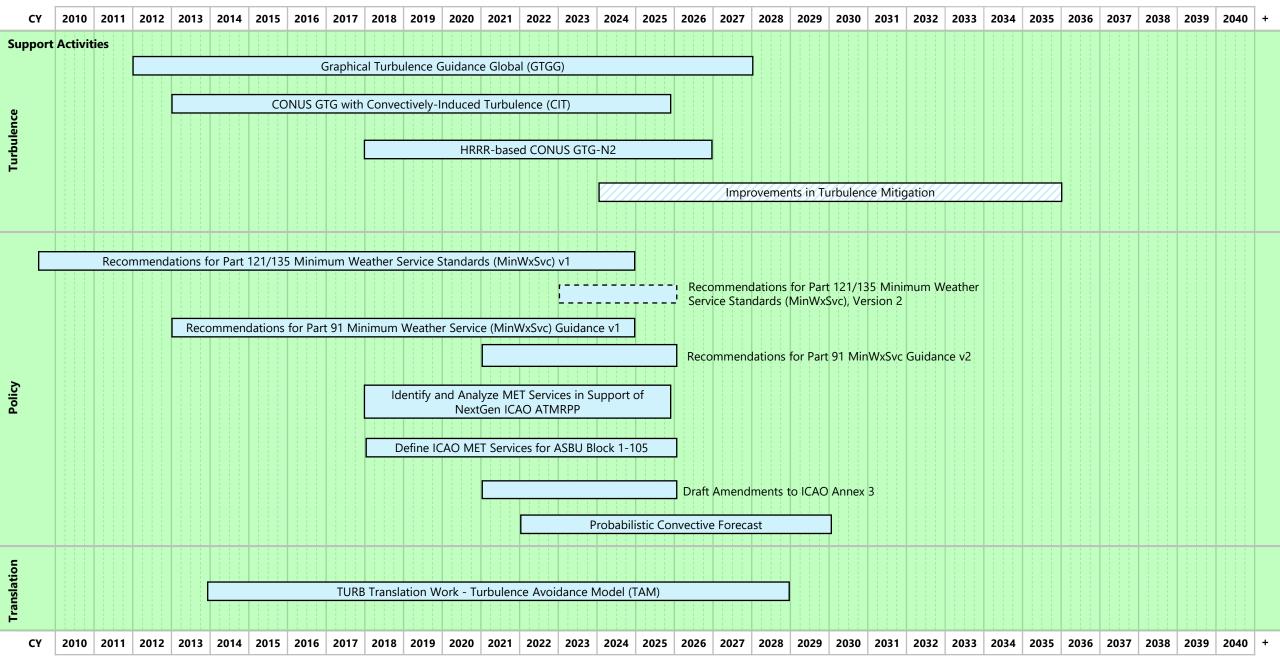
Service 103: Air Traffic Control (ATC) – Advisory

Air traffic control and other facilities provide advice and information to assist pilots in the safe conduct of flight and aircraft movement. These advisories include providing weather information, traffic, and NAS status information to pilots, flight planners, and the general public. These advisories and information are either directed to a specific location or broadcast to any user in the area.


ATC – Advisory (1 of 3)

СҮ	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	+
Weathe	Advis	ories																														
Current	Termin	al Advi	sory - V	Veather	(10310	1)																										_
Current	En Rou	ite Advi	sory - \	Weather	r (10310)7)																										
Current	Oceani	c Advis	ory - W	/eather	(103114	4)																										
					Initial	Integra	tion of	Weathe	er Inforr	nation i	nto the	NAS (1	03119)																			
											i i i	lu fa una		02120)																		
								Impro	ved Avi	ation w	eather	Inform	ation (i	03120)																		
																			ln 	itegratio	on of W	eather	Informa	ation int	to NAS	Automa	ition an	d Decis	ion Mal	king (10)3123)	
Qualifie	d Serv	ices – V	Veathe	r Advis	sories																											
															Qualif	ied We	ather In	formati	on (103	401)												
Traffic	Advise	ories																														
Current	Traffic	Advisoi	y (1032	201)																												\rightarrow
Qualifie	d Serv	ices - T	raffic /	Advisor	ries																											
											Small	UAS Ac	lvisory	Services	s (10350)1)													F A.	(10	2502)	
																				P	avisory	Service	es for C	poperat	ive Sep	aration	in Uppe	er Class	E Airsp	ace (10	3502)	
ATM Sta	tus Ad	visories																														
Current	NAS St	atus Ac	lvisory	(103301)																											
														Tailor	ed Deliv	erv of (On-Dem	and NA	AS Infor	mation	(10330	6)										
Qualifie	d Serv	ices – S	Status /	Advisor	ries																											
СҮ	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	+

