

Leading Edge Protective Coating Against Fluid and Particulate Erosion for Turbofan Blades

Presented to: FAA Office of Environment and Energy

By: Delta TechOps (DTO)

MDS Coating Technologies (MCT)

America's Phenix, Inc. (AP)

Date: 11 May 2020

LE Protective Coating Against Fluid and Particulate Erosion for Turbofan Blades

Objectives:

- Quantify performance degradation
- Optimize coating protection via component tests
- Demonstrate coating protection on operational a/c

Work Statement:

- Conduct engine tests on degraded & O/H¹ blades
- Conduct CFD analysis on degraded & O/H¹ blades
- Conduct fluid erosion tests at AFRL² SuRE³ rig
- Flight certify optimal coating candidate
- Conduct flight service evaluation
- $^1\,$ Overhaul $^{-2}$ Air Force Research Lab 3 Supersonic Rain Erosion

Benefits:

Based on 1% fuel savings for Mainline and Regional commercial carriers:

- Fuel savings between 80M to 100M gal per year
- 750M to 1.0B kg CO_2 / year
- 700M to 1.0B g NO_x / year

Risk

- Potential fatigue debit impact of coating Ti blades
- Insufficient coating durability

Mitigation

- Adjust coating process parameters
- Test & compare to eroded blades in operation

Accomplishments / Milestones

- Engine test completed with used and new blades
- CFD⁴ model completed on used blade
- SuRE test successfully completed
- Flight certification tests completed

Schedule:

- Blade Condition / Operational Analysis COMPLETE
- JT8D Fluid Erosion Component Test COMPLETE
- Other Engine Types Fluid Erosion Test COMPLETE
- Flight Certification COMPLETE
- Flight Service Evaluation COMPLETE, March 2020*
 ⁴ Computational Fluid Dynamics

Phase I – Data, Test & Simulate

Blade Condition Analysis

Engine Test Data

CFD Analysis

- Following 1st stage fan blades inspected and analyzed:
 - JT8D BR715 CFM56 PW4000
 - V2500 CF34 PW2037 CF6
- Engine test completed on inducted JT8D engine with:
 - existing 1st stage fan blades
 - serviceable condition 1st stage fan blades
- CFD Analysis completed on serviceable and used blades at following conditions:
 - Take-off
 - Cruise

Blade Condition Analysis

Phase I – Engine Test

Thrust Specific Fuel Consumption (TSFC) Comparison

Eroded vs. Serviceable Fan blades

Phase I – Engine Test

Thrust Specific Fuel Consumption (TSFC) Comparison

Eroded vs. Serviceable Fan blades

Phase II – Fluid Erosion Test

a AFRL – Supersonic Rain Erosion (SuRE) Rig

Specimen Preparation

Specimen Tooling

Uncoated Blade Specimen BlackGold[®] Coated Blade Specimen

Coated Blade

Fluid Erosion Tests @ AFRL

Phase IIA - February 2017 Tests

Uncoated PW2000

Breach evident @ 3 passes

First substrate damage noticed after 23 passes

Phase III –

Air Worthiness Certification Tasks

- FAA Certification Plan Approval
- FAA Test Plan Approval
- Weight Analysis
- Metallographic Analysis
- Stress Analysis
- Frequency Analysis
- High Cycle Fatigue Tests
- Mechanical Property Tests
- Impact (Jelly Ball) Tests
- Ice Adhesion Analysis
- Compressor Wash Analysis

Phase III – Flight Cert Tests

Impact Test – Conducted at UDRI

BlackGold[®] Coated JT8D 1st Stage Fan Blade, Top View

Phase III – Flight Cert Tests

Impact Test – Conducted at UDRI

BlackGold[®] Coated JT8D 1st Stage Fan Blade, Front View

Phase IV – Flight Demonstration Flight Demonstration, Final Flight Hours

Phase IV – Flight Demonstration Fan Blade Inspections

- BlackGold[®] coated 1st stage turbofan blades installed on four (4) JT8D engines for flight operations on MD88 aircraft
 - Inspections \approx every 250 to 500 hours

JT8D 1st Stage Fan Blades

3D Scans of Micro-set Molds along Blade LE

JT8D Fan Blades with Molds

3D Mold Scans

- LE molds placed in erosion area from tip towards root.
- Molds scanned with white-light 3D scanner.
- Damage depth measured along LE from scanned image and processed with appropriate software.

