HUDs versus HDDs:

A comparison of formats for presentation of highway-in-the-sky primary flight displays

Dennis B. Beringer & Jerry D. Ball Human Factors Research Laboratory FAA - Civil Aeromedical Institute Oklahoma City

Problem: Scanning outside the aircraft

- Concern that HITS-format display was too compelling and would trap scan in headdown presentation
- Initial belief that HUD would ameliorate effect to some degree
- Need to evaluate cognitive capture effects of HITS in HUD presentation

Previous Findings & Limitations

- * Some data suggest that cognitive capture is a significant factor in HUDs (Wickens, et. al)
- Limitation on Wickens data was that HUD image was projected on the same screen as the out-the-window scene; it was not a HUD device per se
- Observations of extensive head-down time with HITS display (CAMI studies) were "subjective"

Primary questions:

- * How "compelling" is the HITS-format display?
 - * Will task requirements produce inordinate dwell times?
 - † Will surveillance of surrounding airspace and monitoring of other cockpit displays suffer?

* Can relocation to a Head-up display reduce the effects on surveillance of surrounding airspace?

Secondary questions:

- * Given HUD use, what are the relative benefits of conformal and nonconformal presentations?
 - † Conformal matches the external scene but can produce restricted field of view on HUD. Does this affect performance?
 - * Nonconformal presents sufficient pitch data for climb with horizon visible on display, but doesn't match external scene.
- t Can one format be used throughout a flight for all tasks?
 - * How do pilot performances and preferences align with formats?
- † Definitions...

Illustrations: Head-down display

FAA/CAMI

Head-up display...

Head-REALLY-up display...

Experimental Design

- † Three HITS display configurations
 - * Nonconformal (40 degrees of HITS represented)
 - Head-down display
 - Head-up display
 - † Conformal (22 degrees of HITS represented)
 - Head-up display
- Within-subject design
 - **†** Counter-balanced presentations

Procedure

- * Warm-up flight, conventional instruments
 - * Familiarization with aircraft performance
 - * Familiarization with geographic location (Albuquerque)
- Pre-flight briefing
 - Description of tasks and displays
- Data-collection flights
 - † Eye tracker mounted and calibrated
 - † Two data flights conducted; then a short out-of-cockpit break before third data flight

HITS Display (conformal)

Eye-tracking apparatus

Flight Task (in AGARS)

- Take-off Runway 08
- † Climb intercept path (IMC)
- t Level downwind (140-150kts) (VMC)
- Approach/Landing (IMC - VMC)
- † 20 minutes per circuit

Pilot Tasks

- Pilot aircraft, using guidance provided by HITS symbology
- Maintain communications with ATC
- Detect and report airborne targets
- * Respond to probe-RT light using yoke-mounted keypad (also used to check alignment of eye tracker)

Detail of airborne target paths

FAA/CAMI

Performance measures

- † Flight technical error (horizontal, vertical)
- **†** Visual performance
 - † Dwell time
 - **†** Transition frequency
 - † Target detection rate / distance
- * Workload (Probe RT)

Preliminary Results

- Course-tracking error -
 - Horizontal error in turns less for nonconformal displays
 - Greatest error when conformal HUD flown first or last
- Vertical error -
 - * Greatest with conformal HUD, but magnitude of difference small

Flight technical error

Airborne Targets: Hit rate by flight and display

Airborne targets: Detection distance by flight and display

Hit Rates; two most difficult targets

Eye-movement data: nonconformal HUD

FAA/CAMI

(without segment 0)

26

Eye-movement data: conformal HUD

(without segment 0)

Eye-movement data: nonconformal HDD

FAA/CAMI

(without segment 0)

Rating Results

- Participants rated displays by tasks
 - Preferred nonconformal for turns
 - Preferred conformal for straight-and-level flight over conformal for turns
 - Preferred nonconformal over conformal in general
 - Preferred HUD over HDD
 - HUD(17); HDD(5); NP(1); ND(3)

Preference ratings by display and task

Summary

- * Is the HITS display "compelling"?
 - † Dwell times suggest that it is.
- Can the HUD ameliorate impacts to target detection?
 - Nonconformal HUD appears to do so.
- * Is there evidence of cognitive capture with the HUD?
 - † Detection latencies are consistent with this.

Summary (continued)

- tearning effects ameliorate differences to some extent, but conformal HUD is consistently inferior for turns
- † Pilots expressed preference for a wideangle view in turns but narrower field of view for straight-and-level cruise (less cluttered)
- Majority of pilots preferred the HUD

Conclusions

- * Results support practice of offering selectable conformal vs. nonconformal modes for different flight tasks (cruise, approach, etc.)
- † 40 degrees appears to be a reasonable compromise between a direct mapping and a sufficiently wide field of view.

Eye-movement data: Nonconformal HUD

35

FAA/CAMI

Eye-movement data: conformal HUD

FAA/CAMI

Eye-movement data: nonconformal HDD