BASELINE


NAS Enterprise Architecture Service Roadmaps Version 17.0

ATC – Advisory (2 of 3)

BASELINE

ATC – Advisory (3 of 3)

BASELINE

NAS Enterprise Architecture Service Roadmaps Version 17.0

Service 104: Traffic Management (TM) – Synchronization

Traffic synchronization supports the expeditious flow of traffic for the large number of aircraft operations within the NAS during any given period of time. NAS processes maximize efficiency and capacity in response to weather, NAS infrastructure, runway availability or other conditions. Traffic synchronization focuses on the tactical portion of traffic management within a given traffic flow by providing sequencing, spacing, and routing of aircraft. Traffic synchronization activities are accomplished while maintaining separation assurance and implementing strategic flow management directives. The traffic synchronization service provides tactical instructions to optimize operations while airborne and on the surface.

TM – Synchronization (1 of 2)

СҮ	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040
Airborne	•																														
Current	Ocean	ic Conf	lict Prol	oe (104	101)																										
											Optim	nized O	ceanic 1	rajecto	ries via	Interac	tive Plai	nning (1	04102)												
Current	Conflic	t Probe	e (1041()3)																											
Current	Arrival	and De	eparture	e Seque	ncing (104109)																									
Current	Tactica	al Mana	gement	t of Flov	w in En	Route f	or Arriv	als and	Depart	tures (1	04115)																				
						Impro	oved De	eparture	Schedu	uling int	o Over	head St	reams (104117)																
																						En	ihanced	Time B	ased M	letering	Operat	tions in	All Wea	ther (1	04120)
																								 - - Trai	ectory-	Based N			Gate-to	Gate	(10/12)
																						Time-	Based N	Veterin	g in the	e Termir	nal Envii	ronmen	t (10412	28)	
																						Impro	oved Arr	ival Me	tering (Operatio	ons (104	4131)			
																						Impr	oved A	rrival/D	epartur	e Opera	ations w	vith Inte	grated I	Data (1	04130)
																								Impro	oved Air	craft Tr	ajectori	es (104 ⁻	132)		
СҮ	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040

TM – Synchronization (2 of 2)

СҮ	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	+
Qualifi	ed Serv	ices –	Airborr	ne																												
																			UAM	Strateg	gic Trafl	fic De-o	conflictio	on (1043	301)							
Surface	e																															
Current	J t Surface	e Traffio	c Mana	gement	(10420	1)																										-
																					Surfa	ce Taxi	Informa	ation Ma	anagem	ent wit	h Confo	rmance	Monito	oring (10)4206)	
							Surfac	e Traffi	c Mana	gement	(10421	1)																				
							Sund			gement	(10421	•)																				
																					Expa	nsion o	f Surfac	e Traffic	: Manag	gement	(104212	2)				
Qualifi	ed Serv	ices –	Surface	2																												
Suppor	rt Activ	ities																														
					i i i			N	1obile IF	R Servic	es Con	cept Ex	ploratio	on																		
									Mobile	e IFR Sei	vices D	emons	tration																			
										F	light D	eck CD	M Conc	ept Exp	loratio	n																
												[]4	M Cond	ept De	/elonm	ent																
] Initi	al I I Δ M	Auton	omy Fr	ngineerii	na								
																			T I I I I				perating		ting Sta	andard						
																UAN	A Conce	ept Vali														
																				Aircraft												
																		COI	litected	Allerall	t Engini	cering										
СҮ	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	+

Service 105: Traffic Management (TM) – Strategic Flow

The strategic flow service provides for orderly flow of air traffic across traffic flows from a system perspective. NAS demand and capacity are analyzed and balanced to minimize delays, avoid congestion, and maximize overall NAS throughput, flexibility, and predictability. Actual and predicted demand is compared to the current and predicted capacity of the airspace, airports and infrastructure to plan the overall NAS strategy. When necessary, traffic flow management (TFM) plans are developed collaboratively to optimize the flow of traffic while accommodating user requests and schedules, airspace, infrastructure, weather constraints, and other variables. The strategic flow service is comprised of long-term planning (more than one day in advance), flight-day traffic management (current 24-hour period) and performance assessment capabilities.

