
Service-Based Reference Architecture for NAS Automation - Version 1.2

Service-Based Reference Architecture for
NAS Automation

Version 1.2

Reference Architecture Team

August 2022

Service-Based Reference Architecture for NAS Automation - Version 1.2

ii

Acknowledgments
This document was created by the collaborative efforts of the Automation Evolution Strategy
team, under the leadership of Rob Hunt (Director, Integrated Services and Analysis). Senior
guidance and direction were provided by Steve Bradford (Chief Scientist, Architecture and
NextGen Development), Natesh Manikoth (Chief Data Officer), Josh Gustin (Deputy Director,
Air Traffic Systems), and Sean McIntyre (Director, Solution Delivery Services).
Automation Evolution Strategy team members included:

Name Organization Name Organization
Abilla, Walter D AJM-22 Kubont, Derek AJM-2531
Adams, Carleen ANG-B22 Lewis, Michael AJW-L4
Ajaegbulemh, Lakaisha ANG-B22 Liggan, Michael MITRE
Baird, James ANG-B21 Long, Phil MITRE
Beams, Jonathan ADE-200 Mackeen, Susan AJM-21
Bigio, Carmen AJW-1761 Manoski, Stan MITRE
Bohannon, Karen AJM-3121 Mayo, John MITRE
Buntin, Marc AJM-13 McGeoch, David AJM-24
Burdhimo, Gian AJM-21 Muhammad, Hawar AJM-222
Burdick, Chris AJM-222 Muhammad, Jwan AJM-21
Burgess, Shirley AJM-0 Oscar Olmos MITRE
Byrd, Warren AJM-2522 Phifer, Joe AJM-223
Chaloux, David MITRE Pressler, Chris AJM-31
Cooley, Dale AJM-24 Rush, Ted AJW-B4
Coplen, Kim AJM-2 Sazon, Tony AJM-21
D’Avella, Anthony AJM-24 Segers, Robert ANG-B3
Davison, Talia ATM-221 Shields, Rance ADE-410
Dinatale, Nick ADE-230 Smith, Barry ANG-B21
Exum, Monique MITRE Snyder, Steve AJM-25
French, Jeff Booz Allen Soriano, James AJM-13
Fry, “Shane” Christopher AJM-2 Stratoti, Stephen ANG-B12
Gibson, Joseph ANG-B1 Takata, Diana ANG-B1
Gill, Kimberly ANG-B1 Thomson, Duncan MITRE
Ginsburg, Scott ANG-B21 Topiwala, Tejal MITRE
Guerrero, Summer AJM-1310 Torrance, Kathy AJM-25
Heagy, Win MITRE Torrance, Mike AJM-25
Hekl, Robert MITRE Tracy, Christopher AJM-21
Henry, Javon AJW-131 Wanke, Dr. Craig MITRE
Howson, Mark AJM-2113 Winbush, James ANG-B22
Hritz, Mike ANG-B2 Young, Richelle ADE-120
Hunt, Rob AJM-1 Young, Kevin AJM-2100
Jalleta, Ezra MITRE
Kennedy, Christopher AJM-21
Klein, Robert ANG-B21

Finally, the authors would like to thank Matt Warnock for his help in technical editing and
preparing this document for delivery.

Service-Based Reference Architecture for NAS Automation - Version 1.2

iii

Executive Summary
Recognizing that automation systems within the National Airspace System (NAS) will
eventually need to be replaced, the Federal Aviation Administration (FAA), with the support of
The MITRE Corporation’s Center for Advanced Aviation System Development (MITRE
CAASD), created a vision for the evolution of these automation systems. An important part of
the automation evolution vision is the transition to a layered, service-based architecture that can
support modern software development and operations methodologies and take advantage of
cloud computing technologies. This document describes that proposed future architecture and
serves as a reference to align future evolution initiatives with Automation Evolution Strategy
(AES). The document expands on the Automation Evolution work performed in fiscal year 2020
(FY20) by providing additional detail on the proposed future architecture, including a discussion
of architecture layers, the service-based approach, monitoring and management, security, and
support for multiple levels of criticality.
Strategic Outcomes
This Reference Architecture is one element of a larger effort intended to achieve the following
desired strategic outcomes. These outcomes were articulated in FAA’s Automation Evolution
Strategy [1] and subsequently refined by senior FAA management. The outcomes are:

• Seek efficiencies for developing, operating, and sustaining NAS automation
systems/services

• Reduce time to develop, integrate, and deploy new capabilities

• Leverage commercial industry best practices

• Establish broad industry base to support the FAA across a range of development and
deployment capabilities

• Establish a scalable, flexible, secure, and resilient architecture
Purpose and Scope
This document describes the target technical state for the AES. It will serve as a reference that
can be used to align future evolution initiatives with the overarching technical and operational
objectives of the AES.
This document applies to automation that supports NAS operation. That includes core air traffic
control (ATC) systems (i.e., En Route Automation Modernization [ERAM], Standard Terminal
Automation Replacement System [STARS], etc.), flow management systems (i.e., Traffic Flow
Management System [TFMS], Time-Based Flow Management [TBFM], etc.) and supporting
functions (i.e., weather and aeronautical information management).

Service-Based Reference Architecture for NAS Automation - Version 1.2

iv

Architecture Vision

The above figure represents a high-level overview of the proposed future architecture framework
that promotes the strategic outcomes listed above.
Guiding Principles
The Reference Architecture embodies a set of guiding principles that were stated in the FY20
Automation Evolution Strategy Briefing and white paper, with some additions from the
Department of Defense (DoD) Enterprise Development, Security, and Operations (DevSecOps)
Reference Design [2]. The principles are:

• Enterprise Scope – The automation strategy should support the implementation of
services that meet the needs of multiple programs and associated Air Traffic Management
(ATM) systems.

• Incremental – The automation strategy should promote the incremental development of
services that can be implemented more rapidly and produce operational benefits in the
near and long term.

• Enable Opportunities and Expand Industry Base – The architecture should promote
expansion of the industry base to provide computing resources, platform software, and
mission services.

• Evolvable – The architecture must expect that technologies and standards will change
over time.

• Streamlined Information Technology (IT) – The architecture should automate as much of
the development, testing, and deployment activities as possible.

• Business Sense – Apply technology and methodologies where it makes business sense to
do so, and when requirements can be supported.

Service-Based Reference Architecture for NAS Automation - Version 1.2

v

Architecture Key Characteristics

The Reference Architecture has the following key characteristics, based on the guiding
principles, to achieve the strategic objectives:

• A layered architecture – the architecture is comprised of three layers including the NAS
Mission Software Layer, the Standards-Based Software Platform Layer, and the
Computing Resources Layer, as illustrated in the figure above

• A service-based architecture – small software components with loose coupling and
minimized dependencies

• Operational monitoring and management tools to provide real-time visibility into status,
performance, and availability of services, applications, and supporting layers, together
with the ability to manage these elements

• Security
o Built into DevSecOps tools and processes
o Each layer inherits controls from layers below
o Zero Trust principles
o Cyber-defensive operations provide monitoring and response

• Multiple levels of criticality – Provides performance, reliability, and availability
commensurate with safety-critical, efficiency-critical, essential, and routine service
threads

Mission Layer
The NAS Mission Applications and Mission Services Layer (or Mission Layer, for brevity)
contains applications and services that provide functionality to support the mission of the NAS.
Software components in this layer are likely to be specifically developed for the NAS and are
built to run in a standard environment provided by generic software components in the
underlying Platform Layer.

Computing
Resources

Layer

NAS
Mission
Software

Layer

Standards
-Based

Software
Platform

Layer

NAS Mission Applications
Software components including

user interfaces that NAS
specialists use as they carry out

the NAS operational mission.

NAS Mission Services
Software components providing
aviation data and computation

functions needed by NAS
applications.

Applications Software
Environment

Frameworks and environments
for user interface applications.

Services Software
Environment

Generic IT services and
DevSecOps tools.

End User Equipment
Devices that provide displays

and input devices for NAS
specialists.

Compute Infrastructure

Equipment that provides the
computing, storage, networking, etc.

Integrated
Security

• DevSecOps
w/Security
“Baked in”

• Security
Operations –
Continuous
Monitoring

• Secure Cloud
w/Inheritance of
Controls

• Zero Trust
Architecture

Service-Based Reference Architecture for NAS Automation - Version 1.2

vi

The Mission layer contains mission services, which are software components that provide
mission-specific data (i.e., flight data, surveillance data, and aeronautical data) and computation
functions (i.e., tracking, weather prediction, and conflict probe) needed in the NAS. The Mission
Layer also contains mission applications, which are user-facing software assemblies that provide
the user interfaces needed by FAA specialists (e.g., controllers, traffic managers) to do their jobs.

In the Reference Architecture, each mission service implements some NAS business logic within
a bounded context (i.e., each service does one specific well-defined thing). Mission services run
independently and are accessed over the network via a well-defined interface.
Mission applications provide the functionality needed to support the operational mission of the
NAS. In the Reference Architecture, these applications are creating by combining a front-end
component (e.g. a graphical user interface on the end user’s workstation) with back-end mission
services that provide access to data and computations (e.g. flight data processing services,
aeronautical information services). Mission applications can be implemented as web
applications, in which the application is downloaded from a web server and the user interface
runs within a browser environment.
Mission services and applications are built following microservice design principles. These
principles are important because they allow the Platform Layer to handle issues such as
performance and availability using generic software. The Mission Layer also relies on Platform
Layer components such as service meshes and message buses, Application Programming
Interface (API) gateways, proxies, and policy enforcement points, to manage interactions among
mission layer components.
The Reference Architecture allows variations and adjustments to basic microservice architecture
when needed. One of these adjustments is the concept that some mission services are intended to
be used within a limited scope, for example within the scope of effort of a single Agile

Agile Development Scope

µSvc 1

Data

Service Mesh and Message Bus

Service Access
(API Gateway, Proxy, Policy Enforcement Point, etc.)

App ServersApp ServersApps
(Server Side)

User
Interfaces

User
Interfaces

Mission Apps
User

Interfaces

µSvc 2

Data

µSvc N

Data

User
Interfaces

User
Interfaces

M&C User
Interfaces

Monitor and
Control

Data

µSvc 1 µSvc 2

Common Mission Services
(exposed for use by other
agile development teams)

Service-Based Reference Architecture for NAS Automation - Version 1.2

vii

development team, whereas other mission services (referred to as common mission services) are
intended to be used throughout the NAS.

Platform Layer
The Standards-Based Software Platform Layer (or Platform Layer, for brevity) consists of
general-purpose IT software that provides the environment within which the Mission Software
Layer components can run. The Platform Layer is expected to be assembled by licensing,
configuring, and operating a suite of needed enterprise IT tools, including commercial-off-the-
shelf (COTS), free and open source (FOSS) components, and Cloud Platform-as-a-Service
(PaaS) offerings.
The Platform Layer includes software hosting/execution, monitoring and log analysis,
development frameworks/libraries, and API/data management, and so on.

The elements of the Platform Layer were informed by a survey of several programs that have
been applying Agile and DevSecOps methodologies, and/or Service-Based or Microservices
architectures. The survey results are summarized in Appendix B.
Computing Resources Layer
The Computing Resources Layer, depicted in the figure below, includes end-user equipment,
compute infrastructure, and local area networks (LANs) and wide area networks (WANs) that tie
them together. Examples of end-user equipment would be workstations, displays, tablets, mice,
trackballs, and keyboards. Examples of compute infrastructure would be servers that run
services, operating systems, storage, virtual machines (VMs), and containers.
The Computing Resources Layer has the following key characteristics:

• Secure: Meeting security standards allowing NAS Authorization to Operate (ATO)

• Available: Providing redundant processing in separate locations (e.g., Cloud Availability
Zones)

• Reliable: Supporting continuity of operations (e.g., multiple cloud regions and multiple
cloud providers)

• Responsive: Low latency and high data rate connectivity (e.g., direct connections to
cloud environments from multiple NAS locations)

Service-Based Reference Architecture for NAS Automation - Version 1.2

viii

• Scalable: Able to expand or contract to continue to meet performance requirements as
demand varies

• Supportable: Providing a support model that folds into FAA TechOps processes

• Trusted: Showing users and Operators the benefits of cloud and demonstrating cloud as a
viable platform for the future

The elements that make up the Computing Resources Layer are a combination of on-premises as
well as off-premises resources.

FAA Infrastructure Layer
The FAA Infrastructure layer contains specialized equipment, for example instrument landing
systems, and physical infrastructure, for example buildings and runways, that are included in the
NAS, but do not fit clearly into the layers described above. Because of the specialized nature of
the elements in the FAA Infrastructure Layer, this layer is not addressed in the Reference
Architecture.
Surveillance Services Use Case
The body of the document concludes with a use case focusing on prospective Surveillance
Mission Services. This use case informs perspectives regarding how mission services should be
defined and how those mission services relate to other elements of the Reference Architecture.
Surveillance was selected as a use case topic because it involves many properties of concern to
determining the effective scope and applicability of the Reference Architecture (e.g., safety
criticality, demanding performance, and aspects unique to ATC operations).

Ingress/Egress

On-Premises Resources

Off Premises Cloud

Common Platform Services
(Messaging, Zero Trust,

Logging, Monitoring, etc.)

FAA
Network
Services

Standalone
SystemsController

Workstations
General Purpose
Workstations

NAS Facilities (ATCSCC, ARTCCs, TRACONs, etc.)

Data Centers and Facility Computing Infrastructure
Ingress/Egress

Mission Partners
(Air Carriers, DoD,

NOAA, etc.)

(CSP Environments and Networks)

Common
Platform
Services Resource

Enclave

Apps & Services
Subnet

Access Subnet

Data Subnet

Resource Enclave
(e.g. VPC)

Apps & Services
Subnet

Access Subnet

Data Subnet

Internet & Direct
Connections

(FAA-Controlled Environments and Networks)

Cloud Network
Services

(e.g. Transit GW)

Secure Cloud
Access

Common
Compute
Infrastructure

Common
Compute
Infrastructure

Service-Based Reference Architecture for NAS Automation - Version 1.2

ix

Principles applied to determine services involve a combination of general principles that apply to
any service/microservice approach and domain-specific aspects that reflect the context of the
operations to which the service applies. The influences applied to the definition of Surveillance
Mission Services and the associated result are depicted in the figure above. Considering existing
ATC automation designs as a guide, tentative surveillance services of radar input processing,
Automatic Dependent Surveillance-Broadcast (ADS-B) input processing, tracking, and
surveillance data distribution are identified.

Service-Based Reference Architecture for NAS Automation - Version 1.2

x

Version Control
Version
Number

Change
by

Date Description

0.1 MITRE 9/25/2020 Initial document structure created.

0.2 MITRE 11/19/2020 Draft with Sections 1 and 2 completed for review

0.3 MITRE 12/11/2020 Draft with comments on Sec 1 & 2 incorporated

0.4 MITRE 1/29/2021 Draft with Sections 4 and 6 completed for review

0.5 MITRE 2/19/2021 Draft incorporating “Orange Team” comments on
Sections 4 and 6

0.6 MITRE 2/26/2021 Draft with section 5 for review

0.7 MITRE 3/31/2021 Draft of all sections complete (except Executive
Summary)

1.0 MITRE 4/26/2021 Version 1.0 including Executive Summary, comments
on Section 3, and other section comments delivered with
section 3.
Incorporated comments on V0.7, added Executive
Summary, removed “Issues” section.

1.1 MITRE 8/11/2021 Final section 6 and other deferred comments have been
addressed.

1.2 MITRE 8/12/2022 Removed material related to Concept of Use and minor
editorial changes.

Service-Based Reference Architecture for NAS Automation - Version 1.2

xi

Table of Contents
 Introduction .. 1-1

1.1 Background ... 1-1

1.2 Strategic Outcomes ... 1-1

1.3 Purpose .. 1-2

1.4 Scope ... 1-3

1.5 Approach ... 1-4

1.6 Related Infrastructure Programs/Projects ... 1-5

 Architecture Overview ... 2-1

2.1 Architecture Vision ... 2-1

2.2 Key Concepts and Definitions .. 2-2

2.3 Guiding Principles .. 2-4

2.4 Assumptions .. 2-5

2.4.1 Agile and DevSecOps ... 2-5

2.4.2 Transition to Internet Protocol Networking .. 2-5

2.4.3 Use of Cloud for NAS Operations .. 2-6

2.4.4 Organizational Change .. 2-6

2.4.5 Acquisition .. 2-7

2.5 Architecture Key Characteristics .. 2-7

2.5.1 Layered.. 2-9

2.5.2 Service-based .. 2-11

2.5.3 Operational Monitoring and Management .. 2-12

2.5.4 Secure .. 2-13

2.5.4.1 Inheritance of Controls .. 2-13

2.5.4.2 Security Built-in to DevSecOps .. 2-14

2.5.4.3 Zero Trust .. 2-15

2.5.4.4 Cybersecurity Defensive Operations ... 2-17

2.5.5 Multiple Levels of Criticality .. 2-17

 NAS Mission Applications and Mission Services Layer ... 3-1

3.1 Overview ... 3-1

3.2 Mission Applications .. 3-1

3.3 NAS Mission Services .. 3-2

3.4 Basic Pattern: Microservice Architecture ... 3-3

3.4.1 Microservices Concept .. 3-3

Service-Based Reference Architecture for NAS Automation - Version 1.2

xii

3.4.2 Assembling Microservices to Create Applications ... 3-4

3.5 Service-Based Architecture .. 3-5

3.5.1 Internal Mission Services Versus Common Mission Services 3-5

3.5.2 Geospatial Dependencies .. 3-6

3.5.3 Support for Transactions and Data-Centric Subsystems ... 3-7

3.5.4 NAS-Wide View of Service-Based Architecture .. 3-9

3.5.5 Monitoring and Control .. 3-10

3.5.6 Security Monitoring and Defensive Operations .. 3-10

 Platform Layer.. 4-1

4.1 Overview ... 4-1

4.2 Platform Layer Elements .. 4-2

4.2.1 Runtime ... 4-2

4.2.1.1 Software Hosting/Execution.. 4-2

4.2.1.2 Workflow Choreography and Orchestration ... 4-3

4.2.1.3 Monitoring, Log Analysis, and Reliability .. 4-3

4.2.1.4 Service Proxy, Mesh, and API Gateway ... 4-4

4.2.1.5 Virtual Networking, Policy, Authentication, and Authorization 4-5

4.2.1.6 Distributed Database and Storage ... 4-5

4.2.1.7 Streaming and Messaging (Message Bus)... 4-6

4.2.1.8 Analytics and Artificial Intelligence ... 4-7

4.2.2 Development ... 4-7

4.2.2.1 Development Frameworks and Libraries .. 4-8

4.2.2.2 Planning and Requirements Management ... 4-8

4.2.2.3 Software Packaging, Repositories, and Distribution 4-9

4.2.2.4 Application Programming Interface and Data Management 4-9

4.2.2.5 Continuous Integration / Continuous Delivery Toolchain 4-10

4.2.3 Summary of Platform Elements in the Reference Architecture 4-11

4.3 Survey of Existing Platforms .. 4-12

 Computing Resources Layer ... 5-1

5.1 Overview ... 5-1

5.2 Common Compute Infrastructure ... 5-3

5.2.1 Off-Premises Cloud... 5-4

5.2.2 Data Centers and Facility-Based Computing Infrastructure 5-5

5.3 Standalone Systems .. 5-6

5.4 End-User Equipment ... 5-6

Service-Based Reference Architecture for NAS Automation - Version 1.2

xiii

5.4.1 Safety-Critical User Interfaces .. 5-6

5.4.2 Web Browser-Based User Interfaces .. 5-7

5.5 Networking ... 5-7

 Surveillance Services Use Case.. 6-1

6.1 Background ... 6-1

6.1.1 Surveillance Use Case Purpose ... 6-1

6.1.2 Current Surveillance Data Processing... 6-1

6.2 Surveillance Services Overview ... 6-2

6.2.1 Surveillance Use Case Scope and Assumptions ... 6-2

6.2.2 Surveillance Services Context .. 6-3

6.3 Surveillance Services Detail ... 6-4

6.3.1 Surveillance Services Mission Layer .. 6-4

6.3.1.1 Surveillance Service Platform Layer ... 6-13

6.3.1.2 Surveillance Services Infrastructure Layer ... 6-15

6.3.2 Surveillance Services Challenges ... 6-17

Appendix A Related Infrastructure Programs/Projects ... A-1

A.1 FAA Telecommunications Infrastructure (FTI) and FAA Enterprise Network
Service (FENS) .. A-1

A.2 FAA Cloud Services (FCS) ... A-1

A.3 Integrated Enterprise Services Platform (IESP) .. A-1

A.4 National Cloud Integration Services (NCIS) ... A-1

A.5 System Wide Information Management (SWIM).. A-2

A.6 SWIM Cloud Distribution Service (SCDS) ... A-2

A.7 Enhanced SWIM Cloud Service .. A-2

A.8 Enterprise Information Management (EIM) Platform ... A-3

Appendix B Platform Survey .. B-1

B.1 Application Based Capability Development (ABCD) ... B-1

B.2 Configuration, Logistics, and Maintenance Resource Solutions B-4

B.3 Enterprise Information Management (EIM) Data Platform (DP) B-5

B.4 Elroy ... B-8

B.5 Platform One .. B-10

Appendix C References .. C-1

Appendix D Acronyms ... D-1

Service-Based Reference Architecture for NAS Automation - Version 1.2

xiv

List of Figures
Figure 1-1. Intended Use of Reference Architecture ... 1-3

Figure 2-1. Architecture Vision ... 2-1

Figure 2-2. Layered Architecture – Overview ... 2-9

Figure 2-3. High Level Concepts for Operational Monitoring and Management 2-12

Figure 2-4. Security Overview ... 2-13

Figure 2-5. Inheritance of Controls .. 2-14

Figure 2-6. Security in DevSecOps ... 2-15

Figure 2-7. Zero Trust Concepts in the Reference Architecture .. 2-16

Figure 2-8. Layered Architecture Supporting Multiple Levels of Criticality 2-18

Figure 3-1. Mission Layer.. 3-1

Figure 3-2. Microservice Concept ... 3-3

Figure 3-3. Application Assembled from User Interface and Mission Services 3-5

Figure 3-4. Microservices Exposed as Common Mission Services ... 3-6

Figure 3-5. Use of Shared Data.. 3-8

Figure 3-6. NAS-Wide View of Services and Applications .. 3-9

Figure 4-1. Standards-based Software Platform Layer .. 4-1

Figure 5-1. Computing Resources Layer ... 5-1

Figure 5-2. Computing Resources Elements ... 5-2

Figure 6-1. Layered Architecture ... 6-4

Figure 6-2. NAS Surveillance Services ... 6-10

Figure 6-3. Surveillance Services Infrastructure ... 6-16

Figure B-1. ABCD Operational Architecture ... B-2

Figure B-2. ABCD Development Architecture .. B-3

Figure B-3. EIM Platform Runtime Architecture ... B-6

Figure B-4. EIM Platform Development Architecture ... B-6

Figure B-5. Project Elroy System Overview .. B-9

Figure B-6. Project Elroy Platform Overview .. B-9

Figure B-7. Overview of DoD Enterprise DevSecOps Layers ... B-11

Service-Based Reference Architecture for NAS Automation - Version 1.2

xv

List of Tables
Table 2-1. Key Characteristics of Reference Architecture .. 2-8

Table 4-1. Batch Versus Stream Processing .. 4-7

Table 4-2. Platform Elements in the Reference Architecture .. 4-11

Table 6-1. Surveillance Services Rationale ... 6-7

Table B-1. Platform Layer Elements in ABCD .. B-3

Table B-2. Platform Layer in CLMRS ... B-4

Table B-3. Platform Elements in EIM Platform ... B-7

Table B-4. Elroy Platform... B-10

Table B-5. Platform Layer Elements in DoD Platform One ... B-12

Service-Based Reference Architecture for NAS Automation - Version 1.2

1-1

 Introduction
The National Airspace System (NAS) comprises a set of systems that provide the Federal
Aviation Administration (FAA) workforce with the tools and capabilities needed to perform the
agency’s operational mission. The NAS systems include the major automation systems that
support air traffic control and flow management operations. Those automation systems are
complex and were built over many years at considerable expense. Recognizing that those
systems will eventually need to be replaced, the FAA, with the support of The MITRE
Corporation’s Center for Advanced Aviation System Development (MITRE CAASD), created a
vision for the evolution of these automation systems, with the dual goals of reducing cost of
ownership and increasing the speed for delivering new operational functions. An important part
of the automation evolution vision is the transition to a layered, service-based architecture that
can support Agile and Development, Security, and Operations (DevSecOps)1 methodologies and
take advantage of cloud computing technologies. This document describes that proposed
architecture.

1.1 Background
Early in fiscal year 2020 (FY20), it became apparent that a consensus was emerging in the FAA
and other parts of government to employ modern software practices to acquire and manage
systems more efficiently. As an example, the United States Air Force (USAF) Kessel Run effort
demonstrated how a government agency can implement capabilities more quickly and efficiently
using modern Agile processes. The FAA and MITRE CAASD are working together to develop a
plan to modernize their NAS automation architecture and transition strategy to enable those new
Agile processes.
As part of this effort, MITRE CAASD collaborated with the FAA in FY20 to develop a
consensus evolution strategy and path forward [3], which included the following:

• Characteristics and principles of an automation evolution strategy

• Strategic outcomes

• Work plan

• Socialization strategy

• Next steps
This document expands on the Automation Evolution work performed in FY20 by providing
additional detail on the proposed future architecture, including a discussion of architecture
layers, service-based approach, and security. Other concurrent tasks include developing other
aspects of the strategy including transition planning, acquisition, and organizational changes.