Uncoated Turbofan Blade Mid-Span Mold Measurements

Blade Condition Analysis

Comparing to JT8D Uncoated Fan Blade LE Erosion

500 hrs \approx 2.5 months \approx 3.5% of tour

CFM56

 $\begin{array}{l} \text{20,611 hrs} \\ \approx \text{6.6 years} \\ \approx \text{55\% of tour} \end{array}$

PW2037

3,094 hrs \approx 1.25 years \approx 20% of tour

6,997 hrs \approx 2.75 years \approx 44% of tour

LE Depth Measurements

LE Depth Measurements

Comparing to JT8D Fan Blade Erosion

- JT8D Fan Blade LE Erosion very aggressive
 - Highest rpm engine
 - Fuselage mounted engine
 - Uncoated Blade LE erosion => mean pit depth of 400 μm along LE erosion zone
 - Coated Blade LE erosion => mean pit depth at select breach points < 100 μm

PW2000 Fan Blade LE Erosion

- Typical tour averages 16,000 operational hours
- At 14,300 hours or ≈ 90% of tour => mean pit depth of 168 µm along LE erosion zone

At 90% of PW2000 tour, uncoated LE pit depth \approx 50% less than uncoated JT8D at 2,081 hrs Coated JT8D blade LE protected at 2,081 hrs Hypothesis ... Coated PW2000 TF blade could protect LE for a complete tour

CFM56 Fan Blade LE Erosion

- Typical tour averages 30k to 36k operational hours
- At 20,611 hours or \approx 57% to 69% of tour => mean pit depth of 306 µm along LE erosion zone

At \approx 60 to 70% of CFM56 tour, uncoated LE pit depth \approx 75% less than uncoated JT8D at 2,081 hrs Coated JT8D blade LE protected at 2,081 hrs Hypothesis ... Coated CFM56 TF blade could protect LE for a complete tour Need more pit depth measurements at 30k+ hours

Chord loss not measured

Uncoated @ 2,081h

Phase IV Flight Demo Summary

- Three (3) JT8D engines flew with four (4) coated blades
- One (1) engine flew with two (2) coated blades and still flying!
- One (1) engine removed due to non-coating related, in-flight shut down
- One (1) engine with two (2) coated blades never installed on-wing
- Total flight hours = 7,064 hours
- Three engines > 2,000+ hours
- High time engine = 2,378 hours
- Extensive qualitative and quantitative data gathered on LE erosion
- Coating provided LE protection to \approx 2,000 operational hours
- Exceeded initial goal of protecting JT8D LE to 1,000 hours by 2X

1	718045	2,378 hrs	4 Coated Blades.
2	725536	2,245 hrs	4 Coated Blades.
3	725558	284 hrs	4 Coated blades removed. Non-coating related in-flight shutdown.
4	No S/N ID	0 hrs	2 Coated blades. Unable to install pre COVID-19 shutdown.
5	718150	2,157 hrs	2 Coated blades
Total Hours7,064 hrs		7,064 hrs	

CLEEN II Program Summary

- Blade Condition and Operational Analysis complete:
- LE erosion documented
- Engine test confirmed 1.1%+ TSFC increase
- Coating Component Level Tests complete:
 - For JT8D, PW2037, CF6 and Ti strips
- JT8D Flight Certification Tests Complete
- Flight Demonstration Engines
- Over 7,000 op hours
- Visual and measured results confirms coating protecting LE

THANK YOU