TM – Strategic Flow (1 of 1)

СҮ	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	+
Long-Te	rm Pla	nning																														
Current	Long	Term P	lanning	(10510 ⁻	1)																											
Qualifie	ed Serv	/ices –	Long-To	erm Pla	anning																											
Flight D	ay Mai	nagem	ent																													
Current	Flight	Day M	anagem	ent (10	5201)																					<u> </u>		Flow Ma	inagem	ent (10!	5207)	
																			Impro	ved Tra	ffic Mar	i i i		borne R atives w				05210)				
																			Autom	nated A	nalysis	of Flow	Strateg	ies (105	5211)	Integr	rated Ca	apacity	Manage	ement (105212))
																										Integ	rated D	emand I	Manage	ement (105213))
Qualifi	ed Serv	vices -	Flight D	Day Ma	nagem	ent																										
Perform	ance A	Assessn	nent																													
Current	NAS P	Perform	ance As	sessme	nt (105	301)																										
																					Enhan	ced Flig	ght Day	Evaluat	ion (10	5303)						
Qualifi	ed Serv	vices –	Perform	nance /	Assessn	nent																										
Suppor	rt Activ	vities													xTM A	nalysis	& Fram	nework	Develo	pment												
									Flight a	and Flow	w Conce	ept Expl	oration																			
														F	light a	nd Flow	/ Engine	ering R	Research	1 1												
																	Dynami	c Polyg	on Eng	ineering	9											
														Maturir	ng FF-I	CE/R2 C	oncept]											
											PBFI	V Mode	eling																			
СҮ	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	+

Service 106: Emergency and Alerting

The emergency and alerting service monitors the NAS for distress or urgent situations, evaluates the nature of the distress, and provides an appropriate response to the emergency. Applicable situations include those that occur on the ground or in-flight. Emergency services include emergency assistance and alerting support.

Emergency and Alerting (1 of 1)

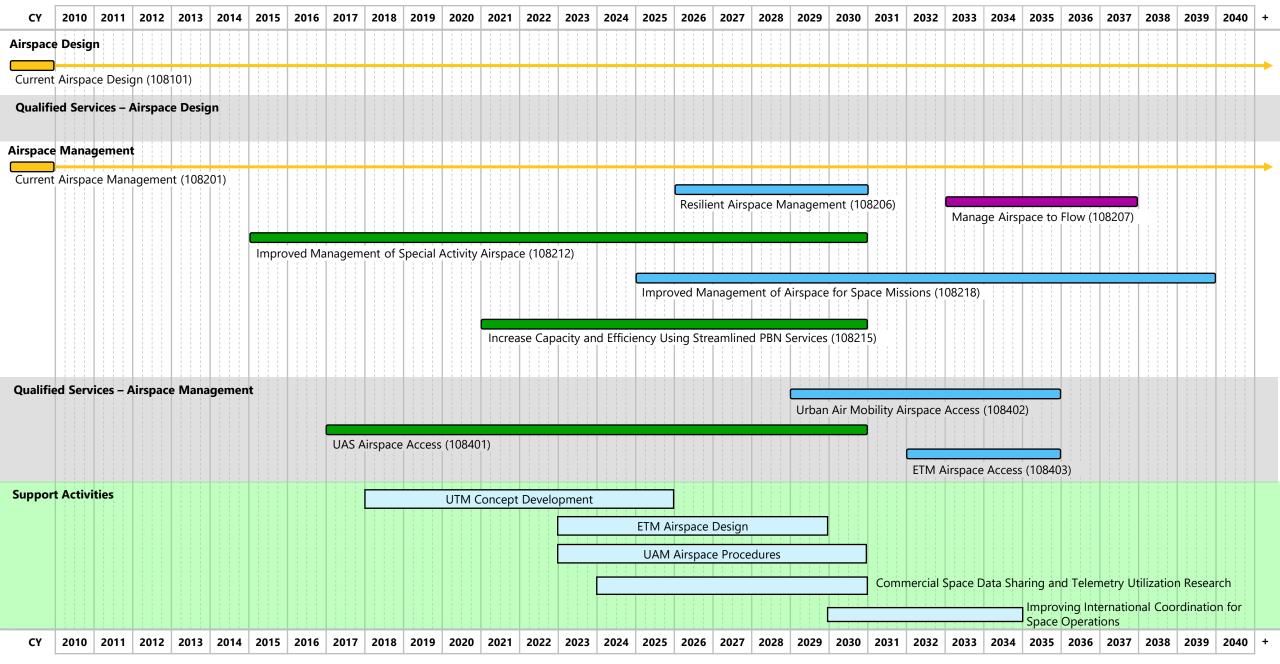
СҮ	2010 20	11 2012	2 2013	201	4 201	5 2016	5 2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	+
Emerger	ncy Assista	nce																													
Current	Emergency	/ Assistai	nce (106	101)																											
Qualifie	ed Services	– Emerg	gency A	ssista	nce																										
Alerting S	Support																														
Current	Emergency	/ Alerting	J Suppor	t (106	201)																										
Qualifie	ed Services	– Alerti	ng Supp	oort																											
СҮ	2010 20	11 2012	2 2013	201	4 201	5 2016	5 2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	+
																						LUCE	2000			2000			2005		1 I