1.2 Strategic Outcomes
This Reference Architecture document is one element of a larger effort intended to achieve the
following desired Strategic Outcomes. These outcomes were articulated in FAA’s Automation

1 DevSecOps refers to a methodology that integrates development, security, and operations concerns.

Service-Based Reference Architecture for NAS Automation - Version 1.2

1-2

Evolution Strategy [1] and subsequently refined by senior FAA management. The desired
outcomes are:

• Seek efficiencies for developing, operating, and sustaining NAS automation
systems/services

• Reduce time to develop, integrate, and deploy new capabilities
o Move to incremental investments to focus on immediate needs that will enable

faster deployment of user priorities

• Leverage commercial industry best practices
o Agile/DevSecOps processes and tools

• Establish broad industry base to support the FAA across a range of development and
deployment capabilities

• Establish a scalable, flexible, secure, and resilient architecture
o Continue meeting safety, security, performance, monitoring, and maintenance

requirements

1.3 Purpose
This document describes the target technical state for the Automation Evolution Strategy. It will
serve as a reference that can be used to align evolution initiatives with the overarching technical
and operational objectives of the Automation Evolution Strategy. The Reference Architecture
focuses on exposing and maximizing the benefits of containerized, reusable software services
and technology through layered components. It will serve as an important tool to inform the NAS
Enterprise Architecture (EA), which describes the NAS evolution through roadmaps and models.
The purpose of this Reference Architecture is to:

• Identify and describe the major components or areas of the future NAS automation

• Describe the relationships among these components and how they interact
To facilitate:

• Communication among stakeholders based on a common understanding of what the
major areas are

• Allocation of responsibility for different areas (design, implementation, sustainment, etc.)

• Guidance that can be applied to more detailed architecture description or design
activities, resulting in a coherent and cohesive approach

• Governance that constrains possible designs of NAS applications and infrastructure to
achieve desired properties in the future NAS architecture

Service-Based Reference Architecture for NAS Automation - Version 1.2

1-3

Figure 1-1. Intended Use of Reference Architecture

The intended use of this document is illustrated in Figure 1-1. The Reference Architecture will
describe, in general terms, the future NAS components and how they are interrelated. Those are
shown as X, Y, and Z in the figure. As a simple example, X might represent a software
component that provides NAS mission functionality, such as a trajectory modeling service. Y
and Z might refer to infrastructure components. For instance, Y might be generic software tools
and Z might be cloud computing environments. The FAA would then need to allocate
responsibility to program offices to develop the mission software (X) and to other organizational
units to acquire, configure, and sustain the infrastructure components (Y, and Z). In that
example, one infrastructure organization would be given responsibility for creating secure NAS
cloud computing environments (Y), and another (or the same) infrastructure organization would
select the common software tools (Z) and configure them in those cloud environments. The
program office developing the trajectory modeling service (X) would then be given access to the
cloud environments and would develop and deploy their software in these environments using
the provided tools. The net result would be a future NAS that has the desired architecture
characteristics.
It is important to note that Figure 1-1 also includes feedback loops. The Reference Architecture
will evolve as our understanding improves, technology advances, and the operational
environment changes. Teams, organizations, and activities need to work more collaboratively,
and those responsible for infrastructure components should be expected to propose changes to
the Reference Architecture as new technologies and industry practices become available.
Similarly, program offices developing new mission software may be expected to request specific
features or changes to the infrastructure to meet their needs, or even to request more fundamental
changes to the overall architecture when needed.

1.4 Scope
This document applies to automation that supports NAS operation. That includes both Flow
Management as well as air traffic control (ATC) functions and supporting functions (for
example, weather and aeronautical information management).
While not the intended focus of this architecture, other FAA environments such as those used for
training, off-line performance analysis, historical data analysis, research and development, and
concept exploration, may also benefit by following a consistent architectural approach. The other
environments may have different needs, which may suggest variation from the NAS architecture.
For example, the NAS will be generally real-time and event-driven, whereas historical data
analysis is more likely to require non-real-time capabilities for storing and analyzing very large
data sets.

Service-Based Reference Architecture for NAS Automation - Version 1.2

1-4

Supporting ATC presents special challenges due to the need to support safety-critical service
threads that require real-time response times, high availability, and high levels of assurance that
software will function correctly. For those reasons, ATC systems are difficult to change and may
not be the first candidates to transition to the future architecture. Nevertheless, they are in scope,
because achieving the strategic outcomes depends on reducing the costs of sustaining those
systems and evolving them to support new operational concepts and adapting to a changing
environment. Therefore, this Reference Architecture must be suitable for being applied when
developing automation to support ATC, including safety-critical service threads.
As we will discuss, support for modern software development methodologies is key to obtaining
the strategic outcomes. Therefore, this Reference Architecture applies to development
environments (including test and operational suitability assessment) as well as operational
environments.
The sustainment of legacy NAS ATC systems is one of the major cost drivers the FAA needs to
consider as part of the Automation Evolution strategy. As a result, the FAA will conduct
additional work activities to look at transition planning and assess acquisition implications,
which are outside of the scope of this document.
This document describes the Reference Architecture associated with the FAA’s Automation
Evolution Strategy and provides a summary of the needed design components and processes to
provide a repeatable architecture design that can be used to instantiate this across the NAS.
Transition efforts to evolve toward this Reference Architecture are still being defined and as the
transition approach matures, more detailed execution guidance will be provided for use by NAS
developer, operator, and other stakeholder communities.

1.5 Approach
This approach taken in the Reference Architecture to achieving the strategic outcomes aligns
with the FAA and NAS EA best practices for how the agency should develop its mission,
information, and technology architectures. Therefore, the FAA can use it consistently at various
levels as well as with external stakeholders. The common approach provides integration points
with other agency functions including strategic planning, capital planning, program and portfolio
management, cybersecurity, and workforce development.
The team’s approach to creating this Reference Architecture began with the goals, principles,
and desired strategic outcomes that have been formulated by the Automation Evolution work
performed so far. Additionally, the team considered the high-level architectural concepts
(layered, service-based architecture) documented in previous papers and briefings that have been
reviewed and accepted by the FAA Automation Evolution Strategy team [1], [3], [4].
The team expanded and refined the high-level Automation Evolution concepts to create a
Reference Architecture suitable for the purposes described in Section 1.3. To accomplish that,
the team drew upon:

• Knowledge of the NAS
o Subject matter expertise on existing and planned NAS operations and systems
o Plans and future vision for the NAS [5]
o NAS As-Is and To-Be Enterprise Architecture

Service-Based Reference Architecture for NAS Automation - Version 1.2

1-5

• Examples from other government agencies, in particular, the Department of Defense
(DoD) Enterprise DevSecOps Reference Design [6]

• Existing Platforms or Platform-like capabilities
o FAA Cloud Services
o System Wide Information Management (SWIM)
o Enterprise Information Management (EIM) Platform
o Project Elroy/Pivotal Platform
o Configuration, Logistics, and Maintenance Resource Solutions (CLMRS) project
o Application-Based Capability Development (ABCD) project experience [7]
o DoD Platform One

• Zero Trust Architecture (ZTA) principles [8]
The Reference Architecture description is a living document that is being developed iteratively.
The iterative process includes identifying key questions, which may influence pathfinder
activities, which may in turn, be used to refine the architecture.

1.6 Related Infrastructure Programs/Projects
There are several existing programs and projects that are already implementing aspects of the
infrastructure needed by the Reference Architecture, including:

• FAA Telecommunications Infrastructure (FTI), which provides wide area networking
services for the FAA.

• FAA Enterprise Network Services (FENS), which will subsume FTI.

• FAA Cloud Services (FCS), which provides FAA programs with access to commercially
provided cloud services.

• National Cloud Integration Services (NCIS), which is working with FCS to establish
cloud environments for NAS programs. NCIS leverages FCS for obtaining cloud
services.

• SWIM, which provides standards and infrastructure for information dissemination, using
publish-subscribe and request-response information exchanges. SWIM information
exchange services leverage the FTI/FENS network as well as FCS and NCIS cloud
services.

• EIM Platform, which provides a data archiving and analytics environment and platform.
EIM leverages SWIM for accessing information from the NAS, and FCS for cloud
services.

• The Integrated Enterprise Services Platform (IESP) is a virtualization platform that
operates in the NAS. It can provide virtual machines (VMs) for NAS programs. These
VMs come with monitoring, FTI connectivity, authentication, and backup services.

Those programs are described in Appendix A.

Service-Based Reference Architecture for NAS Automation - Version 1.2

2-1

 Architecture Overview
This section provides a high-level overview of the architecture, defines terms and concepts, lists
assumptions, and describes key characteristics of the architecture intended to lead to the strategic
outcomes stated in Section 1.3.

2.1 Architecture Vision

Figure 2-1. Architecture Vision

Figure 2-1 represents a high-level overview of the proposed future architecture that promotes the
goals of reducing cost and increasing the speed with which the FAA can make new functionality
operational. The architecture promotes those goals by breaking the NAS into loosely coupled
components that can be developed and sustained independently, thereby increasing opportunities
for safe incremental improvement, reuse, competition, and parallel development.
The figure depicts four architecture layers. The Mission Software Layer consists of software that
is specific to the mission of the NAS, for example trajectory modeling software. The Standards-
Based Software Platform Layer contains generic Information Technology (IT) software, for
example distributed database software. The Computing Resources Layer contains the computing,
storage, and networking components, for example workstations and server hardware. The FAA
Infrastructure layer contains specialized equipment, for example instrument landing systems, and
physical infrastructure, for example buildings and runways, that are included in the NAS, but do
not fit clearly into the layers described above. (Because of the specialized nature of the elements
in the FAA Infrastructure Layer, this layer is not addressed in the Reference Architecture.)
Key activities associated with each layer are shown on the figure. Agile and DevSecOps
processes, tools, and methods are key aspects of the proposed architecture. The following
sections in this paper present more detail on the proposed architecture.

Service-Based Reference Architecture for NAS Automation - Version 1.2

2-2

2.2 Key Concepts and Definitions
This subsection contains key terms and definitions used in this document.

Term Definition

Agile An Agile approach to software development emphasizes user involvement,
incremental deployment, and rapid feedback to deliver high value to users in a
timely manner at a lower cost.

Cloud Cloud is often used in the specific sense of a set of computing resources
managed by an organization other than the users of those resources, and which
are available for the deployment of software applications and services and the
storage and access of information. Cloud resources are usually shared with
other users. Resources in the cloud can be procured or released dynamically.
Different cloud service models include Infrastructure as a Service (IaaS) which
provides basic resources such as virtual machines (VMs) and block storage,
Platform as a Service (PaaS) which provides services that replace generic
information technology (IT) software building blocks such as databases and
web servers, and Software as a Service (SaaS) which provides complete cloud-
based software packages such as e-mail.

Container A container packages software and all dependencies except the operating
system into an easily deployed unit that will run reliably across computing
environments. Because a container does not include the operating system,
multiple containers can be run on the same server, and they are typically much
faster to instantiate than a VM with the necessary software. Nonetheless, there
may be applications, particularly during transition, where the Reference
Architecture may implement VMs, which can be part of a unified PaaS
platform.

Container
Orches-
tration

Container Orchestration automates the deployment, management, and scaling
of containers. A container orchestrator will typically provide a way of
automatically deploying a scheduled number of a container image within a
cluster of servers, will monitor the health of those containers, will restart a
container image as needed, and provides for a common service Application
Program Interface (API) endpoint for services running within the managed
cluster. In the case of Kubernetes, a very popular container orchestrator, one or
more containers are grouped together in a pod, and the pod is what is deployed.

DevSecOps Development, Security, and Operations (DevSecOps) is an Agile methodology
that refers to development, security, and operations. “Dev[Sec]Ops is a set of
practices that automates the processes between software development and
information technology (IT) teams, in order that they can build, test, and release
software faster and more reliably.” [9] DevSecOps includes security as a
critical component of the Development Operations (DevOps) practices.

Service-Based Reference Architecture for NAS Automation - Version 1.2

2-3

Term Definition

IaC Infrastructure as Code (IaC) is a DevSecOps approach in which a development
team includes in the source code baseline all the commands or declarations
necessary to configure servers, frameworks, software libraries, and so on
(anything that the mission software depends on). DevSecOps toolchains are
then used to automate the deployment of the mission software, together with all
the necessary infrastructure configuration and installation of software
dependencies, into the development, test, staging, and production environments.

NAS
Mission
Software

NAS Mission Software includes NAS Mission Applications and NAS Mission
Services. Mission applications are the user-facing software components that
provide functions needed by FAA specialists to do their jobs. Mission services
are software components that provide the data and computation services needed
by the applications, via well-defined APIs. (Not to be confused with the term
“Mission Support”, which is a term used to distinguish supporting functions
from functions that are directly in real-time air traffic management operations.)

Pathfinder An initial service-based capability used to gather lessons learned from the
application of Agile development and acquisition processes (e.g., DevSecOps
and cloud deployment). A pathfinder would help address the following:

• FAA Agile system engineering/acquisition processes

• Roles and responsibilities for government, research, and industry
• Acquisition contract mechanisms

• How multiple vendors can work within the framework

Program An organizational activity with responsibility for creating mission applications
and/or mission services to provide value to the FAA and aviation users. For
larger efforts, a formal Program Office may be created; smaller efforts may be
managed by a less formal project structure.

Service-Based Reference Architecture for NAS Automation - Version 1.2

2-4

Term Definition

Service The term Service is used in many ways. Generally, when we use the term in this
document, we are referring to a software component that implements some set
of related functionalities, is accessed through a well-defined interface, and is
designed so it can be used by multiple clients or other services. The following
illustration shows some of the other ways this term is used.

Software
Factory

A software factory is a set of integrated software assets used to create, test,
release and deploy software applications and components in a structured and
repeatable way.

Zero Trust Zero Trust Architecture is an approach to information security that improves
upon perimeter-based security by requiring all resource requests to be
authenticated and authorized on a per session basis regardless of their position
with respect to enterprise infrastructure. As a result, breaches are more difficult
to propagate, defensive operations are more effective, and granting access can
be more flexible.

2.3 Guiding Principles
The Reference Architecture embodies a set of guiding principles that were stated in the FY20
Automation Evolution Strategy Briefing and white paper, with some additions from the DoD
Enterprise DevSecOps Reference Design [2]. The principles are:

Enterprise Scope – The automation strategy should support the implementation of
services that meet the needs of multiple programs/systems. It will adopt common tools
from planning and requirements through deployment and operations. It will apply
architecture at enterprise scale to achieve desired strategic outcomes.
Incremental – The automation strategy should promote the incremental development of
services that can be implemented more rapidly and produce operational benefits in the
near and long term. By focusing on more immediate needs and priorities, incremental
development avoids unnecessary work and rework resulting from speculation about
potential future operations. A big bang change will not be possible – we expect to

Service-Based Reference Architecture for NAS Automation - Version 1.2

2-5

continue to operate and sustain legacy systems while the new proposed service-based
architecture is instantiated.
Enable Opportunities and Expand Industry Base – The architecture should promote
expansion of the industry base to provide computing resources, platform software, and
mission services. When appropriate, resources and services may be outsourced to vendors
offering suitable service level agreements.
Evolvable – The architecture must expect that technologies and standards will change
over time. To avoid building up technical debt, and to increase the pace of introduction of
new capabilities, the architecture must be evolvable.
Streamlined Information Technology (IT) – The architecture should automate as much
of the development, testing, and deployment activities as possible. Remove bottlenecks
and manual actions.
Business Sense – Apply technology and methodologies where it makes business sense to
do so and when requirements can be supported.

2.4 Assumptions
2.4.1 Agile and DevSecOps
We assume that Agile and DevSecOps will be the preferred development methodologies. The
shift to Agile software development is in direct contrast to the traditional “Waterfall” method of
project management. Rather than focus on a fixed schedule and inflexible requirements and
deliverables, Agile focuses on the following:

• Individuals and interactions over processes and tools

• Working software over comprehensive documentation

• Customer collaboration over following a plan

• Responding to change over following a plan
DevOps is a set of practices integrating various activities within software development and IT
operations. Ideally, it can shorten systems development life cycles and provide advantages like
Continuous Delivery (CD). These mechanisms pave the way for consistent and reliable
continuous development, integration, and delivery as well as facilitating automated verification
and testing.
DevOps is complementary with the Agile software development process; several DevOps
aspects came from Agile methodology. By extending the concept of automation to include
security verification into this DevOps process, we arrive at the concept of DevSecOps which is
the philosophy of integrating security practices within the DevOps process.
Rationale: These methodologies are being applied and proving successful in more and more
domains and have proven to dramatically reduce cost and time-to-market.

2.4.2 Transition to Internet Protocol Networking
We assume that the transition to the Internet Protocol (IP) suite from Time Division Multiplexing
(TDM) circuits will continue. Currently, some TDM circuits remain in use in the NAS, including

Service-Based Reference Architecture for NAS Automation - Version 1.2

2-6

connections from surveillance sensors to ATC systems, interfacility data transfer (IDAT)
interfaces among ATC systems, and voice communications.
This includes the assumption that the IP networks will be capable of meeting availability and
performance requirements of ATC services.
Rationale: The transition to IP is well underway and will only accelerate as TDM circuits
become more expensive and less supported. We expect all new capabilities will be built to work
with IP, and legacy information exchanges will continue to transition to using IP network
services.
The Reference Architecture is network-centric in that it relies heavily on resources that are
accessed over the network. There may be special cases in which all critical computing is kept
local to avoid dependence on the network, but those should be minimized to obtain the benefits
of the architecture. Given advances in commercially available networking services, and the
requirements that have been provided to industry in the FENS solicitation, we believe it is
reasonable to assume that NAS performance and availability requirements can be met at
reasonable cost using commercially available network services.
The practical realization of this architecture will rely on the application of tools and methods that
work in an IP networking environment. Therefore, a service-based architecture will not apply to
portions of the NAS that do not use IP, although to the extent that those portions still exist, they
can be accommodated by gateways and legacy system interfaces.

2.4.3 Use of Cloud for NAS Operations
We assume the FAA will be able to address concerns regarding cloud technologies in areas such
as availability, security, and performance so they will be approved to use in NAS operations.
Acceptable implementation may include a combination of commercially provided off-premises
cloud, edge-computing, and on-premises cloud.
Rationale: Cloud technologies offer scalability and the opportunity for reduced infrastructure
costs and make possible an Infrastructure as Code approach that is a key part of DevSecOps, and
this architecture. The FAA is already making use of cloud services for administrative and
mission-support functions and is planning initial steps to use cloud to support NAS operational
functions.

2.4.4 Organizational Change
We assume the FAA will make changes across organizational roles, responsibilities, and
activities (e.g., minimize software and systems engineering silos [10]), governance, and
workforce skills based on a service-based architecture and associated methodologies (e.g., Agile
and DevSecOps).
Rationale: Agile and DevSecOps rely heavily on cultural change including increased
collaboration, continuous feedback, team autonomy, and increased reliance on automation.
While these organizational and cultural changes may be difficult, they are necessary for Agile
and DevSecOps to succeed. The FAA will also need the right organizational structures to be
responsible for platform standards and implementation, as well as integration, sustainment, and
operational management of common services.

Service-Based Reference Architecture for NAS Automation - Version 1.2

2-7

2.4.5 Acquisition
We assume that acquisition processes and contracting artifacts will be tailored to allow Agile and
DevSecOps methodologies to succeed. Traditional acquisition practices are aligned with a
traditional “big design upfront” development philosophy that involves detailed requirements,
plans, and designs as precursors to solution development. The development usually proceeds
within contractor-provided development and test environments. Alternatively, Agile promotes
high level requirements, plans, and architecture as precursors for an emergent design process and
incremental development. A DevSecOps environment may be provided as Government
Furnished Equipment (GFE). The expectation of an Agile/DevSecOps development effort should
be facilitated by suitable contract content that includes objectives or high-level requirements
instead of detailed requirements, frequent incremental software deliveries, metrics and progress
reporting aligned with incremental development, streamlined documentation, and other
differences with more traditional contract content.
Rationale: This is necessary for effective Agile and DevSecOps.
Architecture Key Characteristics
Table 2-1 contains the key characteristics of the Reference Architecture, with a brief explanation
of why each characteristic is important and how it helps achieve the desired strategic outcomes.

Service-Based Reference Architecture for NAS Automation - Version 1.2

2-8

Table 2-1. Key Characteristics of Reference Architecture

WHAT WHY

 Layered
– Mission Applications and Mission Services:

NAS-specific software
• Created by Agile/DevSecOps

development teams
– Platform: Generic Information Technology

(IT) software
• Provided, operated, and sustained

separately and used by multiple
Mission Layer software development
teams

• Provides software factory tools for
developers

• Instantiates instances of mission
services as needed

• Mediates invocations of services and
controls access

– Computing Resources: End user devices,
computing, storage, and networking

• Provided, operated, and sustained
separately and used by multiple
development teams

• Leverage cloud technologies and
commodity hardware

• On-demand dynamic provisioning
provides resources as needed

– Separates architecture elements, allowing teams to

focus on what they do best: Agile/DevSecOps
teams create application software to meet mission
needs, platform engineers assemble off-the-shelf
IT tools, and service providers offer commodity
computing resources

– Common platform and computing layers reduce
rework, improve security, and simplify licensing
and training

– Allows Agile product teams to be nimble in
responding to new concepts and changing
environment

• Focus on mission needs, without having to
reinvent lower layers

• Software factory (DevSecOps pipeline)
provides repeatable processes resulting in high
quality secure products

– Lower layers can evolve independently as
technology evolves, without impacting the
Mission Layer software

• “Tech refresh” is handled by the service
provider, and costs are factored into recurring
service costs, rather than requiring capital
improvement funds

– Platform Layer provides scalability and resilience
by instantiating mission service instances as
needed, leveraging elastic scaling provided by the
computing resources layer

 Service-based

– Small software components with loose
coupling and minimized dependencies.

– Information exchange and interoperability via
Message Bus, Service Mesh, Application
Programming Interface (API) Gateways

• Minimize databases shared
across different application
environments

– Interoperability and integration via data
standards and interface/API configuration
management

– Service instances run wherever needed for
performance and availability, and are accessed
via the network under control of Platform
Layer services

– Breaking large systems into smaller loosely

coupled components:
• Reduces cost and time-to-market by

allowing parallel development by multiple
smaller development teams

• Allows increased opportunities for
competition

– Data standards, API configuration management,
and registries/repositories mitigate the integration
complexity of maintaining interoperability among
mission applications and services evolving in
parallel

– Location independence facilitates resiliency and
the ability to support contingency operations

 Operational Monitoring and Management
– Tools provide real-time visibility into status,

performance, and availability of services,

– “Technical Operations is responsible for the

performance of equipment, systems, and

Service-Based Reference Architecture for NAS Automation - Version 1.2

2-9

WHAT WHY

applications, and supporting layers, together
with the ability to manage these elements

services that affect the operation of the NAS”
(FAA Order 6000.30F)

 Secure
– Security built into DevSecOps tools and

processes
– Each layer inherits controls from layers below
– Zero Trust

• Increased emphasis on end-to-end
security, authentication, and
authorization

• Decreased emphasis on network
layer security mechanisms
(perimeter gateways and firewalls)

– Cyber-defensive operations provide
monitoring and response

– Baking security into development early

reduces vulnerabilities and reduces cost and
time associated with obtaining authorization
to operate

– Ability to inherit security controls from lower
layers reduces rework, cost, and time needed
to obtain security approval

– The current perimeter protection approach
allows intrusion to propagate laterally once
the boundary is penetrated

– The need to create gateways and manually
configure network access control at network
domain boundaries increases costs and delay
and creates bottlenecks

– Security threats continue to grow and evolve
and must be addressed during operations, as
well as during development

 Multiple Levels of Criticality
– Provides performance, reliability, and

availability commensurate with safety-critical,
efficiency-critical, essential, and routine
service threads

– NAS includes service threads at all levels of

criticality
– Architecture must include the ATC systems

that are the major drivers of cost and delay in
the NAS

A more detailed description of each characteristic, and how it is manifested in the architecture, is
provided in the following sections.

2.4.6 Layered
The layers that make up the Reference Architecture are shown in Figure 2-2.

Figure 2-2. Layered Architecture – Overview

Computing
Resources

Layer

NAS
Mission
Software

Layer

Standards
-Based

Software
Platform

Layer

NAS Mission Applications
Software components including

user interfaces that NAS
specialists use as they carry out

the NAS operational mission.

NAS Mission Services
Software components providing
aviation data and computation

functions needed by NAS
applications.

Applications Software
Environment

Frameworks and environments
for user interface applications.

Services Software
Environment

Generic IT services and
DevSecOps tools.

End User Equipment
Devices that provide displays

and input devices for NAS
specialists.

Compute Infrastructure

Equipment that provides the
computing, storage, networking, etc.

Integrated
Security

• DevSecOps
w/Security
“Baked in”

• Security
Operations –
Continuous
Monitoring

• Secure Cloud
w/Inheritance of
Controls

• Zero Trust
Architecture

Service-Based Reference Architecture for NAS Automation - Version 1.2

2-10

A key concept is that the different horizontal layers are intended to be acquired and sustained
separately. The layers of the architecture are as follows:

• The NAS Mission Software Layer (or just Mission Layer, for short) contains NAS
Mission Applications and NAS Mission Services. Mission applications are the user-
facing software assemblies that provide the functions needed by FAA specialists to do
their jobs. Mission services are software components that provide the data and
computation services needed by the applications via well-defined APIs. Software
components in this layer are likely to be specifically developed for the NAS, in contrast
to generic software components in the layers below.

