

Leading Edge Protective Coating Against Fluid and Particulate Erosion for Turbofan Blades

Presented to: FAA Office of Environment and Energy

By: Delta TechOps (DTO)

MDS Coating Technologies (MCT)

America's Phenix, Inc. (AP)

Date:21 November 2019

LE Protective Coating Against Fluid and Particulate Erosion for Turbofan Blades

Objectives:

- Quantify performance degradation
- Optimize coating protection via component tests
- Demonstrate coating protection on operational a/c

Work Statement:

- Conduct engine tests on degraded & O/H¹ blades
- Conduct CFD analysis on degraded & O/H¹ blades
- Conduct fluid erosion tests at AFRL² SuRE³ rig
- Flight certify optimal coating candidate
- Conduct flight service evaluation
- ¹ Overhaul ² Air Force Research Lab ³ Supersonic Rain Erosion

20 November 2019

Benefits:

Based on 1% fuel savings for Mainline and Regional commercial carriers:

- Fuel savings between 80M to 100M gal per year
- 750M to 1.0B kg CO_2 / year
- 700M to 1.0B g NO_x / year

Risk

- Potential fatigue debit impact of coating Ti blades
- Insufficient coating durability

Mitigation

- Adjust coating process parameters
- Test & compare to eroded blades in operation

Accomplishments / Milestones

- Engine test completed with used and new blades
- CFD⁴ model completed on used blade
- SuRE test successfully completed
- Flight certification tests completed

Schedule:

- Blade Condition / Operational Analysis COMPLETE
- JT8D Fluid Erosion Component Test COMPLETE
- Other Engine Types Fluid Erosion Test COMPLETE
- Flight Certification **COMPLETE**
- Flight Service Evaluation April 2018 to Dec 2020
- ⁴ Computational Fluid Dynamics

Phase I – Data, Test & Simulate

Blade Condition Analysis

Engine Test Data

CFD Analysis

- Following 1st stage fan blades inspected and analyzed:
 - JT8D BR715 CFM56 PW4000
 - V2500 CF34 PW2037 CF6
- Engine test completed on inducted JT8D engine with:
 - existing 1st stage fan blades
 - serviceable condition 1st stage fan blades
- CFD Analysis completed on serviceable and used blades at following conditions:
 - Take-off
 - Cruise

Blade Condition Analysis

Phase I – Engine Test

Thrust Specific Fuel Consumption (TSFC) Comparison

Eroded vs. Serviceable Fan blades

Phase II – Fluid Erosion Test

a AFRL – Supersonic Rain Erosion (SuRE) Rig

Specimen Preparation Still from High Speed Video **Specimen Tooling** Impact Area 5 6 7 8 Specimen BlackGold[®] Coated Uncoated Blade **Coated Blade** Specimen Blade Specimen

Tensile stress

Fluid Erosion Tests @ AFRL

Phase IIA - February 2017 Tests

Uncoated PW2000

First substrate damage noticed after 23 passes

Phase III –

Air Worthiness Certification Tasks

- FAA Certification Plan Approval
- FAA Test Plan Approval
- Weight Analysis
- Metallographic Analysis
- Stress Analysis
- Frequency Analysis
- High Cycle Fatigue Tests
- Mechanical Property Tests
- Impact (Jelly Ball) Tests
- Ice Adhesion Analysis
- Compressor Wash Analysis

Phase IV – Flight Demonstration Flight Demonstration, Field Engine Op Status

No.	Engine S/N	Status*	Notes
1	718045	2,378 hrs	4 Coated Blades. Currently off-wing awaiting installation. Estimated date early March 2020.
2	725536	2,245 hrs	4 Coated Blades. Removed, in-storage in Birmingham. Not expected to be re-installed. Scheduled for final inspection.
3	725558	284 hrs	4 Coated blades removed. Engine experienced non-coating related in-flight shutdown.
4	No S/N ID yet	0 hrs	2 Coated blades. Engine awaiting on-wing installation. Expected installation late Jan 2020.**
5	718150	1,489 hrs	2 Coated blades installed and flying**

* As of 18 November 2019

** Engines 4 and 5 have only two (2) coated blades in order to maintain four (4) flight demo aircraft

20 November 2019

Phase IV – Flight Demonstration

Phase IV – Flight Demonstration Fan Blade Inspections

- BlackGold[®] coated 1st stage turbofan blades installed on four (4) JT8D engines for flight operations on MD88 aircraft
 - Inspections \approx every 250 to 500 hours

JT8D 1st Stage Fan Blades

Phase IV – Flight Demonstration Flight Demonstration, Field Engine Op Status

Phase IV – Flight Demonstration

3D Scans of "Dental Mold" LE Blade Specimens

JT8D Fan Blades with Molds

³D mold scans

- LE molds placed in erosion area from tip towards root.
- Molds scanned with white-light 3D scanner.
- Damage depth measured along LE from scanned image and processed with appropriate software.

LE Depth Measurements

Phase IV Schedule

Estimated remaining inspection schedule

• Engine # 1 @ 2,378 op hours. Status – on-wing by March 2020

- 2,500 + hours by April 2020
- 3,000 + hours by July 2020
- 4,000 + hours by December 2020

• Engine # 4 @ 0 hours. Status – awaiting installation Jan 2020.

- 500 + hours by March 2020
- 1,000 + hours by May 2020
- 2,000 + hours by October 2020
- 2,500+ hours by end-of-Dec 2020

• Engine # 5 @ 1,489 op hours. Status – currently flying.

- 1,700 + hours by January 2020
- 2,000 + hours by March 2020
- 3,000 + hours by July 2020
- 4,000 hours by end-of-Dec 2020
- Engine # 2 completed flying @ 2,245 hours
- Engine # 3 completed flying @ 284 hours

Total Op Hours as of 18 Nov 2019 = 6,396 hours

Delta's MD-88 fleet scheduled for sunset at the end of CY20

Estimate > 12,000 total op hours by end of CY20

Estimates based on 50 hours / week average

CLEEN II Program Summary

- Blade Condition and Operational Analysis complete:
 - LE erosion documented
 - Engine test confirmed 1.1%+ TSFC increase
- Coating Component Level Tests complete:
 - For JT8D, PW2037, CF6 and Ti strips
- Flight Certification Tests Complete
- Flight Demonstration Engines
 - Over 5,000 op hours
 - Visual and measured results confirms coating protecting LE
 - Project over 12,000 op hours by end of CY20
- Installing up to four (4) completely coated engines to track fuel savings benefits

5-27

THANK YOU