Service 107: Navigation

The Navigation service provides electronic signals-in-space to enable suitably equipped NAS users to determine aircraft position and to operate safely and efficiently under most weather conditions. Avionics onboard the aircraft receive and process the signals to provide the current position, distance from a predefined or selected position, course selection, and course deviation. The Navigation service includes ground and space-based networks of electronic navigation aids (NAVAIDS), as well as visual NAVAIDS, in accordance with international standards. The network of NAVAIDS enables users to navigate during airborne operations (such as cruise, approach, and landing) and during surface operations.

Navigation (1 of 1)

СҮ	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	+
Airborn	e Guidan	nce																														
Current	En Route	e Navi	gation	(10710	1)																											
Current	Precisio	n Appr	oach ai	nd Lan	ding (10	7104)																										
			Groun	nd Base	d Augm	entatio	on Syste	em (GBA	S) Preci	ision Ap	proach	ies (107	(107)																			
Current	Departu	ire and	Non-P	Precisio	n Appro	ach (10)7111)																									
												Resilie	ent PBN	l Opera	tions (1	07120)																
Qualifi	ed Servio	ces – A	\irborn	e Guid	lance																											
Surface O	Guidance	e																														
Current	: Airport !	Surface	e Guida	ince (10	07201)																											
Qualifi	ed Servio	ces – S	urface	Guida	nce																											
СҮ	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	+


BASELINE

NAS Enterprise Architecture Service Roadmaps Version 17.0

Service 108: Airspace Design and Management

The airspace management service ensures the safe and efficient organization and use of the national airspace resource. Airspace management includes design, organization, and implementation of airspace structures in order to meet the needs of all public stakeholders. Airspace design establishes the guidelines for airspace structures in order to accommodate the different types of air activity, volume of traffic, and differing levels of service. Airspace organization and implementation is the process by which the airspace design options are selected and applied to meet the needs of the ATM community.

Airspace Design and Management (1 of 1)

BASELINE

Service 109: Government/Agency Support

Government/Agency Support provides information and coordination services. Government/agency support provides services to law enforcement missions, government land management agencies, natural disaster relief flights, medical emergency flights, aerial forest fire fighting, drug interdiction flights, state aviation authorities, National Transportation Safety Board, and military air defense operations while maintaining the safe and efficient use of the nation's airspace.

Government and Agency Support (1 of 1)

СҮ	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	+
Tactical	and Str	ategic	Suppo	ort to O	ther A	gencie	5																									
Current	Tactical	l and S	trategic	c Suppc	ort to C)ther A <u>c</u>	yencies	(109103																								
Search,	Rescue	e, and a	Accideı	nt Inve	stigati	ons																										
Current	Search,	, Rescu	e, and ,	Accider	nt Inves	stigatior	ns (109:	202)																								
СҮ	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	+

BASELINE

NAS Enterprise Architecture Service Roadmaps Version 17.0

Service Group 6: Certification

Certification Services is responsible for developing regulations; certification, continued operational safety, production approval and airworthiness of aircraft; in addition to certification of pilots, mechanics, and others in safety-related positions; certification of all operational and maintenance enterprises in domestic civil aviation, certification and safety oversight of U.S. commercial airlines and air operators; and oversight for civil flight operations. Certification services also includes the risk-based decision making framework, tools, and processes used to improve aviation safety overall.