• The Standards-Based Software Platform Layer (or just Platform Layer, for short) consists
of general-purpose IT software that provides the environment within which the mission
software layer components can run. The Standards-Based Software Platform Layer
contains off-the-shelf (both commercial and open-source) software components that
provide generic IT that might be used in any large, complex enterprise. This layer
includes DevSecOps tools that comprise the Software Factory concept, providing a
repeatable process that allows mission software layer applications and services to be
developed, integrated, tested, integrated, delivered, and deployed. This layer also creates
the environment in which mission applications and services run, including a control plane
that creates instances of mission services as needed for performance and availability. It
also mediates service invocations, routing service requests, and information exchanges.
The Platform Layer ensures that all accesses to resources are controlled with zero trust
end-to-end authentication and authorization.

• The Computing Resources Layer provides the underlying computing, storage,
networking, and end-user devices (e.g., workstations) to support the layers above. Like
the Platform Layer, it is expected to be provided, operated, and sustained separately and
support many NAS services. The computing resources layer will be built using
commodity hardware (for workstations) and will use commodity cloud resources that
provide on-demand provisioning.

Layering enables an important IT concept known as “separation of concerns.” Separating
architecture elements into layers allows teams to focus on what they do best. Agile/DevSecOps
teams create application software to meet mission needs, platform engineers assemble off-the-
shelf IT tools, and service providers offer commodity computing resources.
Development teams creating mission software layer applications and services will use a Platform
Layer provided to them by a separate platform engineering organization. Use of a common
Platform Layer avoids proliferation of tools, simplifying licensing and training of IT staff. The
availability of a robust, secure, resilient Platform Layer reduces the scope of development
efforts, making it possible for smaller development teams to participate. Mission software
development teams can be nimble in responding to new concepts and changing environments
since they can focus on mission needs without having to expend effort reinventing the functions
provided by lower layers.
The layered approach also improves NAS security. Security controls implemented and
authorized in one layer can be inherited by the upper layers, shortening the process for obtaining
an authorization to operate for new applications. The software factory provided by the Platform
Layer ensures that security is baked into the mission software development and quality assurance
(QA) process.

Service-Based Reference Architecture for NAS Automation - Version 1.2

2-11

The lower layers can evolve independently as technology advances. For example, cloud and
container technologies allow the underlying hardware of the computing resources layer to be
upgraded without impacting the mission software layer. This eliminates costly technical refresh
activities that currently must be built into the lifecycle of NAS systems. There will need to be
policies defining minimal acceptable lag in technical debt, as well as dedicated budget for the
evolution of the lower layers.
The layered architecture provides NAS scalability and resilience. Mission applications and
mission services will be designed to be orchestrated by the Platform Layer, for example by
instantiating new copies of services as needed for performance, leveraging elastic scaling2
provided by the computing resources layer.

2.4.7 Service-based
The Reference Architecture is service-based. A service is software that implements some set of
related functionalities, is accessed through a well-defined secured interface, and is designed so it
can be used by multiple clients or other services. Services should be designed so they are only
loosely coupled and minimize dependencies.
Shifting from acquisition of entire systems to an approach in which development teams create
services and applications allows for parallel independent development of small units of
functionality. Those small units of functionality can be quickly completed and made available for
operational use, reducing time-to-market. That approach also increases the opportunity for
industry competition. Rather than a single vendor being the only entity that can make changes to
a large and complex system, that strategy emphasizes independent development teams that can
create small units of functionality with well-defined interfaces, which can be sustained within a
well-defined ecosystem created by the underlying Platform Layer.
In the Reference Architecture, NAS functionality (as identified in the NAS EA) is provided in
the form of applications and services that communicate through service interfaces, which may be
implemented via:

• Event-driven messaging on a message bus

• API Gateways

• Service Mesh
The Reference Architecture is based on a pattern that is currently being widely promoted and
adopted by industry known as microservice architecture, which is an evolution of an older
pattern known as service-oriented architecture (SOA). The Reference Architecture is referred to
as a service-based architecture rather than a microservice architecture or SOA because we are
introducing some refinements to avoid known issues with those architecture models. Contrasted
with a pure microservice architecture wherein a very large number of microservices are
developed, deployed, and their APIs exposed to users, the Reference Architecture exposes a
more limited set of microservices from each application domain. That reduction in exposed
services reduces the complexity of integration, configuration management, and sustainment.
Contrasted with SOA, which is associated with older technologies such as Enterprise Service
Bus (ESB) products, the Reference Architecture assumes more fine-grained services and modern

2 Elastic scaling is the capability of automatically adding or reducing computing resources based on demand for those resources

on a near real time basis.

Service-Based Reference Architecture for NAS Automation - Version 1.2

2-12

technologies that emphasize scalability and support for DevSecOps methodology. These
distinctions will become clearer as more detail is added in subsequent sections.

2.4.8 Operational Monitoring and Management
An overview of Operational Monitoring and Management concepts in the Reference
Architecture is provided in Figure 2-3.

Figure 2-3. High Level Concepts for Operational Monitoring and Management

The Technical Operations (TechOps) organization is responsible for the performance of
equipment, systems, and services that affect the operation of the NAS [11]. To carry out that
responsibility, TechOps staff use remote monitoring and management tools. Mission services
and applications must be designed to provide necessary status and performance indications, in
real time, to provide data to existing monitoring and management tools, or to provide new,
equivalent dashboards and status monitoring capabilities. At the standards-based software
platform and computing resource layers, extensive support for monitoring and management are
built into existing off-the-shelf tools. Sophisticated tools and dashboards are also provided as
standard offerings along with cloud services.
In addition to FAA organic NAS enterprise management and monitoring capabilities, computing
resources service providers take on responsibility for infrastructure components. For example,
telecommunications service providers operate Network Operations Control Centers. Cloud
service providers monitor and manage their datacenters and networks. That reduces the effort
required for the FAA to monitor and manage resources at the computing resources layer, but
TechOps will need to monitor cloud service quality levels to ensure that service level agreements
are being met. TechOps will also need monitoring capabilities so that they are aware of any
cloud service outages that would affect the FAA. In some cases, TechOps staff may be able to
take corrective action (e.g., activating a contingency plan that switches to a different Cloud
Service Provider [CSP]). TechOps would also be able to alert facility staff for any necessary
operational mitigations. Collectively, the changes associated with the reference architecture
suggest the need to re-examine the roles and responsibilities of TechOps and Second Level
Engineering (SLE) and the future relationship with cloud service provider operations.

Service-Based Reference Architecture for NAS Automation - Version 1.2

2-13

2.4.9 Secure
The Reference Architecture includes an emphasis on improved information security. While there
are many aspects to better security in the proposed architecture, we highlight four interrelated
facets illustrated in Figure 2-4. Those are:

• A layered architecture in which each layer provides a hardened secure foundation for the
layers above

• The DevSecOps process that includes security requirements as equal to functional
requirements

• A ZTA that implements strong security with granularity, visibility, and resilience against
breaches, and

• Cyber Defensive Operations, including a Security Operations Center (SOC) that monitors
and responds to indications of intrusion.

Those facets work with and, in many cases, will improve the existing security practices in the
organization such as security awareness training, physical security, insider threat detection
and mitigation, and so on.

Figure 2-4. Security Overview

2.4.9.1 Inheritance of Controls
In the Reference Architecture, mission services are the focus of program efforts, building on top
of lower layers provided by the enterprise to multiple programs. That approach allows the
mission service to rely on the lower layer services, including the security features of those lower
layers, without having to redesign them or repeat analysis or testing to validate their security
features. In Figure 2-5 below we highlight how the Reference Architecture significantly relieves
individual programs of security requirements, most of which can be designed, implemented,
vetted, monitored, and refactored for the FAA by other organizations.

Service-Based Reference Architecture for NAS Automation - Version 1.2

2-14

Figure 2-5. Inheritance of Controls

Any NAS system must meet National Institute for Standards and Technology (NIST)
confidentiality, integrity, and availability controls according to its sensitivity and criticality. If a
program were to acquire its own computing resources, it would be responsible for implementing
and assessing a complete set of security controls at all layers. Currently, there are only a limited
set of controls that are provided at an enterprise level. For example, the NAS Enterprise Security
Gateway (NESG) provides boundary protection for the entire NAS. The NIST guidance, when
applied to a specific NAS system, might result in roughly 400 controls that apply to the
infrastructure, 600 to the computing resources, 300 to the platform resources, and 100 to the
mission service. In the legacy approach, a program might be responsible for implementing and
maintaining more than half of the controls. By contrast, if a program were able to use the
approved platform, which rests on top of the approved computing resources, it would be
responsible for only a fraction of the controls. Additionally, standardized containers that provide
for secure communication, authorization or configuration can further reduce the security effort
required of the development teams. The result is that a program would be responsible for only a
fraction of even the mission software layer controls.

2.4.9.2 Security Built-in to DevSecOps
In DevSecOps, information security is baked into the development process. Legacy software
development has largely treated the implementation and evaluation of the security of the system
as a process independent of the development of the functionality of the software, often starting
later in the waterfall. That often produced a deployment bottleneck as the enterprise evaluated at
the end of development what changes were needed (or possible) to obtain an Authority to
Operate (ATO). By contrast, the security requirements and metrics needed to determine risk and
provide artifacts for ATO happen alongside the incremental, continuous development and
deployment of system features from inception through the minimum viable product and beyond.
Figure 2-6 below illustrates the DevSecOps processes.

Service-Based Reference Architecture for NAS Automation - Version 1.2

2-15

Figure 2-6. Security in DevSecOps

As illustrated above, many security features are required in the DevSecOps pipeline and are
applied with each iteration as part of the process. These include but are not limited to dynamic
and static code analysis, vulnerability management, risk assessment, ATO artifact generation,
and signature validation. Penetration testing, continuous monitoring, and security data collection
for use by the SOC occur on the deployed application or deployment images in appropriate
environments.

2.4.9.3 Zero Trust
Zero Trust Architecture (ZTA) is an approach to information security that improves upon
perimeter-based security by requiring all resource requests to be authenticated and authorized on
a per session basis regardless of their position with respect to enterprise infrastructure. As a
result, breaches are more difficult to propagate, defensive operations are more effective, and
granting access can be more flexible. As security is devolved to each service and enforced by the
security features of the Platform Layer, boundary protection, the paradigm of inside/outside,3 and
the systems that define and enforce that model can be transitioned away.
Figure 2-7 illustrates the concepts of a ZTA in the Reference Architecture. Every resource
request (for data or computation service, etc.) from a user or another system is authenticated and
checked for authorization to access that resource. That contrasts against the model of an
enterprise boundary where things on the outside are presumed to be untrustworthy and things on
the inside are broadly able to communicate with each other without scrutiny.

3 The paradigm of having a trusted security perimeter where things inside the perimeter are trusted and authentication and

authorization occur at that boundary. Zero trust no longer relies on authorization at the boundary, moving away from this
paradigm.

Service-Based Reference Architecture for NAS Automation - Version 1.2

2-16

Figure 2-7. Zero Trust Concepts in the Reference Architecture

In the Reference Architecture, authentication and authorization is implemented in a uniform
manner in the Platform Layer. Policy enforcement points enforce access decisions made by a
policy engine. Microsegmentation prevents arbitrary communication among parts of the
enterprise. Authorization policies are dynamic and adapt to threats according to rich security data
collected by the platform. The policy system enforces compliance policy to reduce the risk that
any of the components of the enterprise is vulnerable to exploitation. The rich information
collected by the platform, and detailed knowledge of the assets and authorized communication
patterns of the enterprise, is sent to the SOC, supporting effective cybersecurity defensive
operations.
The Platform and Compute layer needs specific infrastructure to implement the ZTA in a secure,
efficient, scalable, and resilient manner. This infrastructure will provide for trust of users,
devices, applications, and networks through ZTA. Container sidecars or other standardized
mediation communications implement the facilities needed to participate in the security regime.
This mediation can be host agent based or a Zero Trust gateway. Host agents may be required for
the compliance verification aspect of Zero Trust across all systems.
The Reference Architecture includes infrastructure, procedures, and policies to provide for the
resilience of the Zero Trust communications in the face of failure modes or compromise to
ensure the safe operation of the FAA mission while maintaining security.

Service-Based Reference Architecture for NAS Automation - Version 1.2

2-17

2.4.9.4 Cybersecurity Defensive Operations
Security Operations Centers (SOCs)4 provide the NAS with cybersecurity defensive operations.
The SOCs consist of dedicated teams of cybersecurity professionals tasked with identifying
cybersecurity events of interest and determining if malicious activity is present in the FAA. To
do that, SOCs collect information from end systems and network monitoring combined with
threat intelligence and other sources to detect anomalous behavior and determine the cause,
severity, and remediation of cybersecurity incidents. The teams use a variety of tools,
partnerships, and capabilities for this work. The data provided by the architecture’s security
collection features supports the capabilities of the SOCs. The Reference Architecture includes a
mature SOC capability which can include threat intelligence, SOC collaboration, malware
analysis, threat hunting and deception operations [12].

2.4.10 Multiple Levels of Criticality
The Reference Architecture supports multiple levels of criticality, which are defined in the
FAA’s Reliability, Maintainability, and Availability (RMA) Handbook [13] as: safety-critical,
efficiency-critical, essential, and routine.5 Safety, operational, and engineering analyses must be
conducted consistent with the existing process. Each mission service or application must be
assessed within the context of the end-to-end service threads that it supports, to determine
requirements (i.e., availability and latency requirements) appropriate for the criticality of
operations being supported. The Mission Layer software must be designed accordingly, and the
Platform Layer and the associated Computing Resources Layer must be configured to meet the
requirements. Figure 2-8 provides a high-level overview of how the different levels of criticality
are supported in the Reference Architecture. The figure is explained below, and more detail is
provided in subsequent sections.

4 There are multiple entities that have differing roles and capabilities related to security operations in the FAA. These include the

Department of Transportation SOC, the NAS Cybersecurity Operations (NCO) group, security operations functions performed
at a facility or system level by application owners, and third-party SOCs operated by FAA telecommunications and cloud
service vendors. Further elaboration is beyond the scope of this document.

5 NAS systems and networks are currently grouped into network security domains that consider these same system criticality
levels. However, the emphasis of this section is on RMA and performance rather than security. The Reference Architecture
approach to security is based on Zero Trust principles that reduce the emphasis on network layer security domains, as
discussed in the previous section.

Service-Based Reference Architecture for NAS Automation - Version 1.2

2-18

Figure 2-8. Layered Architecture Supporting Multiple Levels of Criticality

Consider first the “Back-End” Computing column. That column represents mission functions and
data services executing in managed container environments provided by the Platform Layer and
hosted on cloud computing infrastructure (potentially both on and off premises) provided by the
Computing Resources Layer. That approach represents the current commercial mainstream, and
is the expected implementation approach for routine, essential, and efficiency-critical functions.
It may also be the implementation approach for safety-critical functions with sufficient
infrastructure configuration and performance tuning to meet requirements that are more
demanding. Considerations to be addressed within the Platform and Computing Resources layers
are the number of service instances to be implemented, geographical distribution for
performance and to mitigate failure impacts, load balancing for performance, service and data
synchronization, and computing and communication resource prioritization.
Next, consider the left two columns, which represent the user-facing air traffic management
(ATM) applications. These applications consume and coordinate mission data and computing
provided by Mission Services and provide user interfaces to end users in FAA facilities. The
middle column of Figure 2-8 represents the collection of Decision Support elements that are not
safety-critical. These elements are expected to be implemented using commercial mainstream
approaches, for example with a web browser environment providing the Platform Layer running
on Computing Resources made up of general-purpose devices (personal computers [PCs], etc.).
The left column of Figure 2-8 represents the collection of ATC elements that are safety-critical
and must be implemented in a consistent way that recognizes that criticality. Considerations for
safety-critical applications include redundancy and design for operational resilience, demanding
performance requirements, and demanding requirements for data and function integrity. Meeting
these requirements may require specialized Platform Layer software running on specially
configured controller workstation hardware. In addition, facility-based processing, storage, and
data distribution elements may be needed to support critical functions.

ATC Workstations

(Safety-Critical)

End User Equipment (In NAS Facilities)

General Purpose Devices
(PCs, Tablets, etc.)

Facility LANs, WANs (Network Access Control & Boundary Protection)

Compute Infrastructure:
VMs, Containers, Storage
(Cloud, Off & On-Prem)

Computing
Resources

Layer

Mission
Software LayerATC Applications and User

Interfaces

Decision Support
Applications and User

Interfaces

Mission Services/Data

Standards-
Based

Software
Platform

Layer

Decision Support User Interface
Software Platform

Environment(s)

ATC User Interface Software
Platform Environment

Mission Services Software Platform
Environment(s) and Enterprise IT

Services

Controller Workstations
(COTS Hardware)

Decision Support Workstations

(Non-Safety-Critical)

“Back-End” Computing

(High Availability to support both Non-
Safety-Critical and Safety-Critical service
threads)

Service-Based Reference Architecture for NAS Automation - Version 1.2

3-1

 NAS Mission Applications and Mission Services Layer
3.1 Overview
The NAS Mission Applications and Mission Services6 Layer (or Mission Layer, for short)
contains applications and services that provide functionality to support the mission of the NAS.
Software components in this layer are likely to be specifically developed for the NAS, in contrast
to generic software components in the layers below.
Figure 3-1 provides an overview of the Mission Layer. The elements that make up this layer are
described below.

Figure 3-1. Mission Layer

Mission services are software components that provide mission-specific data (e.g., flight data,
surveillance data, and aeronautical data) and computation functions (e.g., tracking, weather
prediction, and conflict probe) needed in the NAS.
Mission applications are software assemblies that provide the capabilities needed by FAA
specialists (e.g., controllers, traffic managers) to do their jobs. Mission applications contain a
user facing component which consists of a graphical user interface that accesses mission services
to obtain data and perform computations needed by the end user.
Sections 3.2 and 3.3 provide more description of NAS Mission Applications and Services, and
how they fit into the overall Reference Architecture. However, the Reference Architecture only
provides a general description; it does not define specifically which services and applications
will be needed in the NAS.

3.2 Mission Applications
The Reference Architecture does not attempt to define specific mission applications or mission
services. The Traffic Services and Mission Support Services7 called out in the NAS
Requirements Document [15] suggest categories of mission applications that will be needed,
including applications to support:

• Traffic Services
o Flow Contingency Management
o Separation Management

6 Not to be confused with the term “Mission Support”, which is a term used to refer to functions that indirectly support the

mission of the NAS but are not used directly in near-real-time air traffic control and management operations.
7 The “Traffic Services” and “Mission Support Services” referred to in the NAS-RD are not microservices or mission services as

those terms are used in the Reference Architecture. Rather they are high-level services provided by a combination of humans,
operational procedures, and automation, including Mission Applications as described in this document.

ATC Applications
and User Interfaces

Decision Support
Apps and User

Interfaces

NAS Data and
Computations

Mission Applications Mission Services/Data

Service-Based Reference Architecture for NAS Automation - Version 1.2

3-2

o Short Term Capacity Management
o Trajectory Management

• Mission Support Services
o Long Term Capacity Management
o Safety Management
o System and Services Analysis
o System and Services Management

The Mission Applications category is divided into two sub-categories:

• Air Traffic Control (ATC) applications, and

• General decision support applications.
ATC applications provide user interfaces for Certified Professional Controllers (CPCs) to
provide separation services. These software components must be integrated to provide the CPC
with a user interface that is suitable for safety-critical operations.
General decision support applications provide the remainder of user interfaces used by FAA
specialists while operating the NAS and performing mission support activities. This includes
applications used for flow management applications, applications to allow display and entry of
aeronautical information, weather information, dashboards that show the status of the NAS, and
so on. These applications will be used in service threads that may be routine, essential, or
efficiency-critical.
Applications in the Reference Architecture are not tied to any particular end-user computing
equipment (workstation). Rather, they are built to run in a standard software environment
defined by the Platform Layer, and therefore can run on any equipment that provides the
necessary characteristics (display size and resolutions, input devices, etc.).

3.3 NAS Mission Services
This document does not attempt to define specific mission services, but the information services
called out in the NAS Requirements Document [15] suggest categories of mission services that
will be needed:

• Aeronautical Information Management Services

• Flight and State Data Management Services

• Surveillance Information Management Services

• Weather Information Management Services
The SWIM Business Services provide an existing baseline of mission services, such as:

• SWIM Flight Data Publication Service (SFDPS)

• SWIM Terminal Data Distribution Service (STDDS)

• Traffic Flow Management Data Service (TFMData)
An important aspect of the Reference Architecture is that mission services are not bundled with
application software into monolithic systems, but rather run separately and are accessed over the

Service-Based Reference Architecture for NAS Automation - Version 1.2

3-3

network. Applications use lower-level services provided by the Platform Layer to locate,
authenticate, and communicate with the mission services.
Mission services will support both ATC (e.g., conflict probe and metering) and Decision Support
(e.g., traffic flow management) mission applications. When using mission services to support
safety critical ATC applications, care must be taken to ensure that overall service thread
performance and availability requirements are met. Further work is required to ensure that the
proposed architecture is compatible with NAS requirements. The expectation is that availability
requirements can be met by leveraging an underlying Platform Layer that supports high
availability requirements like those used in industry, as discussed in Section 4. For example, if a
mission service is being used for an ATC application, then loss of availability (or connectivity)
of a mission service must be detected, and switchover to an alternate instance accomplished
quickly enough to prevent a safety problem.

3.4 Basic Pattern: Microservice Architecture
The Reference Architecture is based on a microservice architecture, but some modifications and
extensions have been made, which is why we refer to the Reference Architecture as service-
based rather than a microservices architecture. The basic microservice architecture is described
in this section, and the modifications and extensions are described in section 3.5. For more
information on microservices and their use in the context of the NAS, the reader may wish to
refer to the MITRE technical report “Guidance on Flight Information Management for
Microservices” [16].
In the Reference Architecture mission services are generally implemented as microservices. The
microservice concept is explained in Section 3.4.1.
These microservices are assembled, usually together with user interface components, to create
mission applications, as described in Section 3.4.2.

3.4.1 Microservices Concept

Figure 3-2. Microservice Concept

Stateless
Mission

Logic

API/Message
Interface

µService

Persistent State
Information

Persistent State
Information

Platform Layer

Service User

Service-Based Reference Architecture for NAS Automation - Version 1.2

3-4

Microservices, illustrated in Figure 3-2, are basic building blocks of the Reference Architecture.
This section describes the characteristics of a microservice, with a brief explanation of how these
characteristics enable desired properties of the Reference Architecture.
A microservice is a software component that implements some business logic within a bounded
context8, accessed via a well-defined interface over the network.
Access to the microservice is generally though a web service/RESTful API, an open standards-
based web API9, or through a publish/subscribe messaging interface. Different service invocation
patterns will be needed. A request/response pattern is appropriate for cases where an application
needs to retrieve/pull data on demand, for example because of the user requesting new
information to be displayed. A publish/subscribe pattern is often appropriate for the event-driven
nature of the NAS when an event (e.g., a flight plan being amended) triggers a message that is
published/pushed to multiple different systems that need to act.
Each microservice is ideally stateless, which means that a microservice does not keep track of
the state of the user of the service. Because a microservice is stateless, an invocation of a
microservice can be handled by any instance of the microservice, thus allowing multiple
instances to run in parallel. Stateless does not imply that the microservice does not retain data.
On the contrary, in many cases the purpose of a microservice is to keep track of the state of some
real-world object or resource (e.g., a flight). This state information is persisted in an associated
datastore.
A microservice runs independently in its own process, which should run separately from the
datastore used for persistent state information.
The characteristics described above are important because they allow off-the-shelf software in
the Platform Layer to handle lower-level concerns that should not be entangled with the business
logic. For example:

• The stateless nature of microservices allows platform software to scale (up or down) the
number of microservice instances as needed.

• The datastore can be replicated as needed for availability.

• The Platform Layer can mediate the API and message interfaces to ensure secure access
and route service requests to service instances.

3.4.2 Assembling Microservices to Create Applications
Mission applications are created by combining a front-end with a set of back-end mission
services, implemented as microservices. The front-end usually provides a user interface, and the
back end provides the data and computing services that drive the user interface. This is illustrated
in Figure 3-3.

8 The term “bounded context” is from the field of Domain-Driven Design. Very simply stated, it means that a service should do

only one well-defined thing.
9 An example would be openAPI, which defines a standard interface to RESTful APIs.

Service-Based Reference Architecture for NAS Automation - Version 1.2

3-5

Figure 3-3. Application Assembled from User Interface and Mission Services

An important aspect of the proposed architecture is that mission services run separately and are
accessed over the network, using the Platform Layer to locate, authenticate, and communicate
with the service. Platform Layer elements shown in the brown rectangles in Figure 3-3 include
Service Mesh, Message Bus, API Gateway, Proxy, and Policy Enforcement Point. These are
described in more detail in Section 4.2.1.4.

3.5 Service-Based Architecture
The previous section described a basic microservice architecture, however, the Reference
Architecture makes some adjustments, described in this section, resulting in what we call a
“service-based architecture”.
This section discusses the adjustments, which include:

• Shared Mission Services versus Internal Mission Services

• Location dependencies

• Database-centric subsystems

3.5.1 Internal Mission Services Versus Common Mission Services
One of the known disadvantages of a microservice architecture is that, since microservices
should be kept small, a very large number of microservices may be required, and this can be
difficult to manage. If every microservice is made available for general use, then complexity
grows, and it can become difficult to manage dependencies. Just as most program languages
provide a means for hiding internal functions and variables, the Reference Architecture needs a
way to hide microservices that are intended for use within a constrained scope. This is
accomplished by exposing only a subset of the microservices as common mission services. A
common mission service is a mission service exposed for use by other Agile development teams.
This concept is illustrated in Figure 3-4.

