Military Noise Environments and Hearing **Protection/Conservation**

Richard McKinley

Human Effectiveness Directorate

Briefing Overview

- Defining the environment/problem
 - F-22
 - JSF
 - Legacy aircraft F-14, F-15, F-16, F-18, EA-6B
- Personnel exposure requirements
- Integrated Solution
 - Technology, training, education, and administrative controls

Boeing JSF

Lockheed JSF

Lockheed/Boeing F-22

P&W F-119 Engine

Nimitz Class Nuclear Carrier

Crew Positioning

Crew Positioning

Crew Positioning

Carrier Crew Positioning

Navy/AF JSF VA Team

Carrier Crew Positioning

USAF Crew Positioning

USAF Crew Positioning

F-22 Acoustics

F-22 lessons learned

- Early measurements dispelled much of the concerns regarding intense low frequency noise
- Cockpit noise became an issue during return to flight test
- Probable non-linear propagation of noise shock waves
- Very intense acoustic levels aft of the tail

Military Noise Environments

Approach

- Define current Navy/Air Force noise and vibration exposure standards and requirements
- Baseline current Air Force/Navy operational aircraft vibration and noise environments both cockpit and ground support/maintenance
- Measure vibration and noise from F-119 engine in F-22
- Initiate human exposure effects expansion of limits and/or mitigation studies if required
- Measure vibration and noise on JSF CDA variants

F-22 Raptor Near Field Noise Crew Positioning

F-16C F100 – PW-229 Mil Power Near-Field Noise

Allowable exposure time
With current muff & plugs
Allowable exposure time
With new hpd technologies
U=unlimited

F-22 Near-field personnel noise

F-22 Right (Mil) 100% ETR - Left Engine 10% ETR

Near Field Noise Predictions (SPL in dB)

F-22 Near-field personnel noise

F-22 Right (A/B) 150% ETR - Left Engine 10% ETR

Near Field Noise Predictions (SPL in dB)

F-22 Near-Field Noise 35' & 50' A/B-150% ETR, Right Engine

F-22 Near-Field Noise 42' & 100' A/B-150% ETR, Right Engine

JSF Personnel Noise Crew Positioning Challenges

AF & Navy Personnel Noise

Personnel Noise Requirements

- JSF JORD and Joint Model Spec
 - Noise exposure for ground/flight deck crew shall not exceed a daily exposure equivalent to 85 dBA for 8 hrs with a 3 dB/doubling exchange rate
 - Normal operations defined as 60 launches and 60 recoveries within a 24 hr period
 - Assumes other exposures are less than 85 dBA
- AFOSH 48-19 Hazardous noise exposure
 - 85 dBA 8 hrs 3 dB/doubling
- OPNAVINST 5001
 - 80 dBA 16 hrs 4 dB/doubling
 - 85 dBA 8 hrs 3 dB/doubling

Whole Body Noise Exposure

- Legacy aircraft lessons learned
 - Levels at personnel locations up to 150 dB
 - Intense acoustic field resonates chest resonate frequency around 80 Hz
 - Other body systems resonate at other frequencies and can be a source of discomfort

Perspective on Material Solutions

Personnel noise exposure

Noise level vs safe exposure time per AFOSH 48-19

Personnel Noise

Issue:

- Today's hearing protection is not adequate against current aircraft noise emissions - hearing loss is the #1 disability among retired US Military personnel
- F-22 & JSF personnel noise similar to F-14, F-15, & F-18 (A/B takeoff)
- No technology exists to quiet fighter engines without significant performance losses

Problem is multifold:

- Hearing protection- same technology past ~30years
- Duty requires close proximity to noise source
- Long duty shift, Cumulative exposure time

Non-Material Solutions

Policies & Procedures

- Crew rotation
- Crew relocation
- Operating procedures(e.g., run-up times, etc.)
- Flight deck/flight line improvements (e.g., robotics, telemetry, barriers)
- Training in equipment fit, use, & care
- Disciplined enforcement of protection use
- Personal issue engages a responsibility process

Near Term Solutions 2001-2002

Technology

- Optimized passive protection: Improved earplugs & earcups w/wo communication.
 - **Goal:** 35-40 dB of attenuation (includes non-material solutions previously noted, e.g. training)

Required S&T Investment

- Deep insert custom earplugs
 - Compliant: Marry benefits of custom fit & expandable materials
- Improved noise attenuation earcups/cranial
- Field performance metric

Enabling Research

- Materials
- Optimal insertion depth (earplug)
- Size, shape, seal, location, hygiene
- Anthropometry: Identify fit issues and population norms
- Field technology performance validation

Deep Insert Custom Plug Prototype Technology Demonstration

Mid Term Solutions 2002-2005

- Technology Development
 - Improved Passive Cranial
 - Active Noise Reduction (ANR) Earplug
 - Goal: 40 50 dB attenuation
- Required S&T Investment
 - High bandwidth, high intensity ANR techniques
 - Analog vs digital vs hybrid
 - Improve materials, sensors, drivers, anthropometry
 - Acoustic model of bone/tissue conduction
 - Airborne and structural pathways
 - Low vs. high frequency
 - Low vs. high intensity
 - Tympanic membrane, inner ear structures

Active Noise Reduction Earplug

Active Noise Reduction (ANR) Communication Headsets

ANR uses Standing Waves principle

Far Term Solutions 2004-2007

- Technology Development
 - Active Vibration Control Cranial/Helmet
 - Goal: 50+ dB attenuation
- Required S&T Investment
 - Improve materials, sensors, drivers, anthropometry
 - Acoustic model of bone/tissue conduction
 - Airborne and structural pathways
 - Low vs. high frequency
 - Low vs. high intensity
 - Tympanic membrane interactions

Performance Metrics

Performance changes need to be measured and tracked as solutions are implemented

- Databases mapping and tracking crew locations and crew performance versus hearing loss are poor and virtually nonexistent
 - Expand and maintain Air Force's computerized hearing repository data base
- Mandate use of accepted national standards for characterization and testing

Proposed Solution Recap

- Integrated solution of technology, training, education, and administrative controls
- R&D technologies for a dedicated hearing protection system improvement program
 - Custom Fit Deep Insert Earplugs
 - ANR Earplugs
 - Improved Passive Cranial
 - Active Vibration Control Cranial/Helmet
 - Enabling Research e.g., sensors, models
- Field performance verification/validation
- Crew rotation, administrative procedures

Personnel Noise Summary

Personnel Noise

- Current flight-line/deck hearing protection is inadequate
 improved hearing protection is needed TODAY
- Some crew member locations should be moved and/or exposure time limited
- Technology solutions to certain functions are being worked -
- Work on engines continue projected effects are small 3-5 dB and very expensive
- Flight deck/flight line noise levels are systemic
- F-22, F-18E/F, & JSF in addition to numerous legacy aircraft have comparable personnel noise levels/exposures
- Solutions must involve service headquarters, operators, acquisition, scientists/technologists, and service medical experts