Service 601: Risk-Based Decision Making

Risk-based Decision Making Services build on safety management principles to proactively address emerging safety risk by using consistent, data-informed approaches to make smarter, system-level, risk based decisions.

Risk-Based Decision Making (1 of 1)

сү	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	+
Data																																
													Autor	nated S	afety Inf	ormatic	ן זי Shar	ing and	Analys	sis (6011	04)											
															Dro	dictive (and So	fatulat	formatio	un Shari	ng (601	105)									
															PIE	arctive		ο απιά δέ	arety III	iornati(my (60	103)									
Modeli	na																	[]]														
wodell	en a																															
					Integ	rated Sa	ifetv An	alvsis	nd Mor	lelina (f	501202)																					
					l																											
Hanarda																																
Hazards																																
Suppor	rt Activ	/ities																														
																				•												
												A	utomate	e Discov	ery of F	recurso	ors															
									į,	• • •						· - · - ·				-												
СҮ	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	+
i			L					L	L		·				L	i		L	L			L	L	L	L		L	L		<u> </u>		

BASELINE

Service Group 7: Environment and Energy

Environment and Energy Services provide environmental protection that allows sustained aviation growth. Environment and Energy Services address the environmental issues associated with aviation such as noise, air quality, climate, energy, and water quality. These services are provided through scientific research and tools for integrated environmental analysis, mature new aircraft technologies, development of aviation alternative fuels, and development of policies and environmental standards, market based measures, and an environmental management system.

Service 701: Science and Tools

Aviation environmental analyses, impact determinations, and mitigation decisions for NextGen activities must continue to be based on a solid scientific foundation. This will require continued investments in research to improve our scientific understanding of the impacts of aviation. This is particularly important with respect to aviation's effects on climate. It is also germane to gaining a more nuanced and multi-faceted understanding of noise impacts, given community concerns with aircraft noise and public pressures to mitigate noise at levels lower than current Federal guidelines. In addition, the development and use of advanced decision-support tools that account for interdependencies of impacts and cost-benefit analyses of potential solutions will facilitate more informed decision-making. Prospective solutions and combinations of solutions have different impacts, benefits, and costs. Some solutions have the ability to optimize for one area of environmental protection at the expense of another, and trade-offs should be as transparent as possible.

Science and Tools (1 of 1)

СҮ	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	+
Science	and To	ols																														
												Integr	ated En	vironm	ental M	odeling	J g - Phas	e III (70	1104)													
СҮ	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	+

BASELINE

Service 702: Technology

Historically, new technologies have offered the greatest success in reducing aviation's impacts. New engine/airframe technologies will need to play key roles in achieving aviation environment and energy goals. The U.S. will support advances in engine technology and airframe configurations to lay the foundation for the next generation of aircraft. Our technological strategy envisions a fleet of quieter, cleaner aircraft that operate more efficiently with less energy. The FAA and NASA, along with the Department of Defense, closely coordinate efforts on aeronautics technology research through the President's National Science and Technology Council's multi-agency National Aeronautics Research and Development Plan. Each agency focuses on different elements but they share the same national goals. The FAA's focus is on maturing technologies for near term application, while NASA focuses on a broader range of time frames of technology development. This includes future concepts such as electric aircraft.

Technology (1 of 1)

СҮ	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	+
Technol	ogy																															
rechnol	J											Next	Gen Envi	ronmer	tal Eng	ine and	l Aircra) t Techn	ologies	- Phas	e III (70	2104)										
Suppor	rt Activ	vities																														
						C	CLEEN E	ngine a	nd Airc	raft Tec	hnology	/																				
СҮ	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	+

BASELINE

NAS Enterprise Architecture Service Roadmaps Version 17.0

Service 703: Alternative Fuels

Sustainable alternative aviation fuels development and deployment offer prospects for enabling environmental improvements, energy security and economic stability for aviation. The aviation industry has made a commitment to convert its fuel supply to alternative fuels. Government and industry are working cooperatively with coordinating mechanisms such as the Commercial Aviation Alternative Fuels Initiative (CAAFI) and are supporting alternative fuels research. Near term efforts include adding new classes of fuels to the BASELINE alternative jet fuel standard by ASTM International, conducting aircraft flight tests using alternative fuels and ascertaining their emissions characteristics, lifecycle greenhouse gases, and sustainability. A number of challenges remain to sustainable alternative fuel deployment, including financing for commercial production.