µSvc 1

Data

Service Mesh and Message Bus

Service Access
(API Gateway, Proxy, Policy Enforcement Point, etc.)

App ServersApp ServersApps
(Server Side)

User
Interfaces

User
Interfaces

Mission Apps
User

Interfaces

µSvc 2

Data

µSvc N

Data

User
Interfaces

User
Interfaces

M&C User
Interfaces

Monitor and
Control

Data

Service-Based Reference Architecture for NAS Automation - Version 1.2

3-6

Figure 3-4. Microservices Exposed as Common Mission Services

The figure illustrates a set of applications and microservices (1, 2, … N) that are being developed
by a single development team (or perhaps a small number of teams working closely together as
part of one larger development effort). These development teams may find the need to create
many microservices, and some, but not all, of these microservices may be valuable to other
development teams. Microservices that have broad value should be exposed as common mission
services that can be used in other areas. In this example, microservice 1 and 2 are exposed via a
service access point, while the remainder of the microservices are intended for local use only.
It is important to realize that the development scope boundary shown in Figure 3-4 does not
represent a geographical area or facility boundary. Users in each facility should have access to
applications developed independently, and any one of these applications may be drawing on
common mission services that have also been developed independently.

3.5.2 Geospatial Dependencies
The Reference Architecture as described so far is location agnostic. Microservices do not have to
know where they are running and instances of a microservice have no functional location
dependencies. Often these assumptions are true, and any instance of a microservice being run
anywhere can handle an API call to that microservice. For example, a microservice that
calculates the bearing going from one latitude/longitude location to another can do so regardless
of what data center it is running in, and the calculation is the same whether those points are in
Alaska or Vermont.
On the other hand, there may be times where a microservice is location dependent, in one of two
ways:

Agile Development Scope

µSvc 1

Data

Service Mesh and Message Bus

Service Access
(API Gateway, Proxy, Policy Enforcement Point, etc.)

App ServersApp ServersApps
(Server Side)

User
Interfaces

User
Interfaces

Mission Apps
User

Interfaces

µSvc 2

Data

µSvc N

Data

User
Interfaces

User
Interfaces

M&C User
Interfaces

Monitor and
Control

Data

µSvc 1 µSvc 2

Common Mission Services
(exposed for use by other
agile development teams)

Service-Based Reference Architecture for NAS Automation - Version 1.2

3-7

• A service may need to run in a particular location (at a particular facility or on specific
hardware) to meet non-functional requirements for performance, availability, latency,
bandwidth, workload, etc. These considerations for localization in the NAS are often
characterized as performance driven.

• The functionality of the service may need to vary depending on location of the user
invoking the service (e.g., which facility the user is in), or an object being referred to in
the service request (e.g., the location of a flight). These considerations for localization in
the NAS are often characterized as adaptation driven.

These two cases are described below.
Non-functional location dependency (performance driven). An example of non-functional
location dependency would be a levied requirement that a system within a facility must continue
to run even if outside network connectivity is lost. In that case, computing infrastructure would
need to be located at the facility and API calls to a service would need to be routed to instances
of the service running within the facility compute infrastructure.
This kind of dependency could be met by, for example, running a container orchestrator cluster
on compute infrastructure located within the facility. Any requests between services within that
container orchestrator would automatically be routed within the orchestrator cluster. And APIs
exposed by the orchestrator would again route to within the facility. A separate API gateway
would need to be running for the system at the facility, and it would be setup to route API calls
to within the facility.
These kinds of accommodations inevitably involve some tradeoffs. For example, limiting API
requests to being serviced by service instances running on compute infrastructure at the facility,
might create the need to purchase more compute infrastructure than would be necessary if load
balancing across the NAS. Consideration should be given to whether RMA, performance, and
cost requirements can be met without secondary requirements requiring location-dependent
computing.
Functional Location Dependency (adaptation driven). The second kind of dependency occurs
when the functionality of a service is location dependent. This is an application layer design
issue, not an architecture issue. It is mentioned here only to show how these kinds of issues
supported within the Reference Architecture.
For example, consider a mission service that returns track positions for a controller display.
There may be a requirement that the controller should see target positions only from a single
radar when performing separation functions. This could be implemented by, for example,
tagging track data with the source radar identifier. Then when the track position service is called,
the radar ID can be included in the API, and the service would only return track data that came
from the specified radar. Note that in this example, there is no need to limit where track position
service is running; that can be independently adjusted as needed for non-functional requirements
(performance, etc.) as described above.

3.5.3 Support for Transactions and Data-Centric Subsystems
A fundamental principle of a microservice architecture is the movement away from centralized
databases to service-based data stores. Figure 3-4 illustrates this practice by showing each

Service-Based Reference Architecture for NAS Automation - Version 1.2

3-8

microservice with its own data store.10 While this is highly desirable because it decouples data
used by services, sometimes a strict insistence on this decoupling of data can lead to overly
complicated software. An example of such a case is when Atomicity, Consistency, Isolation, and
Durability (ACID) transactions involving several services must take place.11 ACID transactions
might be needed in situations such as aircraft handoff, to guarantee that one and only one
controller is responsible for a flight at any given time. Shared databases often have specific
features designed to simplify implementation of such transactions.

Figure 3-5. Use of Shared Data

Figure 3-5 illustrates a modification of the basic Reference Architecture to accommodate such
cases. Notice how microservices 1 through N now share data that is stored within a common
database (contrast this with Figure 3-4).
While this modification of the basic Reference Architecture may be necessary in some cases, it
should be avoided if possible. ACID transactions come at a performance cost. Also, a shared
database creates coupling between services that may make the system more difficult to modify as
new capabilities are to be added. Eventual consistency should be used rather than ACID
transactions when sufficient to satisfy requirements.
It is important to note that despite this modification of the basic Reference Architecture, exposed
services still behave as before. Users of the exposed APIs do not need to know if microservice 1
and microservice 2 are communicating via a shared database. However, internally, those
decisions may have very large impacts on cost, maintainability, and extensibility. Those
decisions could also impact performance, and that can be an issue to the NAS.

10 Note that what is important is that the data that is persisted by each service is independent and stored and accessed only by that

service. The database providing that persistence can be (and often is) used by multiple services. This provides for the desired
decoupling of data between services.

11 These are properties of a transaction that help guarantee validity of results.

Agile Development Scope

µSvc 1

Service Mesh and Message Bus

Service Access
(API Gateway, Proxy, Policy Enforcement Point, etc.)

App ServersApp ServersApps
(Server Side)

User
Interfaces

User
Interfaces

Mission Apps
User

Interfaces

µSvc 2 µSvc N

User
Interfaces

User
Interfaces

M&C User
Interfaces

Monitor and
Control

Data

µSvc 1 µSvc 2

Common Mission Services
(exposed for use by other
agile development teams)

Data (with API supporting
shared tables, ACID

transaction support, etc.)

Service-Based Reference Architecture for NAS Automation - Version 1.2

3-9

3.5.4 NAS-Wide View of Service-Based Architecture
Figure 3-6 provides a NAS-Wide view in which applications and services developed and
sustained independently are combined to provide the full suite of automation functions needed
for the NAS.

Figure 3-6. NAS-Wide View of Services and Applications

Figure 3-6 provides an example of how the results of multiple Agile development efforts are
integrated to provide the automation capabilities needed to support operations. In this example,
Agile team A has created applications that provide a graphical user interface (GUI), and which
use common mission services provided elsewhere for the necessary back-end data and
computation. By contrast, Agile team B is responsible for common mission services only (with
no user interface), whereas Agile team C is developing both applications with user interfaces as
well as mission services. Depending on the magnitude of the development efforts, each of these
Agile teams A, B, and C, might need to consist of multiple Agile teams working together on a set
of closely related capabilities.
Just as service mesh and message bus solutions are used for internal communication among
components developed and sustained by a single team, they can also be used at NAS-wide scale
(e.g., SWIM) to support access to common services. Mediation and transformation services,
monitoring and control, and security operations will also be needed at a NAS-wide level.
Any common services need to be more extensively documented than internal services that need
to be known only by teams working within a given area. Platform Layer tools (see Section
4.2.2.4) support this by providing a NAS-wide service registry, metadata, and API management.
Mediation and transformation services can also be provided as enterprise-level services. These
can be used to incorporate data from legacy systems. They can also be used to solve
interoperability problems and to facilitate transition to new versions of APIs and data structures.
Figure 3-6 also illustrates how the EIM Platform data lake can be accommodated by the
Reference Architecture. Within the EIM platform different models of information sharing may

NAS Common Mission Services
(Available via Service APIs & Messages)

NAS-Wide
Architecture
Oversight

API Management,
Schemas, Metadata

Access

Apps

Agile Team A

(Application)

GUI M&C

Access

Agile Team B

(Common Service)

µServices

M&C

Access

Apps

µServices

GUI M&C

Enterprise Information
Management Platform

(Data archives, batch
processing, analytics)

Mission Partners
(Airlines, etc.)

Internal Mesh/Bus Internal Mesh/Bus

Agile Team C

(Applications & Common
Services Development)

Security Operations
Enterprise Monitoring

and Control
Enterprise Platform

Capabilities

Service-Based Reference Architecture for NAS Automation - Version 1.2

3-10

be used (for example, shared data accessed by multiple different services, as discussed in Section
3.5.3). However, these differences should be isolated from the rest of the NAS using APIs.

3.5.5 Monitoring and Control
The Reference Architecture provides robust facilities for monitoring and control. Mission
services and applications are instrumented, and user interfaces are provided to allow TechOps
staff at facilities and in the NAS Enterprise Operations (NAS EO) organization to monitor and
control the automation services.
With the rich information provided, TechOps will have access to both highly granular and
aggregate metrics on system performance which will provide for fast and highly informed
understanding of service state and the ability to control services as needed.

3.5.6 Security Monitoring and Defensive Operations
The Reference Architecture will provide robust security monitoring and facilitate defensive
operations. As described in Section 2.4.9, Mission Services and Applications will leverage the
security provided by ZTA. Applications and services are created with security instrumentation
by default, rather than a sensor, agent and logging infrastructure needing to be applied a
posteriori.

Service-Based Reference Architecture for NAS Automation - Version 1.2

4-1

 Platform Layer
4.1 Overview
The Standards-Based Software Platform Layer (or more briefly, Platform Layer) consists of
general-purpose IT software that provides the environment within which the Mission Layer
components can run. Software in the Platform Layer is not likely to be custom developed for the
NAS. Rather, this layer is expected to be assembled by licensing, configuring, and operating a
suite of needed enterprise IT tools, including both commercial-off-the-shelf (COTS) as well as
free and open source (FOSS) components. Cloud Platform-as-a-Service (PaaS) offerings may
also make up part of this layer.
The existence of the Platform Layer relieves mission software developers from the effort and
cost of selecting, licensing, configuring, and sustaining these IT components. Rather, mission
software developers can focus on the application layer code that will run in the environment
provided by the Platform layer, which is created, operated, and sustained separately. That
reduces rework and allows TechOps and SLE staff to focus on a finite, controlled set of tools and
technologies.
The Platform Layer also promotes modularity in that it decouples the Mission Software Layer
from the underlying Computing Resources layer. NAS mission software application developers
can develop to the platform defined by the Reference Architecture, regardless of how the
underlying computing resources layer will be provided. For example, the same Platform Layer
can be made available on different CSP vendor environments and in FAA on-premises
environments. Inclusion of CSP-specific PaaS offerings in the Reference Architecture Platform
Layer is problematic in this regard, and therefore should only be used judiciously. The ability to
use multiple CSPs in the Platform Layer, without specifying particular cloud vendor capabilities,
minimizes vendor lock-in while promoting interoperability.
As illustrated in Figure 4-1, the Platform Layer includes the environment within which
applications (including both ATC and decision support user interfaces) are developed, as well as
the environment in which mission services are developed. Instances of the Platform Layer can be
created as needed to provide development, testing, staging and integration, and production
environments. Those environments can be shared by multiple development teams in a multi-
tenant model, or separate environments can be created for individual programs.

Figure 4-1. Standards-based Software Platform Layer

The following sections describe the Platform Layer in the Reference Architecture. Section 4.2
describes the Platform Layer in terms of generic elements that make it up, followed by a
summary of preliminary recommendations for each of these elements in the Reference
Architecture.

Service-Based Reference Architecture for NAS Automation - Version 1.2

4-2

Section 4.3 describes a survey MITRE CAASD conducted of various projects and programs that
used architectures or methodologies relevant to the Automation Evolution strategy. The results
of the survey are contained in Appendix B.

4.2 Platform Layer Elements
This section describes the elements that make up the Platform Layer. Each of these elements
represents a broad category of functional capabilities that are implemented in a wide variety of
COTS and FOSS and PaaS tools or components. There are numerous components available that
are evolving rapidly and often overlap or partially replace each other’s functions, so a perfect
categorization is not possible. Nevertheless, the Platform Layer elements described here are
intended to provide a complete set of functions that will support the mission services and
applications described in Section 3. Preliminary recommendations are included as to the best
way to provide and use each element consistent with the architecture key characteristics laid out
in Section 0, to achieve the strategic objectives described in Section 1.2. The recommendations
are general; selecting specific tools for each element will be an ongoing activity separate from
this Reference Architecture. We have provided examples of specific tools only as reference
points to explain the elements.

4.2.1 Runtime

4.2.1.1 Software Hosting/Execution
Software hosting/execution capabilities consist of those capabilities that provide the runtime
environment within which software components (services and applications) run, and manage the
execution of components within the environment, including support for scaling and availability.
Example Software Runtime capabilities include:

• Support for VMs.

• Container runtime tools such as docker engine.

• Container Orchestration tools.

• Serverless computing.
Containers and container orchestration should be used where possible for running services and
applications in the Reference Architecture, because it allows the Platform Layer to provide the
following functions:

• Automate the deployment of containers at scale with multiple instances of a service based
on schedule and load.

• Deployment of those instantiated services to multiple real or virtual machines that make
up a cluster.

• Provision of a single API endpoint for those multiple instantiated services.

• Load balancing.

• Health monitoring and restart of failed service instances.

Service-Based Reference Architecture for NAS Automation - Version 1.2

4-3

The use of container orchestrators also enables the use of service mesh technology (Section
4.2.1.4). The use of sidecar containers to provide service mesh and security functionality is
encouraged.12
While containers and container orchestration are a fundamental part of the Reference
Architecture, other approaches (e.g., running processes on VMs and Serverless Computing)
should be supported as needed.

4.2.1.2 Workflow Choreography and Orchestration
Workflow choreography and orchestration capabilities manage the overall sequence of events
necessary to implement some piece of business logic. In workflow orchestration one entity
controls the invocation of a sequence of mission functions, whereas in choreography the
sequence of mission functions is arranged without control from a single point.
Note that the term “orchestration” in this context refers to coordinating logic at the Mission
Layer. This is quite different to “container orchestration” discussed in Section 4.2.1.1, which
refers to managing instances of a microservice to provide performance and availability without
regard to the sequence of mission logic to be executed.
Use of workflow choreography and orchestration helps decouple services from each other. For
example, after one service finishes, either of two different services may need to be called,
depending on the results of the first service. Rather than building that logic into the first service,
which would create strong coupling, choreography or orchestration can be used to invoke the
services in the right order, possibly passing the outputs of one service as inputs to the next. That
minimizes the knowledge each service needs to have of other services, thereby keeping the
services loosely coupled.
One risk in using these capabilities, especially orchestration, is the centralization of enterprise
business logic in one place. Earlier ESB versions of these capabilities tended to suffer from
performance bottlenecks and single-point-of-failure. Modern versions (e.g., Apache Airflow,
Netflix Cosmos) are designed to be scalable and reduce these problems. Nevertheless, care must
still be taken when using workflow orchestration to avoid centralizing the business logic in one
place. Workflow orchestration risks creating bottlenecks in Agile development because it means
that every service development team needs to interact with the one central team responsible for
the workflow orchestration logic.
Choreography can be implemented with event-driven processing, in which events published on a
message bus trigger the necessary processing. Choreography is preferred over orchestration in
the Reference Architecture. Orchestration should be used with care to avoid too much
centralization of business logic.

4.2.1.3 Monitoring, Log Analysis, and Reliability
Monitoring and Log Analysis capabilities provide monitoring, logging, tracing, and chaos
engineering (stressing the system to ensure reliability). Examples include Prometheus, Fluentd,
and Chaos Monkey. Those capabilities provide insight into how a system is behaving or, in the

12 Some container orchestration tools such as Kubernetes allow running a group of containers together. In the case of Kubernetes,

this group is called a pod. A sidecar container is one designed to run alongside other containers and encapsulate some
functionality. For example, a sidecar container might implement a service mesh or security processing. The sidecar can then
change without having to rebuild the main container containing a service or some other functionality.

Service-Based Reference Architecture for NAS Automation - Version 1.2

4-4

case of chaos engineering, purposely stressing the system to ensure it behaves properly even
when components fail.
The Reference Architecture log analysis capabilities can detect and report anomalous behavior
and provide summary data suitable for use by human NAS operators (i.e., Technical Operations).
For example, they are used to provide summaries of average response times for key services.
The Platform Layer provides standard facilities such as container sidecars and the service mesh
(Section 4.2.1.4) to developers that facilitate robust and dynamically configurable logging and
monitoring tools. Those will then be used by application owners, the enterprise, and information
security operations.
Security data collection is required for mission services and applications. The types of data
collected and forwarded to Security Operations include network flow data, authorization and
authentication data from the zero trust entities, host agents, and hash checks.

4.2.1.4 Service Proxy, Mesh, and API Gateway
Service Proxy, Mesh, and API Gateway capabilities mediate service invocations. They may
provide a control plane, enabling routing, load balancing, secure encrypted communications,
service discovery, authentication and authorization, monitoring, and resiliency (e.g., Envoy,
Linkerd, and Istio).
Capabilities that fall into this category include:

• Service Proxies (e.g., kube-proxy within Kubernetes)

• API Gateways (e.g., Kong and Mulesoft)

• Sidecar and Service Meshes (e.g., Envoy, Linkerd, and Istio)
There is some overlap between these capabilities and those that provide for container
orchestration. For example, Kubernetes, a container orchestrator, proxies instances of services to
a unified endpoint. Kubernetes also provides a limited form of load balancing.
The use of a service mesh ensures end-to-end encryption of messaging between services and
makes it easier to implement zero trust security. Service mesh implementations may be
implemented using a sidecar pattern, in which a lightweight proxy is included in the base
container images within which all services run. The sidecar mediates service invocations and can
enforce authentication and authorization and provide a control plane for management. That can
help prevent unauthorized exfiltration of data from a service and provides for a greater level of
control for the authentication and authorization for use of services. A service mesh can provide
greater levels of observability and analysis since information is easier to collect about the
performance of individual instances of a service, and not information aggregated from all
instances of a service. A service mesh can provide for better fault handling if a service fails to
return results promptly.
API Gateways provide a front end that exposes the API of a NAS service without exposing the
implementation details such as the actual service that implements the API. API Gateways also
provide management and monitoring and can support enterprise functions such as authentication
and authorization.
The use of a Service Mesh and API Gateways is the preferred pattern in the Reference
Architecture.

Service-Based Reference Architecture for NAS Automation - Version 1.2

4-5

Service Meshes should be used to mediate and interconnect all the microservices within the
bounded scope of a development effort.
API Gateways should be used to manage the microservices that are exposed by a development
team for use elsewhere in the NAS, or for use by external entities.

4.2.1.5 Virtual Networking, Policy, Authentication, and Authorization
These services connect with other services and enforce access policies. Virtual networking
moves the logical control of routing and traffic out of the physical forwarding devices to a
dynamically updatable control plane. This facilitates ZTAs by allowing all network traffic to by
default deny and whitelist flows according to authorization policy. These services also apply to
orchestration systems such as Kubernetes as network plugins or Container Network Interfaces
(CNI) that provide the security functionality. Examples include Calico, Flannel, Weave and
Canal.
Authentication services establish the identity of a person or software process, and authorization
services regulate access between authenticated entities. In a mature ZTA, the policy stance
should by default deny access between all entities with explicit access granted based on need.
Some CNI products provide these services, other examples include Amazon Web Services
(AWS) Identity and Access Management (IAM), Identity Management (IdM), Istio, and Active
Directory.
the Reference Architecture includes network segregation provided within the Computing
Resources Layer (e.g., physical or software-defined subnets and virtual private cloud subnets), as
well as virtual networking provided by the Platform Layer.
The Platform Layer provides standardized authentication and authorization mechanisms that are
granular and dynamically updateable. Those mechanisms will allow the FAA to reconfigure the
network efficiently and dynamically and enforce information security policies. That will
facilitate transition to zero trust by allowing network micro-segmentation to prevent the lateral
spread of security threats.

4.2.1.6 Distributed Database and Storage
These capabilities allow information to be persisted in a resilient and scalable manner, using
structured and unstructured databases, file systems, and block storage (e.g., Vitess and Rook).
The primary use of databases in the Reference Architecture is providing persistent information
for a service, allowing the service to be stateless.13
The Reference Architecture also uses databases to store information for auditing and later
analysis. An example would be recording information for future event reconstruction (e.g., to
support accident investigations). Another use is to support playback for simulation/testing.
An open issue with this Reference Architecture is the degree to which other uses might be made
of such databases. For example, it might eventually be desirable to do some analytics on

13 A stateless service is one where any instance of that service can handle a service call or message, with no dependence on that

service having handled any previous call. Any state information required by the service is either kept in a persistent data store
(such as a database) or provided in the service call. There are many advantages to having stateless services including allowing
load balancing of service calls across multiple instances of a service and the ability to easily restart service instances that fail.
There may be specific use cases that require stateful services, but the recommendation is that stateful services should be
avoided if possible.

Service-Based Reference Architecture for NAS Automation - Version 1.2

4-6

information stored in the databases and make use of those analytics in the NAS operational
environment within decision support tools.
The Reference Architecture provides a suite of tools to support relational, document based, and
other common database types.
NAS mission services should be kept stateless by using Platform Layer databases and other
storage services to provide persistence.
The exchange of information between different NAS mission services should use API calls or
information exchanges via a message bus instead of communicating through a database. The
reason for this is to avoid strong coupling between the services.

4.2.1.7 Streaming and Messaging (Message Bus)
These capabilities provide asynchronous message-based information exchange, including
publish/subscribe and point-to-point message exchanges14. This document uses “Message Bus”
as a generic term to include various technologies that provide streaming and messaging
capabilities. (Examples include NATS, Kafka, and AMQP.)
Those mechanisms are often preferable to point-to-point communications because they enable
loose coupling between services (a service does not need to know its users, and a subscriber does
not need to know who publishes the information). Publish/Subscribe is also much simpler than
point-to-point communications in an environment where multiple instances of a service are used
to provide performance at scale, because individual messages can be sent to any service instance
for processing. The asynchronous nature of messaging also allows responsive processing in an
event-driven environment.
This category of capabilities also includes tools to translate between message types. For
example, it may be desirable to translate an incoming message in Extensible Markup Language
(XML) into JavaScript Object Notation (JSON) before putting it on the message bus.
The Reference Architecture platform includes tools that can be used for messaging/streaming
within individual programs/application domains, as well as the NAS-wide message bus (SWIM).
The publishing of information to topics on a message bus is a fundamental part of the Reference
Architecture. The NAS can use multiple message broker technologies. Long-haul cross-nation
message broker topologies can ensure information can reliably and efficiently be delivered to
geographically dispersed subscribers. Within a computing environment, microservice instances
can interact in an asynchronous, decoupled manner via a highly reliable and scalable local broker
technology (e.g., Kafka). Furthermore, with potential for increased numbers of sensors and other
Internet of Things (IoT) devices, a highly efficient, fast broker technology (e.g., Message
Queuing Telemetry Transport [MQTT]) is an important addition to the NAS architecture.
Message brokers can serve as an important alternative to communicating information between
services using databases. As mentioned in Section 4.2.1.2, that can also serve as important means
of choreographing the use of services to complete larger functions.
The Platform Layer provides message bus tools that should be instantiated and used by
development teams for internal message-based communications among Mission Layer
microservices and applications. The Platform Layer will also instantiate a NAS-wide message

14 The NAS already uses Streaming and Messaging. For example, publishing and subscribing to topics on a message bus is used

with SWIM.

Service-Based Reference Architecture for NAS Automation - Version 1.2

4-7

bus for message-based communications among applications and microservices developed by
disparate teams.
Information should be published to a topic on the message bus if that information is likely to be
of interest to multiple services.

4.2.1.8 Analytics and Artificial Intelligence
These capabilities consist of data analysis tools. That includes big data analysis tools, as well as
Extract, Transform, and Load (ETL) capabilities. The capabilities are used to find significant
patterns within data sources. They are also used to report on those patterns and signal events that
may be actionable.
Artificial Intelligence capabilities are becoming increasingly important for identifying patterns
within data. As such capabilities become more mature, it is likely they will start to see some
usage within the NAS. That will probably start with post analysis capabilities, but eventually
may be used in decision support tools as well.
Analytics consist of two forms, batch processing and stream processing, as shown in Table 4-1.
With batch processing, a large volume of data (e.g., data lake) is collected over time and is
processed all at once. There is a delay between collecting and storing the data sets and the
processing for analysis, and reporting. With stream processing, data that is continuously being
ingested is processed piece-by-piece. Analysis and reporting for events of interest occur in near-
real-time [18].

