



# **Experimental System of ADS-B Height Monitoring in Japan**

#### **Keisuke MATSUNAGA**

Electronic Navigation Research Institute (ENRI)

National Institute of Maritime, Port and Aviation Technology (MPAT), Japan

ASE Workshop 2017
The FAA William J. Hughes Technical Center
17-19 October 2017





## **Background**



- In Japan, JASMA (Japan Airspace Safety Monitoring Agency) is conducting Aircraft Height Keeping Performance Monitoring as an RMA.
- > 3 HMU's (Height Monitoring Unit) are in operation.
  - Setouchi (R~40NM), Niigata (R~30NM), Sendai (R~30NM)
- Each HMU measures aircraft geometric height with 5 ground stations. (MLAT (Multi-Lateration) technique; as AGHME)
- On the other hand, <u>ADS-B Height Monitoring System</u> (<u>AHMS</u>) uses GPS geometric height information contained in ADS-B messages from aircraft.



### **AHMS Experimental System in Japan**



- ENRI is conducting research on AHMS performance in Japan.
- ➤ 3 ADS-B receiver stations are installed as an experimental system.
  - Takamatsu (Setouchi), Chofu (Tokyo), Iwanuma (Sendai)





# **Major Error Sources for ASE calculation**



According to ICAO WG reports (RMACG, SASP), there are several error sources for ASE calculation.

"Large-scale Study of the Use of Automatic Dependent Surveillance-Broadcast Data for Monitoring Aircraft Altimetry System Error", Separation and Airspace Safety Panel (SASP) Meeting Of The Working Group Of The Whole (WG/WHL)/19-WP/16, Montreal, Canada, 23 May to 3 June, 2011.

# (1) Incorrect Height Datum of GPS Height HAE (Height Above Ellipsoid) or HAG (Height Above Geoid)

No information for discrimination is contained in ADS-B messages!

#### (2) Meteorological Data Error

Numerical data used to convert Barometric Altitude to Geometric Height

#### (3) Quantization Error

Barometric Altitude and GPS Height in ADS-B messages are broadcast in 25 ft quantization



# **Experimental System – Coverage -**





# Aircraft Track Plot (for 1 day)

- AHMS (ADS-B)
- HMU (MLAT)



#### **Analysis Tool**















than that of HMU (MLAT)

**Quantization** Error is recognized



### <u>Preliminary Results – an airframe – (2)</u>







### <u>Preliminary Results – an airframe – (3)</u>



Linear regression : slope = -0.19



ASE value is assumed to be stable.



**©PS** Height of this airframe is determined as HAG

ASE value of this airframe (averaged) = -10 ft.





#### **ENRI** is developing AHMS Experimental System

ADS-B receiver station are installed for research.

#### Items undertaken

- Modification of ASE calculation
  - Interpolation of Meteorological data
  - Conversion from Geo-Potential height to Geometric height
- Statistical Analysis of Many Aircraft
  - Sortation by Aircraft Group (e.g. B772, B744-5, A320, etc)
- Detection of Non-compliant Aircraft (ASE > 245 ft)
  - ... considering the ASE distribution due to measurement error