Alternative Fuels (1 of 1)

СҮ	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	+
Alternat	ive Fue	els																														
												Sustai	nable A	lternati	ve Jet F	uels - P	hase III	(703104	4)													
Suppor	t Activ	ities										A	Ilternati		uels Tes lysis	sting an	ıd															
СҮ	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	+

BASELINE

NAS Enterprise Architecture Service Roadmaps Version 17.0

Service 704: Policy Development

Development and implementation of appropriate policies, programs, and mechanisms are critical to support advantageous technology and operational innovations and accelerate their integration into the commercial fleet, the airport environment, and entire national aviation system. The NextGen EMS approach will integrate environmental protection objectives into NextGen and facilitate National Environmental Policy Act (NEPA) reviews. Cooperative partnerships between government and industry can focus and leverage funding in ways that are beneficial for aviation and good for the environment. There is a need for continued and enhanced exploration of the most effective means to address residual aircraft noise impacts that cannot be reduced through technologies to guide capital investments in noise mitigation such as sound insulation, to encourage adequate land use planning, and to support other methods. Internationally, the U.S. is leading efforts at the International Civil Aviation Organization (ICAO) to limit and reduce international aviation emissions, including development of a CO2 standard for aircraft, and a new particulate matter (PM) certification requirement for engines. ICAO has additionally agreed to explore more ambitious goals for the aviation sector, including carbon neutral growth in the mid-term and reduce CO2 emissions. The U.S. is also supporting studies to investigate the need, cost and trade-offs, and the technological feasibility of more stringent noise standards. Additionally, if we are to achieve environmental and energy goals beyond the near term, policies may be needed to accelerate the integration of new technologies into the civil fleet compared to the normal rate of introduction and replacement.

Policy Development (1 of 1)

СҮ	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	+
Policy D	evelop	ment																														
												Enviro	onmenta	al Polici	es, Stan	dards a	nd Mea	sures -	Phase	III (704 ⁻	104)											
СҮ	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	+

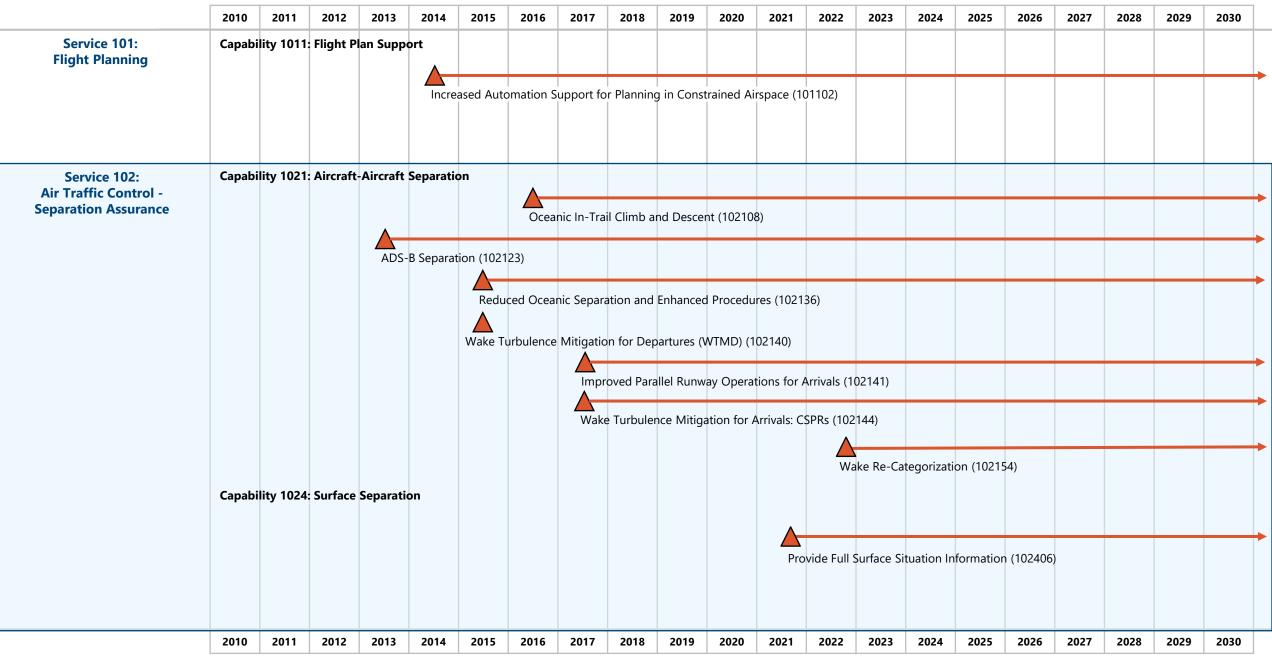
Appendix A – Completed Operational Improvements

What is this Appendix?