Table 4-1. Batch Versus Stream Processing

Batch Processing Stream Processing
Data is collected over time Data streams continuously
Once data is collected, it is analyzed Data is processed piece-by-piece
Batch processing is time-consuming and is meant
for large quantities of information that is not time-
sensitive

Stream processing is fast and is meant for
information that is needed immediately

These tools are expected to be used primarily in the mission support environment (e.g., EIM
Platform) rather than within the operational NAS. However, in the future these tools may be
incorporated in decision support tools and operational dashboards used in near-real time in the
operational environment. These tools are also expected to be used for analyzing the NAS
platform and mission services, including analyzing performance and usage patterns, as well as
detecting security threats.
The Platform Layer provides Analysis tools that should be used to support batch processing as
well as stream processing.

4.2.2 Development
This section addresses the non-runtime aspects of creating executable software. The development
Platform Layer elements together provide the Software factory that supports Agile and
DevSecOps methodologies.

Service-Based Reference Architecture for NAS Automation - Version 1.2

4-8

4.2.2.1 Development Frameworks and Libraries
A development framework is a platform for developing software applications/services. It
provides a foundation on which software developers can build programs. Development
frameworks exist for various software contexts. For example, frameworks such as React and
Angular, provide both an architecture model and implementation library for development of user
interfaces. Similarly, server-side development frameworks are software models that make it
easier to write, maintain and scale software components. They provide tools and libraries that
simplify common development tasks, including routing Uniform Resource Locators (URLs) to
appropriate handlers (e.g., Tomcat, Node.js, and NGINX), interacting with databases, supporting
sessions and user authorization, formatting output (e.g., Hypertext Markup Language [HTML],
JSON, and XML), and improving security against attacks. By constraining the developer to a
common software model for performing a common task, frameworks provide a consistent
approach to developing reusable, robust software functionality.
The Reference Architecture Platform Layer provides an extensive but controlled set of
frameworks, libraries, and so on. Those components will need to be vetted for security supply
chain concerns, licensing costs, and so on, while providing an extensive enough suite of tools to
meet developer needs and maximize productivity.

4.2.2.2 Planning and Requirements Management
Requirements management is the process of documenting, analyzing, tracing, prioritizing, and
agreeing on requirements and then controlling change and communicating to relevant
stakeholders. A goal of the Automation Evolution is to support Agile software development,
which discourages documentation of extensive detailed requirements early in the process.
Nevertheless, Agile development teams still need to define and communicate and manage the
functionality that is needed and planned for development. In Agile methodologies that is done
using techniques such as Epics and User Stories and Backlogs. The following paragraphs include
tools that support Planning and Requirements Management Agile practices.
As a principal capability of requirements management software, requirements traceability
documents the life of a requirement. Software engineering practices for some categories of NAS
software (e.g., safety-critical components) mandate that it should be possible to trace back to the
origin of each requirement and every change made to the requirement. Even the use of the
requirement after the implemented features have been deployed and used should be traceable.
In addition, requirements management software can support the reuse of requirements across
projects, and perform requirements change impact analysis to aid software development planning
and change management. Bug and issue tracking are also generally included in requirements
management software.
Examples of modern requirements management tools include Jama Software, International
Business Machines Corporation (IBM) Engineering Requirements Management Dynamic
Object-Oriented Requirements (DOORS) Next, Atlassian’s Jira, and Confluence.
To aid in the design of system and software architectures, Model Based Systems Engineering
(MBSE) and advanced visualization techniques are emerging as essential tools to analyze and
understand this complexity and develop solutions, including system requirements, architecture,
design, interfaces, and behaviors.
Examples of modern MBSE tools include IBM Rational Rhapsody and MagicDraw/Cameo.

Service-Based Reference Architecture for NAS Automation - Version 1.2

4-9

As with frameworks and libraries, the Reference Architecture Platform Layer provides an
extensive but vetted and controlled suite of these tools to meet developer needs and maximize
productivity.

4.2.2.3 Software Packaging, Repositories, and Distribution
Software packaging involves the preparation of standard, structured software artifacts targeted
for automated deployment. By streamlining software configuration and deployment, software
packaging can help reduce application management costs.
Container images and packages are two forms of distributing software. Containerization is a
technology that packages software and all dependencies except the operating system into an
easily deployed unit that will run reliably across computing environments (e.g., Docker).
Packages are bundles of files that are installed by a package manager such as Red Hat Package
Manager (RPM) in Red Hat Enterprise Linux (RHEL) or Advanced Package Tool (APT) in
Ubuntu, which check to make sure that multiple packages use compatible libraries, do not use
the same filenames, etc., before writing the files into one shared filesystem.
Packages usually come from repositories, and it is up to configuration management staff running
the repositories to decide which package contains files, network port configurations, system user
ID, etc., as well as which versions of programs get packaged. Packages are built from
specification files that list which files should be included. Package installation technologies such
as RPM and APT-get take the prepared software packages, gather, update, and install required
software dependencies, and deploy the software to the target execution environment.
Software repositories also provide storage and management for various forms of software
development artifacts (e.g., docker images, VM images, source code, and configuration files).
Some repositories serve as (binary) artifact repositories (e.g., Artifactory and Nexus) while
others (e.g., Git and Subversion) also provide version control capability at the source code level.
Automation software (e.g., Jenkins and Drone) manages and controls software delivery processes
throughout the entire lifecycle, including build, document, test, package, stage, deployment, and
static code analysis. The NAS will leverage such automation server technology to automate tasks
related to the building, testing, and distribution or deploying of NAS software components.
Container images are the preferred form of software packaging in the Reference Architecture.
The Reference Architecture Platform Layer includes software repositories, provided as an
enterprise resource, containing hardened, approved software components, to be drawn upon by
the Continuous Integration/Continuous Delivery (CI/CD) toolchains, as described in Section
4.2.2.5.

4.2.2.4 Application Programming Interface and Data Management
API Management includes the specification of APIs, shared data formats, schemas, and
semantics. API management includes defining, controlling, and communicating the information
needed to enable unrelated objects (including systems, services, equipment, software, and data)
to interoperate. All those interfaces must be defined and controlled in a way that enables efficient
discovery, use and change management of these systems or services. Therefore, the practice of
interface management begins at design and continues through operations and maintenance.
Since a principal NAS component is its messaging architecture, the design of the domain
dataspace and its associated data models is critical to its success. Because of that, tools to
manage message schemas are also important. With a multitude of NAS producers and

Service-Based Reference Architecture for NAS Automation - Version 1.2

4-10

consumers, agreement on preferred data models can be challenging. The NAS currently shares
data in formats defined via XML schemas, however the Reference Architecture will include
support for additional formats such as JSON and Avro which can improve efficiency and
facilitate schema management.
NAS applications can declare and publish their APIs for other applications and/or external
entities to discover and consume. These APIs completely define a protocol for communication
and include data formats allowing for easier and more efficient consumption.
The Reference Architecture platform provides an enterprise registry that defines APIs and
message schemas, together with tools for developers to update definitions (preferably
automatically), with support for version control and discovery. Service APIs and message
schemas that are exposed across the enterprise need to be discoverable and described in an
enterprise level registry, whereas APIs and message schemas used within an application domain
should be in local registries available to that development team.

4.2.2.5 Continuous Integration / Continuous Delivery Toolchain
CI/CD embody a culture, set of operating principles, and collection of practices that enable
application development teams to deliver code changes more frequently and reliably. The
implementation is also known as the CI/CD Toolchain.
Continuous Integration is a set of practices that encourages developers to check in the changes to
source code frequently. Those changes are then integrated with the changes made by other
developers. The result is integration problems are found and resolved much earlier in the process
as opposed to when developers wait until their portion of the code is complete and then try to
integrate their code with code produced by others. Continuous Delivery automates the delivery
of applications to the infrastructure that will be used to run them. That allows for more frequent
updates to applications including both bug fixes and new content. An example of a tool used for
CI/CD is Drone. It is an open-source continuous integration server and is used to build and test
software projects continuously.
CI/CD introduces ongoing automation and continuous monitoring throughout the lifecycle of
applications, from integration and testing phases to delivery and deployment. Inclusion of
comprehensive testing and security scanning within the CI/CD pipeline is essential for ensuring
software quality. Automated testing increases speed of innovation since developers can refactor
code and immediately know if they have broken something. Code is deployed automatically and
more frequently, with higher code quality and improved operations. Irrespective of
system/software architecture, CI/CD is integral to modern software development practices.
The Platform Layer provides CI/CD toolchains that should be utilized by all mission software
development teams. The CI/CD toolchains implement a software factory that automates
configuration and artifact management, testing (including security), integration, the creation of
hardened runtime artifacts (such as containers), and delivery of those hardened artifacts into both
test and production environments. There will be an approved suite of tools that make up the
software factory. However, differences in programming languages and development frameworks
will require multiple CI/CD toolchains and development teams will need to work with the
Platform Layer provider to ensure the provided toolchains meet their needs. Projects may have
their own instances of the CI/CD toolchain and development environment.

Service-Based Reference Architecture for NAS Automation - Version 1.2

4-11

4.2.3 Summary of Platform Elements in the Reference Architecture
Table 4-2 summarizes what the Reference Architecture provides for each of the Platform Layer
elements.

Table 4-2. Platform Elements in the Reference Architecture

Platform Element Service-Based Reference Architecture for NAS Automation

Runtime

Software
Hosting/Execution

Containers and container orchestration are a fundamental part of the
Reference Architecture. Other approaches (e.g., VMs, Serverless
Computing) are discouraged, but may be supported when needed.

Workflow
Choreography and
Orchestration

Use in limited contexts where valuable, however avoid centralizing
enterprise mission logic in one place using these tools. Reference
Architecture prefers event-driven processing and choreography
patterns.

Monitoring and Log
Analysis

The Reference Architecture will include a robust suite of logging and
monitoring tools and services, to support both operational
performance and availability management, as well as cybersecurity
monitoring and response.

Service Proxy, Mesh,
and Gateway

Service Mesh is the preferred pattern for Reference Architecture
(provides monitoring of service instances, supports zero trust) within
an application domain, with API gateways and enterprise messaging
for interdomain interoperability.

Virtual Networking,
Policy, Authentication
and Authorization

The Reference Architecture includes network segregation provided
within the Computing Resources Layer (e.g., physical or software-
defined subnets and virtual private cloud subnets), as well as virtual
networking and authentication and authorization mechanisms
provided by the Platform Layer.

Distributed Database
and Storage

The Reference Architecture platform includes an extensive suite of
tools and service for persistence. The preferred pattern is use of
persistence within instance of services (allowing service
implementation to be stateless) rather than use of databases for
communication among different services.

Streaming and
Messaging

The Reference Architecture platform includes tools that can be used
for messaging/streaming within individual programs/application
domains, as well as the NAS-wide message bus (e.g., SWIM).

Analytics and
Artificial Intelligence

Tools for analytics and AI are included in the Reference Architecture
platform. Batch analysis tools are expected to be used primarily in the
mission support environment (e.g., EIM Platform) but stream analysis
tools may be used in near-real time in the operational environment.

Service-Based Reference Architecture for NAS Automation - Version 1.2

4-12

Platform Element Service-Based Reference Architecture for NAS Automation

Development

Development
Frameworks and
Libraries

The Reference Architecture will allow developers to use a wide
variety of frameworks, libraries, and languages to meet developers’
needs. Developers will select from an extensive but controlled set of
hardened, configuration-controlled artifacts.

Planning and
Requirements
Management

The Reference Architecture will include tools for requirements
management, bug trackers, feature requests, tracking user stories,
documentation, and so on.

Software Packaging,
Repositories, and
Distribution

Reference Architecture platform will provide enterprise repository(s)
of hardened container images. Toolchains will ensure that only
hardened artifacts are used.

API and Data
Management

The Reference Architecture platform will provide an enterprise
registry that defines APIs and message schemas, with support for
automated updates, version control and discovery.

CI/CD Toolchain All programs should use a CI/CD toolchain. The Reference
Architecture platform will provide an extensive suite of CI/CD tools
providing one or more software factories to meet developers’ needs.

4.3 Survey of Existing Platforms
We surveyed several programs that have been applying Agile Development, DevSecOps, and/or
Service-Based or Microservices architecture. Appendix B contains our survey results for:

• ABCD

• CLMRS

• EIM Platform

• Project Elroy

• DoD Platform One
For each of the above, a brief description is provided, as well as a table showing what the
program is using/providing for the Platform Layer, organized according to the Platform Layer
Elements breakdown in the previous section.

Service-Based Reference Architecture for NAS Automation - Version 1.2

5-1

 Computing Resources Layer
5.1 Overview
The Computing Resources Layer, depicted in Figure 5-1, includes end-user equipment, compute
infrastructure, and local area networks (LAN) and wide area networks (WAN) that tie them
together. Examples of end-user equipment would be workstations, displays, tablets, mice,
trackballs, and keyboards. Examples of compute infrastructure would be servers that run
services, operating systems, storage, VMs, and containers.

Figure 5-1. Computing Resources Layer

The Computing Resources Layer has the following key characteristics:

• Secure: Meeting security standards allowing NAS ATO

• Available: Providing redundant processing in separate locations (e.g., AWS Availability
Zones)

• Reliable: Supporting continuity of operations (e.g., multiple cloud regions and multiple
cloud providers)

• Responsive: Low latency and high data rate connectivity (e.g., direct connections to
cloud environments from multiple NAS locations)

• Scalable: Able to expand or contract to continue to meet performance requirements as
demand varies

• Supportable: Providing a support model that folds into FAA TechOps processes

• Trusted: Showing users and Operators the benefits of cloud and demonstrating cloud as a
viable platform for the future.

The elements that make up the Computing Resources Layer are a combination of on-premises as
well as off-premises resources, as illustrated in Figure 5-2. These elements are described in the
following sections.

Service-Based Reference Architecture for NAS Automation - Version 1.2

5-2

Figure 5-2. Computing Resources Elements

The common computing infrastructure is provided primarily by CSPs off-premises, as illustrated
on the left side of Figure 5-2. Within these environments, resource enclaves (e.g., VPCs) are
provisioned to meet the needs of programs for development, testing, staging, and operations.
Platform Layer elements are instantiated within enclaves and as common services supporting all
programs, as was described in Section 4. Off-premises cloud is described in Section 5.2.1.
If necessary, to meet business needs or NAS requirements (e.g., security, performance, or latency
requirements), NAS common computing infrastructure can also be provisioned in on-premises
data centers or facility-based computing infrastructure, as illustrated on the right side of the
figure.15 Resource enclaves and Platform Layer services can then be instantiated on this
infrastructure, masking computing infrastructure differences from the Mission Layer software
developers. On-premises data center and facility-based infrastructure is discussed in Section
5.2.2.
While the goal is that new development will be done using the common Reference Architecture
Platform Layer (Section 4) hosted on common computing infrastructure, we recognize that
standalone systems such as legacy systems, sensors, and other physical equipment collocated
with NAS facilities will continue to exist. Standalone systems are discussed in Section 5.3.
End user equipment (controller workstations and general-purpose workstations, mobile devices,
and so on) must also be provided and sustained to support human users within NAS facilities, as
discussed in Section 5.4.
Networking capabilities shown in Figure 5-2, include: NAS wide-area telecommunications (e.g.,
FENS), virtual networking services within the cloud, secure connectivity between the FAA

15 It remains to be seen whether on-premises data centers and facility-based compute infrastructure will be needed in the long

term. Data centers providing common compute infrastructure exist in the NAS today (the Integrated Enterprise Services
Platform), and back-room facility servers providing IaaS may be used as an interim step to cloud-based computing for systems
such as the Standard Terminal Automation Replacement System (STARS).

Ingress/Egress

On-Premises Resources

Off Premises Cloud

Common Platform Services
(Messaging, Zero Trust,

Logging, Monitoring, etc.)

FAA
Network
Services

Standalone
SystemsController

Workstations
General Purpose
Workstations

NAS Facilities (ATCSCC, ARTCCs, TRACONs, etc.)

Data Centers and Facility Computing Infrastructure
Ingress/Egress

Mission Partners
(Air Carriers, DoD,

NOAA, etc.)

(CSP Environments and Networks)

Common
Platform
Services Resource Enclave

Apps & Services
Subnet

Access Subnet

Data Subnet

Resource Enclave
(e.g. VPC)

Apps & Services
Subnet

Access Subnet

Data Subnet

Internet & Direct
Connections

(FAA-Controlled Environments and Networks)

Cloud Network
Services

(e.g. Transit GW)

Secure Cloud
Access

Common
Compute
Infrastructure

Common
Compute
Infrastructure

Service-Based Reference Architecture for NAS Automation - Version 1.2

5-3

premises and the cloud, and ingress and egress connectivity to mission partners. These are
discussed further in Section 5.5.
This evolving NAS Computing Resources Layer demands the integration of monitoring and
control strategies for diverse computing resources and services. For continuing on-premises
standalone systems, monitoring and control functions will be driven by the specific operational
needs of those systems, augmented with interfaces to common NAS monitoring and control
functions to enable determination of NAS-wide computing resource status. Off-premises cloud
computing resources will involve monitoring and control capabilities integrated with those
services and aligned with the Platform services described in Section 4. When the off-premises
computing involves a non-FAA service provider, expectations will be captured in service level
agreements. On-premises data center and facility computing will replicate aspects of the cloud
computing and Platform services with correspondingly similar monitor and control functions.
From the operator perspective, the most significant difference is the redistribution of monitoring
and control responsibility and authority. Operators monitoring and controlling Platform Layer
enterprise managed services and their associated cloud computing resources will have much
broader influence on NAS operations. Accordingly, these operators must have a correspondingly
broader perspective of the operational context for these services as well as the Platform services
they all share. At the facility level, operators will monitor and control the interfaces with
Platform Layer enterprise managed services and computing resources, the configuration of the
local computing environment, and the configuration and status of local applications and services.

5.2 Common Compute Infrastructure
The common compute infrastructure provides the underlying servers and storage needed by the
NAS Mission Services and Applications. The actual physical equipment is expected to primarily
reside in off-premises facilities run by CSPs but may also reside in on-premises data centers or
facility-based server rooms. In either case, those physical resources are made available as VMs
and virtual storage devices using an IaaS model. In the case of on-premises data centers,
hyperconverged infrastructure (HCI) can be used to unify management of system resources
consisting of virtualized servers, storage, computing, and networking. HCI can be used to replace
legacy infrastructure. Benefits of HCIs include increased scalability and reduced datacenter
complexity, rapid deployment, and architecture flexibility. HCI can be used to build a private
cloud, expand to a public cloud, and build hybrid clouds (a mix of VMs and containers) [19],
[20].
The Platform Layer that runs on top of this infrastructure is provided by a CSP with a PaaS
model or created by installing and configuring Platform Layer software components on the
virtual infrastructure. The Platform Layer abstracts the Computing Resources Layer, so
developers are provided a common environment regardless of how the compute infrastructure is
hosted.
Because the Platform Layer is specifically designed to be cloud ready and usable on a wide
variety of computing infrastructure resources, the actual makeup of the compute infrastructure
matters little to the developer and end user of a system. This has some very practical benefits.
For example, a program might stand up a development environment using an off-premises CSP
for easy access and the ability to adapt rapidly to changing needs, while the production
environment might be hosted on an on-premises data center. Or, one developer might stand up a
development environment on their own VMs, while other developers use one created using an
off-premises CSP.

Service-Based Reference Architecture for NAS Automation - Version 1.2

5-4

The on-demand delivery of infrastructure is a key advantage of using CSPs, making it possible to
scale the infrastructure to the changing demands on a program. For example, there may be less
need for infrastructure when first standing up a program. As the program gets rolled out for use,
there may be a much higher demand on the compute infrastructure, and that demand might vary
seasonally or with special events. Using a CSP allows paying for what you need when you need
it.
FAA use of off-premises cloud provided by a CSP such as AWS or Azure is already well-
established for administrative systems (e.g., email), and the FAA is also beginning to use of off-
premises cloud under the FCS contract for Mission Support capabilities and for programs that
have a public facing component (e.g., SWIM Cloud Distribution Service, and the NAS Status
web pages). As the FAA gains experience working with off-premises cloud (e.g., security,
monitoring and control, performance), we expect that deployment to off-premises cloud will
begin to be used for NAS decision support and ATC systems. Off-premises deployment is
discussed in Section 5.2.1.
However, especially in the near term, many programs will want the advantages of deploying to
the cloud but for a variety of reasons will require computing infrastructure in FAA facilities,
directly connected to NAS networks, power, and so on. Detail about such on-premises
deployments can be found in Section 5.2.2.

5.2.1 Off-Premises Cloud
The off-premises resources (see Figure 5-2) are provided and sustained by CSPs and provisioned
for the FAA using the FCS contract.16 Resource enclaves are provisioned as needed to meet the
needs of FAA programs or development teams within FAA programs, providing computing
environments for development, research and concept evaluation, testing, staging, and production.
In AWS, for example, resource enclaves are planned to be created as VPCs following a standard
FAA template, whereas in Azure, Virtual Networks (VNETs) would be used. For each FAA
program or development team within an FAA program, FAA templates would exist for all stages
of the engineering pipeline (i.e., development, test, integration, production. As seen in Figure
5-2, the enclave templates would include distinct sections/subnets for ingress/egress services
(Access Subnet), mission and platform services (Apps and Services Subnet), and a persistent
data storage subnet (Data Subnet).17 For example, an Access Subnet would host Platform Layer
elements such as API gateways and Web Application Firewalls (WAFs) that expose common
services. An Apps and Services subnet would host the platform elements such as container
orchestration (Section 4.2.1.1), which would run containers containing instances of NAS Mission
Applications and Mission Services. The Apps and Services subnet would also host Platform
Layer elements such as service mesh (Section 4.2.1.4) and local message brokers. A Data Subnet
would provide persistent storage for state information (Section 4.2.1.6). Finally, in addition to
platform elements instantiated within resource enclaves, Common Platform Services support the
entire FAA cloud environment. Examples of Common Platform Services include Streaming and
Messaging (Section 4.2.1.7), Monitoring and Logging (Section 4.2.1.3), Domain Name Service
(DNS) and Zero Trust security services (Section 4.2.1.5).

16 The National Cloud Integration Services (NCIS) program is in the process of providing a secure cloud environment. Much of

the information in this section is based on the NCIS “Bespin” draft design materials.
17 This data subnet is not the same as the NAS data plane. The data plane in this architecture manages service invocations and

event driven information exchanges using technologies such as API gateways and proxies, message buses, and service meshes.
The data subnet is an enclave within the cloud environment that isolates the long-term storage from other parts of the system.

Service-Based Reference Architecture for NAS Automation - Version 1.2

5-5

The use of an off-premises cloud is not limited to a single cloud vendor. A multi-cloud strategy
is where multiple cloud environments (e.g., AWS and Azure) can be utilized in concert. There is
a growing trend for organizations to adopt a multi-cloud strategy. Technologies exist (e.g.,
service mesh technology) that can serve as a catalyst for successful multi-cloud strategies. The
following are a few advantages and some of the most common reasons organizations adopt
multi-cloud:

• Risk Mitigation – create resilient architectures

• Managing vendor lock-in

• Workload Optimization – placing workloads to optimize for cost and performance

• Cloud providers’ unique capabilities – take advantage of offerings in Artificial
Intelligence (AI), IoT, Machine Learning (ML), etc.

The challenges associated with transitioning to a multi-cloud architecture include:

• Determining the right cloud service for the job at hand

• Fitting the pieces together – each CSP generally has different APIs for similar services

• Managing costs in a complex environment

• Ensuring data protection and privacy

• Ensuring data consistency and integrity

• Keeping up with the rate of change
An overall multi-cloud strategy requires a thoughtful assessment about which cloud attributes
best serve the FAA’s specific needs. Avoiding being locked-in to a specific CSP vendor is also
an important consideration as discussed in Section 4.1.

5.2.2 Data Centers and Facility-Based Computing Infrastructure
Within Data Centers such as the NAS Enterprise Management Center (NEMC), where the IESP
is located, resource enclaves can be provided with the same structure as those in the off-premises
cloud environment. Platform services such as DNS, SWIM messaging, and so on can also be
provided in data centers, or as needed in NAS facilities.
Currently, the IESP provides IaaS in the form of VMs and storage, using hardware installed and
maintained at two NEMC locations, Atlanta and Salt Lake. The IESP could be enhanced to
provide a NAS Platform Layer in these data centers. This would include functions such as
infrastructure as code, container orchestration, a CI/CD DevSecOps pipeline, dynamic workloads
(as services request additional resources in real time), multitenancy, separated control plane and
service mesh, stateless workloads and ephemeral nodes, and availability through zones and
regions. We expect application developers will want “Cloud APIs” (e.g., S3 buckets with
associated authentication/auditing/monitoring).
Support for NAS automation evolution in the long term would also require that the IESP be able
to scale to support NAS-wide performance requirements for mission non-critical and critical
services in terms of latency, jitter, bandwidth, and compute capacity.
Racks of servers could also be provided in facility back rooms at Air Route Traffic Control
Centers (ARTCCs), Terminal Radar Approach Control Facilities (TRACONs), or even Towers,

Service-Based Reference Architecture for NAS Automation - Version 1.2

5-6

to provide facility-based common computing infrastructure. Virtualization software and NAS
Platform Layer software components would then need to be installed, configured, and
maintained on this infrastructure. That would allow NAS Mission Services and Applications to
run locally in facilities, close to users. Whether this is necessary or cost-effective in the long term
is not clear at this point. To provide platform services the back room would need to be able to
provide the types of evolutions of IESP as described above and be able to do so in a seamless
enterprise-wide manner.
It is also possible to purchase and install products from CSPs that create a fully managed CSP
cloud on customer premises. Examples include AWS Outposts or Azure Stack. Those offerings,
if used, would make CSP APIs and services available within FAA data centers or local facilities.
Though the integration with and access to cloud-scale and cloud-API would be relatively
seamless, along with any advantage to be gained by local network connectivity, the need for
these solutions, cost, and other implications, would have to be determined.

