# FAA Initiative to Address Noise Concerns of Santa Cruz/Santa Clara/San Mateo/San Francisco Counties

FAA & Select Committee Working Meeting

**August 18, 2016** 



#### **Discussion Overview**

- Transition the SERFR STAR Back to the BSR Ground Track Prior to EPICK (#2)
- Improve Aircraft Set Up and Sequencing Between Facilities (#6)

# 2. Transition the SERFR STAR Back to the BSR Ground Track Prior to EPICK

# Average altitude on the BSR (July 2014)



# Average altitude on the SERFR (July 2015)



#### **Overview**

#### For this presentation:

- The DAVYJ STAR is a notional look at optimizing an approach over the BSR ground track.
- The altitudes of the optimized DAVYJ STAR are likely higher then the SERFR STAR, but lower than BSR STAR.
- Fully optimized, DAVYJ is not contained within the current SFO Class B.
- The OPD of the DAVYJ STAR would be wholly contained within the proposed amendment to SFO Class B.

#### **Provisional Noise Analysis**

- The noise levels of the notional DAVYJ were modelled consistent with current FAA Policy.
  - Traffic is based upon 60 random days from the past year
  - Takes into account terrain
  - The ~50% of SERFR flights which are vectored off the ground track were modelled using 4 distinct flight paths
  - Noise modelled of the current SERFR operations was compared against:
    - DAVYJ with SERFR altitudes
    - DAVYJ with BSR altitudes

#### Noise modelling of the current SERFR tracks

#### Key

- SERFR ground track
- Notional DAVYJ ground track

#### Noise levels:

- $x \ge 45 \text{ dBA DNL}$
- 40 dBA DNL  $\leq$  x< 45 dBA DNL
- 35 dBA DNL ≤ x< 40 dBA DNL
- **■** 30 dBA DNL  $\leq$  x< 35 dBA DNL
- 25 dBA DNL  $\leq$  x< 30 dBA DNL
- 20 dBA DNL ≤ x< 25 dBA DNL





#### Noise modelling of the notional DAVYJ, with BSR altitudes (higher)

#### Key

- SERFR ground track
- Notional DAVYJ ground track

#### Noise levels:

- x ≥ 45 dBA DNL
- 40 dBA DNL ≤ x< 45 dBA DNL
- 35 dBA DNL ≤ x< 40 dBA DNL
- **■** 30 dBA DNL  $\leq$  x< 35 dBA DNL
- 25 dBA DNL  $\leq$  x< 30 dBA DNL
- 20 dBA DNL ≤ x< 25 dBA DNL





#### Noise modelling of the notional DAVYJ, with SERFR altitudes (lower)

#### Key

- SERFR ground track
- Notional DAVYJ ground track

#### Noise levels:

- x ≥ 45 dBA DNL
- 40 dBA DNL ≤ x< 45 dBA DNL
- 35 dBA DNL ≤ x< 40 dBA DNL
- **■** 30 dBA DNL  $\leq$  x< 35 dBA DNL
- 25 dBA DNL  $\leq$  x< 30 dBA DNL
- 20 dBA DNL ≤ x< 25 dBA DNL





#### Noise changes associated with notional DAVYJ, with SERFR altitudes

# SERFR ground track Notional DAVYJ ground track Change in Noise levels: increase of 8 – 10 dBA DNL increase of 5 – 7 dBA DNL increase of 2 – 4 dBA DNL no change or a change of ± 1 dBA DNL decrease of 2 - 4 dBA DNL decrease of 5 - 7 dBA DNL

decrease of 8 - 10 dBA DNL



### Summary

#### Provisional Noise Analysis Results indicate:

- The noise from the current SERFR tracks in the mid and south peninsula is the range of 25 – 44 dB DNL.
- The noise shifts when the track is moved west.
- Lower altitudes on the notional DAVYJ produces a larger noise footprint.

# Noise modelling vs. measuring







Figure 1 - Noise Monitoring Locations

|   |                                     | CNEL                     |                           |                         |
|---|-------------------------------------|--------------------------|---------------------------|-------------------------|
|   | Address                             | SFO Santa Cruz           | NorCal EA 2014            | NorCal EA 2019          |
|   |                                     | Monitoring Report        | values                    | values                  |
|   |                                     | Based on 16 days of data | Based on a years worth of | Data estimated from the |
|   |                                     |                          | data                      | Terminal Area Forecast  |
| 1 | 1111 Wilderfield Rd, Los Gatos      | 38                       | 40-41                     | 41-42                   |
| 2 | 200 Woodlander Place, Scotts Valley | 38                       | 38-39                     | 39-40                   |
| 3 | 1023 Vine Hill Road, Santa Cruz     | 35                       | 37-38                     | 38-39                   |
| 4 | 240 Fast Lane, Santa Cruz           | 34                       | 36-37                     | 36-37                   |
| 5 | 820 Amigo Road, Soquel              | 34                       | 35-36                     | 35-36                   |

# 6. Improve Aircraft Set Up and Sequencing Between Facilities

## Set Up and Sequencing

- Currently, operations in terminal airspace involve turn-by-turn, speed-by-speed, and altitude-byaltitude instructions to the pilot.
- Terminal controllers rely heavily upon vectoring for merging and spacing aircraft onto the final approach course.
- Consequently, the benefits of Performance Based Navigation (PBN) procedures are not being achieved.
  - Benefits include reduced noise, emissions and flying miles.

### Set Up and Sequencing

#### Terminal Sequencing and Spacing (TSS)

- Will reduce the number of course and altitude changes currently required for sequencing.
- Will provide information to controllers about the speeds to assign for aircraft to achieve an OPD.
- Will lessen the frequency of communications required between controllers and pilots.



# Special Use Airspace (SUA)