• This appendix to the National Airspace System (NAS) Enterprise Architecture (EA) Service Roadmaps depicts the list of OIs that were completed and are no longer included on the current Service Roadmaps.

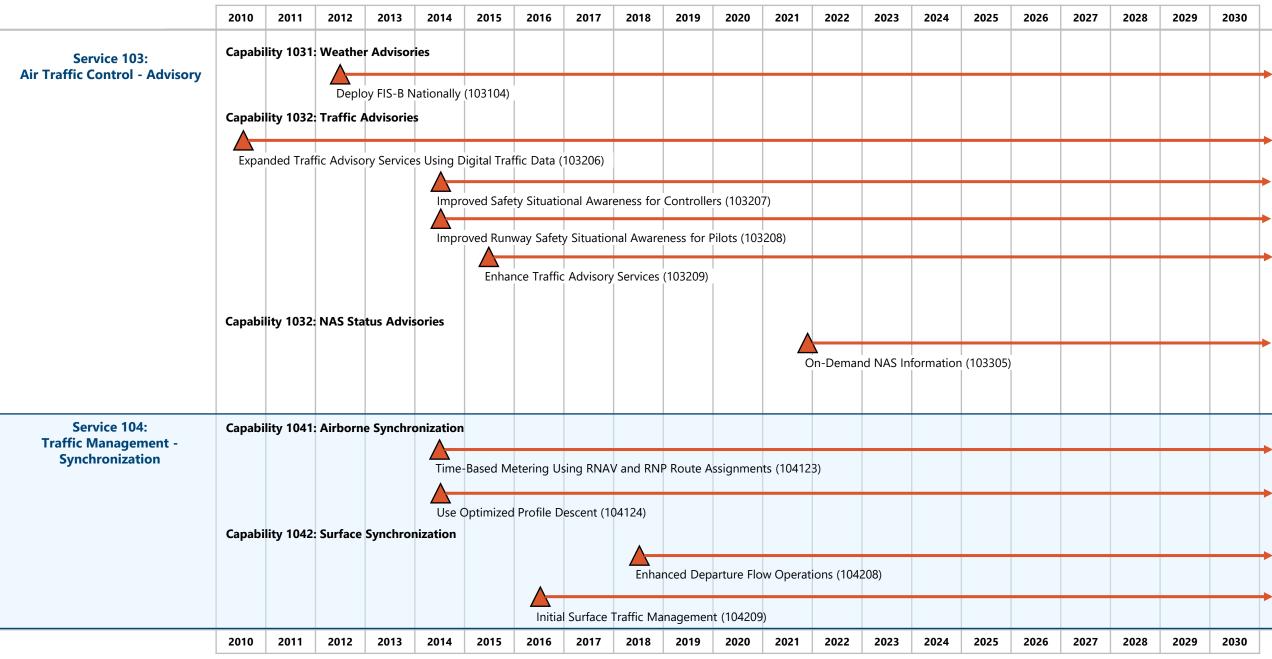
Guidelines for Understanding the Appendix

- When an OI becomes operationally available in the NAS, it transitions to a CO. After it transitions to operations, COs are removed from the Service Roadmaps to streamline the diagrams to focus on future improvements to NAS service delivery. This appendix also includes OIs that were completed but did not transition to operational use.
- This appendix is organized by FAA Services and provides the CO number, title, and date of operational availability.