5.3 Standalone Systems
Standalone systems include legacy systems that have not been migrated to cloud, as well as
equipment that cannot be virtualized, such as sensors or equipment requiring dedicated physical
interfaces (e.g., serial circuits) that are not supported in the cloud. Although these systems may
not be migrated to the cloud and/or to on-premises data centers, data collection will still be
required to support cyber monitoring and security investigations, performance monitoring,
historical trend analyses, and other mission support functions.
Some systems that require extremely low latency, high availability, and or high levels of
assurance may also be implemented as standalone systems. Examples might include landing
systems, or any other system that directly affects aircraft flight.

5.4 End-User Equipment
Because of the large numbers of operational positions to support, end-user equipment represents
the largest number of hardware components to be acquired and maintained. Choices made in this
area will have a big impact on future operating and sustainment costs. The Reference
Architecture promotes the commonality of end-user equipment enabling greater flexibility in
operations and lower costs through commoditization and economy of scale in purchasing.
User equipment will reflect one of two existing themes: high-powered workstations and displays
that meet safety-critical performance requirements and web/browser-based approaches for non-
safety critical operations. The former involves performance demands, complexity, and domain-
specific aspects that are associated with higher costs and reduced flexibility. The ubiquity of the
latter and the accompanying multitude of developers and development assets are associated with
lower costs, greater productivity, and more rapid development. Unless specific demands require
the former, web/browser-based user interfaces will be preferred to lower the cost and leverage
abundant web-based development tools and utilities.

5.4.1 Safety-Critical User Interfaces
Controller positions will use a bespoke configuration of hardware and software that meet the
highest demands for availability, performance, and integrity. At the lowest level is the
workstation hardware (processors, memory, interfaces) and interfaces with the system network
and with user interface devices. User input mechanisms include the display, keyboard, and

Service-Based Reference Architecture for NAS Automation - Version 1.2

5-7

trackball. In the future new user interface (UI) technologies such as speech recognition,
augmented reality, or gesture controls may be added. Workstation operations are controlled by
the operating system. The operating system will be a standard adopted for the NAS (currently
RHEL). The operating system may be tailored to support higher levels of software design
assurance associated with safety-critical operations. The workstation hosts the ATC UI
application(s) and other software components for system functions such as system management
and system recording, prospectively proxies for platform services. Currently ATC interface
applications are large, complex, monolithic applications. For the future architecture, it is
desirable to follow the service-oriented design philosophy by implementing an integrated
package of user interface application components.

5.4.2 Web Browser-Based User Interfaces
When supported operations are not safety-critical, user interfaces will be standard web/browser-
based designs. The utility of web/browser-based user interfaces continues to grow, enabled by
the progress of browser technologies such as WebAssembly and Web Real-Time
Communication (WebRTC), that expand the application of web/browser-based UI to ATM
operations.

5.5 Networking
FAA Network Services provide connectivity on premises. That connectivity will be provided by
FENS, which is currently in the vendor selection phase of acquisition. The FENS solicitation
calls for network connectivity within Critical, Essential, and Routine network domains, as well
as Edge Protection (EP) services for data flows among these domains. Mapping those network
domains and communications services to the Reference Architecture remains to be completed.
Cloud networking services make use of CSP network services and infrastructure to provide
connectivity between FAA elements in a controlled manner. For example, NCIS BESPIN will
provision and manage an AWS Transit Gateway that allows the FAA to provide and control
connectivity among resource enclaves.
Cloud Access connects the FAA’s on-premises network and the FAA’s cloud environment using,
for example, AWS Direct Connect or Azure ExpressRoute services, combined with network
layer protection and monitoring. Cloud Access will be instantiated at as many NAS locations as
needed for performance and availability.
Ingress/Egress provides access to mission partners (e.g., air carriers) via the Internet.
Ingress/Egress services from the on-premises environment. This is currently provided by the
NESG and other components that provide boundary protection and connectivity to mission
partners via the FAA’s Internet Access Gateways (IAGs). The IAGs were built by the FAA in
accordance with Trusted Internet Connection 2.0 (TIC 2.0) guidance from the U.S Department of
Homeland Security (DHS).
Ingress/Egress in the cloud environment will be provided by cloud-based services at the internet
edge that provide protections equivalent to the NESG and the IAG. Cloud-based Ingress/Egress
services allow NAS services to be securely exposed to mission partners via the internet,18 and to

18 Partners requiring high availability connectivity to FAA cloud-based services can configure their own direct access to the CSP

environments as needed. Direct connections between the FAA and trusted government partners (e.g., DoD) are also
accommodated, but not discussed further here.

Service-Based Reference Architecture for NAS Automation - Version 1.2

5-8

allow NAS applications to access external resources. Ingress/Egress is protected by security
controls consistent with DHS guidance (currently TIC 3.0 but expected to continue to evolve).

Service-Based Reference Architecture for NAS Automation - Version 1.2

6-1

 Surveillance Services Use Case
6.1 Background
6.1.1 Surveillance Use Case Purpose
The Surveillance Services use case informs perspectives regarding how mission services should
be defined and how those mission services relate to other Reference Architecture elements.
Surveillance is selected as a use case topic because it involves many properties of concern to
determining the effective scope and applicability of the Reference Architecture (e.g., safety
criticality, demanding performance, and aspects unique to ATC operations). Specific use case
objectives include:

• Explore influences on how to define and scope services (e.g., coupling, performance
requirements, change isolation, process attributes, and software magnitude).

• Solidify candidate NAS Mission services.

• Identify dependencies among Surveillance Services and other Mission services.

• Lay the groundwork for assessing the feasibility of cloud-based efficiency-critical and
safety-critical services.

• Assess the performance needs for surveillance services and associated applications.
Determine if cloud services can meet these needs or whether a specific NAS Data Center
solution acting like a cloud would be required.

• Clarify expectations of supporting Platform Layer services.

• Identify NAS-unique influences that differentiate the Reference Architecture from more
canonical service-based architecture models.

6.1.2 Current Surveillance Data Processing
Surveillance Data Processing (SDP) provides an integrated picture of controlled airspace used
primarily for ATC separation. SDP is one of many integrated capabilities provided by a facility’s
ATC system. Each instance of SDP is customized for a facility’s operation. Surveillance inputs
include dedicated connections to each radar and to ADS-B and Wide Area Multilateration
(WAM) services. Surveillance information is shared with additional NAS applications and
external users for processing and display of positional information and trajectory modelling.
Multiple post-operational functions use and store position information independently.
Sensor data is supplied to SDP functions using IP, serial communications, or serial over IP
communications from sensor point to SDP location based on the SDP’s/ATC Facility’s
geographic area of responsibility. This inflexible design is challenging during facility failure
conditions and contingency/resiliency operations. It is costly to maintain circuits to support pre-
planned facility reconfigurations during failure conditions, which may or may not adequately
address the multitude of failure scenarios that may be encountered.
New sensor types offer improved accuracy and update rates and are provided to ATC separation
systems for use. However, downstream applications are limited to the published post-SDP
System Track for use at slower update rates than provided by the source. Downstream

Service-Based Reference Architecture for NAS Automation - Version 1.2

6-2

application missions may benefit from access to more accurate and more frequently updated
surveillance information.
The ATC separation systems are not the authoritative surveillance source. The ATC separation
systems are authoritative for pairing sensor track information to a specific flight. Today, sensor
data can only be consumed at the whole sensor level as opposed to subscribing to specific tracks.
Today ATC automation systems can process sensor track information in slant range coordinates
and in spherical coordinates based on World Geodetic System 1984 (WGS 84). Spherical
coordinate data supports the five-mile separation common in En Route operations. In Terminal
operations, three-mile separation may be supported by operating in fusion mode (utilizing all
available surveillance sources) or by single sensor slant range processing. In En Route
operations, three-mile separation is supported by operating using the default track-based display
(utilizing only three-mile separation qualified surveillance sources in qualified coverage
airspace) which provides the three nautical mile (NM) target symbol. Efforts are ongoing to
perfect surveillance data fusion and evolve a more performance-based specification to support
certification.
In addition to current SDP, future operational concepts suggest the need to accommodate new
surveillance processing requirements. For example, supporting the operations of new entrants
such as space and Unmanned Aerial System (UAS) operators may involve new surveillance
technologies and new approaches to integrating surveillance for situation awareness. New
surveillance approaches may be needed to support operational concepts such as dynamic airspace
that offer greater ATC operational flexibility.
The potential development of future mission level Surveillance Service(s) is an opportunity to
meet the objectives of 1) relax the constraints of existing SDP while providing performance that
continues to meet fundamental safety objectives and enhances NAS operations, 2) provide the
means to more easily accommodate new technologies and operations, and 3) provide
Surveillance Services in a manner consistent with the Reference Architecture described in
Sections 1 through 5.

6.2 Surveillance Services Overview
6.2.1 Surveillance Use Case Scope and Assumptions
For this use case, some simplifying assumptions are made as follows:

• Surveillance sensors are data sources that will be considered operational infrastructure,
similar to the communications network. The sensors are outside of the scope of the
automation processing that is the focus of the Reference Architecture.

• Distributed surveillance data is IP-based, uses All Purpose Structured Eurocontrol
Surveillance Information Exchange (ASTERIX) protocol, and is distributed via a
Surveillance Data Network (SDN). The SDN employs mechanisms to prioritize
surveillance data distribution and minimize latency in real-time operations (e.g.,
differentiated network domains). SDN may utilize FENS and other networks (e.g., third
party surveillance networks for the UAS/UAS traffic management [UTM] community)
for the exchange of surveillance data.

Service-Based Reference Architecture for NAS Automation - Version 1.2

6-3

• Surveillance source types considered are radar (cooperative [secondary surveillance radar
(SSR)] and non-cooperative [primary surveillance radar (PSR)]), ADS-B, and WAM.
Conceptually, a placeholder is included to represent a future new surveillance source.

• Multiple instances of each service are assumed to promote availability and to balance
processing loads.

For this use case, the scope of the Surveillance Services is interpreted to be input processing and
quality assurance functions associated with surveillance input processing, tracking, and
surveillance data distribution. Separation assurance functions (e.g., Conflict Alert, Minimum
Safe Altitude Warning, and airspace alerts) are not included among Surveillance Services but are
considered mission services that consume surveillance data.

6.2.2 Surveillance Services Context
The Surveillance Services are provided within the context of the layered architecture depicted in
Figure 6-1 and described previously in Section 0. Considering the “Back-End” Computing
column first, the column represents mission and data services that are hosted in cloud
technologies (potentially on- or off-premises) focused on managed container environments
representative of the current commercial mainstream. Surveillance Services are a collection of
the Mission Services/Data of the figure. Among the Mission Services/Data, Surveillance
Services have attributes that include:

• They are safety-critical, with associated requirements and performance sensitivity.

• They exhibit a streaming data mode of operation.

• They are common mission services. Ideally, the scope will be NAS-wide, but might also
be partitioned in different ways (e.g., defined geographical regions).

Dependencies among services are explicitly accommodated by mechanisms such as the service
mesh described in Section 4.2.1.4. The service mesh may need to accommodate ATC-specific
business logic. Additional detail is provided in Section 6.3.1.

Service-Based Reference Architecture for NAS Automation - Version 1.2

6-4

Figure 6-1. Layered Architecture

The Software Platform Layer services must support the robustness, integrity, and performance
requirements of safety-critical Mission Services. While many Software Platform services may
commonly apply, customization may be needed to support safety-critical operations. Additional
detail is provided in Section 6.3.2.
Ideally, the Compute Infrastructure for Surveillance Services will conform to the container
environment defined in Section 2.2 and described in Section 4.2.1. Safety-critical requirements
drive the need for multiple instantiations of this environment with physical diversity to mitigate
potential failure modes. It is anticipated that commercial cloud service providers will be able to
meet those needs, but multiple alternatives including on-premises cloud implementations and
NAS Data Centers must be considered. See Section 6.3.1.2 for additional detail.
The two leftmost columns of Figure 6-1 represent the coordination and consumption of services
that will occur at FAA facilities using on-premises computing resources. ATC and Decision
Support user interface components will use processors, displays, and input mechanisms at each
controller position, similar to current operations. Differences in design between ATC and
Decision Support positions can be expected based on the differing criticalities involved. Ideally,
facilities will have a compute infrastructure that mirrors common mission infrastructure (i.e.,
managed container environment), but on a diminished scale. Application-specific servers and
storage may also be provided based on operational need. Additional detail is provided in Section
6.3.

6.3 Surveillance Services Detail
6.3.1 Surveillance Services Mission Layer
A fundamental aspect of the service-based architecture is the determination of services.
Principles applied to determine services involve a combination of general principles that apply to
any service/microservice approach and domain-specific aspects that reflect the context of the

ATC Workstations

(Safety-Critical)

End User Equipment (In NAS Facilities)

General Purpose Devices
(PCs, Tablets, etc.)

Facility LANs, WANs (Network Access Control & Boundary Protection)

Compute Infrastructure:
VMs, Containers, Storage
(Cloud, Off & On-Prem)

Computing
Resources

Layer

Mission
Software LayerATC Applications and User

Interfaces

Decision Support
Applications and User

Interfaces

Mission Services/Data

Standards-
Based

Software
Platform

Layer

Decision Support User Interface
Software Platform

Environment(s)

ATC User Interface Software
Platform Environment

Mission Services Software Platform
Environment(s) and Enterprise IT

Services

Controller Workstations
(COTS Hardware)

Decision Support Workstations

(Non-Safety-Critical)

“Back-End” Computing

(High Availability to support both Non-
Safety-Critical and Safety-Critical service
threads)

Service-Based Reference Architecture for NAS Automation - Version 1.2

6-5

operations to which the service applies. The following list represents influences in defining NAS
common mission surveillance services:
Separation of functions/concerns. A service should be captured by a minimal set of software
components that reflect specific functions and use of data.
Minimal coupling. To the extent possible, relationships between services should be minimized
and services made as independent as possible.
Criticality. NAS services have performance requirements that reflect the importance of the
service to NAS operation and must conform to a DO-278A assurance level that characterizes the
scope of configuration management, testing, documentation, and other aspects of development
that apply. Current ATC automation systems reflect assurance level (AL) 4, with an AL3
exception for air-ground data communications. Because higher performance requirements and
assurance levels involve greater and more costly development efforts, services should be
composed in a way that minimize the level of applicable performance requirements and
assurance level.
Legacy design experience. A NAS common mission surveillance service must have capabilities
that meet or exceed the surveillance capabilities of existing ATC automation systems. These
ATC automation systems exhibit common design patterns that already reflect many of these
principles and may be leveraged as a basis for surveillance service definition. Surveillance and
Broadcast Services (SBS) represents a model of a common mission surveillance service.
Operational scope. NAS operations are differentiated into operational domains (e.g., en route,
terminal, surface, and oceanic) that reflect different operational contexts, standards, procedures,
and performance needs. While the intention is to define common mission surveillance services
that apply to all, it may occur that operational differences warrant associated partitioning of
surveillance services to meet domain-specific needs.
Scalability. A desired property of service-based architecture is the ability to respond to
operational demands by increasing the instances of a service and balancing the applied load
among them. A NAS common mission surveillance service must be able to accommodate the
workload represented by the number of sensors, targets, and tracks occurring in operation.
Anticipated change pace. Stability of a service-based architecture is promoted by separating the
services that are stable and seldom change from the services that require frequent change. While
typically interpreted to refer to functional changes associated with evolving capabilities, NAS
operations involve episodic updates (i.e., adaptation) to be accommodated.
Software magnitude. To provide the most effective development, operation, and maintenance,
the best size of a service software component involves tradeoffs between the complexity of the
service environment to be managed (i.e., the number of services and service dependencies to be
coordinated) and the complexity of each individual service software component to be developed
and maintained.
Resilience and disaster recovery. The scope and distribution of services influences the resiliency
of ATC operations and the potential to reconstitute operations in response to disasters.
Observability. A well-defined service should promote effective monitoring and control of its
function, performance, and accessibility within the context of the operational environment.

Service-Based Reference Architecture for NAS Automation - Version 1.2

6-6

Considering existing ATC automation designs as a guide, tentative surveillance services of radar
processing, ADS-B processing, WAM processing, tracking, and surveillance data distribution are
identified. Rationale for these services is summarized in Table 6-1.

Service-Based Reference Architecture for NAS Automation - Version 1.2

6-7

Table 6-1. Surveillance Services Rationale

Service Definition
Influence

Prospective Common Mission Service

Radar ADS-B WAM Tracker Distribution

Separation of
Functions

Common radar
interface and
protocol (ASTERIX
CAT048)
Integrated
processing of
primary and
secondary radars
Radar specific QA
Radar processing
could be partitioned
into more “micro”
services with
specific functions
such as:

• sensor status
• collimation
• registration
• CAT048

parsing
• performance

analysis
(e.g., QARS)

• other

Common interface
and protocol
(ASTERIX
CAT033)
ADS-B specific
QA
ADS-B processing
could be partitioned
into more “micro”
services with
specific functions
such as:

• sensor
status

• CAT033
parsing

• performance
analysis

• other

Common interface
and protocol
(ASTERIX
CAT010)
WAM-specific QA

Common interface
and protocol
(ASTERIX
CAT062)
Fused track
solution integrates
sources
Tracking services
could be
differentiated to
optimize for source
characteristics, but
that would
complicate what
constitutes the
“best” or most
“authoritative”
solution for
consumers

Manages service
consumer
subscriptions
Filters streams by
subscription
attributes and
policies (e.g.,
security, privacy)
Distribution
services could be
differentiated by
consumer
characteristics (e.g.,
NAS vs non-NAS,
safety, and
efficiency-critical
vs essential or
routine)

Service-Based Reference Architecture for NAS Automation - Version 1.2

6-8

Service Definition
Influence

Prospective Common Mission Service

Radar ADS-B WAM Tracker Distribution

Minimal Coupling

Coupled to Tracker,
and Distribution
Services. Coupling
is unidirectional –
Radar out to other
services
Coupling with ADS-
B may be desired for
QA purposes

Coupled to Tracker,
and Distribution
Services

Coupled to Tracker
and Distribution
Services

Coupled to Radar,
ADS-B, WAM, and
Distribution
Services

Coupled to Radar,
ADS-B and Tracker
services.
A Distribution
service harmonizes
access to
surveillance
information,
reducing required
service couplings
between
surveillance service
consumers and
sources.

Criticality Critical Critical Critical Critical Critical

Legacy Design
Experience

Integrated radar
processing; regional
sources and
automation-specific
processing. Radar
specific functional
threads and software
component(s)

NAS-wide
processing (SBS);
regional (service
volumes) and
automation-specific
automation
processing. In
automation, ADS-B
specific functional
threads and
software
component(s)

Regional coverage
through SBS
infrastructure;
automation-specific
automation
processing

Regional,
automation-specific
processing. In
automation,
tracking specific
functional threads
and software
component(s)

SBS provides ADS-
B distribution by
static subscription
(SVs)
Legacy automation
systems provide
system-specific
surveillance data
distribution to
external users (e.g.,
EDDS, STDD,
handoffs)

Service-Based Reference Architecture for NAS Automation - Version 1.2

6-9

Service Definition
Influence

Prospective Common Mission Service

Radar ADS-B WAM Tracker Distribution

Operational Scope

May be NAS-wide,
Regional, or
Facility-specific
based on operational
situation and
performance

May be NAS-wide,
Regional, or
Facility-specific
based on
operational
situation and
performance

May be NAS-wide,
Regional, or
Facility-specific
based on
operational
situation and
performance

May be NAS-wide,
Regional, or
Facility-specific
based on
operational
situation and
performance

May be NAS-wide,
Regional, or
Facility-specific
based on
operational
situation and
performance

Scalability Operational
demand

Operational
demand

Operational
demand

Operational
demand

Operational
demand

Anticipated
Change Pace

Low Low Low Low High

Software
Magnitude

TBS TBS TBS TBS TBS

Resilience Design dependent Design dependent Design dependent Design dependent Design dependent

Observability
Service-specific Service-specific Service-specific

Shared ADS-B
infrastructure

Service-specific
and integrated
service M&C

Service-specific
and integrated
service M&C

Service-Based Reference Architecture for NAS Automation - Version 1.2

6-10

Additional context for the identified Surveillance Services is depicted in Figure 6-2.

Figure 6-2. NAS Surveillance Services

In the figure, the output of the Surveillance Service Group, represented by the collection of
services in the blue area, is viewed by surveillance data consumers as a single service mediated
by the Surveillance Distribution Service. Collectively, those services provide the surveillance
data to the non-comprehensive list of services and applications depicted on the right. The
Surveillance Services are accessed by one or more APIs structured to provide a data stream
meeting the specific operational needs of each of the consuming services/applications. Further
description and rationale for this model is described below.
In ATC automation designs, the SDP is roughly decomposed into surveillance source input
processing, source-specific quality assurance functions, tracking, and mechanisms for both
internal and external data distribution. In the NAS, sources of surveillance data include radar
(primary and secondary), ADS-B, and WAM. Those sources reflect distinct mechanisms of
surveillance operation and associated sensor modes/states, different performance characteristics,
and different interface protocols (i.e., different ASTERIX Categories defined for the purpose).
Accordingly, the Surveillance Services model in Figure 6-2 depicts those sources as distinct
input processing services. Radar input processing functions include message processing, target
data filtering, coordinate conversion, Mode C altitude pressure correction, functions that enhance
target fidelity such as ground clutter filtering and beacon reflection and ring-around suppression,

Service-Based Reference Architecture for NAS Automation - Version 1.2

6-11

and processing of multi-level weather intensity. Output quality is assured by mechanisms
addressing both individual sensor performance (e.g., sensor status reports, permanent echo
verification, test targets, sensor data counts, and radar message errors) and collective sensor
performance (e.g., collimation and registration). Radar source input processing ensures that the
quality and depth of surveillance coverage is preserved through mediation of overlapping sensor
coverage and through effective sensor failure and recovery mechanisms. The primary output of
the Radar Input Processing service is a stream of target reports to the Tracking service and the
Surveillance Distribution Service in a standard coordinate system such as WGS 84 and standard
protocol, most likely ASTERIX. A secondary output to the Surveillance Distribution Service is
the multi-level weather intensity produced by select primary radars with weather capability.
Although conceptually represented as a single service, expected workload, network topology,
and resilience arguments may suggest regional or even facility-specific instances of this
surveillance service with corresponding geospatial boundaries.
ADS-B input processing shares some similarities with radar processing, but also exhibits some
differences. ADS-B functions include message processing, target data filtering, and coordinate
conversion. Output quality is assured by mechanisms addressing sensor performance (e.g.,
sensor status reports and test reports), collective sensor performance (e.g., service volume
message counts), and report quality (e.g., Navigation Integrity Category (NIC), Navigation
Accuracy-Position (NACp) value for reported position accuracy and integrity, and Navigation
Accuracy-Velocity (NACv) for velocity accuracy). Unlike current radar processing capabilities,
current ADS-B processing is divided between the surveillance broadcast service and the ADS-B
report processing organized by service volume that occurs in ATC systems. In this service-based
architecture context, the ADS-B processing service is assumed to encompass both. The output of
the ADS-B Input Processing service is a stream of target reports to the Tracking service and the
Surveillance Distribution Service using the standard coordinate system (e.g., WGS 84) and
standard protocol (e.g., ASTERIX).
WAM is a ground-based, distributed, cooperative surveillance system that uses a minimum of
three receivers to determine aircraft positions by calculating the differences in transponder signal
arrival times. WAM leverages SBS infrastructure, adding radio stations to existing ADS-B
station locations and implementing multilateration processors to SBS control stations. Target
reports are distributed in a standard protocol (e.g., ASTERIX). Automation systems process
WAM input as virtual radar target reports.
In addition to radar, ADS-B, and WAM input processing services, additional surveillance input
processing services are foreseen to support integration of new entrants in the NAS. For example,
scheduled to begin operation in 2021, the Space Data Integrator (SDI) will process received
vehicle data from space launch and reentry operators based on vehicle telemetry. The source and
prospective application of this information suggest a distinct input processing service will be
required. Similarly, proliferating UAS operations and concepts for Extensible Traffic
Management (xTM) have the potential to generate a need to integrate UAS surveillance into
ATC operations in a manner yet to be determined.
Received surveillance data is processed by tracking functions to provide the best estimates of
target properties including position, velocity, and maneuver occurrences. Tracking functions
include track initiation, report to track correlation, update, coast and termination, altitude
validation, and track-to-flight plan association. In existing ATC automation systems, the tracking
function integrates the available surveillance sources to provide a “fused” output. In the service-
based architecture model, a similar Tracking Service is envisioned that integrates the outputs of

Service-Based Reference Architecture for NAS Automation - Version 1.2

6-12

Radar, ADS-B, and WAM input processing services in a manner similar to existing ATC
automation capabilities, but also includes the potential of additional Tracking Service options,
represented by the dashed shadow box. Because tracking performance involves tradeoffs
between characteristics of both the surveillance sensors involved and the targets being surveilled,
it may occur that new surveillance capabilities and new NAS entrants warrant development of
tracking services better optimized for those characteristics. Tracking Service output is provided
to the Surveillance Distribution Service and is expected to conform to a standard coordinate
system and protocol (e.g., WGS 84 and ASTERIX). In addition to the Radar, ADS-B, and WAM
processing inputs, the Tracker Service has inputs from a Flight Information service, providing
aircraft identification and intent information to support track and flight data pairing. Inputs
mediated by the Surveillance Distribution Service may also be necessary. For example, if
Surveillance Service Groups are implemented regionally, then instances of these tracking
services will need to share information. Also, existing track controls and interactions among
tracking and separation management applications suggest that the APIs may need to involve
transactions between ATC applications and tracking services.
A Surveillance Distribution Service ensures that surveillance information including both tracks
and target reports are provided to requesters based on expressed need. Surveillance Distribution
Service functions include managing subscriptions/requests for surveillance information from
consuming services and applications, managing service level access controls, filtering data for
operational context (e.g., service volume, surveillance source, and target class), filtering data for
operational sensitivities (e.g., national security operations), and other functions to be determined.
There is a potential for multiple distribution services. For example, non-critical consumers of
surveillance services such as analysis applications and consumers external to NAS may have
different performance requirements than ATC operations (e.g., latency) that warrant
differentiating the distribution services.
Figure 6-2 includes a sample of prospective consumers of surveillance services. Foremost among
those are ATC Applications. Those are the necessary counterparts to the facility-based ATC
automation of today. ATC Applications are expected to provide the following:

• User interfaces (display, keyboard, trackball, or other input mechanisms) for controllers,
supervisors, traffic managers, and technical support personnel.

• NAS common mission service proxies – In the service-based architecture, many of the
functions performed in today’s ATC automation systems are allocated to common
mission services, such as the surveillance service group. These functions will be replaced
in ATC Applications by a common mission service that establishes and manages
connections with common mission services, receives and processes common mission
service data in accordance with published APIs, and cache and store enterprise service
data as necessary to preserve state, provides access to recent data history, and promotes
resilience.

• Other ATC Application elements – In addition to the elements for user interfaces and
common mission service proxies, there will likely be components dedicated to integration
functions. These functions involve integrating the inputs from the Surveillance Service
Group and other common mission services, interacting with controller, supervisor and
TechOps workstations, and providing functionality that is unique to the domain or
facility. Service integration may involve applications developed for the purpose, may
leverage service mesh capabilities of the Platform Layer, or both. ATC Application

Service-Based Reference Architecture for NAS Automation - Version 1.2

6-13

elements also include monitor and control capabilities for the local information
technology environment.

Among the services consuming surveillance data are decision support applications for separation
management. Those include Conflict Alert (CA), Minimum Safe Altitude Warning (MSAW),
restricted airspace alerting functions, and other separation management support functions that are
presently included in the SDP subsystems of ATC automation. Those are represented as common
mission services because they reflect distinct software components in existing automation and
consume surveillance information with little, if any, transactions back with surveillance
components. In all cases, the potential for multiple services is depicted, recognizing that
operational distinctions between domains (en route, terminal, surface, and ocean) may drive a
need for service distinctions.
A critical service for NAS operations is Airspace Management. Airspace Management ensures
that all regions of airspace for which U.S. ATC is responsible are assigned to an operational
ATC unit. The service also ensures that all eligible aircraft receive services and that
responsibility and eligibility for communications and aircraft separation are uniquely assigned to
a controller. Existing NAS-wide Controller-Pilot Data Link Communications (CPDLC) session
management may be a model for aspects of this service.
Other services are also dependent on the Surveillance Service. These include Traffic Flow
Management services, represented as distinct Strategic Flow and Synchronization services
consistent with NAS EA, a Trajectory Service, likely to be one of a set of Flight Information-
related services, and Analysis Services that use surveillance information for a variety of
purposes. A common mission Recording Service is also shown, representing the probable utility
of logging functions implemented as part of the service environment. In addition to the common
mission level, recording services may be distributed throughout the NAS IT environment and
may be implemented as part of the Platform Layer. The Traffic Information Broadcast Service
represents another potential class of consumers.

6.3.1.1 Surveillance Service Platform Layer
Surveillance Services use the services of the Platform Layer as described in Section 4. Because
the Surveillance Services are safety-critical and demand the highest performance among Mission
Services, there are some notable distinctions identified below.
Runtime
Software Hosting/Execution. For Surveillance Services, there are two aspects – the execution
environment for the common mission Surveillance Services and the execution environment for
ATC Applications in NAS operating facilities. The latter are additionally partitioned into the
local server environment for applications and service clients and the user interface applications
running at user operational positions. Both the common mission Surveillance Services and the
local server environment for applications and service clients in NAS facilities will be hosted in a
managed container environment, consistent with the recommended Reference Architecture
pattern.
Monitoring and Log Analysis. Monitoring and logging will apply at both the common mission
and local facility levels.
Service Mesh, Proxy, and Gateway. Service meshes, proxies, and gateways will be involved in
Surveillance Service, but the details are to be determined. The mechanisms used may depend on
the configuration of services and hosting environments. For example, the constituent

Service-Based Reference Architecture for NAS Automation - Version 1.2

6-14

Surveillance Services may reside in the same hosting environment, suggestive of a service mesh-
based relationship. Consumption of the Surveillance Services is projected to be mediated by a
distribution service, which is suggestive of an API gateway. Criticality of service is an influence
as is geographic distribution (e.g., ATC Applications are expected to be hosted in many
distributed ATC facilities). In the NAS facility processing environments, co-location of service
clients and applications suggest a service mesh.
Virtual Networking, Policy, Authentication and Authorization. Virtual network capabilities that
connect services and enforce access policies are expected to apply. Distinctions between safety
and efficiency-critical applications and services and those of lesser criticality suggest isolating
VNETs based on criticality.
Distributed Database and Storage. For the Surveillance Services, there are operational data stores
associated with each service and expectations of a common mission level database for recordings
for analysis applications. Examples include:

• For radar, there is a database of adapted radar sensors and associated information that
support the quality assurance functions of collimation and registration, adapted zones to
filter clutter, a map of sort cells that determine preferred sensors at each point in space,
and other required adaptations. Short term storage of target data supports the quality
assurance functions and reporting mechanisms such as QARS. There are adapted
parameter values that govern functional behavior.

• For ADS-B and WAM, there are simpler data stores of adapted sensors and associated
information.

• For the Tracking Service, there is a data store of tracks and track history as well as
adapted parameter values that influence tracking functional behavior.

• The Surveillance Distribution Service has data stores that include subscription
information and access permissions, defined and assigned service volumes, and other
adapted configuration information.

• At the common mission level, all received target reports, tracks, and data output by the
data distribution service are recorded and stored for analysis.

Streaming and Messaging. The Surveillance Services involve both streaming and messaging
services. Messaging services would be employed for the publish/subscribe mode of operation of
the distribution service. The subsequent delivery of target and track data to service consumers is
inherently a streaming service. Within the Surveillance Services Group, information is streamed
among the constituent services.
Development
Development Frameworks and Libraries. Because the Surveillance Services are safety-critical,
there is motivation to promote or restrict software development to programming languages and
frameworks with suitable properties. In practice, subsets of major system programming
languages have been defined that ensure safety conventions are observed. Those include
MISRA-C, MISRA-C++, SPARK Ada, and JSR-302 Safety-Critical Java (SCJ). Those language
subsets promote determinism in operation through mechanisms such as restricted memory
management functions (e.g., no garbage collection). Rust is a relatively new programming
language defined for safe systems.

Service-Based Reference Architecture for NAS Automation - Version 1.2

6-15

Planning and Requirements Management. Effective requirements management is necessary for
Surveillance Services for two reasons: to meet the demands of DO-278A compliance and other
safety assurance processes and to ensure that the legacy capabilities being superseded by the
Surveillance Services are adequately replicated to support operations across the domains. It may
not be the case that requirements must continue to be expressed in the same way, managed in a
traditional database structure such as DOORS, or documented in a formal requirements
specification. Contemporary workflow tools such as Jira and modeling tools such as Cameo
include approaches for managing requirements in the context of Agile software development and
system architecture and modeling, respectively.
Software Packaging, Repositories, and Distribution. There is nothing inherently different for the
Surveillance Services, but safety-critical software packaging involves greater expectations of
configuration management integrity.
Application Programming Interface and Data Management. For the Surveillance Services, the
APIs associated with the Surveillance Distribution Service will be critical to the operation and
performance of applications and services consuming surveillance data.
Continuous Integration / Continuous Delivery Toolchain. There is nothing inherently different
for the Surveillance Services, but greater emphasis on configuration management is expected.
Traceability between requirements, however expressed, and testing is paramount.

6.3.1.2 Surveillance Services Infrastructure Layer
Figure 6-3 represents the primary elements of the Surveillance Service infrastructure. Going
from the bottom to the top of the figure, these elements include:

• Surveillance sensors (shown are CARSR, ASR, and ADS-B sensors)

• SDN

• NAS-wide hosting of common mission services, including the constituent services of the
Surveillance Service

• IT infrastructure hosting service clients and ATC applications on premise in FAA
facilities

• Remote ATC User workstations connected to FAA facilities for hosted services and
applications.

Service-Based Reference Architecture for NAS Automation - Version 1.2

6-16

Figure 6-3. Surveillance Services Infrastructure

Surveillance sensors number in the hundreds and will communicate to common mission
surveillance input processing services through the SDN using ASTERIX protocols. The SDN
ensures that each sensor has redundant, physically diverse data paths to each instance of
surveillance input processing service.
Common mission surveillance services support safety-critical NAS-wide operations.
Surveillance services are projected to be hosted in managed container processing environments.
In the figure, the environments are represented as Docker containers managed by Kubernetes, the
most popular utilities for the purpose currently. To meet the required .99999 availability of
surveillance services and dependent applications supporting separation management, associated
mission services, applications, and communication elements must meet an even higher standard
of availability and involve multiple levels of redundancy. Each service is allocated to a container.
Multiple containers/service instances operate concurrently to ensure that no single failure of an
instance/container can disrupt service availability. Kubernetes manages container start, stop, and
failover.
Redundancy is provided for the NAS common mission level processing environment itself.
Physically independent and geographically diverse IT environments (represented in the figure as
Regions A and B) exist to ensure that even failure or destruction of a common mission
processing environment would not result in loss of common mission services. Conceptually, that
corresponds to the operating region/availability zone approach employed by cloud service
providers. In each environment, services communicate locally via a service mesh. The common
mission processing environments also ensure that other aspects of performance are satisfied,
such as load-balancing among service instances, and environments are configured to ensure
minimum latency in surveillance service processing. Surveillance Services output, streaming
target and track data, is distributed to other mission services operating within the local IT

Service-Based Reference Architecture for NAS Automation - Version 1.2

6-17

processing environment and to surveillance service clients and applications within ATC
facilities.
The IT processing environment within each ATC facility, if needed, is a smaller scale version of
the common mission processing environments. Surveillance services are hosted in managed
container processing environments, also represented as Docker containers managed by
Kubernetes. Containers host common mission service clients as well as ATC applications that
integrate the inputs from mission services and support user interaction via user workstations.
Support may be provided for workstations operating remotely.
The consistency of the described IT processing environments, common mission and local, offers
many degrees of freedom with which to work as NAS automation needs and capabilities evolve.
As confidence with cloud service performance is established, cloud services may supplement or
replace on-premises assets. Specific services and ATC applications may be either harmonized or
differentiated to meet operational needs. Processing environments, common mission and local,
can be scaled to support arbitrary degrees of ATC service consolidation.

6.3.2 Surveillance Services Challenges
The Surveillance Services challenges identified to date include:

• Service availability management. Managed container IT environments, in the cloud or
on-premises, need to demonstrate in combination with redundancy strategies that service
availability exceeding .99999 can be met.

• Latency. The Reference Architecture includes processing overhead associated with layer
services that impact latency. It must be demonstrated that the Surveillance Services can
meet separation management performance requirements at controller workstations.

• Certification. Procedures exist to certify safety-critical services and systems in operation.
Counterparts to these procedures need to be defined that accommodate a distributed
service architecture.

• Controller UI and service interactions. A service-based architecture works best when
constituent services are as independent as possible. Existing ATC user interfaces include
interactions with system functions that may be difficult to replicate while maintaining the
desired degree of service independence.

• Location-based influences on operations. There are existing NAS functions that are
location based (e.g., beacon code management). These functions must be accommodated
or superseded by common mission services.

• Software design assurance. DO-278A defines software design assurance levels and
associated objectives applicable to NAS systems/services. Means to satisfy those
objectives are suggested (e.g., plans, tests, configuration management), although
alternative approaches may be offered. Suitable means must be found to meet applicable
design assurance objectives within the Reference Architecture.

Service-Based Reference Architecture for NAS Automation - Version 1.2

A-1

Appendix A Related Infrastructure Programs/Projects

This appendix provides a brief description of some FAA infrastructure programs that are relevant
to the Service-Based Reference Architecture.

A.1 FAA Telecommunications Infrastructure (FTI) and FAA
Enterprise Network Service (FENS)

FTI is the telecommunications infrastructure that supports all wide area communications needs
for the entire FAA. The Operational IP (OPIP) network in the NAS Operations domain is among
the various services FTI provides.
FTI also provides the NESG, which is the FAA boundary solution. The NESG serves as a
security gateway between NAS systems connected to the OPIP network and all other systems.
FENS is the planned successor to FTI which will subsume FTI functions when the FTI contract
end.

A.2 FAA Cloud Services (FCS)
The FCS program has established cloud environments that are available for use by FAA
programs. These environments are created using commercial cloud services by Amazon (AWS)
and Microsoft (Azure). Currently, FCS cloud environments are being used for Mission Support
applications, most notably the EIM Platform, described below. FCS currently provides Federal
Information Management Act (FISMA) Moderate services, but FISMA High services are
planned. Both Government Community Cloud and Commercial Cloud services are available for
Mission Support applications, with plans to have the same available to support NAS operations.

A.3 Integrated Enterprise Services Platform (IESP)
The IESP is a virtualization platform that operates in the NAS. It can provide VMs for NAS
programs. These VMs come with monitoring, FTI connectivity, authentication, and backup
services. IESP can be used for the consolidation of equipment for existing programs or avoiding
the need to buy equipment (e.g., servers) for new programs.
The IESP has primary and backup data centers at the Atlanta (ATL) and Salt Lake (SLC)
National Enterprise Monitoring Centers, respectively. Several NAS programs including
Aeronautical Information Management Modernization (AIMM) (for Aeronautical Common
Service deployment) use the IESP currently and more are planning to use the platform in the near
future.

A.4 National Cloud Integration Services (NCIS)
NCIS is an FAA program that supports integrating Air Traffic Organization applications into the
cloud. NCIS supports programs managed by the Program Management Organization (AJM) that
are transitioning to FCS. NCIS advises program offices on cloud technologies for optimization
and cost efficiency. Goals of NCIS include:

• Commoditize hardware across the agency
• Leveraging economies of scale

Service-Based Reference Architecture for NAS Automation - Version 1.2

A-2

• Supporting an on-demand self-service model for computing
• Providing rapid elasticity – the ability to automatically scale up and down in response to

system load for optimal user experience and cost
• Providing measured service – in which the FAA pays for consumed resources only
• Shifting IT spending to operational expenditures (OpEx) rather than capital expenditures

(CapEx).

A.5 System Wide Information Management (SWIM)
SWIM is a NAS-wide information system that supports Next Generation Air Transportation
System (NextGen) goals. SWIM facilitates the data sharing requirements for NextGen, providing
the digital data-sharing backbone of NextGen. SWIM enables increased common situational
awareness and improved NAS agility to deliver the right information to the right people at the
right time. This information-sharing platform offers a single point of access for aviation data,
with producers of data publishing it once and users accessing the information they need through
a single connection.
SWIM provides standards and infrastructure to facilitate the dissemination of information from
producers to consumers, using both event-driven as well as request/response information
exchange patterns. The SWIM infrastructure includes the NAS Enterprise Message Service
(NEMS), which comprises a set of nodes that provide message broker and web service
interfaces. SWIM standards define protocols and message formats that information producer and
consumer systems use to connect to NEMS nodes and exchange information. SWIM also
provides the NAS Services Registry and Repository (NSRR), which lists all the information
services and provides links to documentation on how to receive and process the information
provided by these services.
NAS systems connect to SWIM over the FTI OPIP network, while airlines and other users
external to the FAA access SWIM via the NESG, as well as introduced cloud-based distribution
via the SWIM Cloud Distribution Service (SCDS).

A.6 SWIM Cloud Distribution Service (SCDS)
SCDS is a cloud-based distribution service that was established leveraging FCS and AWS. It
facilitates the distribution of SWIM data to external users via the NESG and is set up to move
data only in one direction (from the NAS Operations environment to external users) per security
requirements. All publicly available SWIM data is available for access via SCDS in a user-
friendly simple fashion resulting in an improved user experience. Improved automation has
resulted in lower cost for service delivery.

A.7 Enhanced SWIM Cloud Service
The SWIM Program is working to take the SCDS experience to another level by implementing
Enhanced SWIM Cloud Service (ESCS) which will replace SCDS and provide improved
services such as bi-directional information exchange and introduction of a cloud-based security
gateway that is compliant with Trusted Internet Connection (TIC) 3.0 as specified by the
Department of Homeland Security (DHS). That allows a more direct access to “SWIM in the
cloud” by SWIM users that are external to the FAA.

Service-Based Reference Architecture for NAS Automation - Version 1.2

A-3

A.8 Enterprise Information Management (EIM) Platform
The EIM Platform is a capability that leverages FCS to ingest and store data from various
sources in the FAA including SWIM for the creation of a single data lake users can access
securely for data retrieval, manipulation, and analysis. The platform also provides a collection of
tools for FAA users to employ for their analysis. Presently, the EIM Platform is built on AWS,
which is one of the cloud service providers under FCS and mainly supports Mission Support
domain needs. There are many features provided by the EIM Platform including an application
mall that programs in Mission Support can use for hosting applications.

Service-Based Reference Architecture for NAS Automation - Version 1.2

B-1

Appendix B Platform Survey

This appendix contains a summary of information gathered after conducting a survey about
existing platforms. That information was used to help validate that the platform elements listed
in Section 4 of the document were sensible and that important platform elements were not
missing.

B.1 Application Based Capability Development (ABCD)
Application Based Capability Development (ABCD) is a MITRE project focused on learning
how Agile and DevSecOps processes can be applied in an FAA context. ABCD envisions a
framework designed to:

• Deliver useful new Traffic Flow Management (TFM) information applications in six
months or less.

• Enable TFM users to compose their workspace from a collection of available components
(“widgets”) that are useful in multiple TFM contexts.

• Establish common data and computational capabilities where all applications share the
same “truth” and capabilities can be used together without data mismatches.

• Involve users throughout the process, so that new capabilities meet operational
requirements from the start.

• Automate testing, security scanning, and deployment using modern Development,
Security, and Operations (DevSecOps)19 tools to minimize defects.

• Support both desktop and mobile users.

The ABCD Mission Applications developed to date include a Time-Based Flow Management
(TBFM) Airborne Delay Monitor, a Pathfinder20 Coordination application, a Departure Fix
Usage Visualizer, and an Electronic Flight Strip application. Backing these browser-based
applications are a set of microservices including a Flight Information service, a Flight Position
service, a Traffic Management Initiatives (TMI) service, and so on, as well as “translator”
services that function to translate data from SWIM formats to Avro (Apache Hadoop) formats
used within ABCD. These applications and services run in near-real-time and are designed to
handle the performance loads created by the entire set of flights active across the NAS.

The ABCD software currently comprises prototypes used for demonstration purposes, however if
a technology transfer is completed these applications and services would be used by FAA

19 “DevSecOps” is a variant of “DevOps” (Development and Operations) that includes integrated security scanning tools.

DevOps tools [8] are designed to automate much of the software development, integration, testing, and deployment process to
improve delivery speed and reduce problems.

20 The term “Pathfinder” here refers to an FAA operational process/procedure that uses a flight designated as a “Pathfinder” to
explore whether a departure route should be reopened for general use. (Note that the term “pathfinder” is also used in other
contexts to describe a project done to learn from, in order to reduce a technical or process risk.)

Service-Based Reference Architecture for NAS Automation - Version 1.2

B-2

specialists such as traffic management coordinators to support NAS service threads considered
efficiency-critical.

The ABCD applications and services currently run on VMs within the MITRE IT environment,
however the Infrastructure as Code methodology and tools would make it possible to quickly
build and deploy ABCD to other environments, such as FCS/AWS. More information on ABCD
can be found in [7].

An overview of the ABCD operational architecture is provided in Figure B-1, and an overview
of the ABCD development architecture is provided in Figure B-2.21

Figure B-1. ABCD Operational Architecture

21 Product names, logos, brands, and other trademarks featured or referred to within the documentation are the property of their

respective trademark holders. These trademark holders are not affiliated with the author or this project in any way.

MapBox
Web Application

Widget 1

Widget 2

Auth Service

User/Config API

DATA

Gateway Proxy

SCDS

Message BusSCDS CLIENTS

STDDS
TRANSLATOR

TBFM
TRANSLATOR

SFDPS
TRANSLATOR

Widget 3

…

DATA

Other external
libraries/ tools SERVICE #1

HTTP API

DATA

PROCESSOR/
CONSUMER

SERVICE #2

HTTP API

DATA

PROCESSOR/
CONSUMER

SQL

TFMS
TRANSLATOR

SERVICE N

Vue.js

Service-Based Reference Architecture for NAS Automation - Version 1.2

B-3

Figure B-2. ABCD Development Architecture

Table B-1 shows the elements of the Platform Layer in this Reference Architecture that are
addressed in the ABCD runtime and development architectures shown in the above figures.

Table B-1. Platform Layer Elements in ABCD

Platform Element ABCD Coverage

Runtime

Software Hosting/Execution

ABCD service components are packaged using Docker. However, some
elements (e.g., Kafka message broker) run on VMs for performance
reasons. Docker Swarm used to allow multiple instances of each service to
be instantiated as necessary to meet performance needs.

Workflow Choreography and
Orchestration n/a

Monitoring and Log Analysis Prometheus, Conduktor

Service Proxy, Mesh, and Gateway Traefik proxy for routing service invocations to instances

Virtual Networking, Policy,
Authentication and Authorization Vault (for storing credentials), Docker Swarm virtual networking

Distributed Database and Storage MongoDB, clustered SQL database

Streaming and Messaging Solace client used to subscribe to live data from SWIM. Kafka broker used
for internal high-performance message communications.

Analytics and Artificial
Intelligence n/a

Service-Based Reference Architecture for NAS Automation - Version 1.2

B-4

B.2 Configuration, Logistics, and Maintenance Resource
Solutions

Configuration, Logistics, and Maintenance Resource Solutions (CLMRS) includes a group of
FAA programs: Configuration Management Automation (CMA), Logistics Center Support
System (LCCS), and Automated Maintenance Management System (AMMS), which are being
developed by the CLMRS team using an Agile approach (Scaled Agile Framework) and
DevSecOps methodology. CLMRS is envisioned to revolutionize the way the Agency leverages
information, beginning with logistics, maintenance, and configuration management.

CLMRS users are the TechOps workforce responsible for logistics, maintenance, and
configuration of the NAS. CLMRS software runs in the FAA’s Mission Support domain.

CLMRS systems run on the AWS cloud environment provided by FCS.

More information on CLMRS can be found in [21].

Table B-2 shows how the elements of the Reference Architecture Platform Layer are addressed
in the CLMRS environment.

Table B-2. Platform Layer in CLMRS

Development

Development Frameworks and
Libraries SpringBoot, Node.js, Vue.js (for GUIs)

Planning and Requirements
Management Jira, Confluence

Software Packaging, Repositories,
and Distribution Nexus, Docker registry, NPM proxy

API and Data Management Swagger for documenting APIs, AVRO schemas, Manual documentation
of Kafka topics

CI/CD Toolchain Drone, Bitbucket, Maven, Clair, Jenkins

Platform Element CLMRS Coverage

Runtime

Software Hosting/Execution CRI-O, Kubernetes

Workflow Choreography and
Orchestration N/A

Monitoring and Log Analysis Prometheus, Fluentd, Managed AWS Elastic

Service Proxy, Mesh, and Gateway HAProxy

Service-Based Reference Architecture for NAS Automation - Version 1.2

B-5

B.3 Enterprise Information Management (EIM) Data Platform
(DP)

The purpose of the EIM Platform is to provide FAA users, departments, and programs with an
effective and efficient environment to perform post-operational data analysis and provide
information management support functions using FAA NAS, mission support, administrative and
other data. EIM DP contains a common unified data layer22 and hosts shared, common enterprise
information management capabilities, processes, products, and tools. It runs on AWS GovCloud
West IaaS provided via FCS and is accessible via the FAA Mission Support Network.

EIM DP, along with its tools and capabilities, is primarily a data lake containing NAS data. It
can be used by programs to create new Mission Applications that leverage the data ingest and
storage capabilities of EIM DP and use the EIM DP tools to analyze and present data to meet the
needs of users. The end users of EIM DP include analysts that use the provided tools to process,
analyze, and view NAS data in various ways, either directly using EIM DP tools (e.g., querying
datasets using Presto and Hive query engines via the Hadoop User Experience web interface), or

22 This unified data layer is not the same as the NAS data plane mentioned in the Reference Architecture. This term is used to be

consistent with how EIM DP is presented in its documentation. The NAS data plane manages service invocations and event
driver information exchanges. The EIM unified data layer contains a data lake that users can query directly.

Platform Element CLMRS Coverage

Virtual Networking, Policy,
Authentication and Authorization Open vSwitch

Distributed Database and Storage etcd

Streaming and Messaging AWS SNS/SQS

Analytics and Artificial
Intelligence

Development

Development Frameworks and
Libraries C#, Java, Python, PL/SQL, Angular v2, Golang

Planning and Requirements
Management Jira (primary), Confluence, Doors (mapped from Jira)

Software Packaging, Repositories,
and Distribution Artifactory, Quay

API and Data Management 3scale API Management

CI/CD Toolchain
Bitbucket with Git, looking for approval to use GitHub, TeamCity,
Selenium (web), UTPLSQL (Oracle SQL), WinAppDriver (Windows
client), Quay (container vulnerabilities)

Service-Based Reference Architecture for NAS Automation - Version 1.2

B-6

by viewing or downloading displays and reports produced by Mission Applications that are
hosted in the EIM DP environment (e.g., Accessible Rich Internet Applications [ARIA]).