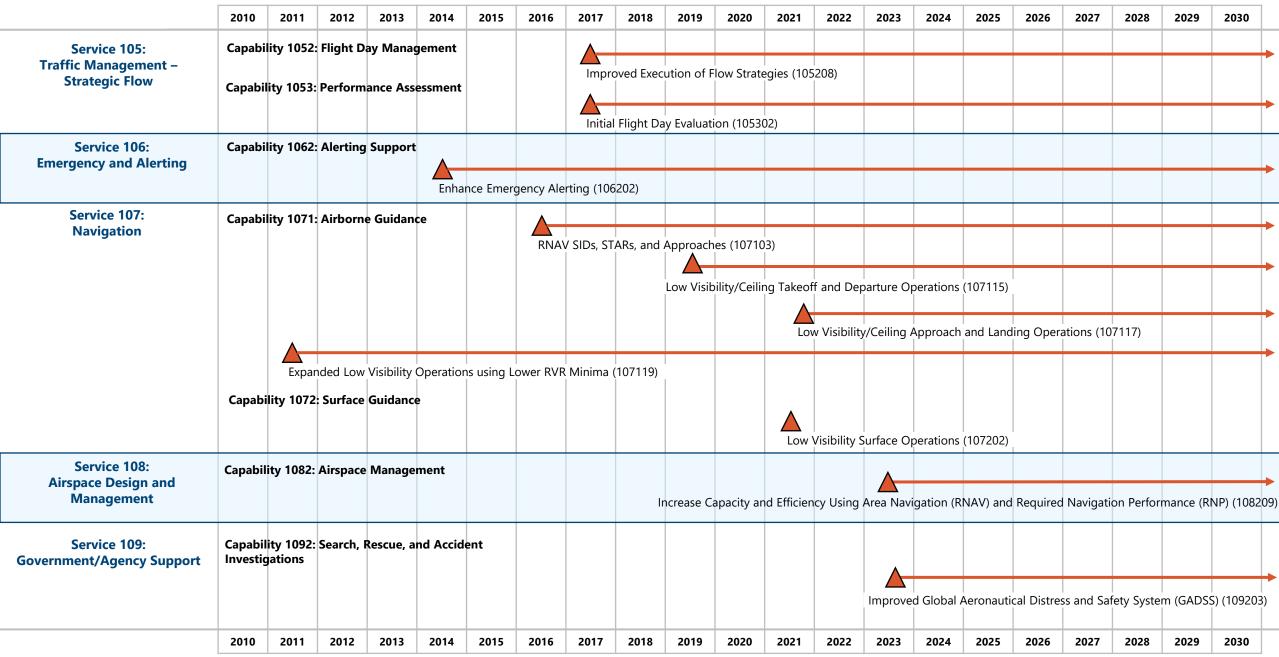

Legend

Roadmap Shape Information

Current Operation (CO) Triangle indicates full operational availability


OI that was completed but did not transition to operational use

Completed Ols (1 of 5)


BASELINE

Completed Ols (2 of 5)

BASELINE

Completed Ols (3 of 5)

BASELINE

NAS Enterprise Architecture Service Roadmaps Version 17.0

Completed Ols (4 of 5)

	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030
Service 601: Risk-Based Decision Making	Capabili	ity 6011:	Data																		
, j						Enh	anced Sa	fety Infori	mation A	nalysis and	d Sharing	(601102)									
													<u> </u>								
	Capabili	ity 6013:	Hazards									Sa	fety Infor	mation Sł	aring and	l Emerger	nt Trend D	Detection	(601103)		
															Increa	ase Intern	ational Co	poperatio	n for Avia	tion Safet	y (601302)
Service 701: Science and Tools	Capabili	ty 7011:	Science a	nd Tools																	
						Int	tegrated E	Invironme	ental Moo	leling - Ph	ase I (701	1102)									
											Inte	grated Er	vironmen	tal Mode	ing - Pha	se II (701	103)				
Service 702: Technology	Capabili	ty 7021:	Technolo	gy				•													
								Nex	ktGen Env	vironment	al Engine	and Aircr	aft Techno	ologies - I	Phase I (70	02102)					
													Ne	xtGen En	vironment	al Engine	and Aircr	raft Techn	ologies -	Phase II (702103)
	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030

Completed Ols (5 of 5)

	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030
Service 703: Alternative Fuels			Alternati																		
						Su	stainable .	Alternativ	e Jet Fuel	s - Phase	I (703102										
											Sus		Alternativ	e Jet Fuel	s - Phase	II (703103	;)				
Service 704: Policy	Capabili	ity 7041:	Policy De	evelopme	ent	•															
						Env	vironment	tal Policie	s, Standar	ds and M	easures -	Phase I (704102)								
										Env	vironment	al Policies	s, Standar	ds and M	easures -	Phase II (704103)				
	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030