EIM DP varies from the service-based approach assumed by this Reference Architecture in that
it provides Mission Applications and end users with direct access to a common data layer, rather
than having a defined set of Mission Services that provide access to specific data and
functionality via service interfaces. That is natural given the purpose of EIM DP, and it does not
preclude using EIM DP to create new mission services that provide access to raw or processed
data from the data lake via service interfaces such as REST APIs.

More information on EIM DP is available in [22] and [23].

An overview of the EIM DP runtime architecture is provided in Figure B-3. and an overview of
the development architecture is provided in Figure B-4.

Figure B-3. EIM Platform Runtime Architecture

Figure B-4. EIM Platform Development Architecture

Service-Based Reference Architecture for NAS Automation - Version 1.2

B-7

Table B-3 shows how the elements of the Reference Architecture Platform Layer are addressed
in the EIM Platform environment.

Table B-3. Platform Elements in EIM Platform

Platform Element EIM Platform Coverage

Runtime

Software Hosting/Execution Software that makes up the EIM Platform, and software created by
other programs that use the EIM Platform, may be installed directly
on AWS VMs or may be containerized. Containerized software may
run in Docker containers on VMs or may use AWS Elastic Container
Service (ECS), with ECS clusters run by AWS Fargate serverless
computing or deployed onto elastic compute instances (VMs)
managed by application owners. Kubernetes or OpenShift is planned
for the future. EIM Platform runs an analytics compute cluster, using
AWS Elastic Map Reduce (EMR), a hosted Hadoop Cluster, and an
ArcGIS Geospatial compute cluster. EMR clusters can also be
provisioned for user programs, which then communicate with EIM
Platform to retrieve data over internal AWS circuits enabled by VPC
peering. AWS Athena and Lambda can be used for serverless
computing. EIM Platform also provides a presentation layer that
allows users to run tasks to analyze data using scripting languages or
using provided dashboards and visualizations.

Workflow Choreography and
Orchestration

Tools such as NiFi, AWS Glue used to orchestrate data ingest
workflows.

Monitoring and Log Analysis No mention of this topic in the documentation, although LogStash is
listed as an available tool.

Service Proxy, Mesh, and Gateway Amazon tools. Not using service mesh. APIs hosted in Mule runtime
instances on EIM Platform, as well as APIs developed using
Java/Springboot service (presumably running in EC2 instances.)

Virtual Networking, Policy,
Authentication and Authorization

AWS VPCs and Transit Gateway managed by FCS. IAM, AWS
Security Groups, Azure AD, Cylance Protect, My Access, Ranger,
Knox, X-Pack, Privacera, Collibra, Anypoint Platform

Distributed Database and Storage Amazon RDS (Postgres, MySQL, MS SQL Server, RedShift),
Unstructured (Dynamo DB, S3, HDFS, ElasticSearch), Amazon
Glacier, Athena

Streaming and Messaging Apache Kafka, Apache NiFi, and Solace (SWIM client) are used for
data ingest. Stream Sets, AWS Glue, Hortonworks DataFlow,
Apache Sqoop used within analytics environment.

Analytics and Artificial Intelligence Hadoop, Spark, Map Reduce 2, Pig, Apache Hive, Apache Flink,
Presto, Hortonworks Data Platform, Jupyter, Hue, Anbari, Kibana

Development

Development Frameworks and Libraries Eclipse+plugins, ArcGIS, React.JS

Service-Based Reference Architecture for NAS Automation - Version 1.2

B-8

Planning and Requirements Management Jira, Confluence

Software Packaging, Repositories, and
Distribution

Artifactory, AWS Elastic Container Registry (ECR). NAR, JAR,
property files. Amazon Machine Image (AMI). Chocolatey for
Windows packages.

API and Data Management MuleSoft API Anypoint Portal, Collibra data governance

CI/CD Toolchain FAA Bitbucket, Jenkins, Maven, SonarQube, Clair, Fortify, Nessus,
Ansible, Terraform

B.4 Elroy
Elroy is an FAA project to explore Rapid Development and Deployment, to:

• Answer the call for innovation,

• Modernize the FAA’s non-safety critical software development methods and capabilities
to deliver capabilities faster,

• Influence Automation Evolution and Pathfinder strategy,

• Reduce costs using Cloud service and other cost saving measures, and

• Deliver more user value.
An overview of the Elroy system is provided in Figure B-5.23

23 Source: Briefing by Shirley Burgess, 26 October 2020.

Service-Based Reference Architecture for NAS Automation - Version 1.2

B-9

Figure B-5. Project Elroy System Overview

An overview of the Project Elroy Platform Layer is provided in Figure B-6.

Figure B-6. Project Elroy Platform Overview

Embedded
OS

(Windows & Linux)

NSX-T

CPI (15 methods)

v1

v2

v3 ...

CVEs
Product
Updates Java | .NET | NodeJS

Tanzu
Application

Service (TAS)

Application Code &
Frameworks

Buildpacks | Spring Boot |
Spring Cloud | Steeltoe

Elastic | Packaged Software | Spark

Tanzu
Kubernetes
Grid (TKG)

>cf push >kubectl run

vSphere
Azure &

Azure Stack
Google
CloudAWSOpenstack

Tanzu
Network

“3Rs”

Github

Concourse

Concourse

Tanzu Services
Marketplace

vmware and
Partner
Products

Continuous
delivery

Public Cloud
Services

Customer
Managed
Services

Repair
— CVEs

Repave Rotate
— Credhub

Tanzu Application
Catalog

Helm | Applications | KubeApps

Service-Based Reference Architecture for NAS Automation - Version 1.2

B-10

shows how the elements of the Reference Architecture Platform Layer are addressed in the
Project Elroy Platform environment.

Table B-4. Elroy Platform

B.5 Platform One
The DoD Enterprise DevSecOps Initiative is a DoD Joint Program that is bringing Enterprise IT
Capabilities to programs across the DoD with Cloud One and Platform One. Cloud One provides
access to cloud computing services, and Platform One is the first DoD-wide approved
DevSecOps managed service. Platform One brings timeliness and modularity and enables reuse
by providing a collection of approved, hardened Cloud Native Computer Foundation (CNCF)-
compliant Kubernetes distributions, infrastructure as code playbooks, and hardened containers
that implement a DevSecOps platform compliant with the DoD Enterprise DevSecOps Reference
Design.

Platform Element Elroy Platform Coverage

Runtime

Software Hosting/Execution Containers and Kubernetes (Pivotal’s “Droplets” and “Stem Cells”
and Tanzu Kubernetes Grid), Bosh

Workflow Choreography and
Orchestration

n/a

Monitoring and Log Analysis Open-source tools, Healthwatch, considering Dynatrace

Service Proxy, Mesh, and Gateway GoRouter, Contour

Virtual Networking, Policy,
Authentication and Authorization

 UAA (User Account and Authentication service, Cloudfoundry
authentication component), CredHub, FAA Azure AD, AWS IAM
(for ops team)

Distributed Database and Storage PostgreSQL, S3

Streaming and Messaging Solace JMS client, Solace VMR

Analytics and Artificial Intelligence n/a

Development

Development Frameworks and Libraries Buildpacks (e.g., Node.js, NGINX, Spring cloud services)

Planning and Requirements Management Jira

Software Packaging, Repositories, and
Distribution

 Harbor, Artifactory, S3

API and Data Management n/a

CI/CD Toolchain Concourse

Service-Based Reference Architecture for NAS Automation - Version 1.2

B-11

The DoD Chief Information Officer (CIO) is pushing for broad adoption across a wide range of
programs creating software for a wide range of missions. The DoD Enterprise DevSecOps
Reference Design and Platform One are currently being used on software for the F-35 and F-16
aircraft, the Air Operations Center (AOC), the Advanced Battle Management System (ABMS),
and Ground Based Strategic Deterrent (GBSD), and more.

Platform One services are intended to be hosted on Cloud One. In some cases, a dedicated
instance of the Platform One tools is instantiated, using Cloud One resources, for a particular
program or development team. This model is suitable for large teams/programs that need a
dedicated enclave. In other cases, a shared enterprise environment is provided and managed by
the Platform One team and used by multiple different programs or development teams. This
model is suitable for smaller or medium sized teams.

The DoD has made a great deal of information on the Enterprise DevSecOps initiative24 and
Platform One readily available. Documents, briefings, and videos are available at [24] and [25].

An overview of the layers that make up the DoD Enterprise DevSecOps Layers is provided in
Figure B-7. The top layer in the figure corresponds to the “Mission Software Layer” in our
Reference Architecture. The middle three layers collectively make up “Platform One” and
correspond to the “Open Software-Based Platform Layer” in our Reference Architecture. The
“Infrastructure Layer” at the bottom of this figure corresponds to the “Computing Resources”
layer in our Reference Architecture.

Figure B-7. Overview of DoD Enterprise DevSecOps Layers

Table B-5 shows how the elements of the Reference Architecture Platform Layer are addressed
in the DoD Platform One environment.

24 DoD Enterprise DevSecOps Initiative is a joint program with OUSD(A&S), DoD CIO, U.S. Air Force, DISA and the Military

Services

Service-Based Reference Architecture for NAS Automation - Version 1.2

B-12

Table B-5. Platform Layer Elements in DoD Platform One

Platform Element Platform One Coverage (examples only)

Runtime

Software Hosting/Execution Containers managed by technologies such as Kubernetes or
Openshift are the preferred means of providing the execution
environment in Platform One. Direct hosting on VMs is also
supported but discouraged.

Workflow Choreography and
Orchestration

Nothing listed

Monitoring and Log Analysis A variety of tools are supported, including Sensu, EFK, Splunk, and
more. (Prometheus, used in ABCD, is included.)

Service Proxy, Mesh, and Gateway ISTIO Service Mesh is an important part of Platform One. API
gateways including Kong, Azure and AWS API are used. HA Proxy,
Envoy, etc.

Virtual Networking, Policy,
Authentication and Authorization

Virtual networking is included within the Container Management
tools, and enclaves can be created on Cloud One. Security tools are
provided for both static and dynamic analysis, as well as operational
monitoring.

Distributed Database and Storage An extensive set of relational and unstructured persistence
tools/services are provided including SQL Server, MySQL,
MongoDB, Redis, Elasticsearch, and so on.

Streaming and Messaging Kafka, Flink, Nats, RabbitMQ, and ActiveMQ are supported.
(However, unclear if any of these are provided as cross-DoD
enterprise messaging services comparable to SWIM in the FAA.)

Analytics and Artificial Intelligence Kubeflow for AI/ML. A wide variety of tools/services for analytics,
including Tableau and Kibana for visualization, Hadoop,
Elasticsearch, and Oracle Big Data for unstructured data analysis.

Development

Development Frameworks and Libraries Nginx, Apache2

Planning and Requirements Management Jira, Confluence, etc.… Pivotal Tracker

Software Packaging, Repositories, and
Distribution

Artifactory, Nexus. For containers, IronBank (DCAR)

API and Data Management Nothing listed

CI/CD Toolchain Jenkins, Github Government, GitLab, Maven, Gradle, Ant,
Cucumber, J-unit, Clair, Ansible, Terraform, Helm

C-1

Appendix C References

[1] The MITRE Corporation, "Automation Evolution Strategy," The MITRE corporation,
McLean, VA, 2020.

[2] U.S. Department of Defense, "DoD Enterprise DevSecOps Reference Design Version
1.0," Department of Defense Chief Information Officer, 2019.

[3] C. Andrews, D. Chaloux, W. Heagy, M. Liggan, O. Olmos and D. Thomson, "National
Airspace System Automation Evolution Strategy: Coordination Draft," The MITRE
Corporation, McLean, VA, 2020.

[4] The MITRE Corporation, "Automation Evolution Strategy Work Plan Status," The
MITRE Corporation, McLean, VA, 2020.

[5] The Federal Aviation Administration, "2035 Vision for Air Traffic Management
Services," The Federal Aviation Administration, Washington, DC, 2020.

[6] U.S. Department of Defense, "DoD Enterprise DevSecOps Reference Design Version
1.0," Department of Defense Chief Information Officer, 2019.

[7] The MITRE Corporation, "Application Based Capability Development Framework: An
Agile Process and Software Framework for Rapid Implementation of Traffic Flow
Management Capabilities," The MITRE Corporation, McLean, VA, 2020.

[8] P. Koka, B. McKenney, S. Paul, and D. Thomson, "FAA Zero Trust Architecture and
Implementation Analysis," The MITRE Corporation, McLean, VA, 2020.

[9] Atlassian, "DevOps: Breaking the Development-Operations barrier," 2020. [Online].
Available: https://www.atlassian.com/devops. [Accessed 2 April 2020].

[10] Stevens Institute of Technology, International Councl on Systems Engineering
(INCOSE), Systems Engineering Research Center, and School of Systems and
Enterprises, "Report of the Workshop on The Relationship Between Systems Engineering
and Software Egineering," 12-14 June 2014. [Online]. Available:
https://www.incose.org/docs/default-source/newsevents/report.pdf?sfvrsn=5c0db4c6_0.
[Accessed 20 April 2021].

[11] Federal Aviaiton Administration, "6000.30F - National Airspace System Maintenance
Policy," FAA, 22 April 2013. [Online]. Available:
https://www.faa.gov/regulations_policies/orders_notices/index.cfm/go/document.informa
tion/documentID/1020968. [Accessed 23 March 2021].

[12] The MITRE Corporation, "Ten Strategies of a World-Class Cybersecurity Operations
Center," MITRE, Bedford, MA, 2014.

[13] Federal Aviation Administration, "FAA Reliability, Maintainability, and Availability
(RMA) Handbook, FAA RMA-HDBK-006C, V1.1," 2015.

[14] Atlassian, "Scrum of Scrums," Atlassian, 2021. [Online]. Available:
https://www.atlassian.com/agile/scrum/scrum-of-scrums. [Accessed 19 February 2021].

C-2

[15] Federal Aviation Administration, "National Airspace System 2025 Top Level Far Term
System Requirements Document Version 3.0," FAA, Washington, DC, 2014.

[16] David L. Bloom, Steven R. Bodie, Nicholas T. Hamisevicz, Dr. Stephane L. Mondoloni,
Brian T. Simmons, Tejal N. Topiwala, "Guidance on Flight Information Management for
Microservices, MTR210465," The MITRE Corporation, 2021.

[17] T. Olavsrub, "What is a data architect? IT's data framework visionary," 20 October 2020.
[Online]. Available: https://www.cio.com/article/3586138/what-is-a-data-architect-its-
data-framework-visionary.html. [Accessed 19 March 2021].

[18] C. Tozzi, "Precisely," 25 March 2020. [Online]. Available:
https://www.precisely.com/blog/big-data/big-data-101-batch-stream-processing.
[Accessed 29 January 2021].

[19] VMWare, "Hyperconverged Infrastructure," VMWare, Inc., 2021. [Online]. Available:
https://www.vmware.com/products/hyper-converged-infrastructure.html. [Accessed 20 4
2021].

[20] NUTANIX, "What is Hyerconverged Infrastructure?," Nutanix, 2021. [Online].
Available: https://www.nutanix.com/hyperconverged-infrastructure. [Accessed 20 April
2021].

[21] The Federal Aviation Administration, Configuration, Logistics, and Maintenance
Resource Solutions (CLMRS) 101 (Briefing), Washington, DC: The Federal Aviation
Administration, 2020.

[22] General Dynamics Information Technology, "FAA EIM Platform Developers Guide,
Version 13," General Dynamics, 2020.

[23] Federal Aviation Administration, "EIM Platform Government Furnished Equipment --
Appendix B Design Guide," FAA, Washington, DC, 2020.

[24] U.S. Air Force Assistant Secretary of Acquisiiton, "DoD Enterprise DevSecOps Initiative
and Platform One," [Online]. Available: https://software.af.mil/dsop/documents/.
[Accessed 20 January 2021].

[25] U.S. Air Force Assistant Secretary of Acquisition, "Platform One: DoD Enterprise
DevSecOps Services," [Online]. Available: https://software.af.mil/dsop/services/.
[Accessed 20 January 2021].

[26] IBM, "Advantages of XML," IBM, [Online]. Available:
https://www.ibm.com/support/knowledgecenter/en/ssw_ibm_i_72/rzamj/rzamjintroadvan
tages.htm. [Accessed 17 March 2021].

D-1

Appendix D Acronyms

Term Definition
ABCD Application Based Capability Development
ADS-B Automated Dependent Surveillance-Broadcast
AIMM
AL
AMPQ

Aeronautical Information Management Modernization
Assurance Level
Advanced Message Queuing Protocol

API Application Program Interface
APT
ARSR

Advanced Package Tool
Air Route Surveillance Radar

ARTCC
ASR

Air Route Traffic Control Center
Airport Surveillance Radar

ASTERIX All Purpose Structured Eurocontrol Surveillance Information Exchange
ATC Air Traffic Control
ATL Atlanta
ATM Air Traffic Management
ATO Authority to Operate
AWS
CA
CAT

Amazon Web Services
Conflict Alert
Category

CI/CD Continuous Integration/Continuous Delivery
CLMRS Configuration, Logistics, and Maintenance Resource Solutions
CNI Container Network Interfaces
ConOps Concept of Operations
ConUse Concept of Use
COTS Commercial off-the-Shelf
CPC
CPDLC

Certified Professional Controllers
Controller-Pilot Data Link Communications

CSP Cloud Service Provider
CSS-FD Common Support Services-Flight Data
DevOps Development and Operations
DevSecOps Development, Security, and Operations

D-2

Term Definition
DHS Department of Homeland Security
DNS Domain Name Service
DoD Department of Defense
DOORS Dynamic Object-Oriented Requirements
DTD Document Type Definition
EA
EDDS

Enterprise Architecture
En Route Data Distribution System

EIM Enterprise Information Management
EIM-DP Enterprise Information Management Data Platform
EP Edge Protection
ERAM En Route Automation Modernization
ESB Enterprise Service Bus
ESCS Enhanced SWIM Cloud Service
ETL Extract, Transform, and Load
FAA Federal Aviation Administration
FCS FAA Cloud Service
FENS FAA Enterprise Networking System
FISMA Federal Information Management Act
FOSS Free and Open-Source Software
FTI FAA Telecommunications Infrastructure
FY Fiscal Year
GUI Graphical User Interface
HTTP Hypertext Transfer Protocol
IaaS Infrastructure as a Service
IAG
IAM

Internet Access Gateway
Identity and Access Management

IDAT
IdM

Interfacility Data Transfer
Identity Management

IESP Integrated Enterprise Services Platform
IMS Information Management Service
IoT Internet of Things
IP Internet Protocol

D-3

Term Definition
IT Information Technology
JSON JavaScript Object Notation
LAN Local Area Network
MBSE
MISRA

Model-Based System Engineering
Motor Industry Software Reliability Association

MQTT
MSAW
NACp
NACv

Message Queuing Telemetry Transport
Minimum Safe Altitude Warning
Navigation Accuracy Category-Position
Navigation Accuracy Category-Velocity

NAS National Airspace System
NAS-RD NAS Requirements Document
NCIS National Cloud Integration Service
NEMC NAS Enterprise Management Center
NEMS NAS Enterprise Messaging Service
NESG NAS Enterprise Security Gateway
NextGen
NIC

Next Generation Air Transportation System
Navigation Integrity Category

NIST National Institute for Standards and Technology
NSRR NAS Service Registry and Repository
OPIP Operational IP
PaaS
PSR

Platform as a Service
Primary Surveillance Radar

QA
QARS

Quality Assurance
Quick Analysis of Radar Sites

RA Reference Architecture
RHEL Red Hat Enterprise Linux
RPM Red Hat Package Manager
RTCA
SBS

Radio Technical Commission for Aeronautics
Surveillance and Broadcast Services

SCDS
SCJ
SDN

SWIM Cloud Distribution Service
Safety Critical Java
Surveillance Data Network

D-4

Term Definition
SDP Surveillance Data Processing
SFDPS SWIM Flight Data Publication Service
SLC Salt Lake City
SLE
SNS

Second Level Engineering
Simple Notification Service

SOA Service Oriented Architecture
SOC
SQS
SSR

Security Operations Center
Simple Queue Service
Secondary Surveillance Radar

STDDS SWIM Terminal Data Distribution Service
SWIM System Wide Information Management
TBFM Time-Based Flow Management
TDM Time Division Multiplexing
TechOps Technical Operations
TFDM Terminal Flight Data Management
TFM Traffic Flow Management
TFMData Traffic Flow Management Data Service
TFMS Traffic Flow Management System
TIC
TIS-B

Trusted Internet Connection
Traffic Information Service - Broadcast

TRACON Terminal Radar Approach Control
UAS Unmanned Aerial System
UI User Interface
URL Uniform Resource Locator
USAF United States Air Force
VM Virtual Machine
VNET Virtual Network
VPC Virtual Private Cloud
VPN Virtual Private Network
WAF
WAM

Web Application Firewalls
Wide Area Multilateration

WAN Wide Area Networks

D-5

Term Definition
XDF Extensible Data Format
XML
xTM

Extensible Markup Language
Extensible Traffic Management

ZTA Zero Trust Architecture

	1 Introduction
	1.1 Background
	1.2 Strategic Outcomes
	1.3 Purpose
	1.4 Scope
	1.5 Approach
	1.6 Related Infrastructure Programs/Projects

	2 Architecture Overview
	2.1 Architecture Vision
	2.2 Key Concepts and Definitions
	2.3 Guiding Principles
	2.4 Assumptions
	2.4.1 Agile and DevSecOps
	2.4.2 Transition to Internet Protocol Networking
	2.4.3 Use of Cloud for NAS Operations
	2.4.4 Organizational Change
	2.4.5 Acquisition
	2.4.6 Layered
	2.4.7 Service-based
	2.4.8 Operational Monitoring and Management
	2.4.9 Secure
	2.4.9.1 Inheritance of Controls
	2.4.9.2 Security Built-in to DevSecOps
	2.4.9.3 Zero Trust
	2.4.9.4 Cybersecurity Defensive Operations

	2.4.10 Multiple Levels of Criticality

	3 NAS Mission Applications and Mission Services Layer
	3.1 Overview
	3.2 Mission Applications
	3.3 NAS Mission Services
	3.4 Basic Pattern: Microservice Architecture
	3.4.1 Microservices Concept
	3.4.2 Assembling Microservices to Create Applications

	3.5 Service-Based Architecture
	3.5.1 Internal Mission Services Versus Common Mission Services
	3.5.2 Geospatial Dependencies
	3.5.3 Support for Transactions and Data-Centric Subsystems
	3.5.4 NAS-Wide View of Service-Based Architecture
	3.5.5 Monitoring and Control
	3.5.6 Security Monitoring and Defensive Operations

	4 Platform Layer
	4.1 Overview
	4.2 Platform Layer Elements
	4.2.1 Runtime
	4.2.1.1 Software Hosting/Execution
	4.2.1.2 Workflow Choreography and Orchestration
	4.2.1.3 Monitoring, Log Analysis, and Reliability
	4.2.1.4 Service Proxy, Mesh, and API Gateway
	4.2.1.5 Virtual Networking, Policy, Authentication, and Authorization
	4.2.1.6 Distributed Database and Storage
	4.2.1.7 Streaming and Messaging (Message Bus)
	4.2.1.8 Analytics and Artificial Intelligence

	4.2.2 Development
	4.2.2.1 Development Frameworks and Libraries
	4.2.2.2 Planning and Requirements Management
	4.2.2.3 Software Packaging, Repositories, and Distribution
	4.2.2.4 Application Programming Interface and Data Management
	4.2.2.5 Continuous Integration / Continuous Delivery Toolchain

	4.2.3 Summary of Platform Elements in the Reference Architecture

	4.3 Survey of Existing Platforms

	5 Computing Resources Layer
	5.1 Overview
	5.2 Common Compute Infrastructure
	5.2.1 Off-Premises Cloud
	5.2.2 Data Centers and Facility-Based Computing Infrastructure

	5.3 Standalone Systems
	5.4 End-User Equipment
	5.4.1 Safety-Critical User Interfaces
	5.4.2 Web Browser-Based User Interfaces

	5.5 Networking

	6 Surveillance Services Use Case
	6.1 Background
	6.1.1 Surveillance Use Case Purpose
	6.1.2 Current Surveillance Data Processing

	6.2 Surveillance Services Overview
	6.2.1 Surveillance Use Case Scope and Assumptions
	6.2.2 Surveillance Services Context

	6.3 Surveillance Services Detail
	6.3.1 Surveillance Services Mission Layer
	6.3.1.1 Surveillance Service Platform Layer
	6.3.1.2 Surveillance Services Infrastructure Layer

	6.3.2 Surveillance Services Challenges
	Appendix A Related Infrastructure Programs/Projects
	A.1 FAA Telecommunications Infrastructure (FTI) and FAA Enterprise Network Service (FENS)
	A.2 FAA Cloud Services (FCS)
	A.3 Integrated Enterprise Services Platform (IESP)
	A.4 National Cloud Integration Services (NCIS)
	A.5 System Wide Information Management (SWIM)
	A.6 SWIM Cloud Distribution Service (SCDS)
	A.7 Enhanced SWIM Cloud Service
	A.8 Enterprise Information Management (EIM) Platform

	Appendix B Platform Survey
	B.1 Application Based Capability Development (ABCD)
	B.2 Configuration, Logistics, and Maintenance Resource Solutions
	B.3 Enterprise Information Management (EIM) Data Platform (DP)
	B.4 Elroy
	B.5 Platform One

	Appendix C References
	Appendix D Acronyms

